1
|
Lombardi AM, Sangiolo D, Vigna E. MET Oncogene Targeting for Cancer Immunotherapy. Int J Mol Sci 2024; 25:6109. [PMID: 38892318 PMCID: PMC11173045 DOI: 10.3390/ijms25116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The MET receptor is one of the main drivers of 'invasive growth', a multifaceted biological response essential during embryonic development and tissue repair that is usurped by cancer cells to induce and sustain the malignant phenotype. MET stands out as one of the most important oncogenes activated in cancer and its inhibition has been explored since the initial era of cancer-targeted therapy. Different approaches have been developed to hamper MET signaling and/or reduce MET (over)expression as a hallmark of transformation. Considering the great interest gained by cancer immunotherapy, this review evaluates the opportunity of targeting MET within therapeutic approaches based on the exploitation of immune functions, either in those cases where MET impairment is crucial to induce an effective response (i.e., when MET is the driver of the malignancy), or when blocking MET represents a way for potentiating the treatment (i.e., when MET is an adjuvant of tumor fitness).
Collapse
Affiliation(s)
| | | | - Elisa Vigna
- Department of Oncology, University of Torino, 10043 Torino, Italy; (A.M.L.); (D.S.)
| |
Collapse
|
2
|
Wang J, Yao G, Zhang B, Zhao Z, Fan Y. Interaction between miR‑206 and lncRNA MALAT1 in regulating viability and invasion in hepatocellular carcinoma. Oncol Lett 2024; 27:5. [PMID: 38028177 PMCID: PMC10665983 DOI: 10.3892/ol.2023.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/19/2023] [Indexed: 12/01/2023] Open
Abstract
MicroRNAs (miRNAs) are strongly associated to the progression of hepatocellular carcinoma (HCC), which presents a high potential for diagnosis and treatment; however, the role of miRNAs is still largely unknown. The aim of the present study was to examine the expression and the biological role of miRNA (miR)-206 in the development of HCC, and to identify the underlying molecular mechanism. Results from this study show that miR-206 was significantly downregulated in HCC tissues and cell lines. It was observed that low expression of miR-206 was linked to advanced TNM stage, tumor nodularity and venous infiltration in patients with HCC; low miR-206 expression was associated with shorter survival times. miR-206 overexpression using miR-206 mimics notably decreased the proliferative ability and increased apoptosis of MHCC97-H and HCCLM3 HCC cell lines. Overexpression of miR-206 suppressed invasiveness associated with reduced epithelial-mesenchymal transition. Moreover, the c-Met oncogene, which is upregulated in HCC tissues, was negatively associated with the expression of miR-206. Notably, it was shown that miR-206 may exert its antitumor effect through suppressing c-Met/Akt/mTOR signaling. Low expression of miR-206 was shown to be regulated by lncRNA MALAT1 in HCC. Collectively, this study presented evidence that miR-206 was controlled by lncRNA MALAT1 and partially suppressed the proliferation and invasion of HCC through the c-Met/Akt/mTOR signaling pathway. According to these results, understanding MALAT1/miR-206-dependent regulation may lead to potential approaches for diagnosis and prospective treatment of HCC.
Collapse
Affiliation(s)
- Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Guoliang Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Beike Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zerui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yonggang Fan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
3
|
Rocco D, Gravara LD, Palazzolo G, Gridelli C. The Treatment of a New Entity in Advanced Non-small Cell Lung Cancer: MET Exon 14 Skipping Mutation. Curr Med Chem 2024; 31:3043-3056. [PMID: 37534484 DOI: 10.2174/0929867331666230803094432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND MET (MET Proto-Oncogene, Receptor Tyrosine Kinase) exon 14 skipping mutation represents one of the most common MET alterations, accounting for approximately 1-3% of all mutations in advanced lung adenocarcinomas. While until 2020 no specific treatment was available for this subset of patients, as of today, three MET Tyrosine Kinase Inhibitors (TKIs) are currently approved in this setting, namely capmatinib, tepotinib and savolitinib. OBJECTIVE This article aims to provide an extensive overview of the current therapeutic standard of care for exon 14 skipped advanced Non-small Cell Lung Cancer (NSCLC) patients, alongside with mentions of the main future challenges and opportunities. CONCLUSION FDA-approved MET-TKIs currently represent the best option for treating exon 14 skipped advanced NSCLC patients, thanks to their excellent efficacy profile, alongside their manageable safety and tolerability. However, we currently lack specific agents to treat patients progressing on capmatinib or tepotinib, due to a limited understanding of the mechanisms underlying both on- and off-target resistance. In this respect, on-target mutations presently constitute the most explored ones from a mechanistic point of view, and type II MET-TKIs are currently under investigation as the most promising agents capable of overcoming the acquired resistance.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, Naples, Italy
| | - Luigi Della Gravara
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Cesare Gridelli
- Division of Medical Oncology, S.G. Moscati Hospital, Avellino, Italy
| |
Collapse
|
4
|
Reischmann N, Schmelas C, Molina-Vila MÁ, Jordana-Ariza N, Kuntze D, García-Roman S, Simard MA, Musch D, Esdar C, Albers J, Karachaliou N. Overcoming MET-mediated resistance in oncogene-driven NSCLC. iScience 2023; 26:107006. [PMID: 37534190 PMCID: PMC10391663 DOI: 10.1016/j.isci.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
This study evaluates the efficacy of combining targeted therapies with MET or SHP2 inhibitors to overcome MET-mediated resistance in different NSCLC subtypes. A prevalence study was conducted for MET amplification and overexpression in samples from patients with NSCLC who relapsed on ALK, ROS1, or RET tyrosine kinase inhibitors. MET-mediated resistance was detected in 37.5% of tissue biopsies, which allow the detection of MET overexpression, compared to 7.4% of liquid biopsies. The development of drug resistance by MET overexpression was confirmed in EGFRex19del-, KRASG12C-, HER2ex20ins-, and TPM3-NTRK1-mutant cell lines. The combination of targeted therapy with MET or SHP2 inhibitors was found to overcome MET-mediated resistance in both in vitro and in vivo assays. This study highlights the importance of considering MET overexpression as a resistance driver to NSCLC targeted therapies to better identify patients who could potentially benefit from combination approaches with MET or SHP2 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Kuntze
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | - Doreen Musch
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Joachim Albers
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | |
Collapse
|
5
|
Romano G, Le P, Nigita G, Saviana M, Micalo L, Lovat F, Del Valle Morales D, Li H, Nana-Sinkam P, Acunzo M. A-to-I edited miR-411-5p targets MET and promotes TKI response in NSCLC-resistant cells. Oncogene 2023; 42:1597-1606. [PMID: 37002315 PMCID: PMC10336698 DOI: 10.1038/s41388-023-02673-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation have an initial favorable clinical response to the tyrosine kinase inhibitors (TKIs). Unfortunately, rapid resistance occurs mainly because of genetic alterations, including amplification of the hepatocyte growth factor receptor (MET) and its abnormal activity. The RNA post-transcriptional modifications that contribute to aberrant expression of MET in cancer are largely under-investigated and among them is the adenosine-to-inosine (A-to-I) RNA editing of microRNAs. A reduction of A-to-I editing in position 5 of miR-411-5p has been identified in several cancers, including NSCLC. In this study, thanks to cancer-associated gene expression analysis, we assessed the effect of the edited miR-411-5p on NSCLC cell lines. We found that edited miR-411-5p directly targets MET and negatively affects the mitogen-activated protein kinases (MAPKs) pathway. Considering the predominant role of the MAPKs pathway on TKIs resistance, we generated NSCLC EGFR mutated cell lines resistant to TK inhibitors and evaluated the effect of edited miR-411-5p overexpression. We found that the edited miR-411-5p reduces proliferation and induces apoptosis, promoting EGFR TKIs response in NSCLC-resistant cells.
Collapse
Affiliation(s)
- Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lavender Micalo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Del Valle Morales
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Howard Li
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
Yuan T, Ni P, Zhang Z, Wu D, Sun G, Zhang H, Chen B, Wang X, Cheng Z. Targeting BET proteins inhibited the growth of non-small cell lung carcinoma through downregulation of Met expression. Cell Biol Int 2023; 47:622-633. [PMID: 36448366 DOI: 10.1002/cbin.11962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022]
Abstract
Hepatocyte growth factor receptor (HGFR or Met) upregulation has been proven to play important roles in non-small cell lung carcinoma (NSCLC). Interestingly, chemoresistance against epidermal growth factor receptor (EGFR) inhibitors including erlotinib and gefitinib was also related to Met. Targeting bromodomain and extra terminal domain (BET) proteins, especially BRD4, has shown inhibitory effects on lung cancer, but the mechanism is unclear. Herein, we found that JQ1 (BET inhibitor) suppressed NSCLC cell growth, reduced the Met expression, and contributed to inactivation of PI3K/Akt and MAPK/ERK pathways. Moreover, another BET protein inhibitor I-BET151, or BRD4 depletion, also inhibited NSCLC cell growth and downregulated Met. JQ1 inhibited HGF-induced cell growth and Met/PI3K/Akt activation, also inhibited A549 tumor growth in xenograft mouse models, in parallel with Met downregulation. Moreover, JQ1 inhibited the growth of paired erlotinib-sensitive and resistant HCC827 cells in parallel with Met downregulation and PI3K/Akt signaling inactivation. JQ1 also exerted inhibitory influences on the growth of erlotinib-sensitive and resistant HCC827 tumors in xenograft mouse models. These results suggested that targeting BET proteins inhibited NSCLC via downregulating Met and inactivating PI3K/AKT pathway. Our findings reveal a novel mechanism of BET proteins implicated in NSCLC progression with Met taken into consideration.
Collapse
Affiliation(s)
- Ting Yuan
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Neurology, Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, Jiangsu, China
| | - Ping Ni
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zuhao Zhang
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dandan Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Geng Sun
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haijun Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhixiang Cheng
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Chiriaco C, Donini C, Cortese M, Ughetto S, Modica C, Martinelli I, Proment A, Vitali L, Fontani L, Casucci M, Comoglio PM, Giordano S, Sangiolo D, Leuci V, Vigna E. Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:309. [PMID: 36271379 PMCID: PMC9585715 DOI: 10.1186/s13046-022-02479-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Background Aberrant activation of the MET receptor in cancer is sustained by genetic alterations or, more frequently, by transcriptional upregulations. A fraction of MET-amplified or mutated tumors are sensible to MET targeting agents, but their responsiveness is typically short-lasting, as secondary resistance eventually occurs. Since in the absence of genetic alterations MET is usually not a tumor driver, MET overexpressing tumors are not/poorly responsive to MET targeted therapies. Consequently, the vast majority of tumors exhibiting MET activation still represent an unmet medical need. Methods Here we propose an immunotherapy strategy based on T lymphocytes expressing a Chimeric Antigen Receptor (CAR) targeting MET overexpressing tumors of different histotypes. We engineered two different MET-CAR constructs and tested MET-CAR-T cell cytotoxic activity against different MET overexpressing models, including tumor cell lines, primary cancer cells, organoids, and xenografts in immune-deficient mice. Results We proved that MET-CAR-T exerted a specific cytotoxic activity against MET expressing cells. Cell killing was proportional to the level of MET expressed on the cell surface. While CAR-T cytotoxicity was minimal versus cells carrying MET at physiological levels, essentially sparing normal cells, the activity versus MET overexpressing tumors was robust, significantly controlling tumor cell growth in vitro and in vivo. Notably, MET-CAR-T cells were also able to brake acquired resistance to MET targeting agents in MET amplified cancer cells carrying secondary mutations in downstream signal transducers. Conclusions We set and validated at the pre-clinical level a MET-CAR immunotherapy strategy potentially beneficial for cancers not eligible for MET targeted therapy with inhibitory molecules, including those exhibiting primary or secondary resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02479-y.
