1
|
Zhang TQ, Cai JD, Li C, Xu Y, Xu Y. De novo familial adenomatous polyposis with germline double heterozygosity of APC/BRCA2: a case report and literature review. Hered Cancer Clin Pract 2025; 23:6. [PMID: 39985003 PMCID: PMC11843810 DOI: 10.1186/s13053-025-00306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND The widespread application of colonoscopy screening and genetic testing in colorectal cancer (CRC) treatment has led to the identification of a subset of familial adenomatous polyposis (FAP) patients who lack a family history of the disease but harbor germline gene mutations. Moreover, distinct genotypes may be associated with varied clinical presentations and therapeutic options. This case report describes a male patient with de novo FAP who harbored germline double heterozygosity (GDH) for APC and BRCA2 mutations. The patient underwent total colectomy, and genetic testing enabled personalized surveillance and management strategies for his family members. CASE PRESENTATION A 43-year-old male with no family history of cancer presented to the outpatient clinic of the Colorectal Surgery Department with complaints of constipation and hematochezia. Colonoscopy revealed hundreds of polyps throughout the colon and a rectal adenocarcinoma located 5 cm from the anal verge. Gastroduodenal endoscopy did not detect any upper gastrointestinal adenomas. The patient underwent laparoscopic total colectomy with abdominoperineal resection of the rectum and end ileostomy. With the consent of the patient and his family, genetic testing was performed. The index patient was found to carry an APC splicing site mutation (exon 15: c.1744-1G > A) and a BRCA2 missense mutation (exon 17: c.7976G > A: p.R2659K). His daughter was found to have inherited the same germline BRCA2 variant. Additionally, the rectal cancer exhibited proficient DNA mismatch repair (pMMR) status, ERBB2 copy number amplification, and a missense mutation, while the KRAS, NRAS, and BRAF genes were wild-type. Based on the genetic testing results and clinical manifestations, the index patient was diagnosed with familial adenomatous polyposis (FAP) and rectal cancer. Personalized surveillance and management strategies were implemented for the patient and his family, focusing on the risks of extra-colonic diseases and potential malignancies in the prostate, pancreas, breast, and ovaries. CONCLUSION De novo FAP with double germline mutations in APC and BRCA2, along with somatic ERBB2 mutations, is exceptionally rare among hereditary cancer cases. With the rapid advancements in genomics, the detection of multiple gene variants in individuals or families has become increasingly common. Additionally, the application of artificial intelligence (AI) in medical research may provide powerful tools for genetic analysis and clinical decision-making. Consequently, a comprehensive evaluation of family history, a deep understanding of hereditary cancer syndromes, and precise interpretation of genetic mutations are essential for personalized clinical management in the era of precision medicine. However, these tasks pose significant challenges for clinicians and genetic counselors alike.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ji-Dong Cai
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yun Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Colorectal Surgery, Fudan University, Shanghai Cancer Center, Dong'an Road, 270, Shanghai, 200032, China.
| |
Collapse
|
2
|
Fernández-Ramos D, Lopitz-Otsoa F, Lu SC, Mato JM. S-Adenosylmethionine: A Multifaceted Regulator in Cancer Pathogenesis and Therapy. Cancers (Basel) 2025; 17:535. [PMID: 39941901 PMCID: PMC11816870 DOI: 10.3390/cancers17030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
S-adenosylmethionine (SAMe) is a key methyl donor that plays a critical role in a variety of cellular processes, such as DNA, RNA and protein methylation, essential for maintaining genomic stability, regulating gene expression and maintaining cellular homeostasis. The involvement of SAMe in cancer pathogenesis is multifaceted, as through its multiple cellular functions, it can influence tumor initiation, progression and therapeutic resistance. In addition, the connection of SAMe with polyamine synthesis and oxidative stress management further underscores its importance in cancer biology. Recent studies have highlighted the potential of SAMe as a biomarker for cancer diagnosis and prognosis. Furthermore, the therapeutic implications of SAMe are promising, with evidence suggesting that SAMe supplementation or modulation could improve the efficacy of existing cancer treatments by restoring proper methylation patterns and mitigating oxidative damage and protect against damage induced by chemotherapeutic drugs. Moreover, targeting methionine cycle enzymes to both regulate SAMe availability and SAMe-independent regulatory effects, particularly in methionine-dependent cancers such as colorectal and lung cancer, presents a promising therapeutic approach. Additionally, exploring epitranscriptomic regulations, such as m6A modifications, and their interaction with non-coding RNAs could enhance our understanding of tumor progression and resistance mechanisms. Precision medicine approaches integrating patient subtyping and combination therapies with chemotherapeutics, such as decitabine or doxorubicin, together with SAMe, can enhance chemosensitivity and modulate epigenomics, showing promising results that may improve treatment outcomes. This review comprehensively examines the various roles of SAMe in cancer pathogenesis, its potential as a diagnostic and prognostic marker, and its emerging therapeutic applications. While SAMe modulation holds significant promise, challenges such as bioavailability, patient stratification and context-dependent effects must be addressed before clinical implementation. In addition, better validation of the obtained results into specific cancer animal models would also help to bridge the gap between research and clinical practice.
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - José M. Mato
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| |
Collapse
|
3
|
Brauer J, Tumani M, Frey N, Lehmann LH. The cardio-oncologic burden of breast cancer: molecular mechanisms and importance of preclinical models. Basic Res Cardiol 2025; 120:91-112. [PMID: 39621070 PMCID: PMC11790711 DOI: 10.1007/s00395-024-01090-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Breast cancer, the most prevalent cancer affecting women worldwide, poses a significant cardio-oncological burden. Despite advancements in novel therapeutic strategies, anthracyclines, HER2 antagonists, and radiation remain the cornerstones of oncological treatment. However, each carries a risk of cardiotoxicity, though the molecular mechanisms underlying these adverse effects differ. Common mechanisms include DNA damage response, increased reactive oxygen species, and mitochondrial dysfunction, which are key areas of ongoing research for potential cardioprotective strategies. Since these mechanisms are also essential for effective tumor cytotoxicity, we explore tumor-specific effects, particularly in hereditary breast cancer linked to BRCA1 and BRCA2 mutations. These genetic variants impair DNA repair mechanisms, increase the risk of tumorigenesis and possibly for cardiotoxicity from treatments such as anthracyclines and HER2 antagonists. Novel therapies, including immune checkpoint inhibitors, are used in the clinic for triple-negative breast cancer and improve the oncological outcomes of breast cancer patients. This review discusses the molecular mechanisms underlying BRCA dysfunction and the associated pathological pathways. It gives an overview of preclinical models of breast cancer, such as genetically engineered mouse models, syngeneic murine models, humanized mouse models, and various in vitro and ex vivo systems and models to study cardiovascular side effects of breast cancer therapies. Understanding the underlying mechanism of cardiotoxicity and developing cardioprotective strategies in preclinical models are essential for improving treatment outcomes and reducing long-term cardiovascular risks in breast cancer patients.
Collapse
Affiliation(s)
- J Brauer
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - M Tumani
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - N Frey
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - L H Lehmann
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Ozcinar B, Ocak Z, Billur D, Ertugrul B, Timirci-Kahraman O. Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis. Int J Mol Sci 2025; 26:425. [PMID: 39796280 PMCID: PMC11721990 DOI: 10.3390/ijms26010425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/30/2025] Open
Abstract
Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected. This study aimed to explore the genetic underpinnings of GM using whole-exome sequencing (WES) on 22 GM patients and 52 healthy controls to identify single nucleotide variants (SNVs) and copy number variations (CNVs) potentially linked to the disease. WES analysis revealed novel SNVs in six genes: BRCA2 (rs169547), CFTR (rs4727853), NCF1 (rs10614), PTPN22 (rs2476601), HLA-DRB1 (seven variants), and C3 (rs406514). Notably, most of these variants are associated with immune regulation and inflammatory pathways, supporting the hypothesis that GM is an autoimmune disease. However, all identified variants were classified as benign according to the American College of Medical Genetics and Genomics (ACMG) guidelines, necessitating further investigation into their potential functional effects. Despite conducting CNV analysis, no significant variations were identified. This study represents a foundational step in linking genetic predisposition to GM and highlights the need for integrating genetic, clinical, and functional data to better understand GM's pathophysiology. Future research should focus on larger cohorts, functional studies, and exploring multifactorial contributors to GM, including hormonal and environmental factors.
Collapse
Affiliation(s)
- Beyza Ozcinar
- Department of General Surgery, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Türkiye;
| | - Zeynep Ocak
- Department of Medical Genetics, Medical Faculty, Istinye University, 34396 Istanbul, Türkiye;
| | - Deryanaz Billur
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye; (D.B.); (B.E.)
- Department of Molecular Medicine, Institute of Graduate Studies in Health Sciences, Istanbul University, 34093 Istanbul, Türkiye
| | - Baris Ertugrul
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye; (D.B.); (B.E.)
| | - Ozlem Timirci-Kahraman
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye; (D.B.); (B.E.)
| |
Collapse
|
5
|
Feng Y, Shan L, Gong Y, Hang W, Sang Z, Sun Y, Tang K, Wang Y, Hu B, Xi X. Identification of ubiquitin markers for survival and prognosis of ovarian cancer. Heliyon 2024; 10:e37288. [PMID: 39315145 PMCID: PMC11417246 DOI: 10.1016/j.heliyon.2024.e37288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Ovarian cancer (OC) is one of the most common malignancies and a leading cause of death among women worldwide. The ubiquitin pathway plays an important role in OC development. Using the single nucleotide polymorphism data obtained using the prevalence and dominance strategies, four ubiquitin marker genes were identified according to their expression levels: BARD1, BRCA2, FANCA, and BRCA1. Based on these four genes, a consensus clustering of OC expression data was performed. The significant differences in the survival analysis, ESTIMATE, and CIBERSORT results among the clusters indicated the pivotal role of these four genes in OC development. Of the ubiquitin-representative genes in each cluster, two ubiquitin genes, TOP2A and MYLIP, were identified in the survival risk model after univariate survival, Least Absolute Shrinkage and Selection Operator regression, and multivariate survival analyses. The reliability and robustness of both the training and validation data were confirmed by comparing the significant survival difference between high- and low-risk patients. We further explored the association between our risk model and clinical outcomes as well as predicted potentially interacting drugs. The co-expression network showed clear interactions among the four marker genes and two model genes and between high- and low-risk differentially expressed genes. Significantly enriched genes were found in pathways associated with ion channels, channel activity, and neuroactive ligand-receptor interactions. Therefore, suggesting the involvement of ubiquitin genes in the survival and development of OC through neurohumoral regulation. Our results will provide valuable reference or supplementary information for studies investigating OC diagnosis and therapies.
