1
|
Zhu J, Zhou XM, Constantinidis C, Salinas E, Stanford TR. Parallel signatures of cognitive maturation in primate antisaccade performance and prefrontal activity. iScience 2024; 27:110488. [PMID: 39156644 PMCID: PMC11326912 DOI: 10.1016/j.isci.2024.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/29/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
The ability to suppress inappropriate actions and respond rapidly to appropriate ones matures late in life, after puberty. We investigated the development of this capability in monkeys trained to look away from a lone, bright stimulus (antisaccade task). We evaluated behavioral performance and recorded neural activity in the prefrontal cortex both before and after the transition from puberty to adulthood. Compared to when young, adult monkeys processed the stimulus more rapidly, resisted more effectively the involuntary urge to look at it, and adhered to the task rule more consistently. The spatially selective visuomotor neurons in the prefrontal cortex provided neural correlates of these behavioral changes indicative of a faster transition from stimulus-driven (exogenous) to goal-driven (endogenous) control within the time course of each trial. The results reveal parallel signatures of cognitive maturation in behavior and prefrontal activity that are consistent with improvements in attentional allocation after adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Terrence R. Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
2
|
Ma L, Selvanayagam J, Ghahremani M, Hayrynen LK, Johnston KD, Everling S. Single-unit activity in marmoset posterior parietal cortex in a gap saccade task. J Neurophysiol 2020; 123:896-911. [DOI: 10.1152/jn.00614.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. The common marmoset ( Callithrix jacchus) is becoming increasingly popular as a nonhuman primate model to investigate the cortical mechanisms of saccadic control. Recently, our group demonstrated that microstimulation in the posterior parietal cortex (PPC) of marmosets elicits contralateral saccades. Here we recorded single-unit activity in the PPC of the same two marmosets using chronic microelectrode arrays while the monkeys performed a saccadic task with gap trials (target onset lagged fixation point offset by 200 ms) interleaved with step trials (fixation point disappeared when the peripheral target appeared). Both marmosets showed a gap effect, shorter saccadic reaction times (SRTs) in gap vs. step trials. On average, stronger gap-period responses across the entire neuronal population preceded shorter SRTs on trials with contralateral targets although this correlation was stronger among the 15% “gap neurons,” which responded significantly during the gap. We also found 39% “target neurons” with significant saccadic target-related responses, which were stronger in gap trials and correlated with the SRTs better than the remaining neurons. Compared with saccades with relatively long SRTs, short-SRT saccades were preceded by both stronger gap-related and target-related responses in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation. NEW & NOTEWORTHY As a primate model in systems neuroscience, the marmoset is a great complement to the macaque monkey because of its unique advantages. To identify oculomotor networks in the marmoset, we recorded from the marmoset posterior parietal cortex during a saccadic task and found single-unit activities consistent with a role in saccadic modulation. This finding supports the marmoset as a valuable model for studying oculomotor control.
Collapse
Affiliation(s)
- Liya Ma
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Janahan Selvanayagam
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Maryam Ghahremani
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Lauren K. Hayrynen
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Kevin D. Johnston
- Departments of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
- Departments of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Nassar MR, Helmers JC, Frank MJ. Chunking as a rational strategy for lossy data compression in visual working memory. Psychol Rev 2019; 125:486-511. [PMID: 29952621 DOI: 10.1037/rev0000101] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nature of capacity limits for visual working memory has been the subject of an intense debate that has relied on models that assume items are encoded independently. Here we propose that instead, similar features are jointly encoded through a "chunking" process to optimize performance on visual working memory tasks. We show that such chunking can: (a) facilitate performance improvements for abstract capacity-limited systems, (b) be optimized through reinforcement, (c) be implemented by center-surround dynamics, and (d) increase effective storage capacity at the expense of recall precision. Human performance on a variant of a canonical working memory task demonstrated performance advantages, precision detriments, interitem dependencies, and trial-to-trial behavioral adjustments diagnostic of performance optimization through center-surround chunking. Models incorporating center-surround chunking provided a better quantitative description of human performance in our study as well as in a meta-analytic dataset, and apparent differences in working memory capacity across individuals were attributable to individual differences in the implementation of chunking. Our results reveal a normative rationale for center-surround connectivity in working memory circuitry, call for reevaluation of memory performance differences that have previously been attributed to differences in capacity, and support a more nuanced view of visual working memory capacity limitations: strategic tradeoff between storage capacity and memory precision through chunking contribute to flexible capacity limitations that include both discrete and continuous aspects. (PsycINFO Database Record
Collapse
Affiliation(s)
- Matthew R Nassar
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown Institute for Brain Science, Brown University
| | - Julie C Helmers
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown Institute for Brain Science, Brown University
| | - Michael J Frank
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown Institute for Brain Science, Brown University
| |
Collapse
|
4
|
Pretegiani E, Piu P, Rosini F, Federighi P, Serchi V, Tumminelli G, Dotti MT, Federico A, Rufa A. Anti-Saccades in Cerebellar Ataxias Reveal a Contribution of the Cerebellum in Executive Functions. Front Neurol 2018; 9:274. [PMID: 29740392 PMCID: PMC5926529 DOI: 10.3389/fneur.2018.00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/06/2018] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Increasing evidence suggests a cerebellar contribution to modulate cognitive aspects of motor behavior and executive functions. Supporting findings come from studies on patients with neurodegenerative diseases, in which however, given the extent of the disease, the specific role of the cerebellum, could not be clearly isolated. Anti-saccades are considered a sensitive tool to test executive functions. The anti-saccade underlying neural network, consisting of different cortical areas and their downstream connections including the lateral cerebellum, has been largely clarified. To separate the role of the cerebellum with respect to other cortical structures in executive control, we compared the anti-saccade performances in two distinct cohorts of patients with cerebellar disorders (with and without cerebral cortical involvement). METHODS Eye movements during the execution of anti-saccades were recorded in 12 patients with spinocerebellar ataxia type 2 (a cortical-subcortical neurodegenerative disease), 10 patients with late onset cerebellar ataxia (an isolated cerebellar atrophy), and 34 matched controls. RESULTS In the anti-saccade task, besides dynamic changes already demonstrated in the pro-saccades of these patients, we found in both groups of cerebellar patients prolonged latency with larger variability than normal and increased directional error rate. Errors, however, were corrected by cerebellar patients as frequently as normal. No significant differences were found in patients with and without cortical involvement. CONCLUSION Our results indicate, in a large cohort of cerebellar patients, that the cerebellum plays a critical role in the regulation of executive motor control not only, as well known, by controlling the end of a movement, but also modulating its initiation and reducing reflexive responses that would perturb voluntary actions.