Collapse
Affiliation(s)
- Cristina Chiriaco
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,Present address: Anemocyte S.r.l., 21040 Gerenzano, VA Italy
| | - Chiara Donini
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Marco Cortese
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Stefano Ughetto
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,Present address: Bios-Therapy, Physiological System for Health S.p.A, 52037 Sansepolcro, AR Italy
| | - Chiara Modica
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.10776.370000 0004 1762 5517Present address: Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Ilaria Martinelli
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Alessia Proment
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Letizia Vitali
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Lara Fontani
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Monica Casucci
- grid.18887.3e0000000417581884Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Maria Comoglio
- grid.7678.e0000 0004 1757 7797IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Giordano
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Dario Sangiolo
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Valeria Leuci
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Elisa Vigna
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Lee CJ, Modave E, Boeckx B, Kasper B, Aamdal S, Leahy MG, Rutkowski P, Bauer S, Debiec-Rychter M, Sciot R, Lambrechts D, Wozniak A, Schöffski P. Correlation of Immunological and Molecular Profiles with Response to Crizotinib in Alveolar Soft Part Sarcoma: An Exploratory Study Related to the EORTC 90101 "CREATE" Trial. Int J Mol Sci 2022; 23:ijms23105689. [PMID: 35628499 PMCID: PMC9145625 DOI: 10.3390/ijms23105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
Alveolar soft part sarcoma (ASPS) is a rare subtype of soft tissue sarcoma characterized by an unbalanced translocation, resulting in ASPSCR1-TFE3 fusion that transcriptionally upregulates MET expression. The European Organization for Research and Treatment of Cancer (EORTC) 90101 “CREATE” phase II trial evaluated the MET inhibitor crizotinib in ASPS patients, achieving only limited antitumor activity. We performed a comprehensive molecular analysis of ASPS tissue samples collected in this trial to identify potential biomarkers correlating with treatment outcome. A tissue microarray containing 47 ASPS cases was used for the characterization of the tumor microenvironment using multiplex immunofluorescence. DNA isolated from 34 available tumor samples was analyzed to detect recurrent gene copy number alterations (CNAs) and mutations by low-coverage whole-genome sequencing and whole-exome sequencing. Pathway enrichment analysis was used to identify diseased-associated pathways in ASPS sarcomagenesis. Kaplan–Meier estimates, Cox regression, and the Fisher’s exact test were used to correlate histopathological and molecular findings with clinical data related to crizotinib treatment, aiming to identify potential factors associated with patient outcome. Tumor microenvironment characterization showed the presence of PD-L1 and CTLA-4 in 10 and 2 tumors, respectively, and the absence of PD-1 in all specimens. Apart from CD68, other immunological markers were rarely expressed, suggesting a low level of tumor-infiltrating lymphocytes in ASPS. By CNA analysis, we detected a number of broad and focal alterations. The most common alteration was the loss of chromosomal region 1p36.32 in 44% of cases. The loss of chromosomal regions 1p36.32, 1p33, 1p22.2, and 8p was associated with shorter progression-free survival. Using whole-exome sequencing, 13 cancer-associated genes were found to be mutated in at least three cases. Pathway enrichment analysis identified genetic alterations in NOTCH signaling, chromatin organization, and SUMOylation pathways. NOTCH4 intracellular domain dysregulation was associated with poor outcome, while inactivation of the beta-catenin/TCF complex correlated with improved outcome in patients receiving crizotinib. ASPS is characterized by molecular heterogeneity. We identify genetic aberrations potentially predictive of treatment outcome during crizotinib therapy and provide additional insights into the biology of ASPS, paving the way to improve treatment approaches for this extremely rare malignancy.
Collapse
Affiliation(s)
- Che-Jui Lee
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Elodie Modave
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Bram Boeckx
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Bernd Kasper
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, 68167 Mannheim, Germany;
| | - Steinar Aamdal
- Department of Oncology, Oslo University Hospital, 0315 Oslo, Norway;
| | | | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland;
| | - Sebastian Bauer
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany;
| | - Maria Debiec-Rychter
- Department of Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-1634-1019
| |
Collapse
|
9
|
Perrone C, Pomella S, Cassandri M, Pezzella M, Milano GM, Colletti M, Cossetti C, Pericoli G, Di Giannatale A, de Billy E, Vinci M, Petrini S, Marampon F, Quintarelli C, Taulli R, Roma J, Gallego S, Camero S, Mariottini P, Cervelli M, Maestro R, Miele L, De Angelis B, Locatelli F, Rota R. MET Inhibition Sensitizes Rhabdomyosarcoma Cells to NOTCH Signaling Suppression. Front Oncol 2022; 12:835642. [PMID: 35574376 PMCID: PMC9092259 DOI: 10.3389/fonc.2022.835642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma. The Fusion-Positive (FP) subtype expresses the chimeric protein PAX3-FOXO1 (P3F) while the Fusion-Negative (FN) is devoid of any gene translocation. FP-RMS and metastatic FN-RMS are often unresponsive to conventional therapy. Therefore, novel therapeutic approaches are needed to halt tumor progression. NOTCH signaling has oncogenic functions in RMS and its pharmacologic inhibition through γ-secretase inhibitors blocks tumor growth in vitro and in vivo. Here, we show that NOTCH signaling blockade resulted in the up-regulation and phosphorylation of the MET oncogene in both RH30 (FP-RMS) and RD (FN-RMS) cell lines. Pharmacologic inhibition of either NOTCH or MET signaling slowed proliferation and restrained cell survival compared to control cells partly by increasing Annexin V and CASP3/7 activation. Co-treatment with NOTCH and MET inhibitors significantly amplified these effects and enhanced PARP1 cleavage in both cell lines. Moreover, it severely hampered cell migration, colony formation, and anchorage-independent growth compared to single-agent treatments in both cell lines and significantly prevented the growth of FN-RMS cells grown as spheroids. Collectively, our results unveil the overexpression of the MET oncogene by NOTCH signaling targeting in RMS cells and show that MET pathway blockade sensitizes them to NOTCH inhibition.
Collapse
Affiliation(s)
- Clara Perrone
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Radiotherapy, Sapienza University, Rome, Italy
| | - Michele Pezzella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Colletti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Cossetti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Pericoli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Concetta Quintarelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Insti-tute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Insti-tute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Mariottini
- Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Manuela Cervelli
- Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Biagio De Angelis
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatrics, Sapienza University, Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Saitou A, Hasegawa Y, Fujitani N, Ariki S, Uehara Y, Hashimoto U, Saito A, Kuronuma K, Matsumoto K, Chiba H, Takahashi M. N
‐glycosylation regulates MET processing and signaling. Cancer Sci 2022; 113:1292-1304. [PMID: 35092134 PMCID: PMC8990287 DOI: 10.1111/cas.15278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
MET, the receptor for the hepatocyte growth factor (HGF), is strongly associated with resistance to tyrosine kinase inhibitors, key drugs that are used in the therapy of non–small cell lung cancer. MET contains 11 potential N‐glycosylation sites, but the site‐specific roles of these N‐glycans have not been elucidated. We report herein that these N‐glycans regulate the proteolytic processing of MET and HGF‐induced MET signaling, and that this regulation is site specific. Inhibitors of N‐glycosylation were found to suppress the processing and trafficking of endogenous MET in H1975 and EBC‐1 lung cancer cells and exogenous MET in CHO‐K1 cells. We purified the recombinant extracellular domain of human MET and determined the site‐specific N‐glycan structures and occupancy using mass spectrometry. The results indicated that most sites were fully glycosylated and that the dominant population was the complex type. To examine the effects of the deletion of N‐glycans of MET, we prepared endogenous MET knockout Flp‐In CHO cells and transfected them with a series of N‐glycan–deletion mutants of MET. The results showed that several N‐glycans are implicated in the processing of MET. The findings also suggested that the N‐glycans of the SEMA domain of MET positively regulate HGF signaling, and the N‐glycans of the region other than the SEMA domain negatively regulate HGF signaling. Processing, cell surface expression, and signaling were significantly suppressed in the case of the all‐N‐glycan–deletion mutant. The overall findings suggest that N‐glycans of MET affect the status and the function of the receptor in a site‐specific manner.
Collapse
Affiliation(s)
- Atsushi Saitou
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Yoshihiro Hasegawa
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Naoki Fujitani
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
| | - Shigeru Ariki
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Chemistry Center for Medical Education Sapporo Medical University Japan
| | - Yasuaki Uehara
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Ukichiro Hashimoto
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation Cancer Research Institute and WPI‐Nano Life Science Institute (WPI‐NanoLSI) Kanazawa University Kanazawa Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Motoko Takahashi
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
| |
Collapse
|
11
|
Batra U, Nathany S. MET: A narrative review of exon 14 skipping mutation in non-small-cell lung carcinoma. CANCER RESEARCH, STATISTICS, AND TREATMENT 2022. [DOI: 10.4103/crst.crst_158_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Yu J, Zhang L, Peng J, Ward R, Hao P, Wang J, Zhang N, Yang Y, Guo X, Xiang C, An S, Xu TR. Dictamnine, a novel c-Met inhibitor, suppresses the proliferation of lung cancer cells by downregulating the PI3K/AKT/mTOR and MAPK signaling pathways. Biochem Pharmacol 2022; 195:114864. [PMID: 34861243 DOI: 10.1016/j.bcp.2021.114864] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 01/19/2023]
Abstract
Dictamnine (Dic), a naturally occurring small-molecule furoquinoline alkaloid isolated from the root bark of Dictamnus dasycarpus Turcz., is reported to display anticancer properties. However, little is known about the direct target proteins and anticancer mechanisms of Dic. In the current study, Dic was found to suppress the growth of lung cancer cells in vitro and in vivo, and to attenuate the activation of PI3K/AKT/mTOR and mitogen-activated protein kinase (MAPK) signaling pathways by inhibiting the phosphorylation and activation of receptor tyrosine kinase c-Met. Moreover, the binding of Dic to c-Met was confirmed by using cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assay. Among all cancer cell lines tested, Dic inhibited the proliferation of c-Met-dependent EBC-1 cells with the greatest potency (IC50 = 2.811 μM). Notably, Dic was shown to synergistically improve the chemo-sensitivity of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant lung cancer cells to gefitinib and osimertinib. These results suggest that Dic is a c-Met inhibitor that can serve as a potential therapeutic agent in the treatment of lung cancer, especially against EGFR TKI-resistant and c-Met-dependent lung cancer.
