1
|
Ariani G, Shahbazi M, Diedrichsen J. Cortical Areas for Planning Sequences before and during Movement. J Neurosci 2025; 45:e1300242024. [PMID: 39542728 PMCID: PMC11735648 DOI: 10.1523/jneurosci.1300-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Production of rapid movement sequences relies on preparation before (preplanning) and during (online planning) movement. Here, we compared these processes and asked whether they recruit different cortical areas. Human participants performed three single-finger and three multifinger sequences in a delayed-movement paradigm while undergoing a 7 T functional MRI. During preparation, primary motor (M1) and somatosensory (S1) areas showed preactivation of the first movement, even without increases in overall activation. During production, the temporal summation of activity patterns corresponding to constituent fingers explained activity in these areas (M1 and S1). In contrast, the dorsal premotor cortex (PMd) and anterior superior parietal lobule (aSPL) showed substantial activation during the preparation (preplanning) of multifinger compared with single-finger sequences. These regions (PMd and aSPL) were also more active during production of multifinger sequences, suggesting that pre- and online planning may recruit the same regions. However, we observed small but robust differences between the two contrasts, suggesting distinct contributions to pre- and online planning. Multivariate analysis revealed sequence-specific representations in both PMd and aSPL, which remained stable across both preparation and production phases. Our analyses show that these areas maintain a sequence-specific representation before and during sequence production, likely guiding the execution-related areas in the production of rapid movement sequences.
Collapse
Affiliation(s)
- Giacomo Ariani
- Western Institute for Neuroscience, Western University, London, Ontario N6A3K7, Canada
- Departments of Computer Science, Western University, London, Ontario N6A3K7, Canada
| | - Mahdiyar Shahbazi
- Western Institute for Neuroscience, Western University, London, Ontario N6A3K7, Canada
| | - Jörn Diedrichsen
- Western Institute for Neuroscience, Western University, London, Ontario N6A3K7, Canada
- Departments of Computer Science, Western University, London, Ontario N6A3K7, Canada
- Statistical and Actuarial Sciences, Western University, London, Ontario N6A3K7, Canada
| |
Collapse
|
2
|
Sasaki R, Kojima S, Saito K, Otsuru N, Shirozu H, Onishi H. Resting-state functional connectivity involved in tactile orientation processing. Neuroimage 2024; 299:120834. [PMID: 39236853 DOI: 10.1016/j.neuroimage.2024.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Grating orientation discrimination (GOD) is commonly used to assess somatosensory spatial processing. It allows discrimination between parallel and orthogonal orientations of tactile stimuli applied to the fingertip. Despite its widespread application, the underlying mechanisms of GOD, particularly the role of cortico-cortical interactions and local brain activity in this process, remain elusive. Therefore, we aimed to investigate how a specific cortico-cortical network and inhibitory circuits within the primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) contribute to GOD. METHODS In total, 51 healthy young adults were included in our study. We recorded resting-state magnetoencephalography (MEG) and somatosensory-evoked magnetic field (SEF) in participants with open eyes. We converted the data into a source space based on individual structural magnetic resonance imaging. Next, we estimated S1- and S2-seed resting-state functional connectivity (rs-FC) at the alpha and beta bands through resting-state MEG using the amplitude envelope correlation method across the entire brain (i.e., S1/S2-seeds × 15,000 vertices × two frequencies). We assessed the inhibitory response in the S1 and S2 from SEFs using a paired-pulse paradigm. We automatically measured the GOD task in parallel and orthogonal orientations to the index finger, applying various groove widths with a custom-made device. RESULTS We observed a specific association between the GOD threshold (all P < 0.048) and the alpha rs-FC in the S1-superior parietal lobule and S1-adjacent to the parieto-occipital sulcus (i.e., lower rs-FC values corresponded to higher performance). In contrast, no association was observed between the local responses and the threshold. DISCUSSION The results of this study underpin the significance of specific cortico-cortical networks in recognizing variations in tactile stimuli.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Graduate Course of Health and Social Work, Kanagawa University of Human Services, Yokosuka City, Kanagawa, Japan.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, NHO Nishiniigata Chuo Hospital, Niigata City, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