Collapse
Affiliation(s)
- Elena Pretegiani
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Pietro Piu
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca Rosini
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pamela Federighi
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Department of Business and Law, University of Siena, Siena, Italy
| | - Valeria Serchi
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Gemma Tumminelli
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Teresa Dotti
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Antonio Federico
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Abstract
In natural behavior, animals have access to multiple sources of information, but only a few of these sources are relevant for learning and actions. Beyond choosing an appropriate action, making good decisions entails the ability to choose the relevant information, but fundamental questions remain about the brain's information sampling policies. Recent studies described the neural correlates of seeking information about a reward, but it remains unknown whether, and how, neurons encode choices of instrumental information, in contexts in which the information guides subsequent actions. Here we show that parietal cortical neurons involved in oculomotor decisions encode, before an information sampling saccade, the reduction in uncertainty that the saccade is expected to bring for a subsequent action. These responses were distinct from the neurons' visual and saccadic modulations and from signals of expected reward or reward prediction errors. Therefore, even in an instrumental context when information and reward gains are closely correlated, individual cells encode decision variables that are based on informational factors and can guide the active sampling of action-relevant cues.
Collapse
|
6
|
From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control. Brain Res 2014; 1621:270-93. [PMID: 25446436 DOI: 10.1016/j.brainres.2014.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/06/2014] [Indexed: 11/23/2022]
Abstract
This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
|
7
|
Genovesio A, Wise SP, Passingham RE. Prefrontal–parietal function: from foraging to foresight. Trends Cogn Sci 2014; 18:72-81. [PMID: 24378542 DOI: 10.1016/j.tics.2013.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
|
8
|
Kubanek J, Wang C, Snyder LH. Neuronal responses to target onset in oculomotor and somatomotor parietal circuits differ markedly in a choice task. J Neurophysiol 2013; 110:2247-56. [PMID: 23966670 DOI: 10.1152/jn.00968.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We often look at and sometimes reach for visible targets. Looking at a target is fast and relatively easy. By comparison, reaching for an object is slower and is associated with a larger cost. We hypothesized that, as a result of these differences, abrupt visual onsets may drive the circuits involved in saccade planning more directly and with less intermediate regulation than the circuits involved in reach planning. To test this hypothesis, we recorded discharge activity of neurons in the parietal oculomotor system (area LIP) and in the parietal somatomotor system (area PRR) while monkeys performed a visually guided movement task and a choice task. We found that in the visually guided movement task LIP neurons show a prominent transient response to target onset. PRR neurons also show a transient response, although this response is reduced in amplitude, is delayed, and has a slower rise time compared with LIP. A more striking difference is observed in the choice task. The transient response of PRR neurons is almost completely abolished and replaced with a slow buildup of activity, while the LIP response is merely delayed and reduced in amplitude. Our findings suggest that the oculomotor system is more closely and obligatorily coupled to the visual system, whereas the somatomotor system operates in a more discriminating manner.
Collapse
Affiliation(s)
- J Kubanek
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and
| | | | | |
Collapse
|
9
|
A functional hierarchy within the parietofrontal network in stimulus selection and attention control. J Neurosci 2013; 33:8359-69. [PMID: 23658175 DOI: 10.1523/jneurosci.4058-12.2013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although we are confronted with an ever-changing environment, we do not have the capacity to analyze all incoming sensory information. Perception is selective and is guided both by salient events occurring in our visual field and by cognitive premises about what needs our attention. Although the lateral intraparietal area (LIP) and frontal eye field (FEF) are known to represent the position of visual attention, their respective contributions to its control are still unclear. Here, we report LIP and FEF neuronal activities recorded while monkeys performed a voluntary attention-orientation target-detection task. We show that both encode behaviorally significant events, but that the FEF plays a specific role in mapping abstract cue instructions onto a spatial priority map to voluntarily guide attention. On the basis of a latency analysis, we show that the coding of stimulus identity and position precedes the emergence of an explicit attentional signal within the FEF. We also describe dynamic temporal hierarchies between LIP and FEF: stimuli carrying the highest intrinsic saliency are signaled by LIP before FEF, whereas stimuli carrying the highest extrinsic saliency are signaled in FEF before LIP. This suggests that whereas the parietofrontal attentional network most probably processes visual information in a recurrent way, exogenous processing predominates in the parietal cortex and the endogenous control of attention takes place in the FEF.
