1
|
De Palma FDE, Pol JG, Carbonnier V, Scuderi SA, Mannino D, Montégut L, Sauvat A, Perez-Lanzon M, Uribe-Carretero E, Guarracino M, Granata I, Calogero R, Del Monaco V, Montanaro D, Stoll G, Botti G, D'Aiuto M, Baldi A, D'Argenio V, Guigó R, Rezsohazy R, Kroemer G, Maiuri MC, Salvatore F. Epigenetic regulation of HOXA2 expression affects tumor progression and predicts breast cancer patient survival. Cell Death Differ 2025:10.1038/s41418-024-01430-2. [PMID: 39833374 DOI: 10.1038/s41418-024-01430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Accumulating evidence suggests that genetic and epigenetic biomarkers hold potential for enhancing the early detection and monitoring of breast cancer (BC). Epigenetic alterations of the Homeobox A2 (HOXA2) gene have recently garnered significant attention in the clinical management of various malignancies. However, the precise role of HOXA2 in breast tumorigenesis has remained elusive. To address this point, we conducted high-throughput RNA sequencing and DNA methylation array studies on laser-microdissected human BC samples, paired with normal tissue samples. Additionally, we performed comprehensive in silico analyses using large public datasets: TCGA and METABRIC. The diagnostic performance of HOXA2 was calculated by means of receiver operator characteristic curves. Its prognostic significance was assessed through immunohistochemical studies and Kaplan-Meier Plotter database interrogation. Moreover, we explored the function of HOXA2 and its role in breast carcinogenesis through in silico, in vitro, and in vivo investigations. Our work revealed significant hypermethylation and downregulation of HOXA2 in human BC tissues. Low HOXA2 expression correlated with increased BC aggressiveness and unfavorable patient survival outcomes. Suppression of HOXA2 expression significantly heightened cell proliferation, migration, and invasion in BC cells, and promoted tumor growth in mice. Conversely, transgenic HOXA2 overexpression suppressed these cellular processes and promoted apoptosis of cancer cells. Interestingly, a strategy of pharmacological demethylation successfully restored HOXA2 expression in malignant cells, reducing their neoplastic characteristics. Bioinformatics analyses, corroborated by in vitro experimentations, unveiled a novel implication of HOXA2 in the lipid metabolism of BC. Specifically, depletion of HOXA2 leaded to a concomitantly decreased expression of PPARγ and its target CIDEC, a master regulator of lipid droplet (LD) accumulation, thereby resulting in reduced LD abundance in BC cells. In summary, our study identifies HOXA2 as a novel prognosis-relevant tumor suppressor in the mammary gland.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Jonathan G Pol
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Carbonnier
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sarah Adriana Scuderi
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Léa Montégut
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Allan Sauvat
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Maria Perez-Lanzon
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Elisabet Uribe-Carretero
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Depto. Bioquimica y Biologia Molecular y Genetica, Facultad de Enfermeria y Terapia Ocupacional, Caceres, Spain
| | - Mario Guarracino
- University of Cassino and Southern Lazio, Cassino, Italy
- National Research University Higher School of Economics, Moscow, Russia
| | - Ilaria Granata
- National Research Council, Inst. for High-Performance Computing and Networking, Naples, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | | - Gautier Stoll
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gerardo Botti
- Department of Senology, Istituto Nazionale Tumori-IRCCS Fondazione Pascale, Naples, Italy
| | - Massimiliano D'Aiuto
- Department of Senology, Istituto Nazionale Tumori-IRCCS Fondazione Pascale, Naples, Italy
| | - Alfonso Baldi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
| | - Roderic Guigó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Guido Kroemer
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maria Chiara Maiuri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
- Inter-University Center for multifactorial and multi genetic chronic human diseases, "Federico II"- Naples, Tor Vergata- Roma II and Chieti-Pescara Universities, Chieti-Pescara, Italy.
| |
Collapse
|
2
|
Brativnyk A, Ankill J, Helland Å, Fleischer T. Multi-omics analysis reveals epigenetically regulated processes and patient classification in lung adenocarcinoma. Int J Cancer 2024; 155:282-297. [PMID: 38489486 DOI: 10.1002/ijc.34915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Aberrant DNA methylation is a hallmark of many cancer types. Despite our knowledge of epigenetic and transcriptomic alterations in lung adenocarcinoma (LUAD), we lack robust multi-modal molecular classifications for patient stratification. This is partly because the impact of epigenetic alterations on lung cancer development and progression is still not fully understood. To that end, we identified disease-associated processes under epigenetic regulation in LUAD. We performed a genome-wide expression-methylation Quantitative Trait Loci (emQTL) analysis by integrating DNA methylation and gene expression data from 453 patients in the TCGA cohort. Using a community detection algorithm, we identified distinct communities of CpG-gene associations with diverse biological processes. Interestingly, we identified a community linked to hormone response and lipid metabolism; the identified CpGs in this community were enriched in enhancer regions and binding regions of transcription factors such as FOXA1/2, GRHL2, HNF1B, AR, and ESR1. Furthermore, the CpGs were connected to their associated genes through chromatin interaction loops. These findings suggest that the expression of genes involved in hormone response and lipid metabolism in LUAD is epigenetically regulated through DNA methylation and enhancer-promoter interactions. By applying consensus clustering on the integrated expression-methylation pattern of the emQTL-genes and CpGs linked to hormone response and lipid metabolism, we further identified subclasses of patients with distinct prognoses. This novel patient stratification was validated in an independent patient cohort of 135 patients and showed increased prognostic significance compared to previously defined molecular subtypes.
Collapse
Affiliation(s)
- Anastasia Brativnyk
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jørgen Ankill
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Shu M, Huang L, Chen Y, Wang Y, Xie Z, Li S, Zhou J, Wei L, Fu T, Liu B, Chen H, Tang K, Ke Z. Identification of a DNA-methylome-based signature for prognosis prediction in driver gene-negative lung adenocarcinoma. Cancer Lett 2024; 593:216835. [PMID: 38548216 DOI: 10.1016/j.canlet.2024.216835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 06/01/2024]
Abstract
"Driver gene-negative" lung adenocarcinoma (LUAD) was of rare treatment options and a poor prognosis. Presently, for them, few biomarkers are available for stratification analysis to make appropriate treatment strategy. This study aimed to develop a DNA-methylome-based signature to realize the precise risk-stratifying. Here, an Illumina MethylationEPIC Beadchip was applied to obtain differentially methylated CpG sites (DMCs). A four-CpG-based signature, named as TLA, was successfully established, whose prognosis-predicting power was well verified in one internal (n = 78) and other external (n = 110) validation cohorts. Patients with high-risk scores had shorter overall survival (OS) in all cohorts [hazard ratio (HR): 11.79, 5.16 and 2.99, respectively]. Additionally, it can effectively divide patients into low-risk and high-risk groups, with significantly different OS in the diverse subgroups stratified by the standard clinical parameters. As an independent prognostic factor, TLA may assist in improving the nomogram's 5-year OS-predicting ability (AUC 0.756, 95% CI:0.695-0.816), superior to TNM alone (AUC 0.644, 95% CI: 0.590-0.698). Additionally, the relationship of TLA-related genes, TAC1, LHX9, and ALX1, with prognosis and tumour invasion made them serve as potential therapy targets for driver gene-negative LUAD.
Collapse
Affiliation(s)
- Man Shu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Leilei Huang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yu Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China; Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China
| | - Yanxia Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Shuhua Li
- Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Jianwen Zhou
- Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Lihong Wei
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Bixia Liu
- Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, PR China.
| | - Kejing Tang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, PR China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
4
|
Ji XY, Li H, Chen HH, Lin J. Diagnostic performance of RASSF1A and SHOX2 methylation combined with EGFR mutations for differentiation between small pulmonary nodules. J Cancer Res Clin Oncol 2023; 149:8557-8571. [PMID: 37097393 DOI: 10.1007/s00432-023-04745-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND AND AIM Aberrant methylation of Ras association domain family 1, isoform A (RASSF1A), and short-stature homeobox gene 2 (SHOX2) promoters has been validated as a pair of valuable biomarkers for diagnosing early lung adenocarcinomas (LUADs). Epidermal growth factor receptor (EGFR) is the key driver mutation in lung carcinogenesis. This study aimed to investigate the aberrant promoter methylation of RASSF1A and SHOX2, and the genetic mutation of EGFR in 258 specimens of early LUADs. METHODS We retrospectively selected 258 paraffin-embedded samples of pulmonary nodules measuring 2 cm or less in diameter and evaluated the diagnostic performance of individual biomarker assays and multiple panels between noninvasive (group 1) and invasive lesions (groups 2A and 2B). Then, we investigated the interaction between genetic and epigenetic alterations. RESULTS The degree of RASSF1A and SHOX2 promoter methylation and EGFR mutation was significantly higher in invasive lesions than in noninvasive lesions. The three biomarkers distinguished between noninvasive and invasive lesions with reliable sensitivity and specificity: 60.9% sensitivity [95% confidence interval (CI) 52.41-68.78] and 80.0% specificity (95% CI 72.14-86.07). The novel panel biomarkers could further discriminate among three invasive pathological subtypes (area under the curve value > 0.6). The distribution of RASSF1A methylation and EGFR mutation was considerably exclusive in early LUAD (P = 0.002). CONCLUSION DNA methylation of RASSF1A and SHOX2 is a pair of promising biomarkers, which may be used in combination with other driver alterations, such as EGFR mutation, to support the differential diagnosis of LUADs, especially for stage I.
Collapse
Affiliation(s)
- Xiang-Yu Ji
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Hong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui-Hui Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China.
- National Virtual and Reality Experimental Education Center for Medical Morphology, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Sulewska A, Pilz L, Manegold C, Ramlau R, Charkiewicz R, Niklinski J. A Systematic Review of Progress toward Unlocking the Power of Epigenetics in NSCLC: Latest Updates and Perspectives. Cells 2023; 12:cells12060905. [PMID: 36980246 PMCID: PMC10047383 DOI: 10.3390/cells12060905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic research has the potential to improve our understanding of the pathogenesis of cancer, specifically non-small-cell lung cancer, and support our efforts to personalize the management of the disease. Epigenetic alterations are expected to have relevance for early detection, diagnosis, outcome prediction, and tumor response to therapy. Additionally, epi-drugs as therapeutic modalities may lead to the recovery of genes delaying tumor growth, thus increasing survival rates, and may be effective against tumors without druggable mutations. Epigenetic changes involve DNA methylation, histone modifications, and the activity of non-coding RNAs, causing gene expression changes and their mutual interactions. This systematic review, based on 110 studies, gives a comprehensive overview of new perspectives on diagnostic (28 studies) and prognostic (25 studies) epigenetic biomarkers, as well as epigenetic treatment options (57 studies) for non-small-cell lung cancer. This paper outlines the crosstalk between epigenetic and genetic factors as well as elucidates clinical contexts including epigenetic treatments, such as dietary supplements and food additives, which serve as anti-carcinogenic compounds and regulators of cellular epigenetics and which are used to reduce toxicity. Furthermore, a future-oriented exploration of epigenetic studies in NSCLC is presented. The findings suggest that additional studies are necessary to comprehend the mechanisms of epigenetic changes and investigate biomarkers, response rates, and tailored combinations of treatments. In the future, epigenetics could have the potential to become an integral part of diagnostics, prognostics, and personalized treatment in NSCLC.