Collapse
Affiliation(s)
- Yiwen Feng
- Departments of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Liyun Shan
- Departments of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Yanping Gong
- Departments of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Wenzhao Hang
- Departments of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Zhenyu Sang
- Departments of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Yunyan Sun
- Departments of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Kefu Tang
- Center for Reproductive Medicne, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200135, PR China
| | - Yulan Wang
- Departments of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Binjie Hu
- Departments of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xiaowei Xi
- Departments of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| |
Collapse
|
6
|
Li P, Zhu X, Qu H, Han Z, Yao X, Wei Y, Li B, Chen H. Synergistic Effect of Ubiquitin-Specific Protease 14 and Poly(ADP-Ribose) Glycohydrolase Co-Inhibition in BRCA1-Mutant, Poly(ADP-Ribose) Polymerase Inhibitor-Resistant Triple-Negative Breast Cancer Cells. Onco Targets Ther 2024; 17:741-753. [PMID: 39258222 PMCID: PMC11385694 DOI: 10.2147/ott.s463217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose The clinical benefits of poly(ADP-ribose) polymerase (PARP) inhibitors are limited to triple-negative breast cancer (TNBC) with BRCA deficiency due to primary and acquired resistance. Thus, there is a pressing need to develop alternative treatment regimens to target BRCA-mutated TNBC tumors that are resistant to PARP inhibition. Similar to PARP, poly(ADP-ribose) glycohydrolase (PARG) plays a role in DNA replication and repair. However, there are conflicting reports on the vulnerability of BRCA1-deficient tumor cells to PARG inhibition. This study aims to investigate the synergistically lethal effect of the PARG inhibitor COH34 and the ubiquitin-specific protease (USP) 14 inhibitor IU1-248 and the underlying mechanisms in BRCA1-mutant, PARP inhibitor-resistant TNBC cells. Methods The cytotoxicity of PARG inhibition alone or in combination with USP14 inhibition in the BRCA-mutant, PARP inhibitor-resistant TNBC cell lines, HCC1937 and SUM149PT, was analyzed using cell viability and proliferation assays and flow cytometry. The molecular mechanisms underlying the synergistic effects of IU1-248 and COH34 were evaluated by immunofluorescence staining, DNA repair reporter assays and Western blot analysis. Results It was found that HCC1937 and SUM149PT cells exhibited moderate responsiveness to PARG inhibition alone. To the best of our knowledge, this research is the first to demonstrate that the combination of IU1-248 and COH34 produces synergistic effects against TNBC cells in the same setting. Mechanistically, the blockade of USP14 by IU1-248 was shown to increase DNA damage and promote error-prone non-homologous end joining (NHEJ), as evidenced by the accumulation of γH2AX and 53BP1 in the nucleus and the activation of a reporter assay. Additionally, it was demonstrated that the inhibition of NHEJ repair activity attenuates the synergistic effects of concomitant PARG and USP14 inhibition. IU1-248 promotes NHEJ repair through the downregulation of the expression of c-Myc. Conclusion USP14 inhibition may be a plausible strategy for expanding the utility of PARG inhibitors in TNBC in BRCA-mutant, PARP inhibitor-resistant settings.
Collapse
Affiliation(s)
- Pisong Li
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiaoyu Zhu
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hui Qu
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Zhongbin Han
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xingyu Yao
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Yuan Wei
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Baijun Li
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hongshen Chen
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| |
Collapse
|
7
|
Lakis F, Ayoub R, Faour WH, Makki M, Yassine H, Fayyad-Kazan H, Abdel Sater F. Identification of CSNK1D and KLK6 as two common upregulated genes present in BRCA1 mutated triple-negative breast cancer and ovarian epithelial carcinoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-14. [PMID: 38781585 DOI: 10.1080/15257770.2024.2357267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Deficiency in the breast cancer type 1 (BRCA1) gene expression predisposes to triple-negative breast cancer (TNBC) and ovarian cancer (OC). We previously identified by Comparative Genomic Hybridization (CGH) array a gain in the 17q25.3 genomic region in 90% of the BRCA1 mutated TNBC tissues, where 17 genes were up-regulated. A second region (Chr19_45681759_54221324) was identified as the second most frequent gain in the BRCA1-mutated population and has not yet been described in the context of BRCA1 mutation. We thus aimed to validate the expression of the Casein kinase 1 delta (CSNK1D) gene of Chr17 in TNBC and OC cell lines and to investigate the expression of genes of Chr19 in TNBC cell lines and tissues as well as in OC cell lines. Expression level of the genes of the 17q25.3, 19q13.32,13.33 and 13.41 chromosomal regions was analyzed using RT-PCR in BRCA1 deficient TNBC and OC cell lines, as well as in 10 BRCA1-mutated TNBC tissues versus 10 wild type carriers. Our results revealed a significant upregulation of CSNK1D gene expression in BRCA1 deficient TNBC and OC cell lines when compared to control ones, and a significant aberration in the expression of the other six genes of Chr19 was observed. Interestingly, upregulation of kallikrein-related peptidase 6 (KLK6) was detected among the BRCA1 deficient TNBC (cell lines and tissues) and OC cell lines. In conclusion, our results suggested that CSNK1D and KLK6 expression levels could be very promising in the search for biomarkers for BRCA1 deficient TNBC and OC.
Collapse
Affiliation(s)
- Fatima Lakis
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Rita Ayoub
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Mohammad Makki
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Hanane Yassine
- Biology Department, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Fadi Abdel Sater
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
8
|
Chen B, Ren C, Ouyang Z, Xu J, Xu K, Li Y, Guo H, Bai X, Tian M, Xu X, Wang Y, Li H, Bo X, Chen H. Stratifying TAD boundaries pinpoints focal genomic regions of regulation, damage, and repair. Brief Bioinform 2024; 25:bbae306. [PMID: 38935071 PMCID: PMC11210073 DOI: 10.1093/bib/bbae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Advances in chromatin mapping have exposed the complex chromatin hierarchical organization in mammals, including topologically associating domains (TADs) and their substructures, yet the functional implications of this hierarchy in gene regulation and disease progression are not fully elucidated. Our study delves into the phenomenon of shared TAD boundaries, which are pivotal in maintaining the hierarchical chromatin structure and regulating gene activity. By integrating high-resolution Hi-C data, chromatin accessibility, and DNA double-strand breaks (DSBs) data from various cell lines, we systematically explore the complex regulatory landscape at high-level TAD boundaries. Our findings indicate that these boundaries are not only key architectural elements but also vibrant hubs, enriched with functionally crucial genes and complex transcription factor binding site-clustered regions. Moreover, they exhibit a pronounced enrichment of DSBs, suggesting a nuanced interplay between transcriptional regulation and genomic stability. Our research provides novel insights into the intricate relationship between the 3D genome structure, gene regulation, and DNA repair mechanisms, highlighting the role of shared TAD boundaries in maintaining genomic integrity and resilience against perturbations. The implications of our findings extend to understanding the complexities of genomic diseases and open new avenues for therapeutic interventions targeting the structural and functional integrity of TAD boundaries.
Collapse
Affiliation(s)
- Bijia Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Chao Ren
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Zhangyi Ouyang
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Jingxuan Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kang Xu
- School of Software, Shandong University, Jinan 250101, China
| | - Yaru Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Hejiang Guo
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xuemei Bai
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Mengge Tian
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiang Xu
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yuyang Wang
- College of Computer and Data Science, Fuzhou University, Fuzhou 350108, China
| | - Hao Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
9
|
de Oliveira Ferreira C, Carneiro VCG, Araujo Mariz C. Germline mutations in BRCA1 and BRCA2 among Brazilian women with ovarian cancer treated in the Public Health System. BMC Cancer 2024; 24:499. [PMID: 38641594 PMCID: PMC11027424 DOI: 10.1186/s12885-024-12246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Germline mutations in BRCA1 and BRCA2 genes are among the main causes of hereditary ovarian cancer. Identifying these mutations may reduce cancer risk, facilitate early detection, and enable personalized treatment. However, genetic testing is limited in the Brazilian Public Health System, and data regarding germline mutations in many regions are scarce. Therefore, the study aimed to investigate the prevalence of germline mutations in BRCA1 and BRCA2 in women with ovarian cancer treated in the Public Health System in Pernambuco, Brazil. METHODS A cross-sectional study was conducted in the Hereditary Cancer Program from two reference oncological centers in Pernambuco. Women (n = 45) with high-grade serous ovarian cancer underwent genetic counseling and DNA sequencing for BRCA1 and BRCA2 genes. RESULTS The prevalence of deleterious mutations in the BRCA1 and BRCA2 genes was 33%. Of the 15 germline mutations found, 13 were in BRCA1 and 2 in BRCA2; two mutations of unknown clinical significance were also found in BRCA2. Mutations c.5266dupC and c.2215 A > T were the most frequent; each was mutation observed in three patients. Additionally, the mutations c.7645dupT and c.921dupT were reported for the first time. CONCLUSION One in three women showed a pathogenic mutation, demonstrating a significant prevalence of germline mutations in this sample. Additionally, the small sample revealed an interesting number of mutations, indicating the need to explore more regions of the country.
Collapse
Affiliation(s)
| | - Vandré Cabral Gomes Carneiro
- Hospital de Câncer de Pernambuco, Recife, Pernambuco, Brazil
- Instituto de Medicina Integral Professor Fernando Figueira, Recife, Pernambuco, Brazil
| | - Carolline Araujo Mariz
- Instituto Aggeu Magalhães, FIOCRUZ, Recife, Pernambuco, Brazil.