Collapse
|
10
|
Ptak R, Müri RM. The parietal cortex and saccade planning: lessons from human lesion studies. Front Hum Neurosci 2013; 7:254. [PMID: 23759723 PMCID: PMC3675316 DOI: 10.3389/fnhum.2013.00254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/21/2013] [Indexed: 11/13/2022] Open
Abstract
The parietal cortex is a critical interface for attention and integration of multiple sensory signals that can be used for the implementation of motor plans. Many neurons in this region exhibit strong attention-, reach-, grasp- or saccade-related activity. Here, we review human lesion studies supporting the critical role of the parietal cortex in saccade planning. Studies of patients with unilateral parietal damage and spatial neglect reveal characteristic spatially lateralized deficits of saccade programming when multiple stimuli compete for attention. However, these patients also show bilateral impairments of saccade initiation and control that are difficult to explain in the context of their lateralized deficits of visual attention. These findings are reminiscent of the deficits of oculomotor control observed in patients with Bálint's syndrome consecutive to bilateral parietal damage. We propose that some oculomotor deficits following parietal damage are compatible with a decisive role of the parietal cortex in saccade planning under conditions of sensory competition, while other deficits reflect disinhibition of low-level structures of the oculomotor network in the absence of top-down parietal modulation.
Collapse
Affiliation(s)
- Radek Ptak
- Division of Neurorehabilitation, University Hospitals GenevaGeneva, Switzerland
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of GenevaGeneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of GenevaGeneva, Switzerland
| | - René M. Müri
- Division of Cognitive and Restorative Neurology, Department of Neurology, University HospitalInselspital, Bern, Switzerland
| |
Collapse
|
11
|
Ptak R, Fellrath J. Spatial neglect and the neural coding of attentional priority. Neurosci Biobehav Rev 2013; 37:705-22. [DOI: 10.1016/j.neubiorev.2013.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/11/2012] [Accepted: 01/28/2013] [Indexed: 11/27/2022]
|
12
|
He L, Zuo Z, Chen L, Humphreys G. Effects of number magnitude and notation at 7T: separating the neural response to small and large, symbolic and nonsymbolic number. ACTA ACUST UNITED AC 2013; 24:2199-209. [PMID: 23535179 DOI: 10.1093/cercor/bht074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We examined the effects of number magnitude (within vs. outside the subitizable range) and notation (symbolic vs. nonsymbolic number) on neural responses to visual displays in the human brain using fMRI at 7T. We found that the right temporoparietal junction (rTPJ) responded more strongly to small than to larger numbers (2, 4 > 6, 8), while there was greater activity bilaterally within and around the intraparietal sulcus (IPS) as number magnitude increased (6, 8 > 2, 4). The effects of number magnitude were greatest for nonsymbolic stimuli. In addition, there was striking overlap between rTPJ regions responding to small numbers and those most strongly activated by symbolic stimuli, and between IPS regions responding to large numbers and those most activated by nonsymbolic stimuli. The results are consistent with distinct neural processes recruited for the processing of small- and large-number magnitudes. Contributions due to differences in representing exact number (small nonsymbolic arrays and all symbolic numbers, in rTPJ) and overall magnitude (particularly with large nonsymbolic arrays, in IPS), and the associated theoretical implications of the findings, are discussed.
Collapse
Affiliation(s)
- Lixia He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China and
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China and
| | - Lin Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China and
| | - Glyn Humphreys
- Departmentof Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK
| |
Collapse
|
13
|
O'Herron P, von der Heydt R. Remapping of border ownership in the visual cortex. J Neurosci 2013; 33:1964-74. [PMID: 23365235 PMCID: PMC4086328 DOI: 10.1523/jneurosci.2797-12.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/17/2012] [Accepted: 10/22/2012] [Indexed: 11/21/2022] Open
Abstract
We see objects as having continuity although the retinal image changes frequently. How such continuity is achieved is hard to understand, because neurons in the visual cortex have small receptive fields that are fixed on the retina, which means that a different set of neurons is activated every time the eyes move. Neurons in areas V1 and V2 of the visual cortex signal the local features that are currently in their receptive fields and do not show "remapping" when the image moves. However, subsets of neurons in these areas also carry information about global aspects, such as figure-ground organization. Here we performed experiments to find out whether figure-ground organization is remapped. We recorded single neurons in macaque V1 and V2 in which figure-ground organization is represented by assignment of contours to regions (border ownership). We found previously that border-ownership signals persist when a figure edge is switched to an ambiguous edge by removing the context. We now used this paradigm to see whether border ownership transfers when the ambiguous edge is moved across the retina. In the new position, the edge activated a different set of neurons at a different location in cortex. We found that border ownership was transferred to the newly activated neurons. The transfer occurred whether the edge was moved by a saccade or by moving the visual display. Thus, although the contours are coded in retinal coordinates, their assignment to objects is maintained across movements of the retinal image.
Collapse
Affiliation(s)
- Philip O'Herron
- Krieger Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
14
|
Chafee MV, Crowe DA. Thinking in spatial terms: decoupling spatial representation from sensorimotor control in monkey posterior parietal areas 7a and LIP. Front Integr Neurosci 2013; 6:112. [PMID: 23355813 PMCID: PMC3555036 DOI: 10.3389/fnint.2012.00112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 11/05/2012] [Indexed: 11/24/2022] Open
Abstract
Perhaps the simplest and most complete description of the cerebral cortex is that it is a sensorimotor controller whose primary purpose is to represent stimuli and movements, and adaptively control the mapping between them. However, in order to think, the cerebral cortex has to generate patterns of neuronal activity that encode abstract, generalized information independently of ongoing sensorimotor events. A critical question confronting cognitive systems neuroscience at present therefore is how neural signals encoding abstract information emerge within the sensorimotor control networks of the brain. In this review, we approach that question in the context of the neural representation of space in posterior parietal cortex of non-human primates. We describe evidence indicating that parietal cortex generates a hierarchy of spatial representations with three basic levels: including (1) sensorimotor signals that are tightly coupled to stimuli or movements, (2) sensorimotor signals modified in strength or timing to mediate cognition (examples include attention, working memory, and decision-processing), as well as (3) signals that encode frankly abstract spatial information (such as spatial relationships or categories) generalizing across a wide diversity of specific stimulus conditions. Here we summarize the evidence for this hierarchy, and consider data showing that signals at higher levels derive from signals at lower levels. That in turn could help characterize neural mechanisms that derive a capacity for abstraction from sensorimotor experience.