Collapse
Affiliation(s)
- Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| | - Lothar Pilz
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Manegold
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| |
Collapse
|
6
|
Biological and Genetic Mechanisms of COPD, Its Diagnosis, Treatment, and Relationship with Lung Cancer. Biomedicines 2023; 11:biomedicines11020448. [PMID: 36830984 PMCID: PMC9953173 DOI: 10.3390/biomedicines11020448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most prevalent chronic adult diseases, with significant worldwide morbidity and mortality. Although long-term tobacco smoking is a critical risk factor for this global health problem, its molecular mechanisms remain unclear. Several phenomena are thought to be involved in the evolution of emphysema, including airway inflammation, proteinase/anti-proteinase imbalance, oxidative stress, and genetic/epigenetic modifications. Furthermore, COPD is one main risk for lung cancer (LC), the deadliest form of human tumor; formation and chronic inflammation accompanying COPD can be a potential driver of malignancy maturation (0.8-1.7% of COPD cases develop cancer/per year). Recently, the development of more research based on COPD and lung cancer molecular analysis has provided new light for understanding their pathogenesis, improving the diagnosis and treatments, and elucidating many connections between these diseases. Our review emphasizes the biological factors involved in COPD and lung cancer, the advances in their molecular mechanisms' research, and the state of the art of diagnosis and treatments. This work combines many biological and genetic elements into a single whole and strongly links COPD with lung tumor features.
Collapse
|
7
|
Yang Q, Zhu L, Ye M, Zhang B, Zhan P, Li H, Zou W, Liu J. Tumor Suppressor 4.1N/EPB41L1 is Epigenetic Silenced by Promoter Methylation and MiR-454-3p in NSCLC. Front Genet 2022; 13:805960. [PMID: 35795202 PMCID: PMC9251189 DOI: 10.3389/fgene.2022.805960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Non–small-cell lung cancer (NSCLC) is divided into three major histological types, namely, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large-cell lung carcinoma (LCLC). We previously identified that 4.1N/EPB41L1 acts as a tumor suppressor and is reduced in NSCLC patients. In the current study, we explored the underlying epigenetic mechanisms of 4.1N/EPB41L1 reduction in NSCLC. The 4.1N/EPB41L1 gene promoter region was highly methylated in LUAD and LUSC patients. LUAD patients with higher methylation level in the 4.1N/EPB41L1 gene promoter (TSS1500, cg13399773 or TSS200, cg20993403) had a shorter overall survival time (Log-rank p = 0.02 HR = 1.509 or Log-rank p = 0.016 HR = 1.509), whereas LUSC patients with higher methylation level in the 4.1N/EPB41L1 gene promoter (TSS1500 cg13399773, TSS1500 cg07030373 or TSS200 cg20993403) had a longer overall survival time (Log-rank p = 0.045 HR = 0.5709, Log-rank p = 0.018 HR = 0.68 or Log-rank p = 0.014 HR = 0.639, respectively). High methylation of the 4.1N/EPB41L1 gene promoter appeared to be a relatively early event in LUAD and LUSC. DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine restored the 4.1N/EPB41L1 expression at both the mRNA and protein levels. MiR-454-3p was abnormally highly expressed in NSCLC and directly targeted 4.1N/EPB41L1 mRNA. MiR-454-3p expression was significantly correlated with 4.1N/EPB41L1 expression in NSCLC patients (r = −0.63, p < 0.0001). Therefore, we concluded that promoter hypermethylation of the 4.1N/EPB41L1 gene and abnormally high expressed miR-454-3p work at different regulation levels but in concert to restrict 4.1N/EPB41L1 expression in NSCLC. Taken together, this work contributes to elucidate the underlying epigenetic disruptions of 4.1N/EPB41L1 deficiency in NSCLC.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- School of Medical Laboratory, Shao Yang University, Shaoyang, China
| | - Lin Zhu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Univers ity, Changsha, China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Peihe Zhan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Li
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Molecular Science and Biomedicine Laboratory, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Univers ity, Changsha, China
- *Correspondence: Jing Liu, ; Wen Zou, ; Hui Li,
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- *Correspondence: Jing Liu, ; Wen Zou, ; Hui Li,
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Jing Liu, ; Wen Zou, ; Hui Li,
| |
Collapse
|
8
|
The Diagnostic and Prognostic Values of HOXA Gene Family in Kidney Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1762637. [PMID: 35342423 PMCID: PMC8942704 DOI: 10.1155/2022/1762637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/03/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most common cancers with high mortality worldwide. As members of the homeobox (HOX) family, homeobox-A (HOXA) genes have been reported to play an increasingly important role in tumorigenesis and the progression of multiple cancers. However, limited studies have investigated the potential diagnostic and prognostic roles of HOXA genes in KIRC. In this research, we explored the expression pattern of the HOXA gene family in KIRC progression by differential analysis of expression profiles from The Cancer Genome Atlas (TCGA). By using univariate Cox analysis and lasso regression analysis, we comprehensively evaluated the prognostic value of HOXA genes and eventually identified a prognostic risk model consisting of five HOXA genes (HOXA2, HOXA3, HOXA7, HOXA11, and HOXA13). The risk model was further validated as a novel independent prognostic factor for KIRC patients based on the calculated risk score by Kaplan-Meier analysis, univariate and multivariate Cox regression analyses, and time-dependent receiver operating characteristic (ROC) curve analysis. Moreover, to explore the potential mechanism of tumorigenesis and clinical application of KIRC, we also developed the HOXA-based competing endogenous RNA (ceRNA) regulatory network and machine learning classification model. Valproic acid and tretinoin were predicted to be the most promising small molecules to adjuvant treatment of KIRC by mining the CMAP and DGIdb drug database. Subsequently, pathway and functional enrichment analyses provided us with new ways to search for a possible mechanism of action of drugs. Taken together, our study demonstrated the nonnegligible role of HOXA genes in KIRC and constructed an effective prognostic and diagnostic model, which offers novel insights into KIRC prognosis.
Collapse
|
9
|
Comparison of tumor and two types of paratumoral tissues highlighted epigenetic regulation of transcription during field cancerization in non-small cell lung cancer. BMC Med Genomics 2022; 15:66. [PMID: 35313869 PMCID: PMC8939144 DOI: 10.1186/s12920-022-01192-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Field cancerization is the process in which a population of normal or pre-malignant cells is affected by oncogenic alterations leading to progressive molecular changes that drive malignant transformation. Aberrant DNA methylation has been implicated in early cancer development in non-small cell lung cancer (NSCLC); however, studies on its role in field cancerization (FC) are limited. This study aims to identify FC-specific methylation patterns that could distinguish between pre-malignant lesions and tumor tissues in NSCLC. Methods We enrolled 52 patients with resectable NSCLC and collected resected tumor (TUM), tumor-adjacent (ADJ) and tumor-distant normal (DIS) tissue samples, among whom 36 qualified for subsequent analyses. Methylation levels were profiled by bisulfite sequencing using a custom lung-cancer methylation panel. Results ADJ and DIS samples demonstrated similar methylation profiles, which were distinct from distinct from that of TUM. Comparison of TUM and DIS profiles led to identification of 1740 tumor-specific differential methylated regions (DMRs), including 1675 hypermethylated and 65 hypomethylated (adjusted P < 0.05). Six of the top 10 tumor-specific hypermethylated regions were associated with cancer development. We then compared the TUM, ADJ, and DIS to further identify the progressively aggravating aberrant methylations during cancer initiation and early development. A total of 332 DMRs were identified, including a predominant proportion of 312 regions showing stepwise increase in methylation levels as the sample drew nearer to the tumor (i.e. DIS < ADJ < TUM) and 20 regions showing a stepwise decrease pattern. Gene set enrichment analysis (GSEA) for KEGG and GO terms consistently suggested enrichment of DMRs located in transcription factor genes, suggesting a central role of epigenetic regulation of transcription factors in FC and tumorigenesis. Conclusion We revealed distinct methylation patterns between pre-malignant lesions and malignant tumors, suggesting the essential role of DNA methylation as an early step in pre-malignant field defects. Moreover, our study also identified differentially methylated genes, especially transcription factors, that could potentially be used as markers for lung cancer screening and for mechanistic studies of FC and early cancer development. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01192-1.
Collapse
|
10
|
Hoang PH, Landi MT. DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers (Basel) 2022; 14:cancers14040961. [PMID: 35205708 PMCID: PMC8870477 DOI: 10.3390/cancers14040961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is the major leading cause of cancer-related mortality worldwide. Multiple epigenetic factors-in particular, DNA methylation-have been associated with the development of lung cancer. In this review, we summarize the current knowledge on DNA methylation alterations in lung tumorigenesis, as well as their associations with different histological subtypes, common cancer driver gene mutations (e.g., KRAS, EGFR, and TP53), and major epidemiological risk factors (e.g., sex, smoking status, race/ethnicity). Understanding the mechanisms of DNA methylation regulation and their associations with various risk factors can provide further insights into carcinogenesis, and create future avenues for prevention and personalized treatments. In addition, we also highlight outstanding questions regarding DNA methylation in lung cancer to be elucidated in future studies.
Collapse
|
11
|
Piao XM, Kang H, Kim WJ, Yun SJ. Prominence of urinary biomarkers for bladder cancer in the COVID-19 era: From the commercially available to new prospective candidates. Investig Clin Urol 2021; 62:500-519. [PMID: 34488250 PMCID: PMC8421991 DOI: 10.4111/icu.20210194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Molecular markers detected in urine may improve our understanding of the evolution of bladder cancer (BCa) and its micro- and macroenvironment. Detection of such markers will identify disease earlier, allow stratification of patients according to risk, and improve prognostication and prediction of outcomes, thereby facilitating targeted therapy. However, current guidelines have yet to embrace such markers for routine management of BCa, and most research studies have focused on urine-based tumor markers. In this review, we summarize known urinary biomarkers for BCa and highlight newly identified molecules. We then discuss the challenges that must be overcome to incorporate these markers into clinical care.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Howon Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Institute of Urotech, Cheongju, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
12
|
Li A, Wu H, Tian Q, Zhang Y, Zhang Z, Zhang X. Methylation Regulation of TLR3 on Immune Parameters in Lung Adenocarcinoma. Front Oncol 2021; 11:620200. [PMID: 34094905 PMCID: PMC8173059 DOI: 10.3389/fonc.2021.620200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
This study aims to analyze the methylation regulation of TLR3 in lung adenocarcinoma (LUAD) and to explore the association of TLR3 expression with immune microenvironment. TLR3 has a decreased expression in LUAD tissues and low expression of TLR3 is not only associated with poor prognosis in patients with LUAD, but also can be used as a diagnostic marker. Bisulfite sequencing PCR (BSP) results showed that the methylation level in the promoter of TLR3 was negatively correlated with the level of TLR3 mRNA in LUAD tissues. TIMER analysis showed that TLR3 was negatively correlated with the tumor purity of LUAD and positively with immune cell infiltration to some extent. ESTIMATE analysis also suggested that TLR3 expression and its methylation had significant correlation with immune score. The lower immune scores were associated with the late stage of LUAD and poor prognosis. The high expression of TLR3 might inhibit the development of LUAD by activating apoptosis pathway. The proteins interacted with TLR3 were mainly involved in the apoptosis pathway and positively correlated with the key genes (MYD88, Caspase 8, BIRC3, PIK3R1) in this pathway. Therefore, TLR3 as a key biomarker for prognosis and diagnosis in LUAD, might be considered as a potential epigenetic and immunotherapeutic target.