3
|
Eng GK, De Nadai AS, Collins KA, Recchia N, Tobe RH, Bragdon LB, Stern ER. Identifying subgroups of urge suppression in Obsessive-Compulsive Disorder using machine learning. J Psychiatr Res 2024; 177:129-139. [PMID: 39004004 PMCID: PMC11409861 DOI: 10.1016/j.jpsychires.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Obsessive-compulsive disorder (OCD) is phenomenologically heterogeneous. While predominant models suggest fear and harm prevention drive compulsions, many patients also experience uncomfortable sensory-based urges ("sensory phenomena") that may be associated with heightened interoceptive sensitivity. Using an urge-to-blink eyeblink suppression paradigm to model sensory-based urges, we previously found that OCD patients as a group had more eyeblink suppression failures and greater activation of sensorimotor-interoceptive regions than controls. However, conventional approaches assuming OCD homogeneity may obscure important within-group variability, impeding precision treatment development. This study investigated the heterogeneity of urge suppression failure in OCD and examined relationships with clinical characteristics and neural activation. Eighty-two patients with OCD and 38 controls underwent an fMRI task presenting 60-s blocks of eyeblink suppression alternating with free-blinking blocks. Latent profile analysis identified OCD subgroups based on number of erroneous blinks during suppression. Subgroups were compared on behavior, clinical characteristics, and brain activation during task. Three patient subgroups were identified. Despite similar overall OCD severity, the subgroup with the most erroneous eyeblinks had the highest sensory phenomena severity, interoceptive sensitivity, and subjective urge intensity. Compared to other subgroups, this subgroup exhibited more neural activity in somatosensory and interoceptive regions during the early phase (first 30 s) of blink suppression and reduced activity in the middle frontal gyrus during the late phase (second 30 s) as the suppression period elapsed. Heterogeneity of urge suppression in OCD was associated with clinical characteristics and brain function. Our results reveal potential treatment targets that could inform personalized medicine.
Collapse
Affiliation(s)
- Goi Khia Eng
- Department of Psychiatry, New York University Grossman School of Medicine, New York, 10016, USA; Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA.
| | - Alessandro S De Nadai
- Simches Division of Child and Adolescent Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Katherine A Collins
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA
| | - Nicolette Recchia
- Department of Psychiatry, New York University Grossman School of Medicine, New York, 10016, USA; Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA
| | - Russell H Tobe
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA; Center for the Developing Brain, Child Mind Institute, New York, 10022, USA
| | - Laura B Bragdon
- Department of Psychiatry, New York University Grossman School of Medicine, New York, 10016, USA; Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA
| | - Emily R Stern
- Department of Psychiatry, New York University Grossman School of Medicine, New York, 10016, USA; Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, 10016, USA
| |
Collapse
|
4
|
Dong WK. Modulation of multisensory nociceptive neurons in monkey cortical area 7b and behavioral correlates. J Neurophysiol 2024; 132:544-569. [PMID: 38985936 PMCID: PMC11427044 DOI: 10.1152/jn.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.
Collapse
Affiliation(s)
- Willie K Dong
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, Washington, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
5
|
Lamorie-Foote K, Kramer DR, Sundaram S, Cavaleri J, Gilbert ZD, Tang AM, Bashford L, Liu CY, Kellis S, Lee B. Primary somatosensory cortex organization for engineering artificial somatosensation. Neurosci Res 2024; 204:1-13. [PMID: 38278220 DOI: 10.1016/j.neures.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.