- Faculdade de Medicina de Olinda, Olinda, Pernambuco, Brazil.
| |
Collapse
|
10
|
Wang J, Cai L, Huang G, Wang C, Zhang Z, Xu J. CENPA and BRCA1 are potential biomarkers associated with immune infiltration in heart failure and pan-cancer. Heliyon 2024; 10:e28786. [PMID: 38576566 PMCID: PMC10990859 DOI: 10.1016/j.heliyon.2024.e28786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Heart failure (HF) and cancer are the two leading causes of death worldwide and affect one another in a bidirectional way. We aimed to identify hub therapeutic genes as potential biomarkers for the identification and treatment of HF and cancer. Gene expression data of heart samples from patients with ischemic HF (IHF) and healthy controls were retrieved from the GSE42955 and GSE57338 databases. Difference analysis and weighted gene co-expression network analysis (WGCNA) were used to identify key modules associated with IHF. The overlapping genes were subjected to gene and protein enrichment analyses to construct a protein-protein interaction (PPI) network, which was screened for hub genes among the overlapping genes. A total of eight hub genes were subjected to correlation, immune cell infiltration, and ROC analyses. Then we analyzed the roles of two significant genes in 33 tumor types to explore their potential as common targets in HF and cancer. A total of 85 genes were identified by WGCNA and differentially expressed gene (DEG) analyses. BRCA1, MED17, CENPA, RXRA, RXRB, SMARCA2, CDCA2, and PMS2 were identified as the hub genes with IHF. Finally, CENPA and BRCA1 were identified as potential common targets for IHF and cancer. These findings provide new perspectives for expanding our understanding of the etiology and underlying mechanisms of HF and cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Lin Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Gang Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Chunbin Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Zhen Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
- Chengdu Institute of Cardiovascular Disease, 82 Qinglong Street, Chengdu, 610014, China
| | - Junbo Xu
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
- Chengdu Institute of Cardiovascular Disease, 82 Qinglong Street, Chengdu, 610014, China
| |
Collapse
|
11
|
Yang Z, Mogre S, He R, Berdan EL, Ho Sui S, Hill S. The ORFIUS complex regulates ORC2 localization at replication origins. NAR Cancer 2024; 6:zcae003. [PMID: 38288445 PMCID: PMC10823580 DOI: 10.1093/narcan/zcae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
High-grade serous ovarian cancer (HGSC) is a lethal malignancy with elevated replication stress (RS) levels and defective RS and RS-associated DNA damage responses. Here we demonstrate that the bromodomain-containing protein BRD1 is a RS suppressing protein that forms a replication origin regulatory complex with the histone acetyltransferase HBO1, the BRCA1 tumor suppressor, and BARD1, ORigin FIring Under Stress (ORFIUS). BRD1 and HBO1 promote eventual origin firing by supporting localization of the origin licensing protein ORC2 at origins. In the absence of BRD1 and/or HBO1, both origin firing and nuclei with ORC2 foci are reduced. BRCA1 regulates BRD1, HBO1, and ORC2 localization at replication origins. In the absence of BRCA1, both origin firing and nuclei with BRD1, HBO1, and ORC2 foci are increased. In normal and non-HGSC ovarian cancer cells, the ORFIUS complex responds to ATR and CDC7 origin regulatory signaling and disengages from origins during RS. In BRCA1-mutant and sporadic HGSC cells, BRD1, HBO1, and ORC2 remain associated with replication origins, and unresponsive to RS, DNA damage, or origin regulatory kinase inhibition. ORFIUS complex dysregulation may promote HGSC cell survival by allowing for upregulated origin firing and cell cycle progression despite accumulating DNA damage, and may be a RS target.
Collapse
Affiliation(s)
- Zelei Yang
- Department of Medical Oncology and Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Saie Mogre
- Department of Medical Oncology and Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ruiyang He
- Department of Medical Oncology and Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emma L Berdan
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sarah J Hill
- Department of Medical Oncology and Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Waters KL, Spratt DE. New Discoveries on Protein Recruitment and Regulation during the Early Stages of the DNA Damage Response Pathways. Int J Mol Sci 2024; 25:1676. [PMID: 38338953 PMCID: PMC10855619 DOI: 10.3390/ijms25031676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.
Collapse
Affiliation(s)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
13
|
Zawadzka A, Brzozowska B, Matyjanka A, Mikula M, Reszczyńska J, Tartas A, Fornalski KW. The Risk Function of Breast and Ovarian Cancers in the Avrami-Dobrzyński Cellular Phase-Transition Model. Int J Mol Sci 2024; 25:1352. [PMID: 38279352 PMCID: PMC10816518 DOI: 10.3390/ijms25021352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Specifying the role of genetic mutations in cancer development is crucial for effective screening or targeted treatments for people with hereditary cancer predispositions. Our goal here is to find the relationship between a number of cancerogenic mutations and the probability of cancer induction over the lifetime of cancer patients. We believe that the Avrami-Dobrzyński biophysical model can be used to describe this mechanism. Therefore, clinical data from breast and ovarian cancer patients were used to validate this model of cancer induction, which is based on a purely physical concept of the phase-transition process with an analogy to the neoplastic transformation. The obtained values of model parameters established using clinical data confirm the hypothesis that the carcinogenic process strongly follows fractal dynamics. We found that the model's theoretical prediction and population clinical data slightly differed for patients with the age below 30 years old, and that might point to the existence of an ancillary protection mechanism against cancer development. Additionally, we reveal that the existing clinical data predict breast or ovarian cancers onset two years earlier for patients with BRCA1/2 mutations.
Collapse
Affiliation(s)
- Anna Zawadzka
- Maria Skłodowska-Curie National Research Institute of Oncology (NIO-MSCI), 02-781 Warsaw, Poland; (A.Z.)
| | - Beata Brzozowska
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland; (B.B.)
| | - Anna Matyjanka
- Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Michał Mikula
- Maria Skłodowska-Curie National Research Institute of Oncology (NIO-MSCI), 02-781 Warsaw, Poland; (A.Z.)
| | - Joanna Reszczyńska
- Mossakowski Medical Research Institute, Polish Academy of Sciences (IMDiK PAN), 02-106 Warsaw, Poland;
| | - Adrianna Tartas
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland; (B.B.)
| | - Krzysztof W. Fornalski
- Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland
- National Centre for Nuclear Research (NCBJ), 05-400 Otwock-Świerk, Poland
| |
Collapse
|
14
|
Li L, Li S, Zhang X, Mei L, Fu X, Dai M, Wei N. Establishing the role of BRCA1 in the diagnosis, prognosis and immune infiltrates of breast invasive cancer by bioinformatics analysis and experimental validation. Aging (Albany NY) 2024; 16:1077-1095. [PMID: 38224491 PMCID: PMC10866431 DOI: 10.18632/aging.205366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Breast cancer susceptibility gene 1 (BRCA1) is a well-known gene that acts a vital role in suppressing the growth of tumors. Previous studies have primarily focused on the genetic mutations of BRCA1 and its association with hereditary breast invasive carcinoma (BRCA). However, little research has been done to investigate the relationship between BRCA1 and immune infiltrates and prognosis in BRCA. METHODS We obtained the expression profiles and clinical information of patients with BRCA from the Cancer Genome Atlas (TCGA) database. The levels of the BRCA1 gene between BRCA tissues and normal breast tissues were compared through the Wilcoxon rank-sum test. Additionally, we performed WB and RT-qPCR techniques to detect the expression of BRCA1. We conducted functional enrichment analyses. Furthermore, we assessed immune cell infiltration using a single-sample gene set enrichment analysis. The methylation status of the BRCA1 gene was analyzed using the UALCAN and MethSurv databases. The Cox regression analysis and (KM) Kaplan-Meier method were employed to determine the prognostic value of BRCA1. In order to provide a practical tool for predicting the overall survival rates at different time points, we also constructed a nomogram. RESULTS Our analysis revealed that the expression of BRCA1 was significantly higher in BRCA tissues compared to normal tissues. Furthermore, this increased level of BRCA1 was found to be associated with specific BRCA subtypes, including T2, stage II, ER positive, ect. Importantly, the overexpression of BRCA1 was shown to be a negative prognostic marker for the overall survival rates of BRCA patients. Moreover, low methylation status of the BRCA1 gene was related to a poorer prognosis. Furthermore, our results indicated that high levels of BRCA1 are related to a decrease in level of killer immune cells, such as natural killer (NK) cells, macrophages, CD8+ T cells, and plasma-like dendritic cells (pDCs) within the tumor microenvironment. CONCLUSIONS Our study is the first to provide evidence indicating that the presence of BRCA1 can serve as a reliable marker for both diagnosing and determining the prognosis of BRCA. Moreover, BRCA1 acts as a crucial indicator of the cancer's potential to infiltrate and invade the immune system, which has important implications for developing targeted therapies in BRCA.
Collapse
Affiliation(s)
- Leilei Li
- Department of Pathology, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shuangyan Li
- Department of Oncology, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xuyang Zhang
- Department of Hepatobiliary, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Liying Mei
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Xueqin Fu
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Min Dai
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Na Wei
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| |
Collapse
|
15
|
Luo Y, Pan R, Rao H, Chen X, Yang H. Association Between Germline BRCA1/2 Gene Variants and Clinicopathological Features of Ovarian Cancer. Int J Gen Med 2024; 17:75-84. [PMID: 38226182 PMCID: PMC10789571 DOI: 10.2147/ijgm.s445660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
Objective To investigate the relationship between BRCA1/2 gene mutation and clinicopathological features in ovarian cancer patients, so as to develop precise individualized treatment plan for patients. Methods Patients diagnosed with ovarian cancer between January 2018 and July 2023 who underwent BRCA1/2 genetic testing were retrospectively analyzed. The clinicopathological characteristics (age, body mass index (BMI), family history of ovarian cancer, pregnancy history, menopause status, tumor size, histopathology, Federation of Gynecology and Obstetrics (FIGO) staging, and ascites) of non-carriers and BRCA1/2 variant carriers were compared. Logistic regression analysis was used to explore the relationship between BRCA1/2 variants and clinicopathological characteristics of ovarian cancer. Results A total of 284 ovarian cancer patients were collected, and the subjects were divided into two groups, 197 non-carriers and 87 BRCA1/2 variants carriers. The proportion of serous ovarian carcinoma in BRCA1/2 variant carriers is higher than that in non-BRCA variant carriers (78.2% vs 60.9%, p=0.015). There were 51 patients with BRCA pathogenic or likely pathogenic variant, 22 patients with BRCA likely benign variant, and 14 patients with BRCA variants of uncertain significance (VUS). The proportion of serous ovarian carcinoma in patients with BRCA pathogenic/likely pathogenic variant is higher than that in patients with BRCA likely benign variant and BRCA VUS (94.1% vs 50.0% and 64.3%. p<0.001). There were no statistically significant differences in BMI, family history of ovarian cancer, pregnancy history, menopause status, maximum diameter of the tumor lesion, FIGO stage, and ascites among patients with different grades of variants. Multivariate logistic regression analysis showed that serous ovarian carcinoma was related to BRCA mutation (Serous carcinoma vs non-serous carcinoma: OR 2.145, 95% CI: 1.044-4.407) (p=0.038). Conclusion Patients with BRCA1 variant develop ovarian cancer at a younger age than those with the BRCA2 variant. The proportion of FIGO stage III-IV in patients with BRCA pathogenic + likely pathogenic variant was significantly higher than those in patients with other variants. Germline BRCA1/2 variants were most frequently identified in serous ovarian carcinoma patients.