Collapse
Affiliation(s)
- Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, China.,College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Qinqin Tian
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Yi Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China.,College of Life Science, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
13
|
Sun X, Yi J, Yang J, Han Y, Qian X, Liu Y, Li J, Lu B, Zhang J, Pan X, Liu Y, Liang M, Chen E, Liu P, Lu Y. An integrated epigenomic-transcriptomic landscape of lung cancer reveals novel methylation driver genes of diagnostic and therapeutic relevance. Am J Cancer Res 2021; 11:5346-5364. [PMID: 33859751 PMCID: PMC8039961 DOI: 10.7150/thno.58385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Aberrant DNA methylation occurs commonly during carcinogenesis and is of clinical value in human cancers. However, knowledge of the impact of DNA methylation changes on lung carcinogenesis and progression remains limited. Methods: Genome-wide DNA methylation profiles were surveyed in 18 pairs of tumors and adjacent normal tissues from non-small cell lung cancer (NSCLC) patients using Reduced Representation Bisulfite Sequencing (RRBS). An integrated epigenomic-transcriptomic landscape of lung cancer was depicted using the multi-omics data integration method. Results: We discovered a large number of hypermethylation events pre-marked by poised promoter in embryonic stem cells, being a hallmark of lung cancer. These hypermethylation events showed a high conservation across cancer types. Eight novel driver genes with aberrant methylation (e.g., PCDH17 and IRX1) were identified by integrated analysis of DNA methylome and transcriptome data. Methylation level of the eight genes measured by pyrosequencing can distinguish NSCLC patients from lung tissues with high sensitivity and specificity in an independent cohort. Their tumor-suppressive roles were further experimentally validated in lung cancer cells, which depend on promoter hypermethylation. Similarly, 13 methylation-driven ncRNAs (including 8 lncRNAs and 5 miRNAs) were identified, some of which were co-regulated with their host genes by the same promoter hypermethylation. Finally, by analyzing the transcription factor (TF) binding motifs, we uncovered sets of TFs driving the expression of epigenetically regulated genes and highlighted the epigenetic regulation of gene expression of TCF21 through DNA methylation of EGR1 binding motifs. Conclusions: We discovered several novel methylation driver genes of diagnostic and therapeutic relevance in lung cancer. Our findings revealed that DNA methylation in TF binding motifs regulates target gene expression by affecting the binding ability of TFs. Our study also provides a valuable epigenetic resource for identifying DNA methylation-based diagnostic biomarkers, developing cancer drugs for epigenetic therapy and studying cancer pathogenesis.
Collapse
|
14
|
Su SF, Liu CH, Cheng CL, Ho CC, Yang TY, Chen KC, Hsu KH, Tseng JS, Chen HW, Chang GC, Yu SL, Li KC. Genome-Wide Epigenetic Landscape of Lung Adenocarcinoma Links HOXB9 DNA Methylation to Intrinsic EGFR-TKI Resistance and Heterogeneous Responses. JCO Precis Oncol 2021; 5:PO.20.00151. [PMID: 34036228 PMCID: PMC8140798 DOI: 10.1200/po.20.00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) show efficacy in treating patients with lung adenocarcinoma with EGFR-activating mutations. However, a significant subset of targeted patients fail to respond. Unlike acquired resistance (AR), intrinsic resistance (IR) remains poorly understood. We investigated whether epigenomic factors contribute to patient-to-patient heterogeneity in the EGFR-TKI response and aimed to characterize the IR subpopulation that obtains no benefit from EGFR-TKIs. PATIENTS AND METHODS We conducted genome-wide DNA methylation profiling of 79 tumors sampled from patients with advanced lung adenocarcinoma before they received EGFR-TKI treatment and analyzed the patient responses. Pyrosequencing was performed in a validation cohort of 163 patients with EGFR-activating mutations. RESULTS A DNA methylation landscape of 216 CpG sites with differential methylation was established to elucidate the association of DNA methylation with the characteristics and EGFR-TKI response status of the patients. Functional analysis of 37 transcription-repressive sites identified the enrichment of transcription factors, notably homeobox (HOX) genes. DNA methylation of HOXB9 (cg13643585) in the enhancer region yielded 88% sensitivity for predicting drug response (odds ratio [OR], 6.64; 95% CI, 1.98 to 25.23; P = .0009). Pyrosequencing validated that HOXB9 gained methylation in patients with a poor EGFR-TKI response (OR, 3.06; 95% CI, 1.13 to 8.19; P = .019). CONCLUSION Our data suggest that homeobox DNA methylation could be a novel tumor cellular state that can aid the precise categorization of tumor heterogeneity in the study of IR to EGFR-TKIs. We identified, for the first time, an epigenomic factor that can potentially complement DNA mutation status in discriminating patients with lung adenocarcinoma who are less likely to benefit from EGFR-TKI treatment, thereby leading to improved patient management in precision medicine.
Collapse
Affiliation(s)
- Sheng-Fang Su
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University, College of Medicine, Taipei, Taiwan.,YongLin Institute of Health, YongLin Scholar, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsin Liu
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chiou-Ling Cheng
- NTU Centers for Genomic and Precision Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Chieh Chen
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Kuo-Hsuan Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Internal Medicine, Division of Critical Care and Respiratory Therapy, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Gee-Chen Chang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sung-Liang Yu
- NTU Centers for Genomic and Precision Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology and Graduate Institute of Pathology, National Taiwan University, College of Medicine, Taipei, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Statistics, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
15
|
Muhammad JS, Saheb Sharif-Askari N, Cui ZG, Hamad M, Halwani R. SARS-CoV-2 Infection-Induced Promoter Hypomethylation as an Epigenetic Modulator of Heat Shock Protein A1L (HSPA1L) Gene. Front Genet 2021; 12:622271. [PMID: 33679887 PMCID: PMC7933663 DOI: 10.3389/fgene.2021.622271] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Numerous researches have focused on the genetic variations affecting SARS-CoV-2 infection, whereas the epigenetic effects are inadequately described. In this report, for the first time, we have identified potential candidate genes that might be regulated via SARS-CoV-2 induced DNA methylation changes in COVID-19 infection. At first, in silico transcriptomic data of COVID-19 lung autopsies were used to identify the top differentially expressed genes containing CpG Islands in their promoter region. Similar gene regulations were also observed in an in vitro model of SARS-CoV-2 infected lung epithelial cells (NHBE and A549). SARS-CoV-2 infection significantly decreased the levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) in lung epithelial cells. Out of 14 candidate genes identified, the expression of 12 genes was upregulated suggesting promoter hypomethylation, while only two genes were downregulated suggesting promoter hypermethylation in COVID-19. Among those 12 upregulated genes, only HSPA1L and ULBP2 were found to be upregulated in AZA-treated lung epithelial cells and immune cells, suggesting their epigenetic regulation. To confirm the hypomethylation of these two genes during SARS-CoV-2 infection, their promoter methylation and mRNA expression levels were determined in the genomic DNA/RNA obtained from whole blood samples of asymptomatic, severe COVID-19 patients and equally matched healthy controls. The methylation level of HSPA1L was significantly decreased and the mRNA expression was increased in both asymptomatic and severe COVID-19 blood samples suggesting its epigenetic regulation by SARS-CoV-2 infection. Functionally, HSPA1L is known to facilitate host viral replication and has been proposed as a potential target for antiviral prophylaxis and treatment.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Jibran Sualeh Muhammad,
| | | | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, University of Fukui, Fukui, Japan
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Rabih Halwani,
| |
Collapse
|
16
|
Heller G, Nebenfuehr S, Bellutti F, Ünal H, Zojer M, Scheiblecker L, Sexl V, Kollmann K. The Effect of CDK6 Expression on DNA Methylation and DNMT3B Regulation. iScience 2020; 23:101602. [PMID: 33205015 PMCID: PMC7648139 DOI: 10.1016/j.isci.2020.101602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
CDK6 is frequently overexpressed in various cancer types and functions as a positive regulator of the cell cycle and as a coregulator of gene transcription. We provide evidence that CDK6 is involved in the process of DNA methylation, at least in ALL. We observe a positive correlation of CDK6 and DNMT expression in a large number of ALL samples. ChIP-seq analysis reveals CDK6 binding to genomic regions associated with DNA methyltransferases (DNMTs). ATAC-seq shows a strong reduction in chromatin accessibility for DNMT3B in CDK6-deficient BCR-ABL + Cdk6-/- cells, accompanied by lower levels of DNMT3B mRNA and less chromatin-bound DNMT3B, as shown by RNA-seq and chromatome analysis. Motif analysis suggests that ETS family members interact with CDK6 to regulate DNMT3B. Reduced representation bisulfite sequencing analysis uncovers reversible and cell line-specific changes in DNA methylation patterns upon CDK6 loss. The results reveal a function of CDK6 as a regulator of DNA methylation in transformed cells.
Collapse
Affiliation(s)
- Gerwin Heller
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria.,Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Sofie Nebenfuehr
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Florian Bellutti
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Huriye Ünal
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Markus Zojer
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Lisa Scheiblecker
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Karoline Kollmann
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
17
|
Lozano F, Raventos CX, Carrion A, Trilla E, Morote J. Current status of genetic urinary biomarkers for surveillance of non-muscle invasive bladder cancer: a systematic review. BMC Urol 2020; 20:99. [PMID: 32664878 PMCID: PMC7362437 DOI: 10.1186/s12894-020-00670-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Genetic biomarkers are a promising and growing field in the management of bladder cancer in all stages. The aim of this paper is to understand the role of genetic urinary biomarkers in the follow up of patients with non muscle invasive bladder cancer where there is increasing evidence that they can play a role in avoiding invasive techniques. Methods Following PRISMA criteria, we have performed a systematic review. The search yielded 164 unique articles, of which 21 articles were included involving a total of 7261 patients. Sixteen of the articles were DNA based biomarkers, analyzing different methylations, microsatellite aberrations and gene mutations. Five articles studied the role of RNA based biomarkers, based on measuring levels of different combinations of mRNA. QUADAS2 critical evaluation of each paper has been reported. Results There are not randomized control trials comparing any biomarker with the gold standard follow-up, and the level of evidence is 2B in almost all the studies. Negative predictive value varies between 55 and 98.5%, being superior in RNA based biomarkers. Conclusions Although cystoscopy and cytology are the gold standard for non muscle invasive bladder cancer surveillance, genetic urinary biomarkers are a promising tool to avoid invasive explorations to the patients with a safe profile of similar sensitivity and negative predictive value. The accuracy that genetic biomarkers can offer should be taken into account to modify the paradigm of surveillance in non muscle invasive bladder cancer patients, especially in high-risk ones where many invasive explorations are recommended and biomarkers experiment better results.