Collapse
Affiliation(s)
- Matthew V Chafee
- Department of Neuroscience, University of Minnesota Medical School Minneapolis, MN, USA ; Brain Sciences Center, VA Medical Center Minneapolis, MN, USA ; Center for Cognitive Sciences, University of Minnesota Minneapolis, MN, USA
| | | |
Collapse
|
15
|
Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Netw 2013; 37:1-47. [PMID: 23149242 DOI: 10.1016/j.neunet.2012.09.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/24/2012] [Accepted: 09/24/2012] [Indexed: 11/17/2022]
|
16
|
Dynamic integration of information about salience and value for saccadic eye movements. Proc Natl Acad Sci U S A 2012; 109:7547-52. [PMID: 22529390 DOI: 10.1073/pnas.1115638109] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Humans shift their gaze to a new location several times per second. It is still unclear what determines where they look next. Fixation behavior is influenced by the low-level salience of the visual stimulus, such as luminance, contrast, and color, but also by high-level task demands and prior knowledge. Under natural conditions, different sources of information might conflict with each other and have to be combined. In our paradigm, we trade off visual salience against expected value. We show that both salience and value information influence the saccadic end point within an object, but with different time courses. The relative weights of salience and value are not constant but vary from eye movement to eye movement, depending critically on the availability of the value information at the time when the saccade is programmed. Short-latency saccades are determined mainly by salience, but value information is taken into account for long-latency saccades. We present a model that describes these data by dynamically weighting and integrating detailed topographic maps of visual salience and value. These results support the notion of independent neural pathways for the processing of visual information and value.
Collapse
|
17
|
From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search. J Neurosci 2012; 32:3433-46. [PMID: 22399766 DOI: 10.1523/jneurosci.4622-11.2012] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe a stochastic accumulator model demonstrating that visual search performance can be understood as a gated feedforward cascade from a salience map to multiple competing accumulators. The model quantitatively accounts for behavior and predicts neural dynamics of macaque monkeys performing visual search for a target stimulus among different numbers of distractors. The salience accumulated in the model is equated with the spike trains recorded from visually responsive neurons in the frontal eye field. Accumulated variability in the firing rates of these neurons explains choice probabilities and the distributions of correct and error response times with search arrays of different set sizes if the accumulators are mutually inhibitory. The dynamics of the stochastic accumulators quantitatively predict the activity of presaccadic movement neurons that initiate eye movements if gating inhibition prevents accumulation before the representation of stimulus salience emerges. Adjustments in the level of gating inhibition can control trade-offs in speed and accuracy that optimize visual search performance.
Collapse
|
18
|
Foley NC, Grossberg S, Mingolla E. Neural dynamics of object-based multifocal visual spatial attention and priming: object cueing, useful-field-of-view, and crowding. Cogn Psychol 2012; 65:77-117. [PMID: 22425615 DOI: 10.1016/j.cogpsych.2012.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 01/07/2012] [Accepted: 02/02/2012] [Indexed: 11/18/2022]
Abstract
How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued locations? What factors underlie individual differences in the timing and frequency of such attentional shifts? How do transient and sustained spatial attentional mechanisms work and interact? How can volition, mediated via the basal ganglia, influence the span of spatial attention? A neural model is developed of how spatial attention in the where cortical stream coordinates view-invariant object category learning in the what cortical stream under free viewing conditions. The model simulates psychological data about the dynamics of covert attention priming and switching requiring multifocal attention without eye movements. The model predicts how "attentional shrouds" are formed when surface representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning shrouds support invariant object category learning, and active surface-shroud resonances support conscious surface perception and recognition. Attentive competition between multiple objects and cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of sustained surface-driven and fast-transient motion-driven spatial attention controls individual differences in reaction time for invalid cues. Competition between surface-driven attentional shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-view tasks. The model proposes how the strength of competition can be mediated, though learning or momentary changes in volition, by the basal ganglia. A new explanation of crowding shows how the cortical magnification factor, among other variables, can cause multiple object surfaces to share a single surface-shroud resonance, thereby preventing recognition of the individual objects.
Collapse
Affiliation(s)
- Nicholas C Foley
- Center for Adaptive Systems, Department of Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
19
|
Schall JD, Purcell BA, Heitz RP, Logan GD, Palmeri TJ. Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade. Eur J Neurosci 2011; 33:1991-2002. [PMID: 21645095 DOI: 10.1111/j.1460-9568.2011.07715.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We review a new computational model developed to understand how evidence about stimulus salience in visual search is translated into a saccade command. The model uses the activity of visually responsive neurons in the frontal eye field as evidence for stimulus salience that is accumulated in a network of stochastic accumulators to produce accurate and timely saccades. We discovered that only when the input to the accumulation process was gated could the model account for the variability in search performance and predict the dynamics of movement neuron discharge rates. This union of cognitive modeling and neurophysiology indicates how the visual-motor transformation can occur, and provides a concrete mapping between neuron function and specific cognitive processes.