Collapse
Affiliation(s)
- Yu Luo
- Department of Gynaecology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Ru Pan
- Department of Gynaecology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Hui Rao
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Department of Laboratory Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Xing Chen
- Data Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Haikun Yang
- Department of Gynaecology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
16
|
Tornillo G, Warrington L, Kendrick H, Higgins AT, Hay T, Beck S, Smalley MJ. Conditional in vivo deletion of LYN kinase has little effect on a BRCA1 loss-of-function-associated mammary tumour model. Dis Model Mech 2024; 17:dmm050211. [PMID: 38149669 PMCID: PMC10846530 DOI: 10.1242/dmm.050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Giusy Tornillo
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lauren Warrington
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Howard Kendrick
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Adam T. Higgins
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor Hay
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sam Beck
- Independent Anatomic Pathology Ltd, Calyx House, South Road, Taunton TA1 3DU, UK
| | - Matthew J. Smalley
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
17
|
Dias Nunes J, Demeestere I, Devos M. BRCA Mutations and Fertility Preservation. Int J Mol Sci 2023; 25:204. [PMID: 38203374 PMCID: PMC10778779 DOI: 10.3390/ijms25010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Hereditary cancers mostly affect the adolescent and young adult population (AYA) at reproductive age. Mutations in BReast CAncer (BRCA) genes are responsible for the majority of cases of hereditary breast and ovarian cancer. BRCA1 and BRCA2 act as tumor suppressor genes as they are key regulators of DNA repair through homologous recombination. Evidence of the accumulation of DNA double-strand break has been reported in aging oocytes, while BRCA expression decreases, leading to the hypothesis that BRCA mutation may impact fertility. Moreover, patients exposed to anticancer treatments are at higher risk of fertility-related issues, and BRCA mutations could exacerbate the treatment-induced depletion of the ovarian reserve. In this review, we summarized the functions of both genes and reported the current knowledge on the impact of BRCA mutations on ovarian ageing, premature ovarian insufficiency, female fertility preservation strategies and insights about male infertility. Altogether, this review provides relevant up-to-date information on the impact of BRCA1/2 mutations on fertility. Notably, BRCA-mutated patients should be adequately counselled for fertility preservation strategies, considering their higher sensitivity to chemotherapy gonadotoxic effects.
Collapse
Affiliation(s)
- Joana Dias Nunes
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
- Fertility Clinic, HUB-Erasme Hospital, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Melody Devos
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| |
Collapse
|
18
|
Nikmanesh A, Esmailizadeh A, Asadollahpour Nanaei H, Ezedinloo L, Asadi Fozi M. Comparison of genetic diversity and phylogenetic structure of BRCA1 gene of some domestic and wild sheep breeds in different countries. Anim Biotechnol 2023; 34:4746-4759. [PMID: 36927261 DOI: 10.1080/10495398.2023.2187410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BRCA1 gene plays an important role in DNA damage repair, cell cycle, and transcription process regulation; hence it's called gate keeper. The current research aims to perform bioinformatics analyzes of the BRCA1 gene of different breeds of domestic and wild sheep from 49 breeds in 14 countries using the NCBI genome database. The desired sequences were aligned using MEGA11 software and a phylogenetic tree was drawn by Neighbor-Joining method. The number of mutations, nucleotide diversity, and haploid diversity were also analyzed using Dnaspv5 software. The analyses showed 296 polymorphisms, which led to the creation of 45 different haplotypes with a haplotype diversity of 0.035. Nucleotide diversity and average nucleotide differences among breeds were estimated as 0.259 and 0.052, respectively. The average genetic distance within the population of countries was calculated as 0.052. The amount of sequence conservation in this research was 0.313 on average, which indicates the high polymorphism of this gene and the emergence of new proteins. Tajima's D value in Tajima's neutrality test was -2.421, which was significant (p < 0.05). One of the reasons for the high genetic diversity in Iran's wild sheep population is the existence of forests and open environments, which prevent genetic drift and reduce inbreeding.
Collapse
Affiliation(s)
- Alireza Nikmanesh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Leila Ezedinloo
- Department of Environment (DOE), Natural History Museum & Genetic Resource, Bureau, Park Nature of Pardisan, Tehran, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
19
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
20
|
Genetic Considerations in the Locoregional Management of Breast Cancer: a Review of Current Evidence. CURRENT BREAST CANCER REPORTS 2023. [DOI: 10.1007/s12609-023-00478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
21
|
Caleca L, Radice P. Refinement of the assignment to the ACMG/AMP BS3 and PS3 criteria of eight BRCA1 variants of uncertain significance by integrating available functional data with protein interaction assays. Front Oncol 2023; 13:1146604. [PMID: 37168384 PMCID: PMC10164951 DOI: 10.3389/fonc.2023.1146604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
The clinical screening of cancer predisposition genes has led to the identification of a large number of variants of uncertain significance (VUS). Multifactorial likelihood models that predict the odds ratio for VUS in favor or against cancer causality, have been developed, but their use is limited by the amount of necessary data, which are difficult to obtain for rare variants. The guidelines for variant interpretation of the American College of Medical Genetics and Genomics along with the Association for Molecular Pathology (ACMG/AMP) state that "well-established" functional studies provide strong support of a pathogenic or benign impact (criteria PS3 and BS3, respectively) and can be used as evidence type to reach a final classification. Moreover, the Clinical Genome Resource Sequence Variant Interpretation Working Group developed rule specifications to refine the PS3/BS3 criteria. Recently, Lira PC et al. developed the "Hi Set" approach that generated PS3/BS3 codes for over two-thousands BRCA1 VUS. While highly successful, this approach did not discriminate a group of variants with conflicting evidences. Here, we aimed to implement the outcomes of the "Hi-set" approach applying Green Fluorescent Protein (GFP)-reassembly assays, assessing the effect of variants in the RING and BRCT domains of BRCA1 on the binding of these domains with the UbcH5a or ABRAXAS proteins, respectively. The analyses of 26 clinically classified variants, including 13 tested in our previous study, showed 100% sensitivity and specificity in identifying pathogenic and benign variants for both the RING/UbcH5a and the BRCTs/ABRAXAS interactions. We derived the strength of evidences generated by the GFP-reassembly assays corresponding to moderate for both PS3 and BS3 criteria assessment. The GFP-reassembly assays were applied to the functional characterization of 8 discordant variants from the study by Lyra et al. The outcomes of these analyses, combined with those reported in the "Hi Set" study, allowed the assignment of ACMG/AMP criteria in favor or against pathogenicity for all 8 examined variants. The above findings were validated with a semi-quantitative Mammalian Two-Hybrid approach, and totally concordant results were observed. Our data contributes in shedding light on the functional significance of BRCA1 VUS and on their clinical interpretation within the ACMG/AMP framework.
Collapse
|
22
|
The BRCAness Landscape of Cancer. Cells 2022; 11:cells11233877. [PMID: 36497135 PMCID: PMC9738094 DOI: 10.3390/cells11233877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
BRCAness refers to the damaged homologous recombination (HR) function due to the defects in HR-involved non-BRCA1/2 genes. BRCAness is the important marker for the use of synthetic lethal-based PARP inhibitor therapy in breast and ovarian cancer treatment. The success provides an opportunity of applying PARP inhibitor therapy to treat other cancer types with BRCAness features. However, systematic knowledge is lack for BRCAness in different cancer types beyond breast and ovarian cancer. We performed a comprehensive characterization for 40 BRCAness-related genes in 33 cancer types with over 10,000 cancer cases, including pathogenic variation, homozygotic deletion, promoter hypermethylation, gene expression, and clinical correlation of BRCAness in each cancer type. Using BRCA1/BRCA2 mutated breast and ovarian cancer as the control, we observed that BRCAness is widely present in multiple cancer types. Based on the sum of the BRCAneass features in each cancer type, we identified the following 21 cancer types as the potential targets for PARPi therapy: adrenocortical carcinoma, bladder urothelial carcinoma, brain lower grade glioma, colon adenocarcinoma, esophageal carcinoma, head and neck squamous carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, rectum adenocarcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, uterine carcinosarcoma, and uterine corpus endometrial carcinoma.
Collapse
|
23
|
Arai H, Minami Y, Chi S, Utsu Y, Masuda S, Aotsuka N. Molecular-Targeted Therapy for Tumor-Agnostic Mutations in Acute Myeloid Leukemia. Biomedicines 2022; 10:3008. [PMID: 36551764 PMCID: PMC9775249 DOI: 10.3390/biomedicines10123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Comprehensive genomic profiling examinations (CGPs) have recently been developed, and a variety of tumor-agnostic mutations have been detected, leading to the development of new molecular-targetable therapies across solid tumors. In addition, the elucidation of hereditary tumors, such as breast and ovarian cancer, has pioneered a new age marked by the development of new treatments and lifetime management strategies required for patients with potential or presented hereditary cancers. In acute myeloid leukemia (AML), however, few tumor-agnostic or hereditary mutations have been the focus of investigation, with associated molecular-targeted therapies remaining poorly developed. We focused on representative tumor-agnostic mutations such as the TP53, KIT, KRAS, BRCA1, ATM, JAK2, NTRK3, FGFR3 and EGFR genes, referring to a CGP study conducted in Japan, and we considered the possibility of developing molecular-targeted therapies for AML with tumor-agnostic mutations. We summarized the frequency, the prognosis, the structure and the function of these mutations as well as the current treatment strategies in solid tumors, revealed the genetical relationships between solid tumors and AML and developed tumor-agnostic molecular-targeted therapies and lifetime management strategies in AML.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| |
Collapse
|
24
|
Chu YY, Yam C, Yamaguchi H, Hung MC. Biomarkers beyond BRCA: promising combinatorial treatment strategies in overcoming resistance to PARP inhibitors. J Biomed Sci 2022; 29:86. [PMID: 36284291 PMCID: PMC9594904 DOI: 10.1186/s12929-022-00870-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) exploit the concept of synthetic lethality and offer great promise in the treatment of tumors with deficiencies in homologous recombination (HR) repair. PARPi exert antitumor activity by blocking Poly(ADP-ribosyl)ation (PARylation) and trapping PARP1 on damaged DNA. To date, the U.S. Food and Drug Administration (FDA) has approved four PARPi for the treatment of several cancer types including ovarian, breast, pancreatic and prostate cancer. Although patients with HR-deficient tumors benefit from PARPi, majority of tumors ultimately develop acquired resistance to PARPi. Furthermore, even though BRCA1/2 mutations are commonly used as markers of PARPi sensitivity in current clinical practice, not all patients with BRCA1/2 mutations have PARPi-sensitive disease. Thus, there is an urgent need to elucidate the molecular mechanisms of PARPi resistance to support the development of rational effective treatment strategies aimed at overcoming resistance to PARPi, as well as reliable biomarkers to accurately identify patients who will most likely benefit from treatment with PARPi, either as monotherapy or in combination with other agents, so called marker-guided effective therapy (Mget). In this review, we summarize the molecular mechanisms driving the efficacy of and resistance to PARPi as well as emerging therapeutic strategies to overcome PARPi resistance. We also highlight the identification of potential markers to predict PARPi resistance and guide promising PARPi-based combination strategies.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hirohito Yamaguchi
- Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
25
|
Fournier M, Rodrigue A, Milano L, Bleuyard JY, Couturier AM, Wall J, Ellins J, Hester S, Smerdon SJ, Tora L, Masson JY, Esashi F. KAT2-mediated acetylation switches the mode of PALB2 chromatin association to safeguard genome integrity. eLife 2022; 11:e57736. [PMID: 36269050 PMCID: PMC9671498 DOI: 10.7554/elife.57736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
The tumour suppressor PALB2 stimulates RAD51-mediated homologous recombination (HR) repair of DNA damage, whilst its steady-state association with active genes protects these loci from replication stress. Here, we report that the lysine acetyltransferases 2A and 2B (KAT2A/2B, also called GCN5/PCAF), two well-known transcriptional regulators, acetylate a cluster of seven lysine residues (7K-patch) within the PALB2 chromatin association motif (ChAM) and, in this way, regulate context-dependent PALB2 binding to chromatin. In unperturbed cells, the 7K-patch is targeted for KAT2A/2B-mediated acetylation, which in turn enhances the direct association of PALB2 with nucleosomes. Importantly, DNA damage triggers a rapid deacetylation of ChAM and increases the overall mobility of PALB2. Distinct missense mutations of the 7K-patch render the mode of PALB2 chromatin binding, making it either unstably chromatin-bound (7Q) or randomly bound with a reduced capacity for mobilisation (7R). Significantly, both of these mutations confer a deficiency in RAD51 foci formation and increase DNA damage in S phase, leading to the reduction of overall cell survival. Thus, our study reveals that acetylation of the ChAM 7K-patch acts as a molecular switch to enable dynamic PALB2 shuttling for HR repair while protecting active genes during DNA replication.