Collapse
Affiliation(s)
- F Lozano
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - C X Raventos
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - A Carrion
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - E Trilla
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - J Morote
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Paço A, de Bessa Garcia SA, Freitas R. Methylation in HOX Clusters and Its Applications in Cancer Therapy. Cells 2020; 9:cells9071613. [PMID: 32635388 PMCID: PMC7408435 DOI: 10.3390/cells9071613] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
HOX genes are commonly known for their role in embryonic development, defining the positional identity of most structures along the anterior–posterior axis. In postembryonic life, HOX gene aberrant expression can affect several processes involved in tumorigenesis such as proliferation, apoptosis, migration and invasion. Epigenetic modifications are implicated in gene expression deregulation, and it is accepted that methylation events affecting HOX gene expression play crucial roles in tumorigenesis. In fact, specific methylation profiles in the HOX gene sequence or in HOX-associated histones are recognized as potential biomarkers in several cancers, helping in the prediction of disease outcomes and adding information for decisions regarding the patient’s treatment. The methylation of some HOX genes can be associated with chemotherapy resistance, and its identification may suggest the use of other treatment options. The use of epigenetic drugs affecting generalized or specific DNA methylation profiles, an approach that now deserves much attention, seems likely to be a promising weapon in cancer therapy in the near future. In this review, we summarize these topics, focusing particularly on how the regulation of epigenetic processes may be used in cancer therapy.
Collapse
Affiliation(s)
- Ana Paço
- Centre Bio: Bioindustries, Biorefineries and Bioproducts, BLC3 Association—Technology and Innovation Campus, 3405-169 Oliveira do Hospital, Portugal;
| | | | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal;
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
19
|
Cui Y, Yan M, Zhang C, Xue J, Zhang Q, Ma S, Guan F, Cao W. Comprehensive analysis of the HOXA gene family identifies HOXA13 as a novel oncogenic gene in kidney renal clear cell carcinoma. J Cancer Res Clin Oncol 2020; 146:1993-2006. [PMID: 32444962 DOI: 10.1007/s00432-020-03259-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Kidney renal clear cell carcinoma (KIRC) is one of the most common lethal cancers in the human urogenital system. As members of the Homeobox (HOX) family, Homeobox-A (HOXA) cluster genes have been reported to be involved in the development of many cancer types. However, the expression and clinical significance of HOXA genes in KIRC remain largely unknown. MATERIALS AND METHODS In this study, we comprehensively analyzed the mRNA expression and prognostic values of HOXA genes in KIRC using The Cancer Genome Atlas (TCGA) analysis databases online. Colony formation assay, flow cytometry and Western blot were used to detect cell proliferation, apoptosis, cell cycle, and protein level of the indicated gene. RESULTS We found that the HOXA genes were differentially expressed in KIRC tissues when compared with normal tissues. The expression of HOXA4 and HOXA13 were significantly up-regulated, while HOXA7 and HOXA11 were down-regulated in KIRC. High mRNA levels of HOXA2, HOXA3 and HOXA13, and low level of HOXA7 predicted poor overall survival (OS) of KIRC patients. High mRNA level of HOXA13 further indicated a poor disease-free survival (DFS) of KIRC patients. Functionally, knockdown of HOXA13 significantly suppressed cell proliferation of KIRC in vitro, increased the protein level of p53 and decreased the protein level of cyclin D1 in KIRC cells. Over-expression of HOXA13 had the opposite effects on KIRC cells. CONCLUSION Collectively, our findings suggest that HOXA13 functions as a novel oncogene in KIRC and may be a potential biomarker for this malignancy.
Collapse
Affiliation(s)
- Yuanbo Cui
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ming Yan
- Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China
| | - Jinhui Xue
- Department of Pathology, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wei Cao
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China.
| |
Collapse
|
20
|
Delgado-Chaves FM, Gómez-Vela F, García-Torres M, Divina F, Vázquez Noguera JL. Computational Inference of Gene Co-Expression Networks for the identification of Lung Carcinoma Biomarkers: An Ensemble Approach. Genes (Basel) 2019; 10:E962. [PMID: 31766738 PMCID: PMC6947459 DOI: 10.3390/genes10120962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Gene Networks (GN), have emerged as an useful tool in recent years for the analysis of different diseases in the field of biomedicine. In particular, GNs have been widely applied for the study and analysis of different types of cancer. In this context, Lung carcinoma is among the most common cancer types and its short life expectancy is partly due to late diagnosis. For this reason, lung cancer biomarkers that can be easily measured are highly demanded in biomedical research. In this work, we present an application of gene co-expression networks in the modelling of lung cancer gene regulatory networks, which ultimately served to the discovery of new biomarkers. For this, a robust GN inference was performed from microarray data concomitantly using three different co-expression measures. Results identified a major cluster of genes involved in SRP-dependent co-translational protein target to membrane, as well as a set of 28 genes that were exclusively found in networks generated from cancer samples. Amongst potential biomarkers, genes N C K A P 1 L and D M D are highlighted due to their implications in a considerable portion of lung and bronchus primary carcinomas. These findings demonstrate the potential of GN reconstruction in the rational prediction of biomarkers.
Collapse
Affiliation(s)
- Fernando M. Delgado-Chaves
- Division of Computer Science, Pablo de Olavide University, 41013 Seville, Spain; (F.M.D.-C.); (M.G.-T.); (F.D.)
| | - Francisco Gómez-Vela
- Division of Computer Science, Pablo de Olavide University, 41013 Seville, Spain; (F.M.D.-C.); (M.G.-T.); (F.D.)
| | - Miguel García-Torres
- Division of Computer Science, Pablo de Olavide University, 41013 Seville, Spain; (F.M.D.-C.); (M.G.-T.); (F.D.)
| | - Federico Divina
- Division of Computer Science, Pablo de Olavide University, 41013 Seville, Spain; (F.M.D.-C.); (M.G.-T.); (F.D.)
| | | |
Collapse
|
21
|
Hata A, Nakajima T, Matsusaka K, Fukuyo M, Morimoto J, Yamamoto T, Sakairi Y, Rahmutulla B, Ota S, Wada H, Suzuki H, Matsubara H, Yoshino I, Kaneda A. A low DNA methylation epigenotype in lung squamous cell carcinoma and its association with idiopathic pulmonary fibrosis and poorer prognosis. Int J Cancer 2019; 146:388-399. [PMID: 31241180 DOI: 10.1002/ijc.32532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) have higher risk of developing lung cancer, for example, squamous cell carcinoma (SCC), and show poor prognosis, while the molecular basis has not been fully investigated. Here we conducted DNA methylome analysis of lung SCC using 20 SCC samples with/without IPF, and noncancerous lung tissue samples from smokers/nonsmokers, using Infinium HumanMethylation 450K array. SCC was clustered into low- and high-methylation epigenotypes by hierarchical clustering analysis. Genes hypermethylated in SCC significantly included genes targeted by polycomb repressive complex in embryonic stem cells, and genes associated with Gene Ontology terms, for example, "transcription" and "cell adhesion," while genes hypermethylated specifically in high-methylation subgroup significantly included genes associated with "negative regulation of growth." Low-methylation subgroup significantly correlated with IPF (78%, vs. 17% in high-methylation subgroup, p = 0.04), and the correlation was validated by additional Infinium analysis of SCC samples (n = 44 in total), and data from The Cancer Genome Atlas (n = 390). The correlation between low-methylation subgroup and IPF was further validated by quantitative methylation analysis of marker genes commonly hypermethylated in SCC (HOXA2, HOXA9 and PCDHGB6), and markers specifically hypermethylated in high-methylation subgroup (DLEC1, CFTR, MT1M, CRIP3 and ALDH7A1) in 77 SCC cases using pyrosequencing (p = 0.003). Furthermore, low-methylation epigenotype significantly correlated with poorer prognosis among all SCC patients, or among patients without IPF. Multivariate analysis showed that low-methylation epigenotype is an independent predictor of poor prognosis. These may suggest that lung SCC could be stratified into molecular subtypes with distinct prognosis, and low-methylation lung SCC that significantly correlates with IPF shows unfavorable outcome.
Collapse
Affiliation(s)
- Atsushi Hata
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Nakajima
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Genome Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Junichi Morimoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Yamamoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Ota
- Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Hironobu Wada
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Sarne V, Braunmueller S, Rakob L, Seeboeck R. The Relevance of Gender in Tumor-Influencing Epigenetic Traits. EPIGENOMES 2019; 3:epigenomes3010006. [PMID: 34991275 PMCID: PMC8594720 DOI: 10.3390/epigenomes3010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Tumorigenesis as well as the molecular orchestration of cancer progression are very complex mechanisms that comprise numerous elements of influence and regulation. Today, many of the major concepts are well described and a basic understanding of a tumor's fine-tuning is given. Throughout the last decade epigenetics has been featured in cancer research and it is now clear that the underlying mechanisms, especially DNA and histone modifications, are important regulators of carcinogenesis and tumor progression. Another key regulator, which is well known but has been neglected in scientific approaches as well as molecular diagnostics and, consequently, treatment conceptualization for a long time, is the subtle influence patient gender has on molecular processes. Naturally, this is greatly based on hormonal differences, but from an epigenetic point of view, the diverse susceptibility to stress and environmental influences is of prime interest. In this review we present the current view on which and how epigenetic modifications, emphasizing DNA methylation, regulate various tumor diseases. It is our aim to elucidate gender and epigenetics and their interconnectedness, which will contribute to understanding of the prospect molecular orchestration of cancer in individual tumors.
Collapse
|
23
|
Roy R, Kandimalla R, Sonohara F, Koike M, Kodera Y, Takahashi N, Yamada Y, Goel A. A comprehensive methylation signature identifies lymph node metastasis in esophageal squamous cell carcinoma. Int J Cancer 2018; 144:1160-1169. [PMID: 30006931 DOI: 10.1002/ijc.31755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 01/01/2023]
Abstract
Treatment modalities in esophageal squamous cell carcinoma (ESCC) depend largely on lymph node metastasis (LNM) status. With suboptimal detection sensitivity of existing imaging techniques, we propose a methylation signature which identifies patients with LNM with greater accuracy. This would allow precise stratification of high-risk patients requiring more aggressive treatment from low-risk ESCC patients who can forego radical surgery. An unbiased genome-wide methylation signature for LNM detection was established from an initial in silico discovery phase. The signature was tested in independent clinical cohorts comprising of 249 ESCC patients. The prognostic potential of the methylation signature was compared to clinical variables including LNM status. A 10-probe LNM associated signature (LNAS) was developed using stringent bioinformatics analyses. The area under the curve values for LNAS risk scores were 0.81 and 0.88 in the training and validation cohorts respectively, in association with lymphatic vessel invasion and tumor stage. High LNAS risk-score was also associated with worse overall survival [HR (95% CI) 3 (1.8-4.8), p < 0.0001 training and 3.9 (1.5-10.2), p = 0.001 validation cohort]. In conclusion, our novel methylation signature is a powerful biomarker that identifies LNM status robustly and is also associated with worse prognosis in ESCC patients.