Collapse
Affiliation(s)
- Jiaojiao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lijing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun Peng
- Department of Thoracic Surgery, the First People's Hospital of Yunnan Province, Kunming 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Richard Ward
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Peiqi Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiwei Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Na Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
13
|
Chen G, Jiang J, Wang X, Feng K, Ma K. lncENST Suppress the Warburg Effect Regulating the Tumor Progress by the Nkx2-5/ErbB2 Axis in Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6959557. [PMID: 34912471 PMCID: PMC8668336 DOI: 10.1155/2021/6959557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
The therapeutic efficacy of radiofrequency ablation (RFA) against liver cancer is often limited by proliferation and metastasis of residual tumor cells. These phenomena are closely associated with the Warburg effect, wherein ErbB2 is activated. While RFA inhibits the Warburg effect of residual tumor cells at the early stage, the specific mechanisms remain unclear. We explored the regulatory relationship between the long noncoding RNA ENST00000570843.1 (lncENST) and ErbB2 using lentiviral transfection of lncENST and ErbB2 overexpression/interference vectors in in vitro and in vivo models of hepatocellular carcinoma in the presence of sublethal heat at 50°C. ErbB2-mediated Warburg effect was suppressed by lncENST, as manifested by reduced glucose uptake and lactic acid production in SMMC-7721 cells. lncENST also increased tumor apoptosis and inhibited tumor progression in nude Balb/c mice for up to 28 days after RFA. Additionally, we predicted through bioinformatic analysis that the promoter of ErbB2 binds to the transcription factor Nkx2-5, resulting in a negative regulatory effect. This speculation was confirmed by chromatin immunoprecipitation of the Nkx2-5 protein and ErbB2, indicating that ErbB2 transcription was curbed by Nkx2-5. We propose that lncENST downplays the Warburg effect in residual tumor cells by downregulating ErbB2 via Nkx2-5 activation. This study is aimed at providing molecular targets that can prevent residual tumor cell proliferation after RFA, with clinical significance in hepatocellular carcinoma treatment.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Computational Biology
- Disease Progression
- Female
- Heterografts
- Homeobox Protein Nkx-2.5/metabolism
- Humans
- Liver Neoplasms
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- RNA, Long Noncoding/genetics
- Radiofrequency Ablation
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Warburg Effect, Oncologic
Collapse
Affiliation(s)
- Geng Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaofei Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kai Feng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
14
|
Lee CJ, Modave E, Boeckx B, Stacchiotti S, Rutkowski P, Blay JY, Debiec-Rychter M, Sciot R, Lambrechts D, Wozniak A, Schöffski P. Histopathological and Molecular Profiling of Clear Cell Sarcoma and Correlation with Response to Crizotinib: An Exploratory Study Related to EORTC 90101 "CREATE" Trial. Cancers (Basel) 2021; 13:cancers13236057. [PMID: 34885165 PMCID: PMC8657105 DOI: 10.3390/cancers13236057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Clear cell sarcoma (CCSA) is a rare subtype of soft tissue sarcoma characterized by EWSR1 rearrangement and subsequent MET upregulation. The European Organisation for Research and Treatment of Cancer 90101 phase II trial evaluated the MET inhibitor crizotinib in CCSA but resulted in only sporadic responses. The aim of this exploratory study was to identify the molecular alterations potentially relevant for the treatment outcome by using archival CCSA samples and trial-related clinical data. We characterized MET signaling and revealed an infrequent activation of MET, which may explain the lack of response to crizotinib in the disease cohort. Based on sequencing analyses, we discovered copy number alterations, mutations and dysregulated pathways with potentially predictive or prognostic values for patients’ outcomes. This work describes the molecular heterogeneity in CCSA and provides deep insight into the biology of this ultra-rare malignancy, which may potentially lead to better therapeutic approaches. Abstract Clear cell sarcoma (CCSA) is characterized by a chromosomal translocation leading to EWSR1 rearrangement, resulting in aberrant transcription of multiple genes, including MET. The EORTC 90101 phase II trial evaluated the MET inhibitor crizotinib in CCSA but resulted in only sporadic responses. We performed an in-depth histopathological and molecular analysis of archival CCSA samples to identify alterations potentially relevant for the treatment outcome. Immunohistochemical characterization of MET signaling was performed using a tissue microarray constructed from 32 CCSA cases. The DNA from 24 available tumor specimens was analyzed by low-coverage whole-genome sequencing and whole-exome sequencing for the detection of recurrent copy number alterations (CNAs) and mutations. A pathway enrichment analysis was performed to identify the pathways relevant for CCSA tumorigenesis. Kaplan–Meier estimates and Fisher’s exact test were used to correlate the molecular findings with the clinical features related to crizotinib treatment, aiming to assess a potential association with the outcomes. The histopathological analysis showed the absence of a MET ligand and MET activation, with the presence of MET itself in most of cases. However, the expression/activation of MET downstream molecules was frequently observed, suggesting the role of other receptors in CCSA signal transduction. Using sequencing, we detected a number of CNAs at the chromosomal arm and region levels. The most common alteration was a gain of 8q24.21, observed in 83% of the cases. The loss of chromosomes 9q and 12q24 was associated with shorter survival. Based on exome sequencing, 40 cancer-associated genes were found to be mutated in more than one sample, with SRGAP3 and KMT2D as the most common alterations (each in four cases). The mutated genes encoded proteins were mainly involved in receptor tyrosine kinase signaling, polymerase-II transcription, DNA damage repair, SUMOylation and chromatin organization. Disruption in chromatin organization was correlated with longer progression-free survival in patients receiving crizotinib. Conclusions: The infrequent activation of MET may explain the lack of response to crizotinib observed in the majority of cases in the clinical trial. Our work describes the molecular heterogeneity in CCSA and provides further insight into the biology of this ultra-rare malignancy, which may potentially lead to better therapeutic approaches for CCSA.
Collapse
Affiliation(s)
- Che-Jui Lee
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Elodie Modave
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Bram Boeckx
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Silvia Stacchiotti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 120133 Milano, Italy;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 00001 Warsaw, Poland;
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Centre Léon Bérard & Université Claude Bernard Lyon I, 69008 Lyon, France;
| | - Maria Debiec-Rychter
- Department of Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-341019
| |
Collapse
|
15
|
You G, Fan X, Hu H, Jiang T, Chen CC. Fusion Genes Altered in Adult Malignant Gliomas. Front Neurol 2021; 12:715206. [PMID: 34671307 PMCID: PMC8520976 DOI: 10.3389/fneur.2021.715206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Malignant gliomas are highly heterogeneous brain tumors in molecular genetic background. Despite the many recent advances in the understanding of this disease, patients with adult high-grade gliomas retain a notoriously poor prognosis. Fusions involving oncogenes have been reported in gliomas and may serve as novel therapeutic targets to date. Understanding the gene fusions and how they regulate oncogenesis and malignant progression will contribute to explore new approaches for personalized treatment. By now, studies on gene fusions in gliomas remain limited. However, some current clinical trials targeting fusion genes have presented exciting preliminary findings. The aim of this review is to summarize all the reported fusion genes in high-grade gliomas so far, discuss the characterization of some of the most popular gene fusions occurring in malignant gliomas, as well as their function in tumorigenesis, and the underlying clinical implication as therapeutic targets.
Collapse
Affiliation(s)
- Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Xing Fan
- Department of Neurophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Huimin Hu
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Ali MF, Latimer AJ, Wang Y, Hogenmiller L, Fontenas L, Isabella AJ, Moens CB, Yu G, Kucenas S. Met is required for oligodendrocyte progenitor cell migration in Danio rerio. G3 (BETHESDA, MD.) 2021; 11:jkab265. [PMID: 34568921 PMCID: PMC8473979 DOI: 10.1093/g3journal/jkab265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022]
Abstract
During vertebrate central nervous system development, most oligodendrocyte progenitor cells (OPCs) are specified in the ventral spinal cord and must migrate throughout the neural tube until they become evenly distributed, occupying non-overlapping domains. While this process of developmental OPC migration is well characterized, the nature of the molecular mediators that govern it remain largely unknown. Here, using zebrafish as a model, we demonstrate that Met signaling is required for initial developmental migration of OPCs, and, using cell-specific knock-down of Met signaling, show that Met acts cell-autonomously in OPCs. Taken together, these findings demonstrate in vivo, the role of Met signaling in OPC migration and provide new insight into how OPC migration is regulated during development.
Collapse
Affiliation(s)
- Maria F Ali
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Andrew J Latimer
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Yinxue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Leah Hogenmiller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
17
|
Karmacharya U, Guragain D, Chaudhary P, Jee JG, Kim JA, Jeong BS. Novel Pyridine Bioisostere of Cabozantinib as a Potent c-Met Kinase Inhibitor: Synthesis and Anti-Tumor Activity against Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22189685. [PMID: 34575841 PMCID: PMC8468607 DOI: 10.3390/ijms22189685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Two novel bioisosteres of cabozantinib, 3 and 4, were designed and synthesized. The benzene ring in the center of the cabozantinib structure was replaced by trimethylpyridine (3) and pyridine (4), respectively. Surprisingly, the two compounds showed extremely contrasting mesenchymal-epithelial transition factor (c-Met) inhibitory activities at 1 μM concentration (4% inhibition of 3 vs. 94% inhibition of 4). The IC50 value of compound 4 was 4.9 nM, similar to that of cabozantinib (5.4 nM). A ligand-based docking study suggested that 4 includes the preferred conformation for the binding to c-Met in the conformational ensemble, but 3 does not. The anti-proliferative activity of compound 4 against hepatocellular carcinoma (Hep3B and Huh7) and non-small-cell lung cancer (A549 and H1299) cell lines was better than that of cabozantinib, whereas 3 did not show a significant anti-proliferative activity. Moreover, the tumor selectivity of compound 4 toward hepatocellular carcinoma cell lines was higher than that of cabozantinib. In the xenograft chick tumor model, compound 4 inhibited Hep3B tumor growth to a much greater extent than cabozantinib. The present study suggests that compound 4 may be a good therapeutic candidate against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ujjwala Karmacharya
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
| | - Diwakar Guragain
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
| | - Prakash Chaudhary
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
| | - Jun-Goo Jee
- College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
- Correspondence: (J.-A.K.); (B.-S.J.); Tel.: +82-53-810-2816 (J.-A.K.); +82-53-810-2814 (B.-S.J.)
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
- Correspondence: (J.-A.K.); (B.-S.J.); Tel.: +82-53-810-2816 (J.-A.K.); +82-53-810-2814 (B.-S.J.)
| |
Collapse
|
18
|
Jacobson BA, Ahmad Z, Chen S, Waldusky G, Dillenburg M, Stoian E, Cambron DA, Patel AJ, Patel MR, Wagner CR, Kratzke RA. 4Ei-10 interdiction of oncogenic cap-mediated translation as therapy for non-small cell lung cancer. Invest New Drugs 2021; 39:636-643. [PMID: 33230623 DOI: 10.1007/s10637-020-01036-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
In order to suppress 5' cap-mediated translation a highly available inhibitor of the interaction between the 5' mRNA cap and the eIF4E complex has been developed. 4Ei-10 is a member of the class of ProTide compounds and has elevated membrane permeability and is a strong active chemical antagonist for eIF4E. Once taken up by cells it is converted by anchimeric activation of the lipophilic 2-(methylthio) ethyl protecting group and after that Hint1 P-N bond cleavage to N7-(p-chlorophenoxyethyl) guanosine 5'-monophosphate (7-Cl-Ph-Ethyl-GMP). Using this powerful interaction, it has been demonstrated that 4Ei-10 inhibits non-small cell lung cancer (NSCLC) cell growth. In addition, treatment of NSCLC cells with 4Ei-10 results in suppression of translation and diminished expression of a cohort of cellular proteins important to maintaining the malignant phenotype and resisting apoptosis such as Bcl-2, survivin, and ornithine decarboxylase (ODC). Finally, as a result of targeting the translation of anti-apoptotic proteins, NSCLC cells are synergized to be more sensitive to the existing anti-neoplastic treatment gemcitabine currently used in NSCLC therapy.
Collapse
Affiliation(s)
- Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Zeeshan Ahmad
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Maxwell Dillenburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Anil J Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Manish R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Division of Heme-Onc-Transplant, University of Minnesota Medical School, MMC 480, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Zhou Q, Liu M, Shao T, Xie P, Zhu S, Wang W, Miao Q, Peng J, Zhang P. TPX2 Enhanced the Activation of the HGF/ETS-1 Pathway and Increased the Invasion of Endocrine-Independent Prostate Carcinoma Cells. Front Oncol 2021; 11:618540. [PMID: 34123781 PMCID: PMC8193931 DOI: 10.3389/fonc.2021.618540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
The prognosis for endocrine-independent prostate carcinoma is still poor due to its highly metastatic feature. In the present work, TPX2 (the targeting protein for Xklp2), which is known as a micro-tubulin interacted protein, was identified as a novel coactivator of ETS-1, a transcription factor that plays a central role in mediating the metastasis of human malignancies. TPX2 enhanced the transcription factor activation of ETS-1 and increased the expression of ETS-1's downstream metastasis-related genes, such as mmp3 or mmp9, induced by HGF (hepatocyte growth factor), a typical agonist of the HGF/c-MET/ETS-1 pathway. The protein-interaction between TPX2 and ETS-1 was examined using immunoprecipitation (IP). TPX2 enhanced the accumulation of ETS-1 in the nuclear and the recruitment of its binding element (EST binding site, EBS) located in the promoter region of its downstream gene, mmp9. Moreover, TPX2 enhanced the in vitro or in vivo invasion of a typical endocrine-independent prostate carcinoma cell line, PC-3. Therefore, TPX2 enhanced the activation of the HGF/ETS-1 pathway to enhance the invasion of endocrine-independent prostate carcinoma cells and thus it would be a promising target for prostate carcinoma treatment.