Collapse
Affiliation(s)
- Krista Lamorie-Foote
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Colorado School of Medicine, Denver, CO, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Texas at Houston, Houston, TX, United States
| | - Luke Bashford
- Department of Biology and Biological Engineering, T&C Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States; Department of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
6
|
Ishida H, Grandi LC, Fornia L. Secondary somatosensory and posterior insular cortices: a somatomotor hub for object prehension and manipulation movements. Front Integr Neurosci 2024; 18:1346968. [PMID: 38725800 PMCID: PMC11079213 DOI: 10.3389/fnint.2024.1346968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
The secondary somatosensory cortex (SII) and posterior insular cortex (pIC) are recognized for processing touch and movement information during hand manipulation in humans and non-human primates. However, their involvement in three-dimensional (3D) object manipulation remains unclear. To investigate neural activity related to hand manipulation in the SII/pIC, we trained two macaque monkeys to grasp three objects (a cone, a plate, and a ring) and engage in visual fixation on the object. Our results revealed that 19.4% (n = 50/257) of the task-related neurons in SII/pIC were active during hand manipulations, but did not respond to passive somatosensory stimuli. Among these neurons, 44% fired before hand-object contact (reaching to grasping neurons), 30% maintained tonic activity after contact (holding neurons), and 26% showed continuous discharge before and after contact (non-selective neurons). Object grasping-selectivity varied and was weak among these neurons, with only 24% responding to fixation of a 3D object (visuo-motor neurons). Even neurons unresponsive to passive visual stimuli showed responses to set-related activity before the onset of movement (42%, n = 21/50). Our findings suggest that somatomotor integration within SII/pIC is probably integral to all prehension sequences, including reaching, grasping, and object manipulation movements. Moreover, the existence of a set-related activity within SII/pIC may play a role in directing somatomotor attention during object prehension-manipulation in the absence of vision. Overall, SII/pIC may play a role as a somatomotor hub within the lateral grasping network that supports the generation of intentional hand actions based on haptic information.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
- Italian Institute of Technology (IIT), Brain Center for Social and Motor Cognition (BCSMC), Parma, Italy
| | - Laura Clara Grandi
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
| | - Luca Fornia
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
| |
Collapse
|
7
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Kong Q, Li T, Reddy S, Hodges S, Kong J. Brain stimulation targets for chronic pain: Insights from meta-analysis, functional connectivity and literature review. Neurotherapeutics 2024; 21:e00297. [PMID: 38237403 PMCID: PMC10903102 DOI: 10.1016/j.neurot.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 02/16/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques have demonstrated their potential for chronic pain management, yet their efficacy exhibits variability across studies. Refining stimulation targets and exploring additional targets offer a possible solution to this challenge. This study aimed to identify potential brain surface targets for NIBS in treating chronic pain disorders by integrating literature review, neuroimaging meta-analysis, and functional connectivity analysis on 90 chronic low back pain patients. Our results showed that the primary motor cortex (M1) (C3/C4, 10-20 EEG system) and prefrontal cortex (F3/F4/Fz) were the most used brain stimulation targets for chronic pain treatment according to the literature review. The bilateral precentral gyrus (M1), supplementary motor area, Rolandic operculum, and temporoparietal junction, were all identified as common potential NIBS targets through both a meta-analysis sourced from Neurosynth and functional connectivity analysis. This study presents a comprehensive summary of the current literature and refines the existing NIBS targets through a combination of imaging meta-analysis and functional connectivity analysis for chronic pain conditions. The derived coordinates (with integration of the international electroencephalography (EEG) 10/20 electrode placement system) within the above brain regions may further facilitate the localization of these targets for NIBS application. Our findings may have the potential to expand NIBS target selection beyond current clinical trials and improve chronic pain treatment.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tingting Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sveta Reddy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
9
|
Putra HA, Park K, Oba H, Yamashita F. Adult attention-deficit/hyperactivity disorder traits in healthy adults associated with brain volumetric data identify precuneus involvement in traffic crashes. Sci Rep 2023; 13:22466. [PMID: 38105321 PMCID: PMC10725881 DOI: 10.1038/s41598-023-49907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
This large-scale study including 2548 healthy adults with no clinical attention-deficit/hyperactivity disorder (ADHD) diagnosis intended to clarify the complex relationships between cerebral grey matter volumes (GMVs), ADHD traits, and driving safety behaviours. Path analysis of magnetic resonance imaging (MRI) results and questionnaires about ADHD traits and traffic crashes over the past decade revealed significant correlations of ADHD traits with different brain regions relevant to different cognitive functions. The left precuneus responsible for visuospatial cognition was the sole region correlated with all ADHD trait categories, suggesting it plays an important role in understanding driving safety and traffic crashes. For the first time, a strong relationship was found among regional GMVs, ADHD traits, and real-life traffic crashes. These insights into the complex interplay may inform the development of an effective intervention with MRI examination to prevent traffic crashes. Large-scale brain volumetric data may further open social applications of behaviour science and neuroimaging.