Collapse
Affiliation(s)
- Roshni Roy
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Raju Kandimalla
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Takahashi
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhide Yamada
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
24
|
DNA methylation marker to estimate the breast cancer cell fraction in DNA samples. Med Oncol 2018; 35:147. [PMID: 30218172 DOI: 10.1007/s12032-018-1207-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Estimation of the cancer cell fraction in breast cancer tissue is important for exclusion of samples unsuitable for multigene prognostic assays and a variety of molecular analyses for research. Here, we aimed to establish a breast cancer cell fraction marker based on DNA methylation. First, we screened genes unmethylated in non-cancerous mammary tissues and methylated in breast cancer tissues using microarray data from the TCGA database, and isolated 12 genes. Among them, four genes were selected as candidate marker genes without a high incidence of copy number alterations and with broad coverage across patients. Bisulfite pyrosequencing analysis of additional breast cancer biopsy specimens purified by laser capture microdissection (LCM) excluded two genes, and a combination of SIM1 and CCDC181 was finally selected as a fraction marker. In further additional specimens without LCM purification, the fraction marker was substantially methylated (≥ 20%) with high incidence (50/51). The cancer cell fraction estimated by the fraction marker was significantly correlated with that estimated by microscopic examination (p < 0.0001). Performance of a previously established marker, HSD17B4 methylation, which predicts therapeutic response of HER2-positive breast cancer to trastuzumab, was improved after the correction of cancer cell fraction by the fraction marker. In conclusion, we successfully established a breast cancer cell fraction marker based on DNA methylation.
Collapse
|
25
|
Su C, Shi K, Cheng X, Han Y, Li Y, Yu D, Liu Z. Methylation of CLEC14A is associated with its expression and lung adenocarcinoma progression. J Cell Physiol 2018; 234:2954-2962. [PMID: 30191970 DOI: 10.1002/jcp.27112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
Our main objective is probing the effect of methylation of CLEC14A on its expression and lung adenocarcinoma (LUAD) progression. Microarray analysis was utilized to screen out differentially downregulated genes with hypermethylation in LUAD tissues. The CLEC14A expression level was measured by western blot analysis and qRT-PCR. Methylation-specific-PCR was performed to evaluate methylation status of CLEC14A. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid (MTT) assay was used to check the relation between CLEC14A expression and cell proliferation. Cell cycle, cell apoptosis, migration, and invasion were respectively detected by the flow cytometry assay, wound healing assay, and transwell assay. Tumor xenograft models were established for investigating the effect of CLEC14A on tumor formation. CLEC14A expression in LUAD tissues was impaired compared with that in adjacent tissues, and CLEC14A promoter was highly methylated in LUAD. Overexpressing CLEC14A or inhibiting the methylation level of CLEC14A in A549 and LTEP-a-2 cells impeded the duplication of LUAD cells, promoted apoptosis, attenuated cell migration, and invasion ability, and arrested cell cycle at the G0/G1 phase. Overexpression of CLEC14A inhibited tumorigenesis of LUAD cells in nude mice. The promoter of CLEC14A is methylated in LUAD, leading to downregulation of CLEC14A in LUAD. CLEC14A acts as an antitumor role in LUAD by suppressing cell proliferation, migration, invasion, promoting cell apoptosis, and reducing tumorigenicity in nude mice. Thus, the inhibition of CLEC14A methylation is a novel strategy for the clinic treatment of LUAD.
Collapse
Affiliation(s)
- Chongyu Su
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing, China
| | - Kang Shi
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing, China
| | - Xu Cheng
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing, China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing, China
| | - Yunsong Li
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing, China
| | - Daping Yu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing, China
| | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing, China
| |
Collapse
|
26
|
Heller G, Altenberger C, Steiner I, Topakian T, Ziegler B, Tomasich E, Lang G, End-Pfützenreuter A, Zehetmayer S, Döme B, Arns BM, Klepetko W, Zielinski CC, Zöchbauer-Müller S. DNA methylation of microRNA-coding genes in non-small-cell lung cancer patients. J Pathol 2018; 245:387-398. [PMID: 29570800 PMCID: PMC6055722 DOI: 10.1002/path.5079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Deregulated DNA methylation leading to transcriptional inactivation of certain genes occurs frequently in non‐small‐cell lung cancers (NSCLCs). As well as protein‐coding genes, microRNA (miRNA)‐coding genes may be targets for methylation in NSCLCs; however, the number of known methylated miRNA genes is still small. Thus, we investigated methylation of miRNA genes in primary tumour (TU) samples and corresponding non‐malignant lung tissue (NL) samples of 50 NSCLC patients by using methylated DNA immunoprecipitation followed by custom‐designed tiling microarray analyses (MeDIP‐chip), and 252 differentially methylated probes between TU samples and NL samples were identified. These probes were annotated, which resulted in the identification of 34 miRNA genes with increased methylation in TU samples. Some of these miRNA genes were already known to be methylated in NSCLCs (e.g. those encoding miR‐9‐3 and miR‐124), but methylation of the vast majority of them was previously unknown. We selected six miRNA genes (those encoding miR‐10b, miR‐1179, miR‐137, miR‐572, miR‐3150b, and miR‐129‐2) for gene‐specific methylation analyses in TU samples and corresponding NL samples of 104 NSCLC patients, and observed a statistically significant increase in methylation of these genes in TU samples (p < 0.0001). In silico target prediction of the six miRNAs identified several oncogenic/cell proliferation‐promoting factors (e.g. CCNE1 as an miR‐1179 target). To investigate whether miR‐1179 indeed targets CCNE1, we transfected miR‐1179 gene mimics into CCNE1‐expressing NSCLC cells, and observed downregulated CCNE1 mRNA expression in these cells as compared with control cells. Similar effects on cyclin E1 expression were seen in western blot analyses. In addition, we found a statistically significant reduction in the growth of NSCLC cells transfected with miR‐1179 mimics as compared with control cells. In conclusion, we identified many methylated miRNA genes in NSCLC patients, and found that the miR‐1179 gene is a potential tumour cell growth suppressor in NSCLCs. Overall, our findings emphasize the impact of miRNA gene methylation on the pathogenesis of NSCLCs. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Corinna Altenberger
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Irene Steiner
- Centre for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Thais Topakian
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Barbara Ziegler
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Erwin Tomasich
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - György Lang
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Adelheid End-Pfützenreuter
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Sonja Zehetmayer
- Centre for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary.,Department of Tumour Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | | | - Walter Klepetko
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph C Zielinski
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Sabine Zöchbauer-Müller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Xu XH, Bao Y, Wang X, Yan F, Guo S, Ma Y, Xu D, Jin L, Xu J, Wang J. Hypoxic-stabilized EPAS1 proteins transactivate DNMT1 and cause promoter hypermethylation and transcription inhibition of EPAS1 in non-small cell lung cancer. FASEB J 2018; 32:fj201700715. [PMID: 29920222 DOI: 10.1096/fj.201700715] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality globally. Although cigarette smoking is by far the most important risk factor for lung cancer, the aberrant expression of oncogenes and tumor suppressor genes contributes a great deal to tumorigenesis. Here, we reveal that aberrant expression of endothelial PAS domain-containing protein 1 ( EPAS1) gene, which encodes hypoxia inducible factor 2α, has a critical role in NSCLC. Our results showed EPAS1 mRNA was down-regulated in 82.5% of NSCLC tissues, and a new region of EPAS1 promoter was found to be highly methylated in lung cancer cell lines and NSCLC tissues. Moreover, the methylation rates were negatively correlated to EPAS1 mRNA expression in lung tissues. Further, demethylation analysis demonstrated EPAS1 was regulated by DNA methyltransferases (DNMTs) in NSCLC. In contrast, DNMT1 was verified as an EPAS1 target gene by chromatin immunoprecipitation assay and could be transactivated by stabilized EPAS1 proteins in hypoxic lung cells, thereby decreasing EPAS1 mRNA expression by methylation regulation. Collectively, our study suggests there might be a mechanism of negative-feedback regulation for EPAS1 in NSCLC. That is, hypoxic-stabilized EPAS1 proteins transactivated DNMT1, which further promoted the hypermethylation of EPAS1 promoter and decreased EPAS1 mRNA expression levels in NSCLC.-Xu, X.-H., Bao, Y., Wang, X., Yan, F., Guo, S., Ma, Y., Xu, D., Jin, L., Xu, J., Wang, J. Hypoxic-stabilized EPAS1 proteins transactivate DNMT1 and cause promoter hypermethylation and transcription inhibition of EPAS1 in non-small cell lung cancer.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Bao
- Department of Cardiothoracic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaotian Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Fengyang Yan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shicheng Guo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Dong Xu
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China; and
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jibin Xu
- Department of Cardiothoracic Surgery, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Hypermethylation of MDFI promoter with NSCLC is specific for females, non-smokers and people younger than 65. Oncol Lett 2018; 15:9017-9024. [PMID: 29805634 PMCID: PMC5958687 DOI: 10.3892/ol.2018.8535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 01/25/2018] [Indexed: 01/03/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is a major subtype of lung cancer. Aberrant DNA methylation has been frequently observed in NSCLC. The aim of the present study was to investigate the role of MyoD family inhibitor (MDFI) methylation in NSCLC. Formalin-fixed paraffin-embedded tumor tissues and adjacent non-cancerous tissues were collected from a total of 111 patients with NSCLC. A methylation assay was performed using the quantitative methylation-specific polymerase chain reaction method. The percentage of methylated reference was used to represent the methylation level of the MDFI promoter. Data mining of a dataset from The Cancer Genome Atlas (TCGA) demonstrated that MDFI promoter methylation levels were significantly increased in 830 tumor tissues compared with 75 non-tumor tissues (P=0.012). However, the results on tissues obtained in the present study indicated that the MDFI promoter methylation levels in tumor tissues were not significantly different compared with those in the adjacent non-tumor tissues (P=0.159). Subsequent breakdown analysis identified that higher MDFI promoter methylation levels were significantly associated with NSCLC in females (P=0.031), but not in males (P=0.832). Age-based subgroup analysis demonstrated that higher MDFI promoter methylation levels were significantly associated with NSCLC in younger patients (≤65 years; P=0.003), but not in older patients (P=0.327). In addition, the association of MDFI methylation with NSCLC was significant in non-smokers (P=0.014), but not in smokers (P=0.832). Similar results also have been determined from subgroup analysis of the TCGA datasets. The Gene Expression Omnibus database indicated MDFI expression restoration in partial lung cancer cell lines (H1299 and Hotz) following demethylation treatment. However, it was identified that MDFI promoter hypermethylation was not significantly associated with prognosis of NSCLC (P>0.05). In conclusion, the present study indicated that the association of higher methylation of the MDFI promoter with NSCLC may be specific to females, non-smokers and people aged ≤65.