Collapse
Affiliation(s)
- Qinghong Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Tao Shao
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Pingbo Xie
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Shaojie Zhu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Qiong Miao
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Jiaxi Peng
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Peng Zhang
- Department of Urology, Chinese People's Liberation Army (PLA) General Hospital/Chinese PLA Medical Academy, Beijing, China
| |
Collapse
|
20
|
Gola C, Giannuzzi D, Rinaldi A, Iussich S, Modesto P, Morello E, Buracco P, Aresu L, De Maria R. Genomic and Transcriptomic Characterization of Canine Osteosarcoma Cell Lines: A Valuable Resource in Translational Medicine. Front Vet Sci 2021; 8:666838. [PMID: 34079834 PMCID: PMC8165228 DOI: 10.3389/fvets.2021.666838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OSA) represents the most common primary bone tumor in dogs and is characterized by a highly aggressive behavior. Cell lines represent one of the most suitable and reproducible pre-clinical models, and therefore the knowledge of their molecular landscape is mandatory to investigate oncogenic mechanisms and drug response. The present study aims at determining variants, putative driver genes, and gene expression aberrations by integrating whole-exome and RNA sequencing. For this purpose, eight canine OSA cell lines and one matched pair of primary tumor and normal tissue were analyzed. Overall, cell lines revealed a mean tumor mutational burden of 9.6 mutations/Mb (range 3.9–16.8). Several known oncogenes and tumor suppressor genes, such as ALK, MYC, and MET, were prioritized as having a likely role in canine OSA. Mutations in eight genes, previously described as human OSA drivers and including TP53, PTCH1, MED12, and PI3KCA, were retrieved in our cell lines. When variants were cross-referenced with human OSA driver mutations, the E273K mutation of TP53 was identified in the Wall cell line and tumor sample. The transcriptome profiling detected two possible p53 inactivation mechanisms in the Wall cell line on the one hand, and in D17 and D22 on the other. Moreover, MET overexpression, potentially leading to MAPK/ERK pathway activation, was observed in D17 and D22 cell lines. In conclusion, our data provide the molecular characterization of a large number of canine OSA cell lines, allowing future investigations on potential therapeutic targets and associated biomarkers. Notably, the Wall cell line represents a valuable model to empower prospective in vitro studies both in human and in dogs, since the TP53 driver mutation was maintained during cell line establishment and was widely reported as a mutation hotspot in several human cancers.
Collapse
Affiliation(s)
- Cecilia Gola
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padua, Padua, Italy
| | - Andrea Rinaldi
- Faculty of Biomedical Sciences, Institute of Oncology Research, Universit'a della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Selina Iussich
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology-Veterinary Medical Research Institute for Piemonte, Liguria, and Valle d'Aosta, Torino, Italy
| | - Emanuela Morello
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Paolo Buracco
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Turin, Italy
| | | |
Collapse
|
21
|
Porębska N, Poźniak M, Matynia A, Żukowska D, Zakrzewska M, Otlewski J, Opaliński Ł. Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 2021; 60:89-106. [PMID: 33863623 DOI: 10.1016/j.cytogfr.2021.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Matynia
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dominika Żukowska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
22
|
Santarpia M, Massafra M, Gebbia V, D’Aquino A, Garipoli C, Altavilla G, Rosell R. A narrative review of MET inhibitors in non-small cell lung cancer with MET exon 14 skipping mutations. Transl Lung Cancer Res 2021; 10:1536-1556. [PMID: 33889528 PMCID: PMC8044480 DOI: 10.21037/tlcr-20-1113] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Treatment of advanced non-small cell lung cancer (NSCLC) has radically improved in the last years due to development and clinical approval of highly effective agents including immune checkpoint inhibitors (ICIs) and oncogene-directed therapies. Molecular profiling of lung cancer samples for activated oncogenes, including epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1) and BRAF, is routinely performed to select the most appropriate up-front treatment. However, the identification of new therapeutic targets remains a high priority. Recently, MET exon 14 skipping mutations have emerged as novel actionable oncogenic alterations in NSCLC, sensitive to MET inhibition. In this review we discuss: (I) MET gene and MET receptor structure and signaling pathway; (II) MET exon 14 alterations; (III) current data on MET inhibitors, mainly focusing on selective MET tyrosine kinase inhibitors (TKIs), in the treatment of NSCLC with MET exon 14 skipping mutations. We identified the references for this review through a literature search of papers about MET, MET exon 14 skipping mutations, and MET inhibitors, published up to September 2020, by using PubMed, Scopus and Web of Science databases. We also searched on websites of main international cancer congresses (ASCO, ESMO, IASLC) for ongoing studies presented as abstracts. MET exon 14 skipping mutations have been associated with clinical activity of selective MET inhibitors, including capmatinib, that has recently received approval by FDA for clinical use in this subgroup of NSCLC patients. A large number of trials are testing MET inhibitors, also in combinatorial therapeutic strategies, in MET exon 14-altered NSCLC. Results from these trials are eagerly awaited to definitively establish the role and setting for use of these agents in NSCLC patients.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Patology “G. Barresi”, University of Messina, Messina, Italy
| | - Marco Massafra
- Medical Oncology Unit, Department of Human Patology “G. Barresi”, University of Messina, Messina, Italy
| | - Vittorio Gebbia
- Medical Oncology and Supportive Care Unit, La Maddalena Cancer Center, Palermo, Italy;,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Antonio D’Aquino
- Medical Oncology Unit, Department of Human Patology “G. Barresi”, University of Messina, Messina, Italy
| | - Claudia Garipoli
- Medical Oncology Unit, Department of Human Patology “G. Barresi”, University of Messina, Messina, Italy
| | - Giuseppe Altavilla
- Medical Oncology Unit, Department of Human Patology “G. Barresi”, University of Messina, Messina, Italy
| | - Rafael Rosell
- Catalan Institute of Oncology, Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias i Pujol, Badalona, Barcelona, Spain;,Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain;,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Strickland MR, Jänne PA. Devil in the detail: MET overexpression fails as surrogate marker for MET exon 14 splice site mutations in NSCLC. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1612. [PMID: 33437811 PMCID: PMC7791198 DOI: 10.21037/atm-20-4253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 11/06/2022]
Affiliation(s)
| | - Pasi A Jänne
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Silva Paiva R, Gomes I, Casimiro S, Fernandes I, Costa L. c-Met expression in renal cell carcinoma with bone metastases. J Bone Oncol 2020; 25:100315. [PMID: 33024658 PMCID: PMC7527574 DOI: 10.1016/j.jbo.2020.100315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Bone is a common metastatic site in renal cell carcinoma (RCC). HGF/c-Met pathway is particularly relevant in tumors with bone metastases. c-Met/HGF pathway is involved in RCC progression, conferring poor prognosis. Several c-Met targeting therapies are currently in clinical development. c-Met expression is an important therapeutic target in RCC with bone metastases.
Hepatocyte growth factor (HGF)/c-Met pathway is implicated in embryogenesis and organ development and differentiation. Germline or somatic mutations, chromosomal rearrangements, gene amplification, and transcriptional upregulation in MET or alterations in autocrine or paracrine c-Met signalling have been associated with cancer cell proliferation and survival, including in renal cell carcinoma (RCC), and associated with disease progression. HGF/c-Met pathway has been shown to be particularly relevant in tumors with bone metastases (BMs). However, the efficacy of targeting c-Met in bone metastatic disease, including in RCC, has not been proven. Therefore, further investigation is required focusing the particular role of HGF/c-Met pathway in bone microenvironment (BME) and how to effectively target this pathway in the context of bone metastatic disease.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase gene
- AR, androgen receptor
- ATP, adenosine triphosphate
- AXL, AXL Receptor Tyrosine Kinase
- BME, bone microenvironment
- BMPs, bone morphogenetic proteins
- BMs, bone metastases
- BPs, Bisphosphonates
- BTAs, Bone-targeting agents
- Bone metastases
- CCL20, chemokine (C-C motif) ligand 20
- CI, confidence interval
- CRPC, Castration Resistant Prostate Cancer
- CSC, cancer stem cells
- CTC, circulating tumor cells
- CaSR, calcium/calcium-sensing receptor
- EMA, European Medicines Agency
- EMT, epithelial-to-mesenchymal transition
- FDA, US Food and Drug Administration
- FLT-3, FMS-like tyrosine kinase 3
- GEJ, Gastroesophageal Junction
- HCC, Hepatocellular Carcinoma
- HGF, hepatocyte growth factor
- HGF/c-Met
- HIF, hypoxia-inducible factors
- HR, hazard ratio
- IGF, insulin-like growth factor
- IGF2BP3, insulin mRNA Binding Protein-3
- IL, interleukin
- IRC, independent review committees
- KIT, tyrosine-protein kinase KIT
- Kidney cancer
- M-CSF, macrophage colony-stimulating factor
- MET, MET proto-oncogene, receptor tyrosine kinase
- NSCLC, non-small cell lung carcinoma
- ORR, overall response rate
- OS, overall survival
- PDGF, platelet-derived growth factor
- PFS, progression free survival
- PTHrP, parathyroid hormone-related peptide
- RANKL, receptor activator of nuclear factor-κB ligand
- RCC, renal cell carcinoma
- RET, rearranged during transfection proto-oncogene
- ROS, proto-oncogene tyrosine-protein kinase ROS
- RTK, receptor tyrosine kinase
- SCLC, Squamous Cell Lung Cancer
- SREs, skeletal-related events
- SSE, symptomatic skeletal events
- TGF-β, transforming growth factor-β
- TIE-2, Tyrosine-Protein Kinase Receptor TIE-2
- TKI, tyrosine kinase inhibitor
- TRKB, Tropomyosin receptor kinase B
- Targeted therapy
- VEGFR, vascular endothelial growth factor receptor
- VHL, Hippel-Lindau tumor suppressor gene
- ZA, zoledronic acid
- ccRCC, clear-cell RCC
- mAb, monoclonal antibodies
- pRCC, papillary renal cell carcinoma
Collapse
Affiliation(s)
- Rita Silva Paiva
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
| | - Inês Gomes
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Isabel Fernandes
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Luís Costa
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Corresponding author at: Oncology Division, Hospital de Santa Maria, 1649-035 Lisbon, Portugal.
| |
Collapse
|
25
|
Zhang Y, Guo H, Ma L, Chen X, Chen G. Long Noncoding RNA LINC00839 Promotes the Malignant Progression of Osteosarcoma by Competitively Binding to MicroRNA-454-3p and Consequently Increasing c-Met Expression. Cancer Manag Res 2020; 12:8975-8987. [PMID: 33061593 PMCID: PMC7522415 DOI: 10.2147/cmar.s269774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose This study was conducted to determine the expression and prognostic relevance of long intergenic non-protein coding RNA 839 (LINC00839) in osteosarcoma (OS) and to explore the detailed roles of LINC00839 in regulating OS cell activities and the mechanisms responsible for its cancer-promoting activity in OS. Methods The expression of LINC00839 in OS tissues and cell lines was determined by quantitative reverse transcription–polymerase chain reaction. After LINC00839 knockdown, cell counting kit-8 assay, flow cytometric analysis, transwell migration and invasion assay, and in vivo tumor xenograft assay were used to detect its effects on cellular processes in OS. Bioinformatics analyses were conducted to predict the putative miRNAs that target LINC00839. RNA immunoprecipitation assay, luciferase reporter assay, Western blotting analysis, and rescue assays were conducted to establish a relationship among LINC00839, microRNA-454-3p (miR-454-3p), and cellular mesenchymal to epithelial transition factor (c-Met) in OS. Results LINC00839 was upregulated in OS tissues and cell lines. OS patients characterized with high LINC00839 expression exhibited shorter overall survival than patients with low LINC00839 expression. LINC00839 knockdown caused a significant reduction in OS cell proliferation, migration, and invasion in vitro. Furthermore, LINC00839 depletion inhibited OS tumor growth in vivo and induced apoptosis. Mechanistically, LINC00839 functions as a competitive endogenous RNA in OS by sponging miR-454-3p. c-Met was confirmed as a direct target gene for miR-454-3p in OS cells and was positively regulated by LINC00839 by competitively binding to miR-454-3p. Conclusion LINC00839 promoted the oncogenicity of OS by targeting the miR-454-3p/c-Met axis. The LINC00839/miR-454-3p/c-Met network may represent a potential target for OS therapy.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Orthopedics, Shenzhen University General Hospital, Shenzhen 518055, People's Republic of China
| | - Hai Guo
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, People's Republic of China
| | - Li Ma
- Department of Emergency, General Hospital of Xinjiang Military Command of Chinese People's Liberation Army, Urumqi, Xinjiang, 830000, People's Republic of China
| | - Xiaoyong Chen
- Department of Orthopedics, Shenzhen University General Hospital, Shenzhen 518055, People's Republic of China
| | - Guangdong Chen
- Department of Orthopedics, Cangzhou Center Hospital, Cangzhou, Hebei 061014, People's Republic of China
| |
Collapse
|
26
|
Salgia R, Sattler M, Scheele J, Stroh C, Felip E. The promise of selective MET inhibitors in non-small cell lung cancer with MET exon 14 skipping. Cancer Treat Rev 2020; 87:102022. [DOI: 10.1016/j.ctrv.2020.102022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
|
27
|
MET targeting: time for a rematch. Oncogene 2020; 39:2845-2862. [PMID: 32034310 DOI: 10.1038/s41388-020-1193-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
MET, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, is a proto-oncogene involved in embryonic development and throughout life in homeostasis and tissue regeneration. Deregulation of MET signaling has been reported in numerous malignancies, prompting great interest in MET targeting for cancer therapy. The present review offers a summary of the biology of MET and its known functions in normal physiology and carcinogenesis, followed by an overview of the most relevant MET-targeting strategies and corresponding clinical trials, highlighting both past setbacks and promising future prospects. By placing their efforts on a more precise stratification strategy through the genetic analysis of tumors, modern trials such as the NCI-MATCH trial could revive the past enthusiasm for MET-targeted therapy.