Collapse
Affiliation(s)
- Handityo Aulia Putra
- Research Organization for Regional Alliance, Kochi University of Technology, 185 Miyanokuchi Tosayamada‑cho, Kami, Kochi, 782‑0003, Japan
| | - Kaechang Park
- Research Organization for Regional Alliance, Kochi University of Technology, 185 Miyanokuchi Tosayamada‑cho, Kami, Kochi, 782‑0003, Japan.
| | - Hikaru Oba
- Graduate School of Health Sciences, Hirosaki University, 66‑1, Hon‑cho, Hirosaki, Aomori, 036‑8564, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1‑1‑1 Idaidori, Yahaba‑cho, Shiwa‑gun, Iwate, 028‑3694, Japan
| |
Collapse
|
10
|
Brewer AA, Barton B. Cortical field maps across human sensory cortex. Front Comput Neurosci 2023; 17:1232005. [PMID: 38164408 PMCID: PMC10758003 DOI: 10.3389/fncom.2023.1232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.
Collapse
Affiliation(s)
- Alyssa A. Brewer
- mindSPACE Laboratory, Departments of Cognitive Sciences and Language Science (by Courtesy), Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Brian Barton
- mindSPACE Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Henderson J, Mari T, Hewitt D, Newton‐Fenner A, Giesbrecht T, Marshall A, Stancak A, Fallon N. The neural correlates of texture perception: A systematic review and activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies. Brain Behav 2023; 13:e3264. [PMID: 37749852 PMCID: PMC10636420 DOI: 10.1002/brb3.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
INTRODUCTION Humans use discriminative touch to perceive texture through dynamic interactions with surfaces, activating low-threshold mechanoreceptors in the skin. It was largely assumed that texture was processed in primary somatosensory regions in the brain; however, imaging studies indicate heterogeneous patterns of brain activity associated with texture processing. METHODS To address this, we conducted a coordinate-based activation likelihood estimation meta-analysis of 13 functional magnetic resonance imaging studies (comprising 15 experiments contributing 228 participants and 275 foci) selected by a systematic review. RESULTS Concordant activations for texture perception occurred in the left primary somatosensory and motor regions, with bilateral activations in the secondary somatosensory, posterior insula, and premotor and supplementary motor cortices. We also evaluated differences between studies that compared touch processing to non-haptic control (e.g., rest or visual control) or those that used haptic control (e.g., shape or orientation perception) to specifically investigate texture encoding. Studies employing a haptic control revealed concordance for texture processing only in the left secondary somatosensory cortex. Contrast analyses demonstrated greater concordance of activations in the left primary somatosensory regions and inferior parietal cortex for studies with a non-haptic control, compared to experiments accounting for other haptic aspects. CONCLUSION These findings suggest that texture processing may recruit higher order integrative structures, and the secondary somatosensory cortex may play a key role in encoding textural properties. The present study provides unique insight into the neural correlates of texture-related processing by assessing the influence of non-textural haptic elements and identifies opportunities for a future research design to understand the neural processing of texture.
