1
|
Nguyen DD, Kim E, Le NT, Ding X, Jaiswal RK, Kostlan RJ, Nguyen TNT, Shiva O, Le MT, Chai W. Deficiency in mammalian STN1 promotes colon cancer development via inhibiting DNA repair. SCIENCE ADVANCES 2023; 9:eadd8023. [PMID: 37163605 PMCID: PMC10171824 DOI: 10.1126/sciadv.add8023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Despite the high lethality of colorectal cancers (CRCs), only a limited number of genetic risk factors are identified. The mammalian ssDNA-binding protein complex CTC1-STN1-TEN1 protects genome stability, yet its role in tumorigenesis is unknown. Here, we show that attenuated CTC1/STN1 expression is common in CRCs. We generated an inducible STN1 knockout mouse model and found that STN1 deficiency in young adult mice increased CRC incidence, tumor size, and tumor load. CRC tumors exhibited enhanced proliferation, reduced apoptosis, and elevated DNA damage and replication stress. We found that STN1 deficiency down-regulated multiple DNA glycosylases, resulting in defective base excision repair (BER) and accumulation of oxidative damage. Collectively, this study identifies STN1 deficiency as a risk factor for CRC and implicates the previously unknown STN1-BER axis in protecting colon tissues from oxidative damage, therefore providing insights into the CRC tumor-suppressing mechanism.
Collapse
Affiliation(s)
- Dinh Duc Nguyen
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Eugene Kim
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Nhat Thong Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Raymond Joseph Kostlan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Thi Ngoc Thanh Nguyen
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Olga Shiva
- Office of Research, Washington State University-Spokane, Spokane, WA, USA
| | - Minh Thong Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
2
|
Schiroli D, Marraccini C, Zanetti E, Ragazzi M, Gianoncelli A, Quartieri E, Gasparini E, Iotti S, Baricchi R, Merolle L. Imbalance of Mg Homeostasis as a Potential Biomarker in Colon Cancer. Diagnostics (Basel) 2021; 11:diagnostics11040727. [PMID: 33923883 PMCID: PMC8073761 DOI: 10.3390/diagnostics11040727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increasing evidences support a correlation between magnesium (Mg) homeostasis and colorectal cancer (CRC). Nevertheless, the role of Mg and its transporters as diagnostic markers in CRC is still a matter of debate. In this study we combined X-ray Fluorescence Microscopy and databases information to investigate the possible correlation between Mg imbalance and CRC. METHODS CRC tissue samples and their non-tumoural counterpart from four patients were collected and analysed for total Mg level and distribution by X-Ray Fluorescence Microscopy. We also reviewed the scientific literature and the main tissue expression databases to collect data on Mg transporters expression in CRC. RESULTS We found a significantly higher content of total Mg in CRC samples when compared to non-tumoural tissues. Mg distribution was also impaired in CRC. Conversely, we evidenced an uncertain correlation between Mg transporters expression and colon malignancies. DISCUSSION Although further studies are necessary to determine the correlation between different cancer types and stages, this is the first report proposing the measurement of Mg tissue localisation as a marker in CRC. This study represents thus a proof-of-concept that paves the way for the design of a larger prospective investigation of Mg in CRC.
Collapse
Affiliation(s)
- Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
| | - Chiara Marraccini
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
- Correspondence: ; Tel.: +39-0522-295057
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (E.Z.); (M.R.)
| | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (E.Z.); (M.R.)
| | | | - Eleonora Quartieri
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Elisa Gasparini
- Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Roberto Baricchi
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
| | - Lucia Merolle
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.S.); (E.Q.); (R.B.); (L.M.)