Collapse
|
28
|
Luo G, Xu W, Zhao Y, Jin S, Wang S, Liu Q, Chen X, Wang J, Dong F, Hu DN, Reinach PS, Yan D. RNA m 6 A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting c-Met. J Cell Physiol 2020; 235:7107-7119. [PMID: 32017066 DOI: 10.1002/jcp.29608] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
N6 -methyladenosine (m6 A) is a novel epitranscriptomic marker that contributes to regulating diverse biological processes through controlling messenger RNA metabolism. However, it is unknown if m6 A RNA methylation affects uveal melanoma (UM) development. To address this question, we probed its function and molecular mechanism in UM. Initially, we demonstrated that global RNA m6 A methylation levels were dramatically elevated in both UM cell lines and clinical specimens. Meanwhile, we found that METTL3, a main m6 A regulatory enzyme, was significantly increased in UM cells and specimens. Subsequently, cycloleucine (Cyc) or METTL3 targeted small interfering RNA was used to block m6 A methylation in UM cells. We found that Cyc or silencing METTL3 significantly suppressed UM cell proliferation and colony formation through cell cycle G1 arrest, as well as migration and invasion by functional analysis. On the other hand, overexpression of METTL3 had the opposite effects. Furthermore, bioinformatics and methylated RNA immunoprecipitation-quantitative polymerase chain reaction identified c-Met as a direct target of m6 A methylation in UM cells. In addition, western blot analysis showed that Cyc or knockdown of METTL3 downregulated c-Met, p-Akt, and cell cycle-related protein levels in UM cells. Taken together, our results demonstrate that METTL3-mediated m6 A RNA methylation modulates UM cell proliferation, migration, and invasion by targeting c-Met. Such a modification acts as a critical oncogenic regulator in UM development.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Weiwei Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yunping Zhao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Shanshan Jin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Siqi Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Qi Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoyan Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Jiao Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan-Ning Hu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China.,Tissue Culture Center, The New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
29
|
A review of predictive, prognostic and diagnostic biomarkers for non-small-cell lung cancer: towards personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractIntroduction:Lung cancer has a high mortality rate mainly due to the lack of early detection or outward signs and symptoms, thereby often progressing to advanced stages (e.g., stage IV) before it is diagnosed. However, if lung cancers can be diagnosed at an early stage and also if clinicians can prospectively identify patients likely to respond to specific treatments, then there is a very high potential to increase patients’ survival. In recent years, several investigations have been conducted to identify cancer biomarkers for lung cancer risk assessment, early detection and diagnosis, the likelihood of identifying the group of patients who will benefit from a particular treatment and monitoring patient response to treatment.Materials and Methods:This paper reports on the review of 19 current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis and monitoring the response of treatment of non-small-cell lung cancers.Conclusion:The future holds promise for personalised and targeted medicine from prevention, diagnosis to treatment, which take into account individual patient’s variability, though it depends on the development of effective biomarkers interrogating the key aberrant pathways and potentially targetable with molecular targeted or immunologic therapies. Lung cancer biomarkers have the potential to guide clinical decision-making since they can potentially detect the disease early, measure the risk of developing the disease and the risk of progression, provide accurate information of patient response to a specific treatment and are capable of informing clinicians about the likely outcome of a cancer diagnosis independent of the treatment received. Moreover, lung cancer biomarkers are increasingly linked to specific molecular pathway deregulations and/or cancer pathogenesis and can be used to justify the application of certain therapeutic or interventional strategies.
Collapse
|
30
|
Yang PW, Liu YC, Chang YH, Lin CC, Huang PM, Hua KT, Lee JM, Hsieh MS. Cabozantinib (XL184) and R428 (BGB324) Inhibit the Growth of Esophageal Squamous Cell Carcinoma (ESCC). Front Oncol 2019; 9:1138. [PMID: 31781483 PMCID: PMC6851194 DOI: 10.3389/fonc.2019.01138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease for which no effective targeted therapeutic agent has been approved. Both AXL and c-MET have been reported to be independent prognostic factors for ESCC. Thus, inhibitors of AXL/c-MET might have great potential as targeted therapy for ESCC. In the current study, we evaluated the therapeutic potential of the AXL/c-MET selective inhibitors, R428 and cabozantinib, in cell and mouse xenograft models. We demonstrated that both R428 and cabozantinib significantly inhibited the growth of CE81T and KYSE-70 ESCC cells and showed by wound-healing assay that they both inhibited ESCC cell migration. In the animal model, ESCC xenograft models were established by injecting KYSE-70 cells with Matrigel into the upper back region of NOD-SCID male mice followed by treatment with vehicle control, R428 (50 mg/kg/day), cisplatin (1.0 mg/kg), or cabozantinib (30 mg/kg/day) for the indicated number of days. R428 alone significantly inhibited ESCC tumor growth compared to the vehicle; however, no synergistic effect with cisplatin was observed. Notably, the dramatic efficacy of cabozantinib alone was observed in the mouse xenograft model. Collectively, our study demonstrated that both cabozantinib and R428 inhibit ESCC growth in cell and xenograft models. The results reveal the great potential of using cabozantinib for targeted therapy of ESCC.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Cheng Liu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Han Chang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ching Lin
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Ming Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Shu Hsieh
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
31
|
Caiado F, Maia-Silva D, Jardim C, Schmolka N, Carvalho T, Reforço C, Faria R, Kolundzija B, Simões AE, Baubec T, Vakoc CR, da Silva MG, Manz MG, Schumacher TN, Norell H, Silva-Santos B. Lineage tracing of acute myeloid leukemia reveals the impact of hypomethylating agents on chemoresistance selection. Nat Commun 2019; 10:4986. [PMID: 31676777 PMCID: PMC6825213 DOI: 10.1038/s41467-019-12983-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy-resistant cancer recurrence is a major cause of mortality. In acute myeloid leukemia (AML), chemorefractory relapses result from the complex interplay between altered genetic, epigenetic and transcriptional states in leukemic cells. Here, we develop an experimental model system using in vitro lineage tracing coupled with exome, transcriptome and in vivo functional readouts to assess the AML population dynamics and associated molecular determinants underpinning chemoresistance development. We find that combining standard chemotherapeutic regimens with low doses of DNA methyltransferase inhibitors (DNMTi, hypomethylating drugs) prevents chemoresistant relapses. Mechanistically, DNMTi suppresses the outgrowth of a pre-determined set of chemoresistant AML clones with stemness properties, instead favoring the expansion of rarer and unfit chemosensitive clones. Importantly, we confirm the capacity of DNMTi combination to suppress stemness-dependent chemoresistance development in xenotransplantation models and primary AML patient samples. Together, these results support the potential of DNMTi combination treatment to circumvent the development of chemorefractory AML relapses. The development of post-chemotherapy resistance is a significant issue in the management of AML. Here, Caiado et al. suggest that the issue might be circumvented via upfront combination with hypomethylating agents that shape the clonal dynamics and transcriptional landscape of relapsing AML
Collapse
Affiliation(s)
- Francisco Caiado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Diogo Maia-Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Carolina Jardim
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nina Schmolka
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Reforço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Branka Kolundzija
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - André E Simões
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | | | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | | | - Håkan Norell
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
32
|
Targeting the COX2/MET/TOPK signaling axis induces apoptosis in gefitinib-resistant NSCLC cells. Cell Death Dis 2019; 10:777. [PMID: 31611604 PMCID: PMC6791885 DOI: 10.1038/s41419-019-2020-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
MET overactivation is one of the crucial reasons for tyrosine kinase inhibitor (TKI) resistance, but the mechanisms are not wholly clear. Here, COX2, TOPK, and MET expression were examined in EGFR-activating mutated NSCLC by immunohistochemical (IHC) analysis. The relationship between COX2, TOPK, and MET was explored in vitro and ex vivo. In addition, the inhibition of HCC827GR cell growth by combining COX2 inhibitor (celecoxib), TOPK inhibitor (pantoprazole), and gefitinib was verified ex vivo and in vivo. We found that COX2 and TOPK were highly expressed in EGFR-activating mutated NSCLC and the progression-free survival (PFS) of triple-positive (COX2, MET, and TOPK) patients was shorter than that of triple-negative patients. Then, we observed that the COX2-TXA2 signaling pathway modulated MET through AP-1, resulting in an inhibition of apoptosis in gefitinib-resistant cells. Moreover, we demonstrated that MET could phosphorylate TOPK at Tyr74 and then prevent apoptosis in gefitinib-resistant cells. In line with these findings, the combination of celecoxib, pantoprazole, and gefitinib could induce apoptosis in gefitinib-resistant cells and inhibit tumor growth ex vivo and in vivo. Our work reveals a novel COX2/MET/TOPK signaling axis that can prevent apoptosis in gefitinib-resistant cells and suggests that a triple combination of FDA-approved drugs would provide a low-cost and practical strategy to overcome gefitinib resistance.