Collapse
Affiliation(s)
- Jeffrey D Schall
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| | | | | | | | | |
Collapse
|
20
|
Wardak C, Olivier E, Duhamel JR. The relationship between spatial attention and saccades in the frontoparietal network of the monkey. Eur J Neurosci 2011; 33:1973-81. [PMID: 21645093 DOI: 10.1111/j.1460-9568.2011.07710.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Claire Wardak
- Centre de Neuroscience Cognitive, UMR5229 CNRS - Université Claude Bernard Lyon 1, Bron Cedex, France.
| | | | | |
Collapse
|
21
|
Pouget P, Pradat-Diehl P, Rivaud-Péchoux S, Wattiez N, Gaymard B. An oculomotor and computational study of a patient with diagonistic dyspraxia. Cortex 2011; 47:473-83. [DOI: 10.1016/j.cortex.2010.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/26/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
22
|
Attention as a decision in information space. Trends Cogn Sci 2010; 14:240-8. [PMID: 20399701 DOI: 10.1016/j.tics.2010.03.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/23/2022]
Abstract
Decision formation and attention are two fundamental processes through which we select, respectively, appropriate actions or sources of information. Although both functions have been studied in the oculomotor system, we lack a unified view explaining both forms of selection. We review evidence showing that parietal neurons encoding saccade motor decisions also carry signals of attention (perceptual selection) that are independent of the metrics, modality and reward of an action. We propose that attention implements a specialized form of decision based on the utility of information. Thus, oculomotor control depends on two interacting but distinct processes: attentional decisions that assign value to sources of information and motor decisions that flexibly link the selected information with action.
Collapse
|
23
|
Park J, Zhang J. Sensorimotor locus of the buildup activity in monkey lateral intraparietal area neurons. J Neurophysiol 2010; 103:2664-74. [PMID: 20164399 DOI: 10.1152/jn.00733.2009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A study in 2002 using a random-dot motion-discrimination paradigm showed that an information accumulation model with a threshold-crossing mechanism can account for activity of the lateral intraparietal area (LIP) neurons. Here, mathematical techniques were applied to the same dataset to quantitatively address the sensory versus motor representation of the neuronal activity during the time course of a trial. A technique based on Signal Detection Theory was applied to provide indices to quantify how neuronal firing activity is responsible for encoding the stimulus or selecting the response at the behavioral level. Additionally, a statistical model based on Poisson regression was used to provide an orthogonal decomposition of the neural activity into stimulus, response, and stimulus-response mapping components. The temporal dynamics of the sensorimotor locus of the LIP activity indicated that there is no stimulus-response mapping-specific neuronal firing activity throughout a trial; the neural activity toward the saccadic onset reflects the development of the motor representation, and the neural activity in the beginning of a trial contains little, if any, information about the sensory representation. Sensorimotor analysis on individual neurons also showed that the neuronal activation, as a population, represent pending saccadic direction and carry little information about the direction of the motion stimulus.
Collapse
Affiliation(s)
- Joonkoo Park
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
24
|
Constantin AG, Wang H, Monteon JA, Martinez-Trujillo JC, Crawford JD. 3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex. Neuroscience 2009; 164:1284-302. [PMID: 19733631 DOI: 10.1016/j.neuroscience.2009.08.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 08/27/2009] [Accepted: 08/29/2009] [Indexed: 11/28/2022]
Abstract
Coordinated eye-head gaze shifts have been evoked during electrical stimulation of the frontal cortex (supplementary eye field (SEF) and frontal eye field (FEF)) and superior colliculus (SC), but less is known about the role of lateral intraparietal cortex (LIP) in head-unrestrained gaze shifts. To explore this, two monkeys (M1 and M2) were implanted with recording chambers and 3-D eye+ head search coils. Tungsten electrodes delivered trains of electrical pulses (usually 200 ms duration) to and around area LIP during head-unrestrained gaze fixations. A current of 200 muA consistently evoked small, short-latency contralateral gaze shifts from 152 sites in M1 and 243 sites in M2 (Constantin et al., 2007). Gaze kinematics were independent of stimulus amplitude and duration, except that subsequent saccades were suppressed. The average amplitude of the evoked gaze shifts was 8.46 degrees for M1 and 8.25 degrees for M2, with average head components of only 0.36 and 0.62 degrees respectively. The head's amplitude contribution to these movements was significantly smaller than in normal gaze shifts, and did not increase with behavioral adaptation. Stimulation-evoked gaze, eye and head movements qualitatively obeyed normal 3-D constraints (Donders' law and Listing's law), but with less precision. As in normal behavior, when the head was restrained LIP stimulation evoked eye-only saccades in Listing's plane, whereas when the head was not restrained, stimulation evoked saccades with position-dependent torsional components (driving the eye out of Listing's plane). In behavioral gaze-shifts, the vestibuloocular reflex (VOR) then drives torsion back into Listing's plane, but in the absence of subsequent head movement the stimulation-induced torsion was "left hanging". This suggests that the position-dependent torsional saccade components are preprogrammed, and that the oculomotor system was expecting a head movement command to follow the saccade. These data show that, unlike SEF, FEF, and SC stimulation in nearly identical conditions, LIP stimulation fails to produce normally-coordinated eye-head gaze shifts.