| |
Collapse
|
3
|
Trapani V, Petito V, Di Agostini A, Arduini D, Hamersma W, Pietropaolo G, Luongo F, Arena V, Stigliano E, Lopetuso LR, Gasbarrini A, Wolf FI, Scaldaferri F. Dietary Magnesium Alleviates Experimental Murine Colitis Through Upregulation of the Transient Receptor Potential Melastatin 6 Channel. Inflamm Bowel Dis 2018; 24:2198-2210. [PMID: 29788266 DOI: 10.1093/ibd/izy186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Magnesium (Mg) is essential for human health and is absorbed mainly in the intestine. In view of the likely occurrence of an Mg deficit in inflammatory bowel disease (IBD) and the documented role of Mg in modulating inflammation, the present study addresses whether Mg availability can affect the onset and progression of intestinal inflammation. METHODS To study the correlation between Mg status and disease activity, we measured magnesemia by atomic absorption spectroscopy in a cohort of IBD patients. The effects of dietary Mg modulation were assessed in a murine model of dextran sodium sulfate (DSS)-induced colitis by monitoring magnesemia, weight, fecal occult blood, diarrhea, colon length, and histology. Expression of the transient receptor potential melastatin (TRPM) 6 channel was assessed by real-time reverse transcription polymerase chain reaction and immunohistochemistry in murine colon tissues. The effect of Mg on epithelial barrier formation/repair was evaluated in human colon cell lines. RESULTS Inflammatory bowel disease patients presented with a substantial Mg deficit, and serum Mg levels were inversely correlated with disease activity. In mice, an Mg-deficient diet caused hypomagnesemia and aggravated DSS-induced colitis. Colitis severely compromised intestinal Mg2+ absorption due to mucosal damage and reduction in TRPM6 expression, but Mg supplementation resulted in better restoration of mucosal integrity and channel expression. CONCLUSIONS Our results highlight the importance of evaluating and correcting magnesemia in IBD patients. The murine model suggests that Mg supplementation may represent a safe and cost-effective strategy to reduce inflammation and restore normal mucosal function.
Collapse
Affiliation(s)
- Valentina Trapani
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Valentina Petito
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Angelica Di Agostini
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Daniela Arduini
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Willem Hamersma
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Giuseppe Pietropaolo
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Francesca Luongo
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Vincenzo Arena
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Egidio Stigliano
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Loris R Lopetuso
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Antonio Gasbarrini
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Federica I Wolf
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Franco Scaldaferri
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| |
Collapse
|
4
|
Kanda Y, Osaki M, Okada F. Chemopreventive Strategies for Inflammation-Related Carcinogenesis: Current Status and Future Direction. Int J Mol Sci 2017; 18:E867. [PMID: 28422073 PMCID: PMC5412448 DOI: 10.3390/ijms18040867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
5
|
Zhu X, Shrubsole MJ, Ness RM, Hibler EA, Cai Q, Long J, Chen Z, Li G, Jiang M, Hou L, Kabagambe EK, Zhang B, Smalley WE, Edwards TL, Giovannucci EL, Zheng W, Dai Q. Calcium/magnesium intake ratio, but not magnesium intake, interacts with genetic polymorphism in relation to colorectal neoplasia in a two-phase study. Mol Carcinog 2016; 55:1449-57. [PMID: 26333203 PMCID: PMC4775445 DOI: 10.1002/mc.22387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/24/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022]
Abstract
Some studies suggest that the calcium to magnesium ratio intakes modify the associations of calcium or magnesium with risk of colorectal adenoma, adenoma recurrence, and cancer. Parathyroid hormone (PTH) plays a key role in the regulation of homeostasis for both calcium and magnesium. We hypothesized that polymorphisms in PTH and 13 other genes may modify the association between the calcium/magnesium intake ratio and colorectal neoplasia risk. We conducted a two-phase study including 1336 cases and 2891 controls from the Tennessee Colorectal Polyp Study. In Phase I, we identified 19 SNPs that significantly interacted with the calcium/magnesium intake ratio in adenoma risk. In Phase II, rs11022858 in PTH was replicated. In combined analysis of phases I and II, we found high calcium/magnesium intake ratio tended to be associated with a reduced risk of colorectal adenoma (P for trend, 0.040) among those who carried the TT genotype in rs11022858. In stratified analyses, calcium intake (≥ 1000 mg/d) was significantly associated with 64% reduced adenoma risk (OR = 0.36 (95% CI : 0.18-0.74)) among those homozygous for the minor allele (TT genotype) (P for trend, 0.012), but not associated with risk in other genotypes (CC/TC). Conversely, we found that highest magnesium intake was significantly associated with 27% reduced risk (OR = 0.73 (95% CI : 0.54-0.97)) of colorectal adenoma (P for trend, 0.026) among those who possessed the CC/TC genotypes, particularly among those with the TC genotype, whereas magnesium intake was not linked to risk among those with the TT genotype. These findings, if confirmed, will help for the development of personalized prevention strategies for colorectal cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiangzhu Zhu
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Geriatric, Research, Education and Clinical Center (GRECC), Nashville, Tennessee
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Geriatric, Research, Education and Clinical Center (GRECC), Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Reid M Ness
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elizabeth A Hibler
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Qiuyin Cai
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jirong Long
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhi Chen
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Guoliang Li
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ming Jiang
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lifang Hou
- Institute for Public Health and Medicine, Northwestern University, Chicago, Illinois
| | - Edmond K Kabagambe
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bing Zhang
- Department of Biomedical informatics, Vanderbilt University, Nashville, Tennessee
| | - Walter E Smalley
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Geriatric, Research, Education and Clinical Center (GRECC), Nashville, Tennessee
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Todd L Edwards
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Geriatric, Research, Education and Clinical Center (GRECC), Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Edward L Giovannucci
- Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Wei Zheng
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Geriatric, Research, Education and Clinical Center (GRECC), Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Qi Dai
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Geriatric, Research, Education and Clinical Center (GRECC), Nashville, Tennessee.