Collapse
Affiliation(s)
- Marjorie Fournier
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research CenterQuébecCanada
| | - Larissa Milano
- CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research CenterQuébecCanada
| | - Jean-Yves Bleuyard
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Anthony M Couturier
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Jacob Wall
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Jessica Ellins
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Svenja Hester
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Advanced Proteomics Facility, University of OxfordOxfordUnited Kingdom
| | | | - László Tora
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research CenterQuébecCanada
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
26
|
Sarvari P, Sarvari P, Ramírez-Díaz I, Mahjoubi F, Rubio K. Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. Int J Mol Sci 2022; 23:ijms23179521. [PMID: 36076918 PMCID: PMC9455804 DOI: 10.3390/ijms23179521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Epigenetic modifications are known to regulate cell phenotype during cancer progression, including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical treatment for breast cancer patients, however, will likely depend upon a better understanding of epigenetic modifications. The present review aims to outline different epigenetic mechanisms including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer, as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as breast cancer therapeutics.
Collapse
Affiliation(s)
- Pourya Sarvari
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Correspondence:
| |
Collapse
|
27
|
Functional regulations between genetic alteration-driven genes and drug target genes acting as prognostic biomarkers in breast cancer. Sci Rep 2022; 12:10641. [PMID: 35739271 PMCID: PMC9226112 DOI: 10.1038/s41598-022-13835-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Differences in genetic molecular features including mutation, copy number alterations and DNA methylation, can explain interindividual variability in response to anti-cancer drugs in cancer patients. However, identifying genetic alteration-driven genes and characterizing their functional mechanisms in different cancer types are still major challenges for cancer studies. Here, we systematically identified functional regulations between genetic alteration-driven genes and drug target genes and their potential prognostic roles in breast cancer. We identified two mutation and copy number-driven gene pairs (PARP1-ACSL1 and PARP1-SRD5A3), three DNA methylation-driven gene pairs (PRLR-CDKN1C, PRLR-PODXL2 and PRLR-SRD5A3), six gene pairs between mutation-driven genes and drug target genes (SLC19A1-SLC47A2, SLC19A1-SRD5A3, AKR1C3-SLC19A1, ABCB1-SRD5A3, NR3C2-SRD5A3 and AKR1C3-SRD5A3), and four copy number-driven gene pairs (ADIPOR2-SRD5A3, CASP12-SRD5A3, SLC39A11-SRD5A3 and GALNT2-SRD5A3) that all served as prognostic biomarkers of breast cancer. In particular, RARP1 was found to be upregulated by simultaneous copy number amplification and gene mutation. Copy number deletion and downregulated expression of ACSL1 and upregulation of SRD5A3 both were observed in breast cancers. Moreover, copy number deletion of ACSL1 was associated with increased resistance to PARP inhibitors. PARP1-ACSL1 pair significantly correlated with poor overall survival in breast cancer owing to the suppression of the MAPK, mTOR and NF-kB signaling pathways, which induces apoptosis, autophagy and prevents inflammatory processes. Loss of SRD5A3 expression was also associated with increased sensitivity to PARP inhibitors. The PARP1-SRD5A3 pair significantly correlated with poor overall survival in breast cancer through regulating androgen receptors to induce cell proliferation. These results demonstrate that genetic alteration-driven gene pairs might serve as potential biomarkers for the prognosis of breast cancer and facilitate the identification of combination therapeutic targets for breast cancers.
Collapse
|
28
|
Rajabi S, Alix-Panabières C, Alaei AS, Abooshahab R, Shakib H, Ashrafi MR. Looking at Thyroid Cancer from the Tumor-Suppressor Genes Point of View. Cancers (Basel) 2022; 14:2461. [PMID: 35626065 PMCID: PMC9139614 DOI: 10.3390/cancers14102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Thyroid cancer is the most frequent endocrine malignancy and accounts for approximately 1% of all diagnosed cancers. A variety of mechanisms are involved in the transformation of a normal tissue into a malignant one. Loss of tumor-suppressor gene (TSG) function is one of these mechanisms. The normal functions of TSGs include cell proliferation and differentiation control, genomic integrity maintenance, DNA damage repair, and signaling pathway regulation. TSGs are generally classified into three subclasses: (i) gatekeepers that encode proteins involved in cell cycle and apoptosis control; (ii) caretakers that produce proteins implicated in the genomic stability maintenance; and (iii) landscapers that, when mutated, create a suitable environment for malignant cell growth. Several possible mechanisms have been implicated in TSG inactivation. Reviewing the various TSG alteration types detected in thyroid cancers may help researchers to better understand the TSG defects implicated in the development/progression of this cancer type and to find potential targets for prognostic, predictive, diagnostic, and therapeutic purposes. Hence, the main purposes of this review article are to describe the various TSG inactivation mechanisms and alterations in human thyroid cancer, and the current therapeutic options for targeting TSGs in thyroid cancer.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, CEDEX 5, 34093 Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research (CREEC), Unité Mixte de Recherches, Institut de Recherche pour le Développement (IRD) 224–Centre National de Recherche Scientifique (CNRS) 5290–University of Montpellier, 34000 Montpellier, France
| | - Arshia Sharbatdar Alaei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | | | - Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
| | - Mohammad Reza Ashrafi
- Department of Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| |
Collapse
|
29
|
Cardinali B, Tasso R, Piccioli P, Ciferri MC, Quarto R, Del Mastro L. Circulating miRNAs in Breast Cancer Diagnosis and Prognosis. Cancers (Basel) 2022; 14:cancers14092317. [PMID: 35565446 PMCID: PMC9101355 DOI: 10.3390/cancers14092317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Great improvement has been made in the diagnosis and therapy of breast cancer patients. However, the identification of biomarkers for early diagnosis, prognosis, therapy assessment and monitoring, including drug resistance and the early detection of micro-metastases, is still lacking. Recently, circulating microRNAs (miRNAs), circulating freely in the blood stream or entrapped in extracellular vesicles (EVs), have been shown to have a potential diagnostic, prognostic or predictive power. In this review, recent findings are summarized, both at a preclinical and clinical level, related to miRNA applicability in the context of breast cancer. Different aspects, including clinical and technical challenges, are discussed, describing the potentialities of miRNA use in breast cancer. Even though more methodological standardized studies conducted in larger and selected patient cohorts are needed to support the effective clinical utility of miRNA as biomarkers, they could represent novel and accessible tools to be transferred into clinical practice.
Collapse
Affiliation(s)
- Barbara Cardinali
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.P.); (L.D.M.)
- Correspondence: ; Tel.: +39-010-555-8101
| | - Roberta Tasso
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.T.); (M.C.C.); (R.Q.)
| | - Patrizia Piccioli
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.P.); (L.D.M.)
| | - Maria Chiara Ciferri
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.T.); (M.C.C.); (R.Q.)
| | - Rodolfo Quarto
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.T.); (M.C.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lucia Del Mastro
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.P.); (L.D.M.)
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, 16132 Genova, Italy
| |
Collapse
|
30
|
Huang J, Zhong Y, Makohon-Moore AP, White T, Jasin M, Norell MA, Wheeler WC, Iacobuzio-Donahue CA. Evidence for reduced BRCA2 functional activity in Homo sapiens after divergence from the chimpanzee-human last common ancestor. Cell Rep 2022; 39:110771. [PMID: 35508134 PMCID: PMC11740715 DOI: 10.1016/j.celrep.2022.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/12/2021] [Accepted: 04/12/2022] [Indexed: 11/03/2022] Open
Abstract
We performed a comparative analysis of human and 12 non-human primates to identify sequence variations in known cancer genes. We identified 395 human-specific fixed non-silent substitutions that emerged during evolution of human. Using bioinformatics analyses for functional consequences, we identified a number of substitutions that are predicted to alter protein function; one of these mutations is located at the most evolutionarily conserved domain of human BRCA2.
Collapse
Affiliation(s)
- Jinlong Huang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yi Zhong
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin P Makohon-Moore
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Travis White
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
31
|
Thirumal Kumar D, Udhaya Kumar S, Jain N, Sowmya B, Balsekar K, Siva R, Kamaraj B, Sidenna M, George Priya Doss C, Zayed H. Computational structural assessment of BReast CAncer type 1 susceptibility protein (BRCA1) and BRCA1-Associated Ring Domain protein 1 (BARD1) mutations on the protein-protein interface. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:375-397. [PMID: 35534113 DOI: 10.1016/bs.apcsb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breast cancer type 1 susceptibility protein (BRCA1) is closely related to the BRCA2 (breast cancer type 2 susceptibility protein) and BARD1 (BRCA1-associated RING domain-1) proteins. The homodimers were formed through their RING fingers; however they form more compact heterodimers preferentially, influencing BRCA1 residues 1-109 and BARD1 residues 26-119. We implemented an integrative computational pipeline to screen all the mutations in BRCA1 and identify the most significant mutations influencing the Protein-Protein Interactions (PPI) in the BRCA1-BARD1 protein complex. The amino acids involved in the PPI regions were identified from the PDBsum database with the PDB ID: 1JM7. We screened 2118 missense mutations in BRCA1 and none in BARD1 for pathogenicity and stability and analyzed the amino acid sequences for conserved residues. We identified the most significant mutations from these screenings as V11G, M18K, L22S, and T97R positioned in the PPI regions of the BRCA1-BARD1 protein complex. We further performed protein-protein docking using the ZDOCK server. The native protein-protein complex showed the highest binding score of 2118.613, and the V11G mutant protein complex showed the least binding score of 1992.949. The other three mutation protein complexes had binding scores between the native and V11G protein complexes. Finally, a molecular dynamics simulation study using GROMACS was performed to comprehend changes in the BRCA1-BARD1 complex's binding pattern due to the mutation. From the analysis, we observed the highest deviation with lowest compactness and a decrease in the intramolecular h-bonds in the BRCA1-BARD1 protein complex with the V11G mutation compared to the native complex or the complexes with other mutations.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nikita Jain
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Baviri Sowmya
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kamakshi Balsekar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R Siva
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Mariem Sidenna
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
32
|
Xu M, Chen Z, Lin B, Zhang S, Qu J. A seven-lncRNA signature for predicting prognosis in breast carcinoma. Transl Cancer Res 2022; 10:4033-4046. [PMID: 35116701 PMCID: PMC8797290 DOI: 10.21037/tcr-21-747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Background Long non-coding RNAs (lncRNAs) play an important part in tumorigenesis and cancer metastasis and can serve as a potential biosignature for cancer prognosis. However, the use of lncRNA signatures to predict survival in breast carcinoma is yet unreported. Methods The lncRNA expression profiles and homologous clinical data of 913 breast carcinoma samples from the Cancer Genome Atlas (TCGA), were analyzed to obtain 2,547 differentially expressed lncRNAs. Univariate Cox proportional risk regression was applied to both the training and testing datasets to screen the common prognostic lncRNAs. Potential prognostic LncRNAs were screened by multivariate Cox proportional risk regression in the training data set of the selected LncRNAs. Results Seven lncRNAs (LINC02037, MAPT-AS1, RP1-37C10.3, RP11-344E13.4, RP11-454P21.1, RP11-616M22.1, SPACA6P-AS) were prominently associated with overall survival. Kaplan-Meier analysis and receiver operating characteristic (ROC) curves indicated that these indicators were sensitive and specific for survival prediction. The areas under the ROC curve of the seven-lncRNA signature in predicting 3- and 5-year survival rates were 0.771 and 0.780 respectively in the combined cohort. Furthermore, enrichment analysis revealed that these seven lncRNAs might participate multiple pathways related to tumorigenesis and prognosis. Conclusions The proposed seven-lncRNA signature could serve as a latent prognostic biomarker for survival prediction in patients with breast carcinoma.