Collapse
|
29
|
Jiang CL, He SW, Zhang YD, Duan HX, Huang T, Huang YC, Li GF, Wang P, Ma LJ, Zhou GB, Cao Y. Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget 2018; 8:1369-1391. [PMID: 27901495 PMCID: PMC5352062 DOI: 10.18632/oncotarget.13622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
The lung cancer incidence in the Xuanwei and neighboring region, Yunnan, China, is among the highest in China and is attributed to severe air pollution with high benzo(a)pyrene levels. We systematically and comparatively analyzed DNA methylation alterations at genome and gene levels in Xuanwei lung cancer tissues and cell lines, as well as benzo(a)pyrene-treated cells and mouse samples. We obtained a comprehensive dataset of genome-wide cytosine-phosphate-guanine island methylation in air pollution-related lung cancer samples. Benzo(a)pyrene exposure induced multiple alterations in DNA methylation and in mRNA expressions of DNA methyltransferases and ten-11 translocation proteins; these alterations partially occurred in Xuanwei lung cancer. Furthermore, benzo(a)pyrene-induced DKK2 and EN1 promoter hypermethylation and LPAR2 promoter hypomethylation led to down-regulation and up-regulation of the genes, respectively; the down-regulation of DKK2 and EN1 promoted the cellular proliferation. Thus, DNA methylation alterations induced by benzo(a)pyrene contribute partially to abnormal DNA methylation in air pollution-related lung cancer, and these DNA methylation alterations may affect the development and progression of lung cancer. Additionally, vitamin C and B6 can reduce benzo(a)pyrene-induced DNA methylation alterations and may be used as chemopreventive agents for air pollution-related lung cancer.
Collapse
Affiliation(s)
- Cheng-Lan Jiang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Shui-Wang He
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yun-Dong Zhang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - He-Xian Duan
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Chao Huang
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Kunming Medical University, (Yunnan Tumor Hospital), Kunming 650106, China
| | - Gao-Feng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, (Yunnan Tumor Hospital), Kunming 650106, China
| | - Ping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Li-Ju Ma
- Clinical Medicine Research Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650332, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
30
|
Yuan Z, Sánchez Claros C, Suzuki M, Maggi EC, Kaner JD, Kinstlinger N, Gorecka J, Quinn TJ, Geha R, Corn A, Pastoriza J, Jing Q, Adem A, Wu H, Alemu G, Du YC, Zheng D, Greally JM, Libutti SK. Loss of MEN1 activates DNMT1 implicating DNA hypermethylation as a driver of MEN1 tumorigenesis. Oncotarget 2017; 7:12633-50. [PMID: 26871472 PMCID: PMC4914310 DOI: 10.18632/oncotarget.7279] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) syndrome results from mutations in the MEN1 gene and causes tumor formation via largely unknown mechanisms. Using a novel genome-wide methylation analysis, we studied tissues from MEN1-parathyroid tumors, Men1 knockout (KO) mice, and Men1 null mouse embryonic fibroblast (MEF) cell lines. We demonstrated that inactivation of menin (the protein product of MEN1) increases activity of DNA (cytosine-5)-methyltransferase 1 (DNMT1) by activating retinoblastoma-binding protein 5 (Rbbp5). The increased activity of DNMT1 mediates global DNA hypermethylation, which results in aberrant activation of the Wnt/β-catenin signaling pathway through inactivation of Sox regulatory genes. Our study provides important insights into the role of menin in DNA methylation and its impact on the pathogenesis of MEN1 tumor development.
Collapse
Affiliation(s)
- Ziqiang Yuan
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Elaine C Maggi
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Justin D Kaner
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Noah Kinstlinger
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jolanta Gorecka
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas J Quinn
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rula Geha
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amanda Corn
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jessica Pastoriza
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Qiang Jing
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Asha Adem
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hao Wu
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Girum Alemu
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yi-Chieh Du
- Department of Pathology and Lab Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven K Libutti
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
31
|
Karimi L, Mansoori B, shanebandi D, Mohammadi A, Aghapour M, Baradaran B. Function of microRNA-143 in different signal pathways in cancer: New insights into cancer therapy. Biomed Pharmacother 2017; 91:121-131. [DOI: 10.1016/j.biopha.2017.04.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 01/05/2023] Open
|
32
|
Zhang Y, Wang DC, Shi L, Zhu B, Min Z, Jin J. Genome analyses identify the genetic modification of lung cancer subtypes. Semin Cancer Biol 2017; 42:20-30. [DOI: 10.1016/j.semcancer.2016.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
|
33
|
Feng N, Wang Y, Zheng M, Yu X, Lin H, Ma RN, Shi O, Zheng X, Gao M, Yu H, Garmire L, Qian B. Genome-wide analysis of DNA methylation and their associations with long noncoding RNA/mRNA expression in non-small-cell lung cancer. Epigenomics 2017; 9:137-153. [PMID: 28111977 DOI: 10.2217/epi-2016-0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM The goal of this study is to identify differentially methylated (DM) loci associated with long noncoding RNA (lncRNA)/mRNA expression in non-small-cell lung cancer (NSCLC). MATERIALS & METHODS Microarrays were used to interrogate genome-wide methylation and expression of lncRNA/mRNA in NSCLC. RESULTS We identified 113,644 DM loci between tumors and adjacent tissues. Among them, 26,310 DM loci were associated with 1685 differentially expressed genes, and 839 genes had significant correlations between methylation and expression, of which 26 hypermethylated loci in transcription start site 200 were correlated with low gene expression. We validated the correlations between methylation and expression in five genes (CDO1, C2orf40, SCARF1, ZFP106 and IFFO1) using pyrosequencing and quantitative polymerase chain reaction. We also found significant correlations between lncRNAs and mRNAs, and validated four of the correlations with quantitative polymerase chain reaction. CONCLUSION Integrated analysis of genome-wide DNA methylation and lncRNA/mRNA expression allows us to identify new DM loci-correlated with gene expression in NSCLC.
Collapse
Affiliation(s)
- Nannan Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Tianjin Key Laboratory of Cancer Prevention & Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Min Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongyan Lin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong-Na Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Oumin Shi
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiangqian Zheng
- Tianjin Key Laboratory of Cancer Prevention & Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Ming Gao
- Tianjin Key Laboratory of Cancer Prevention & Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA
| | - Lana Garmire
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
34
|
Altenberger C, Heller G, Ziegler B, Tomasich E, Marhold M, Topakian T, Müllauer L, Heffeter P, Lang G, End-Pfützenreuter A, Döme B, Arns BM, Klepetko W, Zielinski CC, Zöchbauer-Müller S. SPAG6 and L1TD1 are transcriptionally regulated by DNA methylation in non-small cell lung cancers. Mol Cancer 2017; 16:1. [PMID: 28093071 PMCID: PMC5240214 DOI: 10.1186/s12943-016-0568-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND DNA methylation regulates together with other epigenetic mechanisms the transcriptional activity of genes and is involved in the pathogenesis of malignant diseases including lung cancer. In non-small cell lung cancer (NSCLC) various tumor suppressor genes are already known to be tumor-specifically methylated. However, from the vast majority of a large number of genes which were identified to be tumor-specifically methylated, tumor-specific methylation was unknown so far. Thus, the major aim of this study was to investigate in detail the mechanism(s) responsible for transcriptional regulation of the genes SPAG6 and L1TD1 in NSCLCs. METHODS We analysed publically available RNA-sequencing data and performed gene expression analyses by RT-PCR. DNA methylation analyses were done by methylation-sensitive high-resolution melt analyses and bisulfite genomic sequencing. We additionally investigated protein expression using immunohistochemistry. Cell culture experiments included tumor cell growth, proliferation, viability as well as colony formation assays. Moreover, we performed xenograft experiments using immunodeficient mice. RESULTS We observed frequent downregulation of SPAG6 and L1TD1 mRNA expression in primary tumor (TU) samples compared to corresponding non-malignant lung tissue (NL) samples of NSCLC patients. We furthermore observed re-expression of both genes after treatment with epigenetically active drugs in most NSCLC cell lines with downregulated SPAG6 and L1TD1 mRNA expression. Frequent tumor-specific DNA methylation of SPAG6 and L1TD1 was detected when we analysed TU and corresponding NL samples of NSCLC patients. ROC curve analyses demonstrated that methylation of both genes is able to distinguish between TU and NL samples of these patients. Immunohistochemistry revealed a close association between SPAG6/L1TD1 methylation and downregulated protein expression of these genes. Moreover, by performing functional assays we observed reduced cell growth, proliferation and viability of pCMV6-L1TD1 transfected NSCLC cells. In addition, reduced volumes of tumors derived from pCMV6-L1TD1 compared to pCMV6-ENTRY transfected NCI-H1975 cells were seen in a xenograft tumor model. CONCLUSIONS Overall, our results demonstrate that SPAG6 and L1TD1 are tumor-specifically methylated in NSCLCs and that DNA methylation is involved in the transcriptional regulation of these genes. Moreover, in vitro as well as in vivo experiments revealed tumor-cell growth suppressing properties of L1TD1 in NSCLC cells.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/genetics
- DNA Methylation
- Databases, Genetic
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Heterografts
- High-Throughput Nucleotide Sequencing
- Humans
- Immunohistochemistry
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Microtubule Proteins/genetics
- Microtubule Proteins/metabolism
- Polymorphism, Single Nucleotide
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Deletion
- Transcription, Genetic
- Tumor Burden
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Corinna Altenberger
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Barbara Ziegler
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Erwin Tomasich
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Maximilian Marhold
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thais Topakian
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - György Lang
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Adelheid End-Pfützenreuter
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Oncology and Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Britt-Madeleine Arns
- Department of Respiratory and Critical Care Medicine and Ludwig Boltzmann Institute for COPD, Otto-Wagner Hospital, Vienna, Austria
| | - Walter Klepetko
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph C Zielinski
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sabine Zöchbauer-Müller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Co-localized genomic regulation of miRNA and mRNA via DNA methylation affects survival in multiple tumor types. Cancer Genet 2016; 209:463-473. [DOI: 10.1016/j.cancergen.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/23/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
|
36
|
Liu C, Liu H, Chen J. [The Role of SOCS in the Development of Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:620-5. [PMID: 27666555 PMCID: PMC5972954 DOI: 10.3779/j.issn.1009-3419.2016.09.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Suppressor of cytokine signaling (SOCS) family proteins are a group of negative regulatory factors that plays important roles in the negative regulation of cytokine responses by terminating the activation of the JAK-STAT and other signaling pathways. The family is composed of eight structurally related proteins. mainly through the inhibition of the activation of JAK-STAT signaling pathway and regulates cell proliferation, differentiation and apoptosis. In the process of tumor progression, the promoter CG island hypermethylation, gene mutation, gene deletion and inactivation lead to the abnormal expression of SOCS protein make JAK-STAT continuous activation, resulting in the development and metastasis of tumor. Here, we review the SOCS family members found, composition and molecular structure, the domain of the function, and the latest progress of development in tumor. Based on the important role of SOCS in tumor development, SOCS as a negative regulator factor represent a kind of tumor suppressor genes, has become a new target for tumor therapy.