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
6
|
Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration. Biomaterials 2015; 71:35-47. [PMID: 26318815 DOI: 10.1016/j.biomaterials.2015.08.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
Abstract
A number of coating materials have been developed over past two decades seeking to improve the osseointegration of orthopedic metal implants. Despite the many candidate materials trialed, their low rate of translation into clinical applications suggests there is room for improving the current strategies for their development. We therefore propose that the ideal coating material(s) should possess the following three properties: (i) high bonding strength, (ii) release of functional ions, and (iii) favourable osteoimmunomodulatory effects. To test this proposal, we developed clinoenstatite (CLT, MgSiO3), which as a coating material has high bonding strength, cytocompability and immunomodulatory effects that are favourable for in vivo osteogenesis. The bonding strength of CLT coatings was 50.1 ± 3.2 MPa, more than twice that of hydroxyapatite (HA) coatings, at 23.5 ± 3.5 MPa. CLT coatings released Mg and Si ions, and compared to HA coatings, induced an immunomodulation more conducive for osseointegration, demonstrated by downregurelation of pro-inflammatory cytokines, enhancement of osteogenesis, and inhibition of osteoclastogenesis. In vivo studies demonstrated that CLT coatings improved osseointegration with host bone, as shown by the enhanced biomechanical strength and increased de novo bone formation, when compared with HA coatings. These results support the notion that coating materials with the proposed properties can induce an in vivo environment better suited for osseointegration. These properties could, therefore, be fundamental when developing high-performance coating materials.
Collapse
|
7
|
Pandurangan AK, Saadatdoust Z, Esa NM, Hamzah H, Ismail A. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. Biofactors 2015; 41:1-14. [PMID: 25545372 DOI: 10.1002/biof.1195] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) is the third most common malignancy in males and the second most common cancer worldwide. Chronic colonic inflammation is a known risk factor for CRC. Cocoa contains many polyphenolic compounds that have beneficial effects in humans. The objective of this study is to explore the antioxidant properties of cocoa in the mouse model of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated cancer, focusing on the activation of Nrf2 signaling. Mice were treated with AOM/DSS and randomized to receive either a control diet or a 5 and 10% cocoa diet during the study period. On day 62 of the experiment, the entire colon was processed for biochemical and histopathological examination and further evaluations. Increased levels of malondialdehyde (MDA) were observed in AOM/DSS-induced mice; however, subsequent administration of cocoa decreased the MDA. Enzymatic and nonenzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were decreased in the AOM/DSS mice. Cocoa treatment increases the activities/levels of enzymatic and nonenzymatic antioxidants. Inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were elevated during AOM/DSS-induction, and treatment with 5 and 10% cocoa effectively decreases the expression of iNOS and COX-2. The NF-E2-related factor 2 and its downstream targets, such as NQO1 and UDP-GT, were increased by cocoa treatment. The results of our study suggest that cocoa may merit further clinical investigation as a chemopreventive agent that helps prevent CAC.
Collapse
Affiliation(s)
- Ashok Kumar Pandurangan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
8
|
Abstract
AbstractColitis-associated colorectal cancer (CACRC) constitutes a severe complication of inflammatory bowel diseases (IBD) and occurs in more than one third of IBD patients. In this short review we focus on the mechanisms underlying CACRC pathogenesis, and discuss the approaches for prevention and therapy in CACRC.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To update findings supporting the opinion that commonly occurring subclinical magnesium deficiency induced by a low dietary intake is a predisposing factor for chronic inflammatory stress that contributes to the incidence of chronic diseases such as cardiovascular disease and diabetes. RECENT FINDINGS Both deficient magnesium intakes (<250 mg/day) and serum magnesium concentrations (≤ 0.75 mmol/l) have been associated with elevated serum C-reactive protein concentration, a widely used indicator of inflammation. Achieving magnesium intakes or serum magnesium concentrations that indicate an adequate magnesium status generally attenuates elevated serum C-reactive protein to concentrations that are not indicative of chronic low-grade inflammation. Individuals that are obese or have chronic diseases for which low-grade inflammation is a risk factor are commonly found to be magnesium-deficient. SUMMARY Subclinical magnesium deficiency caused by low dietary intake often occurring in the population is a predisposing factor for chronic inflammatory stress that is conducive for chronic disease. Magnesium deficiency should be considered a nutrient of significant concern for health and well-being.