Collapse
Affiliation(s)
- A G Constantin
- Centre for Vision Research, York University, Toronto, ON, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Macaluso E. Orienting of spatial attention and the interplay between the senses. Cortex 2009; 46:282-97. [PMID: 19540475 DOI: 10.1016/j.cortex.2009.05.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/27/2009] [Accepted: 05/14/2009] [Indexed: 11/30/2022]
Abstract
Many everyday situations require combining complex sensory signals about the external world with ongoing goals and expectations. Here I examine the role of attention in this process and consider the underlying neural substrates. First, mechanisms of spatial attention in the visual modality are reviewed, emphasising the involvement of fronto-parietal cortex. Spatial attention takes into account endogenous factors, e.g., information about behavioural relevance, as well as signals arising from the external world (stimulus-driven control). Stimulus-driven control is thought to take place automatically and independently from endogenous factors. However, recent findings demonstrate that endogenous and stimulus-driven mechanisms co-operate, jointly contributing for the selection of the relevant spatial location. Next, I will turn to studies of multisensory spatial attention. These have shown that attention control in fronto-parietal cortex operates supramodally. Supramodal control exerts top-down influences onto sensory-specific areas, enhancing the processing of stimuli at the attended location irrespective of modality. Unlike unimodal visual attention, but in line with traditional views of multisensory integration, multisensory attention can operate in a fully automatic manner regardless of relevance and task-set. I discuss these findings in relation to functional/anatomical pathways that may mediate multisensory attention control, highlighting possible links between spatial attention and multisensory integration of space.
Collapse
Affiliation(s)
- Emiliano Macaluso
- Neuroimaging Laboratory, Santa Lucia Foundation, via Ardeatina 306, Rome, Italy.
| |
Collapse
|
27
|
Multimodal activity in the parietal cortex. Hear Res 2009; 258:100-5. [PMID: 19450431 DOI: 10.1016/j.heares.2009.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
Goal-directed behavior can be thought of as dynamic links between sensory stimuli and motor acts. Neural correlates of many of the intermediate events of both auditory and visual goal-directed behaviors are found in the posterior parietal cortex. Here, we review studies that have focused on how neurons in the lateral intraparietal area (area LIP) differentially process auditory and visual stimuli. Together, these studies suggest that area LIP contains a modality-dependent representation that is highly dependent on behavioral context.
Collapse
|
28
|
Balan PF, Oristaglio J, Schneider DM, Gottlieb J. Neuronal correlates of the set-size effect in monkey lateral intraparietal area. PLoS Biol 2008; 6:e158. [PMID: 18656991 PMCID: PMC2443194 DOI: 10.1371/journal.pbio.0060158] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 05/16/2008] [Indexed: 11/18/2022] Open
Abstract
It has long been known that the brain is limited in the amount of sensory information that it can process at any given time. A well-known form of capacity limitation in vision is the set-size effect, whereby the time needed to find a target increases in the presence of distractors. The set-size effect implies that inputs from multiple objects interfere with each other, but the loci and mechanisms of this interference are unknown. Here we show that the set-size effect has a neural correlate in competitive visuo-visual interactions in the lateral intraparietal area, an area related to spatial attention and eye movements. Monkeys performed a covert visual search task in which they discriminated the orientation of a visual target surrounded by distractors. Neurons encoded target location, but responses associated with both target and distractors declined as a function of distractor number (set size). Firing rates associated with the target in the receptive field correlated with reaction time both within and across set sizes. The findings suggest that competitive visuo-visual interactions in areas related to spatial attention contribute to capacity limitations in visual searches.
Collapse
Affiliation(s)
- Puiu F Balan
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Jeff Oristaglio
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - David M Schneider
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Jacqueline Gottlieb
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Department of Psychiatry, Columbia University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Berman R, Colby C. Attention and active vision. Vision Res 2008; 49:1233-48. [PMID: 18627774 DOI: 10.1016/j.visres.2008.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 06/11/2008] [Accepted: 06/14/2008] [Indexed: 11/27/2022]
Abstract
Visual perception results from the interaction of incoming sensory signals and top down cognitive and motor signals. Here we focus on the representation of attended locations in parietal cortex and in earlier visual cortical areas. We review evidence that these spatial representations are modulated not only by selective attention but also by the intention to move the eyes. We describe recent experiments in monkey and human that elucidate the mechanisms and circuitry involved in updating, or remapping, the representations of salient stimuli. Two central ideas emerge. First, selective attention and remapping are closely intertwined, and together contribute to the percept of spatial stability. Second, remapping is accomplished not by a single area but by the participation of parietal, frontal and extrastriate cortex as well as subcortical structures. This neural circuitry is distinguished by significant redundancy and plasticity, suggesting that the updating of salient stimuli is fundamental for spatial stability and visuospatial behavior. We conclude that multiple processes and pathways contribute to active vision in the primate brain.
Collapse
Affiliation(s)
- Rebecca Berman
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
30
|
Task specific computations in attentional maps. Vision Res 2008; 49:1216-26. [PMID: 18502468 DOI: 10.1016/j.visres.2008.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 02/04/2008] [Accepted: 03/23/2008] [Indexed: 11/20/2022]
Abstract
The lateral intraparietal area (LIP), a portion of monkey posterior parietal cortex, has been implicated in spatial attention. We review recent evidence from our laboratory showing that LIP encodes a priority map of the external environment that specifies the momentary locus of attention and is activated in a variety of behavioral tasks. The priority map in LIP is shaped by task-specific variables. We suggest that the multifaceted responses in LIP represent mechanisms for allocating attention, and that the attentional system may flexibly configure itself to meet the cognitive, motor and motivational demands of individual tasks.