Collapse
Affiliation(s)
- Min Xu
- Department of Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bangyi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sina Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinmiao Qu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
BRCA Variations Risk Assessment in Breast Cancers Using Different Artificial Intelligence Models. Genes (Basel) 2021; 12:genes12111774. [PMID: 34828379 PMCID: PMC8623958 DOI: 10.3390/genes12111774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Artificial intelligence provides modelling on machines by simulating the human brain using learning and decision-making abilities. Early diagnosis is highly effective in reducing mortality in cancer. This study aimed to combine cancer-associated risk factors including genetic variations and design an artificial intelligence system for risk assessment. Data from a total of 268 breast cancer patients have been analysed for 16 different risk factors including genetic variant classifications. In total, 61 BRCA1, 128 BRCA2 and 11 both BRCA1 and BRCA2 genes associated breast cancer patients’ data were used to train the system using Mamdani’s Fuzzy Inference Method and Feed-Forward Neural Network Method as the model softwares on MATLAB. Sixteen different tests were performed on twelve different subjects who had not been introduced to the system before. The rates for neural network were 99.9% for training success, 99.6% for validation success and 99.7% for test success. Despite neural network’s overall success was slightly higher than fuzzy logic accuracy, the results from developed systems were similar (99.9% and 95.5%, respectively). The developed models make predictions from a wider perspective using more risk factors including genetic variation data compared with similar studies in the literature. Overall, this artificial intelligence models present promising results for BRCA variations’ risk assessment in breast cancers as well as a unique tool for personalized medicine software.
Collapse
|
34
|
Joshi A, Vishnu G K A, Sakorikar T, Kamal AM, Vaidya JS, Pandya HJ. Recent advances in biosensing approaches for point-of-care breast cancer diagnostics: challenges and future prospects. NANOSCALE ADVANCES 2021; 3:5542-5564. [PMID: 36133274 PMCID: PMC9417675 DOI: 10.1039/d1na00453k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/12/2021] [Indexed: 05/12/2023]
Abstract
Timely and accurate diagnosis of breast cancer is essential for efficient treatment and the best possible survival rates. Biosensors have emerged as a smart diagnostic platform for the detection of biomarkers specific to the onset, recurrence, and therapeutic drug monitoring of breast cancer. There have been exciting recent developments, including significant improvements in the validation, sensitivity, specificity, and integration of sample processing steps to develop point-of-care (POC) integrated micro-total analysis systems for clinical settings. The present review highlights various biosensing modalities (electrical, optical, piezoelectric, mass, and acoustic sensing). It provides deep insights into their design principles, signal amplification strategies, and comparative performance analysis. Finally, this review emphasizes the status of existing integrated micro-total analysis systems (μ-TAS) for personalized breast cancer therapeutics and associated challenges and outlines the approach required to realize their successful translation into clinical settings.
Collapse
Affiliation(s)
- Anju Joshi
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| | - Anil Vishnu G K
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore India
| | - Tushar Sakorikar
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| | - Arif M Kamal
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| | - Jayant S Vaidya
- Division of Surgery and Interventional Science, University College London 4919 London UK
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| |
Collapse
|
35
|
Marijon H, Gery S, Chang H, Landesman Y, Shacham S, Lee DH, de Gramont A, Koeffler HP. Selinexor, a selective inhibitor of nuclear export, enhances the anti-tumor activity of olaparib in triple negative breast cancer regardless of BRCA1 mutation status. Oncotarget 2021; 12:1749-1762. [PMID: 34504648 PMCID: PMC8416554 DOI: 10.18632/oncotarget.28047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a deadly disease with limited treatment options. Selinexor is a selective inhibitor of nuclear export that binds covalently to exportin 1 thereby reactivating tumor suppressor proteins and downregulating expression of oncogenes and DNA damage repair (DDR) proteins. Olaparib is a poly (ADP-ribose) polymerase (PARP) inhibitor approved for the treatment of patients with breast cancer harboring BRCA mutations. We examined the effects of co-treatment with selinexor and olaparib in TNBC cell lines. BRCA1 wildtype (BRCA1-wt) and BRCA1 mutant (BRCA1-mut) TNBC cell lines were treated with selinexor and/or olaparib and effects on cell viability and cell cycle were evaluated. The effects of treatment were also evaluated in mouse xenograft models generated with BRCA1-wt and BRCA1-mut TNBC cell lines. Treatment with selinexor inhibited cell proliferation and survival of all TNBC cell lines tested in vitro. This effect was enhanced following treatment of the cells with the combination of selinexor and olaparib, which showed synergistic effects on tumor growth inhibition in MDA-MB-468-derived (BRCA1-wt) and MDA-MB-436-derived (BRCA1-mut) xenografts. As co-treatment with selinexor and olaparib exhibits anti-tumor activity regardless of BRCA1 mutation status, the clinical implications of the combination warrant further investigation.
Collapse
Affiliation(s)
- Hélène Marijon
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, University of California, Los Angeles, CA 90048, USA
- Department of Medical Oncology, Franco-British Hospital (Fondation Cognacq-Jay), Levallois-Perret, France
| | - Sigal Gery
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, University of California, Los Angeles, CA 90048, USA
| | - Hua Chang
- Karyopharm Therapeutics Inc., Newton, MA 02459, USA
| | | | | | - Dhong Hyun Lee
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, University of California, Los Angeles, CA 90048, USA
| | - Aimery de Gramont
- Department of Medical Oncology, Franco-British Hospital (Fondation Cognacq-Jay), Levallois-Perret, France
- Statistical Unit, Aide et Recherche en Cancérologie Digestive Foundation, Levallois-Perret, France
| | - Harold Phillip Koeffler
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, University of California, Los Angeles, CA 90048, USA
- Cancer Science Institute of Singapore, National University of Singapore 117599, Singapore
| |
Collapse
|
36
|
Paik HJ, Jung YJ, Kim DI, Lee S, Jung CS, Kang SK, Kim JJ, Oh SY, Joo JH, Kim HY. Clinicopathological Features of BRCA1/2 Mutation-Positive Breast Cancer. Oncology 2021; 99:499-506. [PMID: 34098565 DOI: 10.1159/000515790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE The BRCA1/2 gene is the most well-known and studied gene associated with hereditary breast cancer. BRCA1/2 genetic testing is widely performed in high-risk patients of hereditary breast cancer in Korea. This study aimed to investigate the clinicopathological characteristics of BRCA1/2 mutation-positive breast cancer patients. METHODS The clinical data of 188 Korean breast cancer patients who underwent genetic testing of BRCA1/2 mutation between March 2015 and February 2020 at Pusan National University Yangsan Hospital were retrospectively reviewed. The characteristics of breast cancer according to the expression of BRCA1 and BRCA2 mutations were analyzed using the Health Insurance Review and Assessment Service guideline criteria and other clinicopathological factors. RESULTS The factor associated with BRCA1/2 gene expression was cancer stage, and mutation expression was significantly decreased in stage I compared to stage 0 (p = 0.033; odds ratio [OR], 0.169; 95% confidence interval [CI], 0.033-0.867), and there was a tendency to increase in stage II (p = 0.780; OR, 1.150; 95% CI, 0.432-3.064). BRCA1 was significantly associated with triple-negative breast cancer (TNBC) (p = 0.004; OR, 5.887; 95% CI, 1.778-19.498). Gene expression of BRCA2 was significantly reduced under 40 years of age (p = 0.040; OR, 0.198; 95% CI, 0.042-0.930). There was no difference in disease-free survival (p = 0.900) and overall survival (p = 0.733) between the BRCA1/2 mutation-positive and -negative groups. CONCLUSION In this study, the clinicopathological characteristics of breast cancer patients with BRCA1/2 gene mutations were identified. BRCA1 gene expression was highly correlated with TNBC. BRCA1/2 mutation did not have a poor prognosis regarding recurrence and death.