Collapse
Affiliation(s)
- Forrest H Nielsen
- Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| |
Collapse
|
10
|
Wu C, Chen Z, Yi D, Chang J, Xiao Y. Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4264-76. [PMID: 24598408 DOI: 10.1021/am4060035] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ideal coating materials for implants should be able to induce excellent osseointegration, which requires several important parameters, such as good bonding strength, limited inflammatory reaction, and balanced osteoclastogenesis and osteogenesis, to gain well-functioning coated implants with long-term life span after implantation. Bioactive elements, like Sr, Mg, and Si, have been found to play important roles in regulating the biological responses. It is of great interest to combine bioactive elements for developing bioactive coatings on Ti-6Al-4 V orthopedic implants to elicit multidirectional effects on the osseointegration. In this study, Sr-, Mg-, and Si-containing bioactive Sr2MgSi2O7 (SMS) ceramic coatings on Ti-6Al-4 V were successfully prepared by the plasma-spray coating method. The prepared SMS coatings have significantly higher bonding strength (∼37 MPa) than conventional pure hydroxyapatite (HA) coatings (mostly in the range of 15-25 MPa). It was also found that the prepared SMS coatings switch the macrophage phenotype into M2 extreme, inhibiting the inflammatory reaction via the inhibition of Wnt5A/Ca(2+) and Toll-like receptor (TLR) pathways of macrophages. In addition, the osteoclastic activities were also inhibited by SMS coatings. The expression of osteoclastogenesis-related genes (RANKL and MCSF) in bone-marrow-derived mesenchymal cells (BMSCs) with the involvement of macrophages was decreased, whereas OPG expression was enhanced on SMS coatings compared to HA coatings, indicating that SMS coatings also downregulated the osteoclastogenesis. However, the osteogenic differentiation of BMSCs with the involvement of macrophages was comparable between SMS and HA coatings. Therefore, the prepared SMS coatings showed multidirectional effects, such as improving bonding strength, reducing inflammatory reaction, and downregulating osteoclastic activities, but maintaining a comparable osteogenesis, as compared with HA coatings. The combination of bioactive elements of Sr, Mg, and Si into bioceramic coatings can be a promising method to develop bioactive implants with multifunctional properties for orthopedic application.
Collapse
Affiliation(s)
- Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol 2014; 44:1032-40. [PMID: 24430672 DOI: 10.3892/ijo.2014.2259] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/06/2022] Open
Abstract
Among the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer 'hallmarks' through downstream activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Additionally, dysregulation of the interleukin (IL)-6-mediated JAK/STAT3 signaling pathway is closely related to the development of diverse human solid tumors including colorectal cancer (CRC). On this basis, modulation of the IL-6/JAK/STAT3 signaling pathway is currently being widely explored to develop novel therapies for CRC. The present review details the mechanisms and roles of the IL-6/JAK/STAT3 pathway in CRC, describes current therapeutic strategies, and the search for potential therapeutic approaches to treat CRC.
Collapse
Affiliation(s)
- Shu-Wei Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Yue-Ming Sun
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
12
|
RETRACTED: Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through modulation of multiple signaling pathways. Biochim Biophys Acta Gen Subj 2013; 1830:4907-16. [DOI: 10.1016/j.bbagen.2013.06.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/15/2013] [Accepted: 06/29/2013] [Indexed: 02/07/2023]
|
13
|
Arigony ALV, de Oliveira IM, Machado M, Bordin DL, Bergter L, Prá D, Pêgas Henriques JA. The influence of micronutrients in cell culture: a reflection on viability and genomic stability. BIOMED RESEARCH INTERNATIONAL 2013; 2013:597282. [PMID: 23781504 PMCID: PMC3678455 DOI: 10.1155/2013/597282] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022]
Abstract
Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.
Collapse
Affiliation(s)
- Ana Lúcia Vargas Arigony
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Iuri Marques de Oliveira
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Miriana Machado
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Diana Lilian Bordin
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Lothar Bergter
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Prá
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- PPG em Promoção da Saúde, Universidade de Santa Cruz do Sul (UNISC), Avenida Independência 2293, 96815-900 Santa Cruz do Sul, RS, Brazil
| | - João Antonio Pêgas Henriques
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Biotecnologia, Departamento de Ciências Biomédicas, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| |
Collapse
|