Collapse
|
33
|
Moosavi F, Giovannetti E, Saso L, Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci 2019; 56:533-566. [PMID: 31512514 DOI: 10.1080/10408363.2019.1653821] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a major cause of death worldwide. MET tyrosine kinase receptor [MET, c-MET, hepatocyte growth factor (HGF) receptor] pathway activation is associated with the appearance of several hallmarks of cancer. The HGF/MET pathway has emerged as an important actionable target across many solid tumors; therefore, biomarker discovery becomes essential in order to guide clinical intervention and patient stratification with the aim of moving towards personalized medicine. The focus of this review is on how the aberrant activation of the HGF/MET pathway in tumor tissue or the circulation can provide diagnostic and prognostic biomarkers and predictive biomarkers of drug response. Many meta-analyses have shown that aberrant activation of the MET pathway in tumor tissue, including MET gene overexpression, gene amplification, exon 14 skipping and other activating mutations, is almost invariably associated with shorter survival and poor prognosis. Most meta-analyses have been performed in non-small cell lung cancer (NSCLC), breast, head and neck cancers as well as colorectal, gastric, pancreatic and other gastrointestinal cancers. Furthermore, several studies have shown the predictive value of MET biomarkers in the identification of patients who gain the most benefit from HGF/MET targeted therapies administered as single or combination therapies. The highest predictive values have been observed for response to foretinib and savolitinib in renal cancer, as well as tivantinib in NSCLC and colorectal cancer. However, some studies, especially those based on MET expression, have failed to show much value in these stratifications. This may be rooted in lack of standardization of methodologies, in particular in scoring systems applied in immunohistochemistry determinations or absence of oncogenic addiction of cancer cells to the MET pathway, despite detection of overexpression. Measurements of amplification and mutation aberrations are less likely to suffer from these pitfalls. Increased levels of MET soluble ectodomain (sMET) in circulation have also been associated with poor prognosis; however, the evidence is not as strong as it is with tissue-based biomarkers. As a diagnostic biomarker, sMET has shown its value in distinguishing cancer patients from healthy individuals in prostate and bladder cancers and in melanoma. On the other hand, increased circulating HGF has also been presented as a valuable prognostic and diagnostic biomarker in many cancers; however, there is controversy on the predictive value of HGF as a biomarker. Other biomarkers such as circulating tumor DNA (ctDNA) and tumor HGF levels have also been briefly covered. In conclusion, HGF/MET aberrations can provide valuable diagnostic, prognostic and predictive biomarkers and represent vital assets for personalized cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza Onlus , Pisa , Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, "Vittorio Erspamer," Sapienza University , Rome , Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
34
|
Induction of Acquired Resistance towards EGFR Inhibitor Gefitinib in a Patient-Derived Xenograft Model of Non-Small Cell Lung Cancer and Subsequent Molecular Characterization. Cells 2019; 8:cells8070740. [PMID: 31323891 PMCID: PMC6678194 DOI: 10.3390/cells8070740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023] Open
Abstract
In up to 30% of non-small cell lung cancer (NSCLC) patients, the oncogenic driver of tumor growth is a constitutively activated epidermal growth factor receptor (EGFR). Although these patients gain great benefit from treatment with EGFR tyrosine kinase inhibitors, the development of resistance is inevitable. To model the emergence of drug resistance, an EGFR-driven, patient-derived xenograft (PDX) NSCLC model was treated continuously with Gefitinib in vivo. Over a period of more than three months, three separate clones developed and were subsequently analyzed: Whole exome sequencing and reverse phase protein arrays (RPPAs) were performed to identify the mechanism of resistance. In total, 13 genes were identified, which were mutated in all three resistant lines. Amongst them the mutations in NOMO2, ARHGEF5 and SMTNL2 were predicted as deleterious. The 53 mutated genes specific for at least two of the resistant lines were mainly involved in cell cycle activities or the Fanconi anemia pathway. On a protein level, total EGFR, total Axl, phospho-NFκB, and phospho-Stat1 were upregulated. Stat1, Stat3, MEK1/2, and NFκB displayed enhanced activation in the resistant clones determined by the phosphorylated vs. total protein ratio. In summary, we developed an NSCLC PDX line modelling possible escape mechanism under EGFR treatment. We identified three genes that have not been described before to be involved in an acquired EGFR resistance. Further functional studies are needed to decipher the underlying pathway regulation.
Collapse
|
35
|
Zheng F, Zhao Y, Li X, Tang Q, Wu J, Wu W, Hann SS. The repression and reciprocal interaction of DNA methyltransferase 1 and specificity protein 1 contributes to the inhibition of MET expression by the combination of Chinese herbal medicine FZKA decoction and erlotinib. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111928. [PMID: 31077779 DOI: 10.1016/j.jep.2019.111928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal medicine Fuzheng Kang-Ai (FZKA) decoction obtained from Guangdong Kangmei Pharmaceutical Company, which contains 12 components with different types of constituents, has been used as part of the adjuvant treatment of lung cancer for decades. We previously showed that FZKA decoction enhances the growth inhibition of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant non-small cell lung cancer (NSCLC) cells by suppressing glycoprotein mucin 1 (MUC1) expression. However, the molecular mechanism underlying the therapeutic potential, particularly in sensitizing or/and enhancing the anti-lung cancer effect of EGFR-TKIs, remains unclear. MATERIALS AND METHODS Cell viability was measured using 3-(4, 5-diMEThylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and 5-ethynyl -2'-deoxyuridine (EdU) assays. Western blot analysis was performed to examine the protein expressions of DNA methyltransferase 1 (DNMT1), specificity protein 1 (SP1), and MET, an oncogene encoding for a trans-membrane tyrosine kinase receptor activated by the hepatocyte growth factor (HGF). The expression of MET mRNA was measured by quantitative real-time PCR (qRT-PCR). Exogenous expression of DNMT1 and SP1, and MET were carried out by transient transfection assays. The promoter activity of MET was tested using Dual-luciferase reporter assays. A nude mouse xenografted tumor model further evaluated the effect of the combination of FZKA decoction and erlotinib in vivo. RESULTS The combination of FZKA and erlotinib produced an even greater inhibition of NSCLC cell growth. FZKA decreased the expressions of DNMT1, SP1, and MET (c-MET) proteins, and the combination of FZKA and erlotinib demonstrated enhanced responses. Interestingly, there was a mutual regulation of DNMT1 and SP1. In addition, exogenously expressed DNMT1 and SP1 blocked the FZKA-inhibited c-MET expression. Moreover, excessive expressed MET neutralized FZKA-inhibited growth of NSCLC cells. FZKA decreased the mRNA and promoter activity of c-MET, which was not observed in cells with ectopic expressed DNMT1 gene. Similar findings were observed in vivo. CONCLUSION FZKA decreases MET gene expression through the repression and mutual regulation of DNMT1 and SP1 in vitro and in vivo. This leads to inhibit the growth of human lung cancer cells. The combination of FZKA and EGFR-TKI erlotinib exhibits synergy in this process. The regulatory loops among the DNMT1, SP1 and MET converge in the overall effects of FZKA and EGFR-TKI erlotinib. This in vitro and in vivo study clarifies an additional novel molecular mechanism underlying the anti-lung cancer effects in response to the combination of FZKA and erlotinib in gefitinib-resistant NSCLC cells.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - YueYang Zhao
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Department of Medical Oncology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Xiong Li
- Central Laboratory, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - JingJing Wu
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - WanYin Wu
- Department of Medical Oncology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
36
|
Wang Q, Yang S, Wang K, Sun SY. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J Hematol Oncol 2019; 12:63. [PMID: 31227004 PMCID: PMC6588884 DOI: 10.1186/s13045-019-0759-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Treatment of non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) activating mutation with EGFR-TKIs has achieved great success, yet faces the development of acquired resistance as the major obstacle to long-term disease remission in the clinic. MET (or c-MET) gene amplification has long been known as an important resistance mechanism to first- or second-generation EGFR-TKIs in addition to the appearance of T790 M mutation. Recent preclinical and clinical studies have suggested that MET amplification and/or protein hyperactivation is likely to be a key mechanism underlying acquired resistance to third-generation EGFR-TKIs such as osimertinib as well, particularly when used as a first-line therapy. EGFR-mutant NSCLCs that have relapsed from first-generation EGFR-TKI treatment and have MET amplification and/or protein hyperactivation should be insensitive to osimertinib monotherapy. Therefore, combinatorial therapy with osimertinib and a MET or even a MEK inhibitor should be considered for these patients with resistant NSCLC carrying MET amplification and/or protein hyperactivation.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| | - Sen Yang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kai Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, 1365-C Clifton Road, C3088, Atlanta, GA, 30322, USA.
| |
Collapse
|
37
|
Chiche A, Di-Cicco A, Sesma-Sanz L, Bresson L, de la Grange P, Glukhova MA, Faraldo MM, Deugnier MA. p53 controls the plasticity of mammary luminal progenitor cells downstream of Met signaling. Breast Cancer Res 2019; 21:13. [PMID: 30683141 PMCID: PMC6346556 DOI: 10.1186/s13058-019-1101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background The adult mammary epithelium is composed of basal and luminal cells. The luminal lineage comprises two major cell populations, positive and negative for estrogen and progesterone receptors (ER and PR, respectively), both containing clonogenic progenitor cells. Deregulated ER/PR− luminal progenitor cells are suspected to be at the origin of basal-type triple-negative (TNBC) breast cancers, a subtype frequently associated with loss of P53 function and MET signaling hyperactivation. Using mouse models, we recently reported that p53 restricts luminal progenitor cell amplification whereas paracrine Met activation stimulates their growth and favors a luminal-to-basal switch. Here, we analyzed how these two critical pathways interact to control luminal progenitor function. Methods We have (i) established and analyzed the gene expression profile of luminal progenitors isolated by ICAM-1, a robust surface marker we previously identified; (ii) purified luminal progenitors from p53-deficient and p53-proficient mouse mammary epithelium to compare their functional and molecular characteristics; and (iii) analyzed their response to HGF, the major Met ligand, in three-dimensional cultures. Results We found that luminal progenitors, compared to non-clonogenic luminal cells, overexpress Trp53 and numerous p53 target genes. In vivo, loss of Trp53 induced the expansion of luminal progenitors, affecting expression of several important p53 target genes including those encoding negative regulators of cell cycle progression. Consistently, p53-deficient luminal progenitors displayed increased proliferative and self-renewal activities in culture. However, they did not exhibit perturbed expression of luminal-specific markers and major regulators, such as Hey1, Elf5, and Gata3. Moreover, although expressing Met at higher level than p53-proficient luminal progenitors, p53-deficient luminal progenitors failed to acquire basal-specific features when stimulated by HGF, showing that p53 promotes the plastic behavior of luminal progenitors downstream of Met activation. Conclusions Our study reveals a crosstalk between Met- and p53-mediated signaling pathways in the regulation of luminal progenitor function. In particular, it shows that neither p53 loss alone nor p53 loss combined with Met signaling activation caused an early detectable cell fate alteration in luminal progenitors. Conceivably, additional events are required to confer basal-specific characteristics to luminal-derived TNBCs. Electronic supplementary material The online version of this article (10.1186/s13058-019-1101-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurélie Chiche
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, F-75005, Paris, France.,Sorbonne Universités, UPMC Paris 06, F-75005, Paris, France.,Institut Pasteur, CNRS, UMR3738, F-75015, Paris, France
| | - Amandine Di-Cicco
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, F-75005, Paris, France.,Sorbonne Universités, UPMC Paris 06, F-75005, Paris, France
| | - Laura Sesma-Sanz
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, F-75005, Paris, France.,Sorbonne Universités, UPMC Paris 06, F-75005, Paris, France.,Université Paris VII Denis Diderot, F-75013, Paris, France
| | - Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, F-75005, Paris, France.,Sorbonne Universités, UPMC Paris 06, F-75005, Paris, France
| | | | - Marina A Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, F-75005, Paris, France.,Sorbonne Universités, UPMC Paris 06, F-75005, Paris, France.,INSERM, F-75013, Paris, France
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, F-75005, Paris, France.,Sorbonne Universités, UPMC Paris 06, F-75005, Paris, France.,INSERM, F-75013, Paris, France
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, F-75005, Paris, France. .,Sorbonne Universités, UPMC Paris 06, F-75005, Paris, France. .,INSERM, F-75013, Paris, France.
| |
Collapse
|
38
|
PIM1 kinase promotes cell proliferation, metastasis and tumor growth of lung adenocarcinoma by potentiating the c-MET signaling pathway. Cancer Lett 2018; 444:116-126. [PMID: 30583073 DOI: 10.1016/j.canlet.2018.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
The proto-oncogene PIM1 plays essential roles in proliferation, survival, metastasis and drug resistance in hematopoietic and solid tumors. Although PIM1 has been shown to be associated with lymph node metastasis and poor prognosis in non-small cell lung cancer, its underlying molecular mechanisms in this context are still unclear. Here we show that PIM1 is frequently overexpressed in lung adenocarcinomas, and its expression level is associated with c-MET expression and poor clinical outcome. We further demonstrate that PIM1 may regulate c-MET expression via phosphorylation of eukaryotic translation initiation factor 4B (eIF4B) on S406. Depletion of PIM1 decreased cell proliferation, migration, invasion and colony formation in vitro, as well as reduced tumor growth in vivo. And these effects were partially abrogated by restoring of c-MET expression. Our study implicates a promising therapeutic approach in lung adenocarcinoma patients with PIM1 and c-MET overexpression.