Collapse
Affiliation(s)
- Hyun-June Paik
- Department of Surgery, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Youn Joo Jung
- Department of Surgery, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dong Il Kim
- Department of Surgery, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Seungju Lee
- Department of Surgery, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Chang Shin Jung
- Department of Surgery, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Seok Kyung Kang
- Department of Surgery, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Jae-Joon Kim
- Hemato-Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - So Yeon Oh
- Hemato-Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Ji Hyeon Joo
- Department of Radiation Oncology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hyun Yul Kim
- Department of Surgery, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
37
|
Leung E, Hazrati LN. Breast cancer type 1 and neurodegeneration: consequences of deficient DNA repair. Brain Commun 2021; 3:fcab117. [PMID: 34222870 PMCID: PMC8242133 DOI: 10.1093/braincomms/fcab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous cellular processes, including toxic protein aggregation and oxidative stress, have been studied extensively as potential mechanisms underlying neurodegeneration. However, limited therapeutic efficacy targeting these processes has prompted other mechanisms to be explored. Previous research has emphasized a link between cellular senescence and neurodegeneration, where senescence induced by excess DNA damage and deficient DNA repair results in structural and functional changes that ultimately contribute to brain dysfunction and increased vulnerability for neurodegeneration. Specific DNA repair proteins, such as breast cancer type 1, have been associated with both stress-induced senescence and neurodegenerative diseases, however, specific mechanisms remain unclear. Therefore, this review explores DNA damage-induced senescence in the brain as a driver of neurodegeneration, with particular focus on breast cancer type 1, and its potential contribution to sex-specific differences associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
38
|
Çağlar Ö, Çobanoğlu H, Uslu A, Çayır A. Evaluation of DNA damages in congenital hearing loss patients. Mutat Res 2021; 822:111744. [PMID: 33934048 DOI: 10.1016/j.mrfmmm.2021.111744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
In the current study, we aimed to compare the level of genetic damages measured as micronucleus (MN), nucleoplasmic bridge (NPB), and nuclear bud formation (NBUD) in congenital hearing loss patients (n = 17) and control group (n = 24). The cytokinesis-blocked micronucleus assay (CBMN) was applied to the blood samples to measure the frequency of the markers in both groups. The frequencies of MN of hearing loss patients were found to be consistently significantly higher than those obtained for the control group (p < 0.0001). Similarly, we found significantly higher frequency of NPB in patients was obtained for the patient group (p < 0.0001). Finally, the frequencies of NBUD in patients is significantly higher than the level measured in the control group (p < 0.0001). Furthermore, the age-adjusted MNL, BNMN, NPB, and NBUD frequencies in the patients were significantly higher than those obtained in the control group. We observed that the frequency of MN in patients was positively correlated with NBUD frequency which may indicate a common mechanism for these biomarkers in the patient group. We found, for the first time, that there were statistically significant higher levels of MN, NPB, and NBUD in sensorineural hearing loss patients. Since the markers we evaluated were linked with crucial diseases, our findings might suggest that sensorineural hearing loss patients are susceptible to several crucial diseases, especially cancer. Furthermore, the results demonstrated the significance of the MN, NPB, and NBUD level and thus provides a potential marker for the diagnosis of congenital hearing loss patients.
Collapse
Affiliation(s)
- Özge Çağlar
- Otorhinolaryngology-Department of Head and Neck Surgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Turkey
| | - Hayal Çobanoğlu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Atilla Uslu
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093, Capa, Istanbul, Turkey
| | - Akın Çayır
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
39
|
Duan H, Mansour S, Reed R, Gillis MK, Parent B, Liu B, Sztupinszki Z, Birkbak N, Szallasi Z, Elia AEH, Garber JE, Pathania S. E3 ligase RFWD3 is a novel modulator of stalled fork stability in BRCA2-deficient cells. J Cell Biol 2021; 219:151752. [PMID: 32391871 PMCID: PMC7265328 DOI: 10.1083/jcb.201908192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/15/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
BRCA1/2 help maintain genomic integrity by stabilizing stalled forks. Here, we identify the E3 ligase RFWD3 as an essential modulator of stalled fork stability in BRCA2-deficient cells and show that codepletion of RFWD3 rescues fork degradation, collapse, and cell sensitivity upon replication stress. Stalled forks in BRCA2-deficient cells accumulate phosphorylated and ubiquitinated replication protein A (ubq-pRPA), the latter of which is mediated by RFWD3. Generation of this intermediate requires SMARCAL1, suggesting that it depends on stalled fork reversal. We show that in BRCA2-deficient cells, rescuing fork degradation might not be sufficient to ensure fork repair. Depleting MRE11 in BRCA2-deficient cells does block fork degradation, but it does not prevent fork collapse and cell sensitivity in the presence of replication stress. No such ubq-pRPA intermediate is formed in BRCA1-deficient cells, and our results suggest that BRCA1 may function upstream of BRCA2 in the stalled fork repair pathway. Collectively, our data uncover a novel mechanism by which RFWD3 destabilizes forks in BRCA2-deficient cells.
Collapse
Affiliation(s)
- Haohui Duan
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA.,Department of Biology, University of Massachusetts, Boston, MA
| | - Sarah Mansour
- Department of Biology, University of Massachusetts, Boston, MA
| | | | | | | | - Ben Liu
- Dana-Farber Cancer Institute, Boston, MA
| | | | - Nicolai Birkbak
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Boston Children's Hospital, Computational Health Informatics Program, Boston, MA
| | - Andrew E H Elia
- Massachusetts General Hospital, Department of Radiation Oncology, Center for Cancer Research, Boston, MA
| | | | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA.,Department of Biology, University of Massachusetts, Boston, MA
| |
Collapse
|
40
|
Kang MA, Lee JS. A Newly Assigned Role of CTCF in Cellular Response to Broken DNAs. Biomolecules 2021; 11:363. [PMID: 33673494 PMCID: PMC7997455 DOI: 10.3390/biom11030363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Best known as a transcriptional factor, CCCTC-binding factor (CTCF) is a highly conserved multifunctional DNA-binding protein with 11 zinc fingers. It functions in diverse genomic processes, including transcriptional activation/repression, insulation, genome imprinting and three-dimensional genome organization. A big surprise has recently emerged with the identification of CTCF engaging in the repair of DNA double-strand breaks (DSBs) and in the maintenance of genome fidelity. This discovery now adds a new dimension to the multifaceted attributes of this protein. CTCF facilitates the most accurate DSB repair via homologous recombination (HR) that occurs through an elaborate pathway, which entails a chain of timely assembly/disassembly of various HR-repair complexes and chromatin modifications and coordinates multistep HR processes to faithfully restore the original DNA sequences of broken DNA sites. Understanding the functional crosstalks between CTCF and other HR factors will illuminate the molecular basis of various human diseases that range from developmental disorders to cancer and arise from impaired repair. Such knowledge will also help understand the molecular mechanisms underlying the diverse functions of CTCF in genome biology. In this review, we discuss the recent advances regarding this newly assigned versatile role of CTCF and the mechanism whereby CTCF functions in DSB repair.
Collapse
Affiliation(s)
| | - Jong-Soo Lee
- Department of Life Sciences, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
41
|
Stenehjem DD, Telford C, Unni SK, Bauer H, Sainski A, Deka R, Schauerhamer MB, Ye X, Tak CR, Ma J, Dalvi TB, Gutierrez L, Kaye JA, Tyczynski JE, Brixner DI, Biskupiak JE. BRCA testing and outcomes in women with breast cancer. Breast Cancer Res Treat 2021; 186:839-850. [PMID: 33389410 DOI: 10.1007/s10549-020-06038-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/25/2020] [Indexed: 12/27/2022]
Abstract
MAIN PURPOSE Germline BRCA mutations (BRCAm) strongly influence the risk of developing breast cancer. This study aimed to understand the role of BRCAm testing in affected individuals and to assess its impact on the outcome of BRCAm carriers compared to non-carriers (BRCAwt) with breast cancer. RESEARCH QUESTION The research question is "Does standard of care testing for BRCAm improve survival outcomes of breast cancer patients?" METHODS In a single institution observational cohort study, demographic and clinical characteristics were compared between breast cancer patients with and without BRCAm. Frequency of BRCA testing was assessed. Survival outcomes were assessed by initial treatment setting stratified by BRCA status. RESULTS Of 5712 identified women with breast cancer, 14.6% (n = 835) were tested for a BRCA mutation and had a documented result. The total number and proportion of women tested for a BRCAm increased between 2000 and 2014, resulting in an increased number of BRCAm carriers identified. However, the proportion of women who underwent testing and had a BRCAm decreased during the study period from 27.5% in 2000-2004 to 13.3% in 2010-2014. Disease-free survival was similar in the adjuvant and neoadjuvant treatment settings between BRCAm and BRCAwt patients. Progression-free survival on first line treatment and overall survival for patients with metastatic disease was also similar between BRCAm and BRCAwt patients. CONCLUSIONS The proportion of women tested and the number of BRCAm identified increased during the study period despite a decreasing proportion of positive results among women tested.
Collapse
Affiliation(s)
- David D Stenehjem
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA. .,Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, 1110 Kirby Drive, 232 Life Science, Duluth, MN, 55812, USA.
| | - Claire Telford
- AstraZeneca Pharmaceuticals, Gaithersburg, MD, USA.,GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC, 27709, USA
| | - Sudhir K Unni
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.,Daiichi-Sankyo, Basking Ridge, NJ, USA
| | - Hillevi Bauer
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Amy Sainski
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.,Truven Health, Ann Arbor, MN, USA
| | - Rishi Deka
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.,University of Southern California, San Diego, CA, USA
| | - Marisa B Schauerhamer
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Xiangyang Ye
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Casey R Tak
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.,Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Junjie Ma
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.,Amgen Inc, Thousand Oaks, CA, 91320, USA
| | | | | | | | - Jerzy E Tyczynski
- AstraZeneca Pharmaceuticals, Gaithersburg, MD, USA.,AbbVie Inc, Pharmacovigilance and Patient Safety, North Chicago, IL, USA
| | - Diana I Brixner
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Joseph E Biskupiak
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Tayyeb A, Shah Z, Nouroz F. In silico BRCA1 pathway analysis in breast invasive carcinoma. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_88_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Mehta AK, Cheney EM, Hartl CA, Pantelidou C, Oliwa M, Castrillon JA, Lin JR, Hurst KE, de Oliveira Taveira M, Johnson NT, Oldham WM, Kalocsay M, Berberich MJ, Boswell SA, Kothari A, Johnson S, Dillon DA, Lipschitz M, Rodig S, Santagata S, Garber JE, Tung N, Yélamos J, Thaxton JE, Mittendorf EA, Sorger PK, Shapiro GI, Guerriero JL. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. NATURE CANCER 2021; 2:66-82. [PMID: 33738458 PMCID: PMC7963404 DOI: 10.1038/s43018-020-00148-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Despite objective responses to PARP inhibition and improvements in progression-free survival compared to standard chemotherapy in patients with BRCA-associated triple-negative breast cancer (TNBC), benefits are transitory. Using high dimensional single-cell profiling of human TNBC, here we demonstrate that macrophages are the predominant infiltrating immune cell type in BRCA-associated TNBC. Through multi-omics profiling we show that PARP inhibitors enhance both anti- and pro-tumor features of macrophages through glucose and lipid metabolic reprogramming driven by the sterol regulatory element-binding protein 1 (SREBP-1) pathway. Combined PARP inhibitor therapy with CSF-1R blocking antibodies significantly enhanced innate and adaptive anti-tumor immunity and extends survival in BRCA-deficient tumors in vivo and is mediated by CD8+ T-cells. Collectively, our results uncover macrophage-mediated immune suppression as a liability of PARP inhibitor treatment and demonstrate combined PARP inhibition and macrophage targeting therapy induces a durable reprogramming of the tumor microenvironment, thus constituting a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Anita K Mehta
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Emily M Cheney
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christina A Hartl
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Constantia Pantelidou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Madisson Oliwa
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica A Castrillon
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Katie E Hurst
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mateus de Oliveira Taveira
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Department of Imaging, AC Camargo Cancer Center, São Paulo, Brazil
| | - Nathan T Johnson
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Matthew J Berberich
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Aditi Kothari
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shawn Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mikel Lipschitz
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nadine Tung
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jessica E Thaxton
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Elizabeth A Mittendorf
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA.