Collapse
Affiliation(s)
- Chunlai Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General
Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China;Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General
Hospital, Tianjin 300052, China
| |
Collapse
|
37
|
Liu C, Li Y, Dong Y, Zhang H, Li Y, Liu H, Chen J. [Methylation Status of the SOCS3 Gene Promoter in H2228 Cells and
EML4-ALK-positive Lung Cancer Tissues]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:565-70. [PMID: 27666544 PMCID: PMC5972959 DOI: 10.3779/j.issn.1009-3419.2016.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. METHODS The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. RESULTS MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. CONCLUSIONS The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.
Collapse
Affiliation(s)
- Chunlai Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yunlong Dong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery;Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
38
|
Vymetalkova V, Vodicka P, Pardini B, Rosa F, Levy M, Schneiderova M, Liska V, Vodickova L, Nilsson TK, Farkas SA. Epigenome-wide analysis of DNA methylation reveals a rectal cancer-specific epigenomic signature. Epigenomics 2016; 8:1193-207. [DOI: 10.2217/epi-2016-0044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The aim of the present study is to address a genome-wide search for novel methylation biomarkers in the rectal cancer (RC), as only scarce information on methylation profile is available. Materials & methods: We analyzed methylation status in 25 pairs of RC and adjacent healthy mucosa using the Illumina Human Methylation 450 BeadChip. Results: We found significantly aberrant methylation in 33 genes. After validation of our results by pyrosequencing, we found a good agreement with our findings. The BPIL3 and HBBP1 genes resulted hypomethylated in RC, whereas TIFPI2, ADHFE1, FLI1 and TLX1 were hypermethylated. An external validation by TCGA datasets confirmed the results. Conclusion: Our study, with external validation, has demonstrated the feasibility of using specific methylated DNA signatures for developing biomarkers in RC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology & Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology & Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | | | - Fabio Rosa
- Human Genetics Foundation, (HuGeF), Torino, Italy
| | - Miroslav Levy
- Department of Surgery, 1st Faculty of Medicine, Charles University & Thomayer Hospital, Prague, Czech Republic
| | | | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
- Department of Surgery, Teaching Hospital & Medical School in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology & Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | | | - Sanja A Farkas
- Department of Laboratory Medicine, Örebro University; Örebro, Sweden
| |
Collapse
|
39
|
Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Methods 2016; 13:833-6. [PMID: 27525975 DOI: 10.1038/nmeth.3961] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022]
Abstract
Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.
Collapse
|
40
|
Kuo IY, Jen J, Hsu LH, Hsu HS, Lai WW, Wang YC. A prognostic predictor panel with DNA methylation biomarkers for early-stage lung adenocarcinoma in Asian and Caucasian populations. J Biomed Sci 2016; 23:58. [PMID: 27484806 PMCID: PMC4969679 DOI: 10.1186/s12929-016-0276-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023] Open
Abstract
Background The incidence of lung adenocarcinoma (LUAD) is increasing worldwide with different prognosis even in early-stage patients. We aimed to identify a prognostic panel with multiple DNA methylation biomarkers to predict survival in early-stage LUAD patients of different racial groups. Methods The methylation array, pyrosequencing methylation assay, Cox regression and Kaplan-Meier analyses were conducted to build the risk score equations of selected probes in a training cohort of 69 Asian LUAD patients. The risk score model was verified in another cohort of 299 Caucasian LUAD patients in The Cancer Genome Atlas (TCGA) database. Results We performed a Cox regression analysis, in which the regression coefficients were obtained for eight probes corresponding to eight genes (AGTRL1, ALDH1A3, BDKRB1, CTSE, EFNA2, NFAM1, SEMA4A and TMEM129). The risk score was derived from sum of each methylated probes multiplied by its corresponding coefficient. Patients with the risk score greater than the median value showed poorer overall survival compared with other patients (p = 0.007). Such a risk score significantly predicted patients showing poor survival in TCGA cohort (p = 0.036). A multivariate analysis was further performed to demonstrate that the eight-probe panel association with poor outcome in early-stage LUAD patients remained significant even after adjusting for different clinical variables including staging parameters (hazard ratio, 2.03; p = 0.039). Conclusions We established a proof-of-concept prognostic panel consisting of eight-probe signature to predict survival of early-stage LUAD patients of Asian and Caucasian populations. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0276-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Jayu Jen
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Lien-Huei Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pulmonary Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Taipei Veterans General Hospital; Institute of Emergency and Critical Care Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan.
| | - Yi-Ching Wang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan.
| |
Collapse
|
41
|
Drzewiecka H, Gałęcki B, Jarmołowska-Jurczyszyn D, Kluk A, Dyszkiewicz W, Jagodziński PP. Decreased expression of connective tissue growth factor in non-small cell lung cancer is associated with clinicopathological variables and can be restored by epigenetic modifiers. J Cancer Res Clin Oncol 2016; 142:1927-46. [PMID: 27393180 PMCID: PMC4978771 DOI: 10.1007/s00432-016-2195-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 06/18/2016] [Indexed: 01/27/2023]
Abstract
Purpose Recent studies indicated undisputed contribution of connective tissue growth factor (CTGF) in the development of many cancers, including non-small cell lung cancer (NSCLC). However, the functional role and regulation of CTGF expression during tumorigenesis remain elusive. Our goal was to determine CTGF transcript and protein levels in tumoral and matched control tissues from 98 NSCLC patients, to correlate the results with clinicopathological features and to investigate whether the CTGF expression can be epigenetically regulated in NSCLC. Methods We used quantitative PCR, Western blotting and immunohistochemistry to evaluate CTGF expression in lung cancerous and histopathologically unchanged tissues. We tested the impact of 5-Aza-2′-deoxycytidine (5-dAzaC) and trichostatin A (TSA) on CTGF transcript and protein levels in NSCLC cells (A549, Calu-1). DNA methylation status of the CTGF regulatory region was evaluated by bisulfite sequencing. The influence of 5-dAzaC and TSA on NSCLC cells viability and proliferation was monitored by the trypan blue assay. Results We found significantly decreased levels of CTGF mRNA and protein (both p < 0.0000001) in cancerous tissues of NSCLC patients. Down-regulation of CTGF occurred regardless of gender in all histological subtypes of NSCLC. Moreover, we showed that 5-dAzaC and TSA were able to restore CTGF mRNA and protein contents in NSCLC cells. However, no methylation within CTGF regulatory region was detected. Both compounds significantly reduced NSCLC cells proliferation. Conclusions Decreased expression of CTGF is a common feature in NSCLC; however, it can be restored by the chromatin-modifying agents such as 5-dAzaC or TSA and consequently restrain cancer development. Electronic supplementary material The online version of this article (doi:10.1007/s00432-016-2195-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanna Drzewiecka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland.
| | - Bartłomiej Gałęcki
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Szamarzewskiego 62 Street, 60-569, Poznan, Poland
| | - Donata Jarmołowska-Jurczyszyn
- Department of Clinical Pathomorphology, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355, Poznan, Poland
| | - Andrzej Kluk
- Department of Clinical Pathomorphology, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355, Poznan, Poland
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Szamarzewskiego 62 Street, 60-569, Poznan, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland
| |
Collapse
|
42
|
Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol 2016; 12:1645-64. [PMID: 27079684 PMCID: PMC5551540 DOI: 10.2217/fon-2015-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods & Technologies Branch, Epidemiology & Genomics Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute (NCI), NIH, 9609 Medical Center Drive, Suite 4E102, Rockville, MD 20850, USA
| |
Collapse
|
43
|
Next-generation sequencing identifies major DNA methylation changes during progression of Ph+ chronic myeloid leukemia. Leukemia 2016; 30:1861-8. [PMID: 27211271 PMCID: PMC5240019 DOI: 10.1038/leu.2016.143] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
Little is known about the impact of DNA methylation on the evolution/progression of Ph+ chronic myeloid leukemia (CML). We investigated the methylome of CML patients in chronic phase (CP-CML), accelerated phase (AP-CML) and blast crisis (BC-CML) as well as in controls by reduced representation bisulfite sequencing. Although only ~600 differentially methylated CpG sites were identified in samples obtained from CP-CML patients compared with controls, ~6500 differentially methylated CpG sites were found in samples from BC-CML patients. In the majority of affected CpG sites, methylation was increased. In CP-CML patients who progressed to AP-CML/BC-CML, we identified up to 897 genes that were methylated at the time of progression but not at the time of diagnosis. Using RNA-sequencing, we observed downregulated expression of many of these genes in BC-CML compared with CP-CML samples. Several of them are well-known tumor-suppressor genes or regulators of cell proliferation, and gene re-expression was observed by the use of epigenetic active drugs. Together, our results demonstrate that CpG site methylation clearly increases during CML progression and that it may provide a useful basis for revealing new targets of therapy in advanced CML.
Collapse
|
44
|
Song X, Shi K, Zhou SJ, Yu DP, Liu Z, Han Y. Clinicopathological significance and a potential drugtarget of RARβ in non-small-cell lung carcinoma: a meta-analysis and a systematic review. Drug Des Devel Ther 2016; 10:1345-54. [PMID: 27103788 PMCID: PMC4827914 DOI: 10.2147/dddt.s96766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in men worldwide. Aberrant RARβ promoter methylation has been frequently investigated in non-small-cell lung carcinoma (NSCLC), the most common form of lung cancer. The aim of present study was to carry out a meta-analysis and a systematic review to evaluate clinicopathological significance of RARβ promoter hypermethylation in NSCLC. A systematic literature search was carried out. The data were extracted and assessed by two reviewers independently. The Cochrane software Review Manager 5.2 was used to conduct the review. Odds ratios (ORs) with 95% corresponding confidence intervals (CIs) were calculated. A total of 18 relevant articles were available for meta-analysis which included 1,871 participants. The frequency of RARβ hypermethylation was significantly increased in NSCLC than in nonmalignant lung tissue, and the pooled OR was 5.69 (P<0.00001). RARβ hypermethylation was significantly more frequently observed in adenocarcinoma (AC) than in squamous cell carcinoma (SCC), and the pooled OR was 1.47 (P=0.005). Hypermethylation of RARβ gene in NSCLC was 2.46 times higher in smoking than in nonsmoking individuals, and the pooled OR was 2.46 (P=0.0002). RARβ hypermethylation rate was not significantly correlated with stage of the disease and sex. RARβ gene methylation status was not associated with prognosis of patients with NSCLC. In conclusion, RARβ promoter hypermethylation significantly increased in NSCLC than in non-neoplastic lung tissue and is predominant in AC, suggesting that RARβ methylation contributes to the development of NSCLC, especially AC. RARβ gene is a potential novel target for development of personalized therapy in patients with NSCLC, and is promising in restoration of retinoic acid-target gene induction via demethylation of RARβ1' promoter.