Collapse
|
39
|
Zhang J, Fa X, Zhang Q. MicroRNA‑206 exerts anti‑oncogenic functions in esophageal squamous cell carcinoma by suppressing the c‑Met/AKT/mTOR pathway. Mol Med Rep 2018; 19:1491-1500. [PMID: 30569129 PMCID: PMC6390054 DOI: 10.3892/mmr.2018.9775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/12/2018] [Indexed: 12/27/2022] Open
Abstract
Increasing evidence suggests that the dysregulation of microRNAs (miRNAs) has an important role in the progression of human cancer, including ESCC. However, the exact functions and mechanisms of miRNAs in ESCC remain largely unclear. The aim of the present study was to investigate the expression and biological functions of miRNAs in ESCC and reveal the underlying molecular mechanisms. miRNA microarray and reverse transcription-quantitative polymerase chain reaction analyses were performed, which identified and confirmed that miR-206 was significantly downregulated in ESCC tissues and cell lines. Its low expression was associated with lymph node metastasis, advanced TNM stage and N classification, as well as poorer overall survival in patients with ESCC. CCK-8 and flow cytometry assays demonstrated that ectopic miR-206 expression inhibited ESCC cell proliferation and induced cell apoptosis. In addition, MET proto-oncogene, receptor tyrosine kinase (c-Met), a well-known oncogene, was a direct target of miR-206. An inverse correlation between the levels of miR-206 and c-Met mRNA in ESCC tissue samples was confirmed. Notably, c-Met overexpression inhibited the effects of miR-206 on the proliferation and apoptosis of ESCC cells. Additionally, it was confirmed that the tumor-suppressive functions of miR-206 may have contributed to the inactivation of the c-Met/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. In conclusion, the findings of the present study suggested that miR-206 exerts its anti-cancer functions via the c-Met/AKT/mTOR signaling pathway, providing a novel candidate prognostic factor and a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Xianen Fa
- Department of Cardiac Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Qingyong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| |
Collapse
|
40
|
Zhang P, Li S, Lv C, Si J, Xiong Y, Ding L, Ma Y, Yang Y. BPI-9016M, a c-Met inhibitor, suppresses tumor cell growth, migration and invasion of lung adenocarcinoma via miR203-DKK1. Am J Cancer Res 2018; 8:5890-5902. [PMID: 30613269 PMCID: PMC6299440 DOI: 10.7150/thno.27667] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Activation of c-Met plays a critical role in tumorigenesis, migration and invasion in lung cancer. Here, we explored the therapeutic efficacy of a novel small-molecule c-Met inhibitor (BPI-9016M) in lung adenocarcinoma and investigated the underlying molecular mechanisms. Method: BPI-9016M, a c-Met tyrosine kinase receptor inhibitor, was used to treat patient-derived xenografts (PDX) from lung adenocarcinoma in NOD/SCID mice. Immunohistochemistry and Western blot analysis were used to determine the expression of c-Met and its downstream signaling molecules. CCK8, wound healing, and trans-well assays were used to analyze cell proliferation, spreading, migration and invasion. RNA sequencing and quantitative real-time PCR (qPCR) was used to screen and validate the expression of downstream genes in lung adenocarcinoma cells treated with BPI-9016M. Luciferase reporter assay was used to detect the interaction between miRNA and the targeted gene. Results: BPI-9016M significantly suppressed growth in three out of four lung adenocarcinoma PDX models, particularly in the tumors with high expression of c-Met. In lung adenocarcinoma cell lines, BPI-9016M treatment resulted in increased miR203, which reduced migration and invasion and also repressed Dickkopf-related protein 1 (DKK1) expression. Forced overexpression of DKK1 or down-regulation of miR203 reversed the inhibitory effect of BPI-9016M on migration and invasion. C-Met was verified to positively and negatively associate with DKK1 and miR203, respectively. High expression of c-Met/DKK1 or low expression of miR203 related to poor outcome of lung adenocarcinoma patients. Furthermore, we observed significantly enhanced tumor cell growth inhibition upon combining BPI-9016M treatment with miR203 mimics or DKK1 siRNA. Conclusion: Our data indicated that BPI-9016M is an effective agent against lung adenocarcinoma, particularly in tumors with c-Met activation, and likely functions through upregulation of miR203 leading to reduced DKK1 expression.
Collapse
|
41
|
Jeong G, Bae H, Jeong D, Ham J, Park S, Kim HW, Kang HS, Kim SJ. A Kelch domain-containing KLHDC7B and a long non-coding RNA ST8SIA6-AS1 act oppositely on breast cancer cell proliferation via the interferon signaling pathway. Sci Rep 2018; 8:12922. [PMID: 30150751 PMCID: PMC6110865 DOI: 10.1038/s41598-018-31306-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
In our previous study, the Kelch domain-containing 7B (KLHDC7B) was revealed to be hypermethylated at the promoter but upregulated in breast cancer. In this study, we identified a long non-coding RNA, ST8SIA6-AS1 (STAR1), whose expression was significantly associated with KLHDC7B in breast cancer (R2 = 0.3466, P < 0.01). Involvement of the two genes in tumorigenesis was examined via monitoring their effect on cellular as well as molecular events after each gene dysregulation in cultured mammary cell lines. Apoptosis of MCF-7 decreased by 49.5% and increased by 33.1%, while proliferation noted increase and decrease by up- and downregulation of KLHDC7B, respectively, suggesting its oncogenic property. STAR1, however, suppressed cell migration and increased apoptosis. Network analysis identified many target genes that appeared to have similar regulation, especially in relation to the interferon signaling pathway. Concordantly, expression of genes such as IFITs, STATs, and IL-29 in that pathway was affected by KLHDC7B and STAR1. Taken together, KLHDC7B and STAR1 are both overexpressed in breast cancer and significantly associated with gene modulation activity in the interferon signaling pathway during breast tumorigenesis.
Collapse
Affiliation(s)
- Gookjoo Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
- PanGen Biotech Inc, Suwon, 16675, Republic of Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
42
|
Shao Z, Li Y, Dai W, Jia H, Zhang Y, Jiang Q, Chai Y, Li X, Sun H, Yang R, Cao Y, Feng F, Guo Y. ETS-1 induces Sorafenib-resistance in hepatocellular carcinoma cells via regulating transcription factor activity of PXR. Pharmacol Res 2018; 135:188-200. [PMID: 30114438 DOI: 10.1016/j.phrs.2018.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Transcription factor E26 transformation specific sequence 1 (ETS-1) is a primary regulator in the metastasis of human cancer cells, especially hepatocellular carcinoma (HCC) cells; and it would affect the prognosis of HCC patients who received chemotherapies. However, the regulatory role of ETS-1 in the resistance of HCC cells to molecular-targeting agent remains poorly understood. In the present work, we demonstrate that high ETS-1 expression correlates with poor prognosis of advanced HCC patients received Sorafenib treatment. Mechanistically, ETS-1 binds to nuclear Pregnane X receptor (PXR) directly and enhances PXR's transcription factor activity, which further leads to the induction of the PXR's downstream multi-drug resistance related genes. Overexpression of ETS-1 accelerates the metabolic clearance of Sorafenib in HCC cells and leads to the better survival and faster migration of those cells. The therapeutic studies show that ETS-1 promotes the Sorafenib-resistance of HCC tumor models and ETS-1 blockade enhances the anti-tumor capacity of Sorafenib by decreasing PXR activation. Thus, our study suggests that ETS-1 could enhance the activation of PXR and be a potential therapeutic target for overcoming Sorafenib resistance in HCC treatment.
Collapse
Affiliation(s)
- Zhiyi Shao
- School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, PR China; The Library, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yibo Li
- School of Psychology, Shaanxi Normal University, Xi'an, PR China
| | - Wenjie Dai
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Hui Jia
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110016, PR China
| | - Yingshi Zhang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110016, PR China
| | - Qiyu Jiang
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Yantao Chai
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Xiaojuan Li
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Huiwei Sun
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Ruichuang Yang
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Yu Cao
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| | - Fan Feng
- The Library, Shaanxi Normal University, Xi'an, 710062, PR China; Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China.
| | - Yingjie Guo
- School of Foreign Languages, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
43
|
Kim HS, Chon HJ, Kim H, Shin SJ, Wacheck V, Gruver AM, Kim JS, Rha SY, Chung HC. MET in gastric cancer with liver metastasis: The relationship between METamplification and Met overexpression in primary stomach tumors and liver metastasis. J Surg Oncol 2018; 117:1679-1686. [DOI: 10.1002/jso.25097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Han S. Kim
- Division of Medical Oncology; Department of Internal Medicine; Yonsei Cancer Center; Yonsei University College of Medicine; Seoul South Korea
- Song-Dang Institute for Cancer Research; Yonsei University College of Medicine; Seoul South Korea
| | - Hong J. Chon
- Division of Medical Oncology; Department of Internal Medicine; CHA University Bundang Medical Center; Seongnam South Korea
| | - Hyunki Kim
- Department of Pathology; Yonsei University College of Medicine; Seoul South Korea
| | - Su-Jin Shin
- Department of Pathology; Hanyang University College of Medicine; Seoul South Korea
| | - Volker Wacheck
- Oncology Medical; Lilly Research Laboratories; A Division of Eli Lilly and Company; Lilly Corporate Center; Indianapolis Indiana
| | - Aaron M. Gruver
- Diagnostic and Experimental Pathology; Eli Lilly and Company; Indianapolis Indiana
| | | | - Sun Y. Rha
- Division of Medical Oncology; Department of Internal Medicine; Yonsei Cancer Center; Yonsei University College of Medicine; Seoul South Korea
- Song-Dang Institute for Cancer Research; Yonsei University College of Medicine; Seoul South Korea
| | - Hyun C. Chung
- Division of Medical Oncology; Department of Internal Medicine; Yonsei Cancer Center; Yonsei University College of Medicine; Seoul South Korea
- Song-Dang Institute for Cancer Research; Yonsei University College of Medicine; Seoul South Korea
| |
Collapse
|
44
|
Wirthschaft P, Bode J, Simon AEM, Hoffmann E, van Laack R, Krüwel T, Dietrich F, Bucher D, Hahn A, Sahm F, Breckwoldt MO, Kurz FT, Hielscher T, Fischer B, Dross N, Ruiz de Almodovar C, von Deimling A, Herold-Mende C, Plass C, Boulant S, Wiestler B, Reifenberger G, Lichter P, Wick W, Tews B. A PRDX1-p38α heterodimer amplifies MET-driven invasion of IDH-wildtype and IDH-mutant gliomas. Int J Cancer 2018; 143:1176-1187. [PMID: 29582423 DOI: 10.1002/ijc.31404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/12/2018] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
The Peroxiredoxin 1 (PRDX1) gene maps to chromosome arm 1p and is hemizygously deleted and epigenetically silenced in isocitrate dehydrogenase 1 or 2 (IDH)-mutant and 1p/19q-codeleted oligodendroglial tumors. In contrast, IDH-wildtype astrocytic gliomas including glioblastomas mostly lack epigenetic silencing and express PRDX1 protein. In our study, we investigated how PRDX1 contributes to the infiltrative growth of IDH-wildtype gliomas. Focusing on p38α-dependent pathways, we analyzed clinical data from 133 patients of the NOA-04 trial cohort to look for differences in the gene expression profiles of gliomas with wildtype or mutant IDH. Biochemical interaction studies as well as in vitro and ex vivo migration studies were used to establish a biological role of PRDX1 in maintaining pathway activity. Whole-brain high-resolution ultramicroscopy and survival analyses of pre-clinical mouse models for IDH-wildtype gliomas were then used for in vivo confirmation. Based on clinical data, we found that the absence of PRDX1 is associated with changes in the expression of MET/HGF signaling components. PRDX1 forms a heterodimer with p38α mitogen-activated protein kinase 14 (MAPK14), stabilizing phospho-p38α in glioma cells. This process amplifies hepatocyte growth factor (HGF)-mediated signaling and stimulates actin cytoskeleton dynamics that promote glioma cell migration. Whole-brain high-resolution ultramicroscopy confirms these findings, indicating that PRDX1 promotes glioma brain invasion in vivo. Finally, reduced expression of PRDX1 increased survival in mouse glioma models. Thus, our preclinical findings suggest that PRDX1 expression levels may serve as a molecular marker for patients who could benefit from targeted inhibition of MET/HGF signaling.