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
44
|
Fu R, Wang C, Shen H, Zhang J, Higgins JD, Liang W. Rice OsBRCA2 Is Required for DNA Double-Strand Break Repair in Meiotic Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:600820. [PMID: 33304374 PMCID: PMC7701097 DOI: 10.3389/fpls.2020.600820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/06/2023]
Abstract
The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.
Collapse
Affiliation(s)
- Ruifeng Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester,Leicester, United Kingdom
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Sinitsky MY, Kutikhin AG, Tsepokina AV, Shishkova DK, Asanov MA, Yuzhalin AE, Minina VI, Ponasenko AV. Mitomycin C induced genotoxic stress in endothelial cells is associated with differential expression of proinflammatory cytokines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503252. [DOI: 10.1016/j.mrgentox.2020.503252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
|
46
|
Bodily WR, Shirts BH, Walsh T, Gulsuner S, King MC, Parker A, Roosan M, Piccolo SR. Effects of germline and somatic events in candidate BRCA-like genes on breast-tumor signatures. PLoS One 2020; 15:e0239197. [PMID: 32997669 PMCID: PMC7526916 DOI: 10.1371/journal.pone.0239197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 11/19/2022] Open
Abstract
Mutations in BRCA1 and BRCA2 cause deficiencies in homologous recombination repair (HR), resulting in repair of DNA double-strand breaks by the alternative non-homologous end-joining pathway, which is more error prone. HR deficiency of breast tumors is important because it is associated with better responses to platinum salt therapies and PARP inhibitors. Among other consequences of HR deficiency are characteristic somatic-mutation signatures and gene-expression patterns. The term "BRCA-like" (or "BRCAness") describes tumors that harbor an HR defect but have no detectable germline mutation in BRCA1 or BRCA2. A better understanding of the genes and molecular events associated with tumors being BRCA-like could provide mechanistic insights and guide development of targeted treatments. Using data from The Cancer Genome Atlas (TCGA) for 1101 breast-cancer patients, we identified individuals with a germline mutation, somatic mutation, homozygous deletion, and/or hypermethylation event in BRCA1, BRCA2, and 59 other cancer-predisposition genes. Based on the assumption that BRCA-like events would have similar downstream effects on tumor biology as BRCA1/BRCA2 germline mutations, we quantified these effects based on somatic-mutation signatures and gene-expression profiles. We reduced the dimensionality of the somatic-mutation signatures and expression data and used a statistical resampling approach to quantify similarities among patients who had a BRCA1/BRCA2 germline mutation, another type of aberration in BRCA1 or BRCA2, or any type of aberration in one of the other genes. Somatic-mutation signatures of tumors having a non-germline aberration in BRCA1/BRCA2 (n = 80) were generally similar to each other and to tumors from BRCA1/BRCA2 germline carriers (n = 44). Additionally, somatic-mutation signatures of tumors with germline or somatic events in ATR (n = 16) and BARD1 (n = 8) showed high similarity to tumors from BRCA1/BRCA2 carriers. Other genes (CDKN2A, CTNNA1, PALB2, PALLD, PRSS1, SDHC) also showed high similarity but only for a small number of events or for a single event type. Tumors with germline mutations or hypermethylation of BRCA1 had relatively similar gene-expression profiles and overlapped considerably with the Basal-like subtype; but the transcriptional effects of the other events lacked consistency. Our findings confirm previously known relationships between molecular signatures and germline or somatic events in BRCA1/BRCA2. Our methodology represents an objective way to identify genes that have similar downstream effects on molecular signatures when mutated, deleted, or hypermethylated.
Collapse
Affiliation(s)
- Weston R. Bodily
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Brian H. Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tom Walsh
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Suleyman Gulsuner
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Mary-Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Alyssa Parker
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Moom Roosan
- Pharmacy Practice Department, Chapman University School of Pharmacy, Irvine, CA, United States of America
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
47
|
H2A Histone Family Member X (H2AX) Is Upregulated in Ovarian Cancer and Demonstrates Utility as a Prognostic Biomarker in Terms of Overall Survival. J Clin Med 2020; 9:jcm9092844. [PMID: 32887437 PMCID: PMC7565050 DOI: 10.3390/jcm9092844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: H2AX can be of prognostic value in breast cancer, since in advanced stage patients with high levels, there was an association with worse overall survival (OS). However, the clinical relevance of H2AX in ovarian cancer (OC) remains to be elucidated. Methods: OC H2AX expression studied using the TCGA/GTEX datasets. Subsequently, patients were classified as either high or low in terms of H2AX expression to compare OS and perform gene set enrichment. qRT-PCR validated in-silico H2AX findings followed by immunohistochemistry on a tissue microarray. The association between single nucleotide polymorphisms in the area of H2AX; prevalence and five-year OC survival was tested in samples from the UK Biobank. Results: H2AX was significantly overexpressed in OCs compared to normal tissues, with higher expression associated with better OS (p = 0.010). Gene Set Enrichment Analysis demonstrated gene sets involved in G2/M checkpoint, DNA repair mTORC1 signalling were enriched in the H2AX highly expressing OCs. Polymorphisms in the area around the gene were associated with both OC prevalence (rs72997349-C, p = 0.005) and worse OS (rs10790282-G, p = 0.011). Finally, we demonstrated that H2AX gene expression correlated with γ-H2AX staining in vitro. Conclusions: Our findings suggest that H2AX can be a novel prognostic biomarker for OC.
Collapse
|
48
|
Computational analysis of TP53 mutational landscape unveils key prognostic signatures and distinct pathobiological pathways in head and neck squamous cell cancer. Br J Cancer 2020; 123:1302-1314. [PMID: 32684626 PMCID: PMC7553957 DOI: 10.1038/s41416-020-0984-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/03/2020] [Accepted: 06/23/2020] [Indexed: 01/22/2023] Open
Abstract
Background Mutations of the tumour-suppressor gene TP53 are the most frequent somatic genomic alterations in head and neck squamous cell carcinoma (HNSCC). However, it is not yet clear whether specific TP53 mutations bear distinct clinical and pathophysiological significance in different HNSCC subgroups. Methods A systematic bioinformatics appraisal of TP53 mutations was performed on 415 HNSCC cases available on The Cancer Genome Atlas (TCGA). The following features were analysed and correlated with known clinicopathological variables: mutational profile of TP53, location (within secondary structure and predicted domains of p53 protein) and well-known hotspot mutations. Interactome–genome–transcriptome network analysis highlighted different gene networks. An algorithm was generated to develop a new prognostic classification system based on patients’ overall survival. Results TP53 mutations in HNSCCs exhibited distinct differences in different anatomical sites. The mutational profile of TP53 was an independent prognostic factor in HNSCC. High risk of death mutations, identified by our novel classification algorithm, was an independent prognostic factor in TCGA HNSCC database. Finally, network analysis suggested that distinct p53 molecular pathways exist in a site- and mutation-specific manner. Conclusions The mutational profile of TP53 may serve as an independent prognostic factor in HNSCC patients, and is associated with distinctive site-specific biological networks.
Collapse
|
49
|
Burgess BT, Anderson AM, McCorkle JR, Wu J, Ueland FR, Kolesar JM. Olaparib Combined with an ATR or Chk1 Inhibitor as a Treatment Strategy for Acquired Olaparib-Resistant BRCA1 Mutant Ovarian Cells. Diagnostics (Basel) 2020; 10:diagnostics10020121. [PMID: 32098452 PMCID: PMC7168282 DOI: 10.3390/diagnostics10020121] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Despite the promise of PARP inhibitors (PARPi) for treating BRCA1/2 mutated ovarian cancer (OC), drug resistance invariably develops. We hypothesized rationale drug combinations, targeting key molecules in DNA repair pathways and the cell cycle may be synergistic and overcome acquired PARPi resistance. METHODS Drug sensitivity to PARPi alone and in combination with inhibitors of key DNA repair and cell cycle proteins, including ATR (VE-821), Chk1 (MK-8776), Wee1 (MK-1775), RAD51 (RI-1) was assessed in PARPi-sensitive (UWB1) and -resistant (UWB1-R) gBRCA1 mutant OC cell lines using a cell proliferation assay. The Bliss synergy model was used to estimate the two-drug combination effect and pharmacologic synergy (Bliss score ≥ 0) or antagonistic (Bliss score ≥ 0) response of the PARPi in combination with the inhibitors. RESULTS IC50 for olaparib alone was 1.6 ± 0.9 µM compared to 3.4 ± 0.6 µM (p = 0.05) for UWB1 and UWB1-R cells, respectively. UWB1-R demonstrated increased sensitivity to ATRi (p = 0.04) compared to UWB1. Olaparib (0.3-1.25 µM) and ATRi (0.8-2.5 µM) were synergistic with Bliss scores of 17.2 ± 0.2, 11.9 ± 0.6 for UWB1 and UWB1-R cells, respectively. Olaparib (0.3-1.25 µM) and Chk1i(0.05-1.25 µM) were synergistic with Bliss scores of 8.3 ± 1.6, 5.7 ± 2.9 for UWB1 and UWB1-R cells, respectively. CONCLUSIONS Combining an ATRi or Chk1i with olaparib is synergistic in both PARPi-sensitive and -resistant BRCA1 mutated OC cell models, and are rationale combinations for further clinical development.
Collapse
Affiliation(s)
- Brian T. Burgess
- Division of Gynecologic Oncology, Department of OB/GYN, University of Kentucky, Whitney-Hendrickson Building, 800 Rose Street, Lexington, KY 40536, USA; (B.T.B.); (F.R.U.)
| | - Abigail M. Anderson
- Markey Cancer Center, University of Kentucky, 789 South Limestone Street, 526 Todd Building, Lexington, KY 40536, USA; (A.M.A.); (J.R.M.)
| | - J. Robert McCorkle
- Markey Cancer Center, University of Kentucky, 789 South Limestone Street, 526 Todd Building, Lexington, KY 40536, USA; (A.M.A.); (J.R.M.)
| | - Jianrong Wu
- Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, 800 Rose Street, Roach Building CC433, Lexington, KY 40536, USA;
| | - Frederick R. Ueland
- Division of Gynecologic Oncology, Department of OB/GYN, University of Kentucky, Whitney-Hendrickson Building, 800 Rose Street, Lexington, KY 40536, USA; (B.T.B.); (F.R.U.)
| | - Jill M. Kolesar
- Markey Cancer Center, University of Kentucky, 789 South Limestone Street, 526 Todd Building, Lexington, KY 40536, USA; (A.M.A.); (J.R.M.)
- College of Pharmacy, University of Kentucky, 567 Todd Building, 789 South Limestone Street, Lexington, KY 40536, USA
- Correspondence:
| |
Collapse
|
50
|
Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol Diagn Ther 2020; 24:153-173. [DOI: 10.1007/s40291-020-00447-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|