Collapse
|
31
|
Collins T, Vergilino-Perez D, Delisle L, Doré-Mazars K. Visual versus motor vector inversions in the antisaccade task: a behavioral investigation with saccadic adaptation. J Neurophysiol 2008; 99:2708-18. [PMID: 18367698 DOI: 10.1152/jn.01082.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the antisaccade task, subjects must execute an eye movement away from a visual target. Correctly executing an antisaccade requires inhibiting a prosaccade toward the visual target and programming a movement to the opposite side. This movement could be based on the inversion of the visual vector, corresponding to the distance between the fixation point and the visual target, or the motor vector of the unwanted prosaccade. We dissociated the two vectors by means of saccadic adaptation. Adaptation can be observed when systematic targeting errors are caused by the displacement of the visual target during the saccade. Adaptation progressively modifies saccade amplitude (defined by the motor vector) such that it becomes appropriate to the postsaccadic stimulus position and thus different from the visual vector of the target. If antisaccade preparation depended on visual vector inversion, rightward prosaccade adaptation should not transfer to leftward antisaccades (which are based on the same visual vector) but should transfer to rightward antisaccades (which are based on a visual vector inside the adaptation field). If antisaccade preparation depended on motor vector inversion, rightward prosaccade adaptation should transfer to leftward antisaccades (which are based on the same, adapted motor vector) but should not transfer to rightward antisaccades (which are based on a nonadapted motor vector). The results are in line with the first hypothesis, showing that vector inversion precedes saccadic adaptation and suggesting that antisaccade preparation depends on the inversion of the visual target vector.
Collapse
Affiliation(s)
- Thérèse Collins
- Laboratory de Psychologie et Neurosciences Cognitives, Paris Descartes University and CNRS, 71 avenue E. Vaillant, Boulogne-Billancourt, France
| | | | | | | |
Collapse
|
32
|
Macaluso E, Frith CD, Driver J. Delay Activity and Sensory-Motor Translation During Planned Eye or Hand Movements to Visual or Tactile Targets. J Neurophysiol 2007; 98:3081-94. [PMID: 17898151 DOI: 10.1152/jn.00192.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To perform eye or hand movements toward a relevant location, the brain must translate sensory input into motor output. Recent studies revealed segregation between circuits for translating visual information into saccadic or manual movements, but less is known about translation of tactile information into such movements. Using human functional magnetic resonance imaging (fMRI) in a delay paradigm, we factorially crossed sensory modality (vision or touch) and motor effector (eyes or hands) for lateralized movements (gaze shifts to left or right or pressing a left or right button with the corresponding left or right hand located there). We investigated activity in the delay-period between stimulation and response, asking whether the currently relevant side (left or right) during the delay was encoded according to sensory modality, upcoming motor response, or some interactive combination of these. Delay activity mainly reflected the motor response subsequently required. Irrespective of visual or tactile input, we found sustained activity in posterior partial cortex, frontal-eye field, and contralateral visual cortex when subjects would later make an eye movement. For delays prior to manual button-press response, activity increased in contralateral precentral regions, again regardless of stimulated modality. Posterior superior temporal sulcus showed sustained delay activity, irrespective of sensory modality, side, and response type. We conclude that the delay activations reflect translation of sensory signals into effector-specific motor circuits in parietal and frontal cortex (plus an impact on contralateral visual cortex for planned saccades), regardless of cue modality, whereas posterior STS provides a representation that generalizes across both sensory modality and motor effector.
Collapse
Affiliation(s)
- E Macaluso
- Neuroimaging Laboratory, Fondazione Santa Lucia, Via Ardeatina, 306-00179 Roma, Italy.
| | | | | |
Collapse
|
33
|
Constantin AG, Wang H, Martinez-Trujillo JC, Crawford JD. Frames of reference for gaze saccades evoked during stimulation of lateral intraparietal cortex. J Neurophysiol 2007; 98:696-709. [PMID: 17553952 DOI: 10.1152/jn.00206.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies suggest that stimulation of lateral intraparietal cortex (LIP) evokes saccadic eye movements toward eye- or head-fixed goals, whereas most single-unit studies suggest that LIP uses an eye-fixed frame with eye-position modulations. The goal of our study was to determine the reference frame for gaze shifts evoked during LIP stimulation in head-unrestrained monkeys. Two macaques (M1 and M2) were implanted with recording chambers over the right intraparietal sulcus and with search coils for recording three-dimensional eye and head movements. The LIP region was microstimulated using pulse trains of 300 Hz, 100-150 microA, and 200 ms. Eighty-five putative LIP sites in M1 and 194 putative sites in M2 were used in our quantitative analysis throughout this study. Average amplitude of the stimulation-evoked gaze shifts was 8.67 degrees for M1 and 7.97 degrees for M2 with very small head movements. When these gaze-shift trajectories were rotated into three coordinate frames (eye, head, and body), gaze endpoint distribution for all sites was most convergent to a common point when plotted in eye coordinates. Across all sites, the eye-centered model provided a significantly better fit compared with the head, body, or fixed-vector models (where the latter model signifies no modulation of the gaze trajectory as a function of initial gaze position). Moreover, the probability of evoking a gaze shift from any one particular position was modulated by the current gaze direction (independent of saccade direction). These results provide causal evidence that the motor commands from LIP encode gaze command in eye-fixed coordinates but are also subtly modulated by initial gaze position.