Collapse
Affiliation(s)
- Peter Wirthschaft
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Anika E M Simon
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Elisa Hoffmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Rebecca van Laack
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Fabio Dietrich
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Delia Bucher
- Schaller Research Group at Cell Networks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, DKFZ, Heidelberg, Germany
| | - Artur Hahn
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Michael O Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernd Fischer
- Junior Research Group Computational Genome Biology, DKFZ, Heidelberg, Germany
| | - Nicolas Dross
- Centre for Organismal Studies, Nikon Imaging Center at the University of Heidelberg, Heidelberg, Germany
| | - Carmen Ruiz de Almodovar
- Heidelberg University Biochemistry Center BZH, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at Cell Networks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, DKFZ, Heidelberg, Germany
| | - Benedikt Wiestler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Hospital Düsseldorf, and DKTK, DKFZ Heidelberg, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Peter Lichter
- Division of Molecular Genetics, DKFZ, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| |
Collapse
|
45
|
Yoshimura K, Karayama M, Inoue Y, Kahyo T, Inui N, Maekawa M, Sugimura H, Suda T. Heterogeneous MET gene copy number and EGFR mutation elicit discordant responses to crizotinib between primary and metastatic lesions in erlotinib-resistant lung adenocarcinoma. Lung Cancer 2018; 124:317-319. [PMID: 29573824 DOI: 10.1016/j.lungcan.2018.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Katsuhiro Yoshimura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
46
|
Herrero MJ, Gitton Y. The untold stories of the speech gene, the FOXP2 cancer gene. Genes Cancer 2018; 9:11-38. [PMID: 29725501 PMCID: PMC5931254 DOI: 10.18632/genesandcancer.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
FOXP2 encodes a transcription factor involved in speech and language acquisition. Growing evidence now suggests that dysregulated FOXP2 activity may also be instrumental in human oncogenesis, along the lines of other cardinal developmental transcription factors such as DLX5 and DLX6 [1-4]. Several FOXP familymembers are directly involved during cancer initiation, maintenance and progression in the adult [5-8]. This may comprise either a pro-oncogenic activity or a deficient tumor-suppressor role, depending upon cell types and associated signaling pathways. While FOXP2 is expressed in numerous cell types, its expression has been found to be down-regulated in breast cancer [9], hepatocellular carcinoma [8] and gastric cancer biopsies [10]. Conversely, overexpressed FOXP2 has been reported in multiple myelomas, MGUS (Monoclonal Gammopathy of Undetermined Significance), several subtypes of lymphomas [5,11], as well as in neuroblastomas [12] and ERG fusion-negative prostate cancers [13]. According to functional evidences reported in breast cancer [9] and survey of recent transcriptomic and proteomic analyses of different tumor biopsies, we postulate that FOXP2 dysregulation may play a main role throughout cancer initiation and progression. In some cancer conditions, FOXP2 levels are now considered as a critical diagnostic marker of neoplastic cells, and in many situations, they even bear strong prognostic value [5]. Whether FOXP2 may further become a therapeutic target is an actively explored lead. Knowledge reviewed here may help improve our understanding of FOXP2 roles during oncogenesis and provide cues for diagnostic, prognostic and therapeutic analyses.
Collapse
Affiliation(s)
- Maria Jesus Herrero
- Center for Neuroscience Research, Children's National Medical Center, NW, Washington, DC, USA
| | - Yorick Gitton
- Sorbonne University, INSERM, CNRS, Vision Institute Research Center, Paris, France
| |
Collapse
|
47
|
Sponziello M, Benvenuti S, Gentile A, Pecce V, Rosignolo F, Virzì AR, Milan M, Comoglio PM, Londin E, Fortina P, Barnabei A, Appetecchia M, Marandino F, Russo D, Filetti S, Durante C, Verrienti A. Whole exome sequencing identifies a germline MET mutation in two siblings with hereditary wild-type RET medullary thyroid cancer. Hum Mutat 2017; 39:371-377. [PMID: 29219214 DOI: 10.1002/humu.23378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/12/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
Whole exome sequencing (WES) was used to investigate two Italian siblings with wild-type RET genotype, who developed medullary thyroid cancers (MTCs) and, later, primary prostate and breast cancers, respectively. The proband's MTC harbored a p.Met918Thr RET mutation; his sister's MTC was RET/RAS wild-type. Both siblings had a germline mutation (p.Arg417Gln) in the extracellular Sema domain of the proto-oncogene MET. Experiments involving ectopic expression of MET p.Arg417Gln in MET-negative T47D breast cancer cells documented the mutant receptor's functionality and its ability to enhance cell migration and invasion. Our findings highlight a possible link between MET germline mutations and MTCs and suggest that MET p. Arg417Gln may promote an invasive malignant phenotype. The possibility that MTC can be driven/co-driven by a MET mutation has potential management implications, since the tyrosine-kinase inhibitor cabozantinib-approved for treating advanced MTCs-is a specific MET inhibitor.
Collapse
Affiliation(s)
- Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Silvia Benvenuti
- Molecular Therapeutics and Exploratory Research, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Alessandra Gentile
- Molecular Therapeutics and Exploratory Research, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Valeria Pecce
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Anna Rita Virzì
- Molecular Therapeutics and Exploratory Research, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Candiolo, Italy
| | - Melissa Milan
- Molecular Therapeutics and Exploratory Research, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy.,Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Paolo M Comoglio
- Molecular Therapeutics and Exploratory Research, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paolo Fortina
- Cancer Genomics Laboratory, Sidney Kimmel Cancer Center, Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Agnese Barnabei
- Unit of Endocrinology, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Sebastiano Filetti
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
48
|
Maroni P, Puglisi R, Mattia G, Carè A, Matteucci E, Bendinelli P, Desiderio MA. In bone metastasis miR-34a-5p absence inversely correlates with Met expression, while Met oncogene is unaffected by miR-34a-5p in non-metastatic and metastatic breast carcinomas. Carcinogenesis 2017; 38:492-503. [PMID: 28334277 DOI: 10.1093/carcin/bgx027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
The highlight of the molecular basis and therapeutic targets of the bone-metastatic process requires the identification of biomarkers of metastasis colonization. Here, we studied miR-34a-5p expression, and Met-receptor expression and localization in bone metastases from ductal breast carcinomas, and in ductal carcinomas without history of metastasis (20 cases). miR-34a-5p was elevated in non-metastatic breast carcinoma, intermediate in the adjacent tissue and practically absent in bone metastases, opposite to pair-matched carcinoma. Met-receptor biomarker was highly expressed and inversely correlated with miR-34a-5p using the same set of bone-metastasis tissues. The miR-34a-5p silencing might depend on aberrant-epigenetic mechanisms of plastic-bone metastases, since in 1833 cells under methyltransferase blockade miR-34a-5p augmented. In fact, 1833 cells showed very low endogenous miR-34a-5p, in respect to parental MDA-MB231 breast carcinoma cells, and the restoration of miR-34a-5p with the mimic reduced Met and invasiveness. Notably, hepatocyte growth factor (HGF)-dependent Met stabilization was observed in bone-metastatic 1833 cells, consistent with Met co-distribution with the ligand HGF at plasma membrane and at nuclear levels in bone metastases. Met-protein level was higher in non-metastatic (low grade) than in metastatic (high grade) breast carcinomas, notwithstanding miR-34a-5p-elevated expression in both the specimens. Thus, mostly in non-metastatic carcinomas the elevated miR-34a-5p unaffected Met, important for invasive/mesenchymal phenotype, while possibly targeting some stemness biomarkers related to metastatic phenotype. In personalized therapies against bone metastasis, we suggest miR-34a-5p as a suitable target of epigenetic reprogramming leading to the accumulation of miR-34a-5p and the down-regulation of Met-tyrosine kinase, a key player of the bone-metastatic process.
Collapse
Affiliation(s)
- Paola Maroni
- Istituto Ortopedico Galeazzi, IRCCS, Milano 20161, Italy
| | - Rossella Puglisi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy and
| | - Gianfranco Mattia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy and
| | - Alessandra Carè
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy and
| | - Emanuela Matteucci
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano 20133, Italy
| | - Paola Bendinelli
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano 20133, Italy
| | - Maria Alfonsina Desiderio
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano 20133, Italy
| |
Collapse
|
49
|
Slattery ML, Trivellas A, Pellatt AJ, Mullany LE, Stevens JR, Wolff RK, Herrick JS. Genetic variants in the TGFβ-signaling pathway influence expression of miRNAs in colon and rectal normal mucosa and tumor tissue. Oncotarget 2017; 8:16765-16783. [PMID: 28061442 PMCID: PMC5370000 DOI: 10.18632/oncotarget.14508] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/16/2016] [Indexed: 01/04/2023] Open
Abstract
The TGF-β signaling pathway is involved in regulation of cell growth, angiogenesis, and metastasis. We test the hypothesis that genetic variation in the TGF-β signaling pathway alters miRNA expression.We use data from 1188 colorectal cancer cases to evaluate associations between 80 SNPs in 21 genes.Seven variants eIF4E rs12498533, NFκB1 rs230510, TGFB1 rs4803455, TGFBR1 rs1571590 and rs6478974, SMAD3 rs3743343, and RUNX1 rs8134179 were associated with expression level of miRNAs in normal colorectal mucosa. RUNX2 rs12333172 and BMPR1B rs13134042 were associated with miRNAs in normal colon mucosa; eIF4EBP3 rs250425, SMAD3 rs12904944, SMAD7 rs3736242, and PTEN rs532678 were associated with miRNA expression in normal rectal mucosa. Evaluation of the differential expression between carcinoma and normal mucosa showed that SMAD3 rs12708491 and rs2414937, NFκB1 rs230510 and rs3821958, and RUNX3 rs6672420 were associated with several miRNAs for colorectal carcinoma. Evaluation of site-specific differential miRNA expression showed that BMPR1B rs2120834, BMPR2 rs2228545, and eIF4EBP3 rs250425 were associated with differential miRNA expression in colon tissue and SMAD3 rs12901071, rs1498506, and rs2414937, BMPR2 rs2228545, and RUNX2 rs2819854, altered differential miRNA expression in rectal tissue.These data support the importance of the TGF-β signaling pathway to the carcinogenic process, possibly through their influence on miRNA expression levels.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | | | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
50
|
Luan W, Li R, Liu L, Ni X, Shi Y, Xia Y, Wang J, Lu F, Xu B. Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote malignant melanoma progression by sponging miR-152-3p. Oncotarget 2017; 8:85401-85414. [PMID: 29156728 PMCID: PMC5689618 DOI: 10.18632/oncotarget.19910] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
HOX transcript antisense RNA (HOTAIR) is associated with the growth and metastasis of many human tumors, but its biological roles in malignant melanoma remain unclear. In this study, we show that HOTAIR is overexpressed in melanoma tissues and cells, especially in metastatic melanoma. High HOTAIR levels correlate with poor prognosis in melanoma patients. We also determined that HOTAIR functions as a competing endogenous RNA (ceRNA) for miR-152-3p. miR-152-3p was decreased and acted as a tumor suppressor in melanoma, and c-MET was the functional target of miR-152-3p. Furthermore, HOTAIR promotes the growth and metastasis of melanoma cells by competitively binding miR-152-3p, which functionally liberates c-MET mRNA and results in the activation of the downstream PI3k/Akt/mTOR signaling pathway. We determined that HOTAIR acts as a ceRNA to promote malignant melanoma progression by sponging miR-152-3p. This finding elucidates a new mechanism for HOTAIR in melanoma development and provides a potential therapeutic target for melanoma patients.
Collapse
Affiliation(s)
- Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Rubo Li
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Liang Liu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Ni
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Xia
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jinlong Wang
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Feng Lu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Bin Xu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|