Collapse
Affiliation(s)
- Xiaoyun Song
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Kang Shi
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shi-Jie Zhou
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Da-Ping Yu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
45
|
Bjaanæs MM, Fleischer T, Halvorsen AR, Daunay A, Busato F, Solberg S, Jørgensen L, Kure E, Edvardsen H, Børresen-Dale AL, Brustugun OT, Tost J, Kristensen V, Helland Å. Genome-wide DNA methylation analyses in lung adenocarcinomas: Association with EGFR, KRAS and TP53 mutation status, gene expression and prognosis. Mol Oncol 2016; 10:330-43. [PMID: 26601720 PMCID: PMC5528958 DOI: 10.1016/j.molonc.2015.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/25/2015] [Accepted: 10/28/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND DNA methylation alterations are early events in tumorigenesis and important in the regulation of gene expression in cancer cells. Lung cancer patients have in general a poor prognosis, and a deeper insight into the epigenetic landscape in lung adenocarcinoma tumors and its prognostic implications is needed. RESULTS We determined whole-genome DNA methylation profiles of 164 fresh frozen lung adenocarcinoma samples and 19 samples of matched normal lung tissue using the Illumina Infinium 450K array. A large number of differentially methylated CpGs in lung adenocarcinoma tissue were identified, and specific methylation profiles were observed in tumors with mutations in the EGFR-, KRAS- or TP53 genes and according to the patients' smoking status. The methylation levels were correlated with gene expression and both positive and negative correlations were seen. Methylation profiles of the tumor samples identified subtypes of tumors with distinct prognosis, including one subtype enriched for TP53 mutant tumors. A prognostic index based on the methylation levels of 33 CpGs was established, and was significantly associated with prognosis in the univariate analysis using an independent cohort of lung adenocarcinoma patients from The Cancer Genome Atlas project. CpGs in the HOX B and HOX C gene clusters were represented in the prognostic signature. CONCLUSIONS Methylation differences mirror biologically important features in the etiology of lung adenocarcinomas and influence prognosis.
Collapse
Affiliation(s)
- Maria Moksnes Bjaanæs
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Thomas Fleischer
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; The K.G. Jebsen Censtre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
| | - Ann Rita Halvorsen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Antoine Daunay
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, 75010 Paris, France.
| | - Florence Busato
- Laboratory for Epigenetics and Environment (LEE), Centre National de Génotypage, CEA - Institut de Génomique, 91000 Evry, France.
| | - Steinar Solberg
- Department of Cardiothoracic Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Lars Jørgensen
- Department of Cardiothoracic Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Elin Kure
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Hege Edvardsen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
| | - Odd Terje Brustugun
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment (LEE), Centre National de Génotypage, CEA - Institut de Génomique, 91000 Evry, France.
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; The K.G. Jebsen Censtre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.
| | - Åslaug Helland
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| |
Collapse
|
46
|
DNA methylation transcriptionally regulates the putative tumor cell growth suppressor ZNF677 in non-small cell lung cancers. Oncotarget 2016; 6:394-408. [PMID: 25504438 PMCID: PMC4381603 DOI: 10.18632/oncotarget.2697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
In our study, we investigated the role of ZNF677 in non-small cell lung cancers (NSCLC). By comparing ZNF677 expression in primary tumor (TU) and in the majority of cases also of corresponding non-malignant lung tissue (NL) samples from > 1,000 NSCLC patients, we found tumor-specific downregulation of ZNF677 expression (adjusted p-values < 0.001). We identified methylation as main mechanism for ZNF677 downregulation in NSCLC cells and we observed tumor-specific ZNF677 methylation in NSCLC patients (p < 0.0001). In the majority of TUs, ZNF677 methylation was associated with loss of ZNF677 expression. Moreover, ZNF677 overexpression in NSCLC cells was associated with reduced cell proliferation and cell migration. ZNF677 was identified to regulate expression of many genes mainly involved in growth hormone regulation and interferon signalling. Finally, patients with ZNF677 methylated TUs had a shorter overall survival compared to patients with ZNF677 not methylated TUs (p = 0.013). Overall, our results demonstrate that ZNF677 is trancriptionally regulated by methylation in NSCLCs, suggest that ZNF677 has tumor cell growth suppressing properties in NSCLCs and that ZNF677 methylation might serve as prognostic parameter in these patients.
Collapse
|
47
|
Mullapudi N, Ye B, Suzuki M, Fazzari M, Han W, Shi MK, Marquardt G, Lin J, Wang T, Keller S, Zhu C, Locker JD, Spivack SD. Genome Wide Methylome Alterations in Lung Cancer. PLoS One 2015; 10:e0143826. [PMID: 26683690 PMCID: PMC4684329 DOI: 10.1371/journal.pone.0143826] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/10/2015] [Indexed: 01/03/2023] Open
Abstract
Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.
Collapse
Affiliation(s)
- Nandita Mullapudi
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bin Ye
- Department of Bioinformatics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Melissa Fazzari
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Weiguo Han
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Miao K. Shi
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gaby Marquardt
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Lin
- Department of Epidemiology & Population Health, Division of Biostatistics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven Keller
- Department of Cardiovascular &Thoracic Surgery, Montefiore Medical Center, Bronx, New York, United States of America
| | - Changcheng Zhu
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Joseph D. Locker
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Simon D. Spivack
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
48
|
Laszlo V, Hoda MA, Garay T, Pirker C, Ghanim B, Klikovits T, Dong YW, Rozsas A, Kenessey I, Szirtes I, Grusch M, Jakopovic M, Samarzija M, Brcic L, Kern I, Rozman A, Popper H, Zöchbauer-Müller S, Heller G, Altenberger C, Ziegler B, Klepetko W, Berger W, Dome B, Hegedus B. Epigenetic down-regulation of integrin α7 increases migratory potential and confers poor prognosis in malignant pleural mesothelioma. J Pathol 2015; 237:203-14. [PMID: 26011651 DOI: 10.1002/path.4567] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 05/06/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a devastating malignancy characterized by invasive growth and rapid recurrence. The identification and inhibition of molecular components leading to this migratory and invasive phenotype are thus essential. Accordingly, a genome-wide expression array analysis was performed on MPM cell lines and a set of 139 genes was identified as differentially expressed in cells with high versus low migratory activity. Reduced expression of the novel tumour suppressor integrin α7 (ITGA7) was found in highly motile cells. A significant negative correlation was observed between ITGA7 transcript levels and average displacement of cells. Forced overexpression of ITGA7 in MPM cells with low endogenous ITGA7 expression inhibited cell motility, providing direct evidence for the regulatory role of ITGA7 in MPM cell migration. MPM cells showed decreased ITGA7 expressions at both transcription and protein levels when compared to non-malignant mesothelial cells. The majority of MPM cell cultures displayed hypermethylation of the ITGA7 promoter when compared to mesothelial cultures. A statistically significant negative correlation between ITGA7 methylation and ITGA7 expression was also observed in MPM cells. While normal human pleura samples unambiguously expressed ITGA7, a varying level of expression was found in a panel of 200 human MPM samples. In multivariate analysis, ITGA7 expression was found to be an independent prognostic factor. Although there was no correlation between histological subtypes and ITGA7 expression, importantly, patients with high tumour cell ITGA7 expression had an increased median overall survival compared to the low- or no-expression groups (463 versus 278 days). In conclusion, our data suggest that ITGA7 is an epigenetically regulated tumour suppressor gene and a prognostic factor in human MPM.
Collapse
Affiliation(s)
- Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.,Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Mir Alireza Hoda
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Tamas Garay
- Department of Biological Physics, Eötvös University, Budapest, Hungary.,2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Bahil Ghanim
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Thomas Klikovits
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Yawen W Dong
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Anita Rozsas
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Istvan Kenessey
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Ildiko Szirtes
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Marko Jakopovic
- University of Zagreb, School of Medicine, Department for Respiratory Diseases Jordanovac, University Hospital Center Zagreb, Croatia
| | - Miroslav Samarzija
- University of Zagreb, School of Medicine, Department for Respiratory Diseases Jordanovac, University Hospital Center Zagreb, Croatia
| | - Luka Brcic
- University of Zagreb, School of Medicine, Institute of Pathology, Croatia.,Institute of Pathology, Medical University of Graz, Austria
| | - Izidor Kern
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Ales Rozman
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Helmut Popper
- Institute of Pathology, Medical University of Graz, Austria
| | - Sabine Zöchbauer-Müller
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Corinna Altenberger
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Barbara Ziegler
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.,Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria.,MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
49
|
Jiang J, Sun X, Zhu J, Ma J, Luan J, Liu S. [Genetic characteristics and research progress of targeted therapy in squamous cell carcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:172-8. [PMID: 25800575 PMCID: PMC6000005 DOI: 10.3779/j.issn.1009-3419.2015.03.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jing Jiang
- Department of Oncology, Harbin Medical University Cancer Hospital , Harbin 150000, China
| | - Xiuwei Sun
- Department of Oncology, Harbin Medical University Cancer Hospital , Harbin 150000, China
| | - Jinhong Zhu
- Department of Oncology, Harbin Medical University Cancer Hospital , Harbin 150000, China
| | - Jianqun Ma
- Department of Oncology, Harbin Medical University Cancer Hospital , Harbin 150000, China
| | - Jinwei Luan
- Department of Oncology, Harbin Medical University Cancer Hospital , Harbin 150000, China
| | - Shanshan Liu
- Department of Oncology, Harbin Medical University Cancer Hospital , Harbin 150000, China
| |
Collapse
|
50
|
Kim Y, Kim DH. CpG island hypermethylation as a biomarker for the early detection of lung cancer. Methods Mol Biol 2015; 1238:141-171. [PMID: 25421659 DOI: 10.1007/978-1-4939-1804-1_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lung cancer is the most frequent cause of cancer-related deaths and causes over one million deaths worldwide each year. Despite significant strides in the diagnosis and treatment of lung cancer, the prognosis is extremely poor, with the overall 5-year survival rates still remaining around 15 %. This is largely due to occult metastatic dissemination, which appears in approximately two-thirds of patients at the time of detection. Thus, the development of efficient diagnostic methods to enable the early detection of cancer for these patients is clearly imperative.One promising approach is the identification of lung cancer-specific biomarkers at an early stage. The de novo methylation of CpG islands within the promoters of tumor suppressor genes is one of the most frequently acquired epigenetic changes during the pathogenesis of lung cancer and usually associated with transcriptional downregulation of a gene. The analysis of DNA methylation patterns in sputum, bronchial fluid, plasma, or serum could become a powerful tool for the accurate and early diagnosis of lung cancer with unparalleled specificity and sensitivity.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Molecular Cell Biology, Sungkyunkwan University of School of Medicine, Suwon, 440-746, Korea
| | | |
Collapse
|