Collapse
Affiliation(s)
- A G Constantin
- Center for Vision Research, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Balan PF, Gottlieb J. Integration of exogenous input into a dynamic salience map revealed by perturbing attention. J Neurosci 2006; 26:9239-49. [PMID: 16957080 PMCID: PMC6674497 DOI: 10.1523/jneurosci.1898-06.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although it is widely accepted that exogenous and voluntary factors jointly determine the locus of attention, the rules governing the integration of these factors are poorly understood. We investigated neural responses in the lateral intraparietal area (LIP) to transient, distracting visual perturbations presented during task performance. Monkeys performed a covert search task in which they discriminated the orientation of a target embedded among distractors, and brief visual perturbations were presented at various moments and locations during task performance. LIP neurons responded to perturbations consisting of the appearance of new objects, as well as to abrupt changes in the color, luminance, or position of existing objects. The LIP response correlated with the bottom-up behavioral effects of different perturbation types. In addition, neurons showed two types of top-down modulations. One modulation was a context-specific multiplicative gain that affected perturbation, target, and distractor activity in a spatially nonspecific manner. Gain was higher in blocks of trials in which perturbations directly marked target location than in blocks in which they invariably appeared opposite the target, thus encoding a behavioral context defined by the statistical contingency between target and perturbation location. A second modulation reflected local competitive interactions with search-related activity, resulting in the converse effect: weaker perturbation-evoked responses if perturbations appeared at the location of the target than if they appeared opposite the target. Thus, LIP encodes an abstract dimension of salience, which is shaped by local and global top-down mechanisms. These interacting mechanisms regulate responsiveness to external input as a function of behavioral context and momentary task demands.
Collapse
Affiliation(s)
| | - Jacqueline Gottlieb
- Center for Neurobiology and Behavior and
- Department of Psychiatry, Columbia University, New York, New York 10032
| |
Collapse
|
35
|
Oristaglio J, Schneider DM, Balan PF, Gottlieb J. Integration of visuospatial and effector information during symbolically cued limb movements in monkey lateral intraparietal area. J Neurosci 2006; 26:8310-9. [PMID: 16899726 PMCID: PMC6673800 DOI: 10.1523/jneurosci.1779-06.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natural behavior requires close but flexible coordination between attention, defined as selection for perception, and action. In recent years a distributed network including the lateral intraparietal area (LIP) has been implicated in visuospatial selection for attention and rapid eye movements (saccades), but the relation between the attentional and motor functions of this area remains unclear. Here we tested LIP neurons in a task that involved not an ocular but a manual operant response. Monkeys viewed a display containing one cue and several distractors and reported the orientation of the cue (right- or left-facing) by releasing one of two bars grasped, respectively, with the right or left hand. The movement in this task thus was associated with (cued by), but not directed toward, the visual stimulus. A large majority of neurons responded more when the cue rather than when a distractor was in their receptive field, suggesting that they contribute to the attentional selection of the cue. A fraction of these neurons also was modulated by limb release, thus simultaneously encoding cue location and the active limb. The results suggest that the LIP links behaviorally relevant visual information with motor variables relevant for solving a task in a wide range of circumstances involving goal-directed or symbolically cued movements and eye as well as limb movements. A central function of the LIP may be to coordinate visual and motor selection during a wide variety of behaviors.
Collapse
|
36
|
Curtis CE. Prefrontal and parietal contributions to spatial working memory. Neuroscience 2006; 139:173-80. [PMID: 16326021 DOI: 10.1016/j.neuroscience.2005.04.070] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 04/19/2005] [Accepted: 04/27/2005] [Indexed: 11/25/2022]
Abstract
Functional neuroimaging studies consistently implicate a widespread network of human cortical brain areas that together support spatial working memory. This review summarizes our recent functional magnetic resonance imaging studies of humans performing delayed-saccades. These studies have isolated persistent activity in dorsal prefrontal regions, like the frontal eye fields, and the posterior parietal cortex during the maintenance of positional information. We aim to gain insight into the type of information coded by this activity. By manipulating the sensory and motor demands of the working memory task, we have been able to modulate the frontal eye fields and posterior parietal cortex delay-period activity. These findings are discussed in the context of other neurophysiological and lesion-based data and some hypotheses regarding the differential contributions of frontal and parietal areas to spatial working memory are offered. Namely, retrospective sensory coding of space may be more prominent in the posterior parietal cortex, while prospective motor coding of space may be more prominent in the frontal eye fields.
Collapse
Affiliation(s)
- C E Curtis
- New York University, Department of Psychology and Center for Neural Science, 6 Washington Place, Room 859, New York, NY 10003, USA.
| |
Collapse
|
37
|
Moore T. The neurobiology of visual attention: finding sources. Curr Opin Neurobiol 2006; 16:159-65. [PMID: 16563729 DOI: 10.1016/j.conb.2006.03.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 03/13/2006] [Indexed: 11/18/2022]
Abstract
The profusion of progress during the past twenty years in identifying neural correlates of selective attention within the visual system has left open the question of how visual representations are biased to favor target stimuli. Studies aimed at specifying the mechanisms that can be causally implicated in the control of visual selective attention have only recently begun in earnest. Employing both the psychophysical and the neuroanatomical data, recent neurophysiological experiments in monkeys and neuroimaging studies in humans are converging on the neural circuits that provide the source of at least some forms of attentional control signals.
Collapse
Affiliation(s)
- Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Serences JT, Yantis S. Selective visual attention and perceptual coherence. Trends Cogn Sci 2006; 10:38-45. [PMID: 16318922 DOI: 10.1016/j.tics.2005.11.008] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/27/2005] [Accepted: 11/16/2005] [Indexed: 11/26/2022]
Abstract
Conscious perception of the visual world depends on neural activity at all levels of the visual system from the retina to regions of parietal and frontal cortex. Neurons in early visual areas have small spatial receptive fields (RFs) and code basic image features; neurons in later areas have large RFs and code abstract features such as behavioral relevance. This hierarchical organization presents challenges to perception: objects compete when they are presented in a single RF, and component object features are coded by anatomically distributed neuronal activity. Recent research has shown that selective attention coordinates the activity of neurons to resolve competition and link distributed object representations. We refer to this ensemble activity as a "coherence field", and propose that voluntary shifts of attention are initiated by a transient control signal that "nudges" the visual system from one coherent state to another.
Collapse
Affiliation(s)
- John T Serences
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|