Collapse
Affiliation(s)
| | - Tyler Mari
- School of PsychologyUniversity of LiverpoolLiverpoolUK
| | | | - Alice Newton‐Fenner
- School of PsychologyUniversity of LiverpoolLiverpoolUK
- Institute of Risk and UncertaintyUniversity of LiverpoolLiverpoolUK
| | | | - Alan Marshall
- Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
| | - Andrej Stancak
- School of PsychologyUniversity of LiverpoolLiverpoolUK
- Institute of Risk and UncertaintyUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
12
|
Danielli E, Simard N, DeMatteo CA, Kumbhare D, Ulmer S, Noseworthy MD. A review of brain regions and associated post-concussion symptoms. Front Neurol 2023; 14:1136367. [PMID: 37602240 PMCID: PMC10435092 DOI: 10.3389/fneur.2023.1136367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The human brain is an exceptionally complex organ that is comprised of billions of neurons. Therefore, when a traumatic event such as a concussion occurs, somatic, cognitive, behavioral, and sleep impairments are the common outcome. Each concussion is unique in the sense that the magnitude of biomechanical forces and the direction, rotation, and source of those forces are different for each concussive event. This helps to explain the unpredictable nature of post-concussion symptoms that can arise and resolve. The purpose of this narrative review is to connect the anatomical location, healthy function, and associated post-concussion symptoms of some major cerebral gray and white matter brain regions and the cerebellum. As a non-exhaustive description of post-concussion symptoms nor comprehensive inclusion of all brain regions, we have aimed to amalgamate the research performed for specific brain regions into a single article to clarify and enhance clinical and research concussion assessment. The current status of concussion diagnosis is highly subjective and primarily based on self-report of symptoms, so this review may be able to provide a connection between brain anatomy and the clinical presentation of concussions to enhance medical imaging assessments. By explaining anatomical relevance in terms of clinical concussion symptom presentation, an increased understanding of concussions may also be achieved to improve concussion recognition and diagnosis.
Collapse
Affiliation(s)
- Ethan Danielli
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Nicholas Simard
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Carol A. DeMatteo
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Dinesh Kumbhare
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephan Ulmer
- Neurorad.ch, Zurich, Switzerland
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Michael D. Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Radiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
A Large Video Set of Natural Human Actions for Visual and Cognitive Neuroscience Studies and Its Validation with fMRI. Brain Sci 2022; 13:brainsci13010061. [PMID: 36672043 PMCID: PMC9856703 DOI: 10.3390/brainsci13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The investigation of the perception of others' actions and underlying neural mechanisms has been hampered by the lack of a comprehensive stimulus set covering the human behavioral repertoire. To fill this void, we present a video set showing 100 human actions recorded in natural settings, covering the human repertoire except for emotion-driven (e.g., sexual) actions and those involving implements (e.g., tools). We validated the set using fMRI and showed that observation of the 100 actions activated the well-established action observation network. We also quantified the videos' low-level visual features (luminance, optic flow, and edges). Thus, this comprehensive video set is a valuable resource for perceptual and neuronal studies.
Collapse
|
14
|
Baxi M, Cetin-Karayumak S, Papadimitriou G, Makris N, van der Kouwe A, Jenkins B, Moore TL, Rosene DL, Kubicki M, Rathi Y. Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology. FRONTIERS IN NEUROIMAGING 2022; 1:947526. [PMID: 37555179 PMCID: PMC10406256 DOI: 10.3389/fnimg.2022.947526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 08/10/2023]
Abstract
Postmortem studies are currently considered a gold standard for investigating brain structure at the cellular level. To investigate cellular changes in the context of human development, aging, or disease treatment, non-invasive in-vivo imaging methods such as diffusion MRI (dMRI) are needed. However, dMRI measures are only indirect measures and require validation in gray matter (GM) in the context of their sensitivity to the underlying cytoarchitecture, which has been lacking. Therefore, in this study we conducted direct comparisons between in-vivo dMRI measures and histology acquired from the same four rhesus monkeys. Average and heterogeneity of fractional anisotropy and trace from diffusion tensor imaging and mean squared displacement (MSD) and return-to-origin-probability from biexponential model were calculated in nine cytoarchitectonically different GM regions using dMRI data. DMRI measures were compared with corresponding histology measures of regional average and heterogeneity in cell area density. Results show that both average and heterogeneity in trace and MSD measures are sensitive to the underlying cytoarchitecture (cell area density) and capture different aspects of cell composition and organization. Trace and MSD thus would prove valuable as non-invasive imaging biomarkers in future studies investigating GM cytoarchitectural changes related to development and aging as well as abnormal cellular pathologies in clinical studies.
Collapse
Affiliation(s)
- Madhura Baxi
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - George Papadimitriou
- Center for Morphometric Analysis, Massachusetts General Hospital, Charlestown, MA, United States
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Andre van der Kouwe
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bruce Jenkins
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Tara L. Moore
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston, MA, United States
| | - Douglas L. Rosene
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston, MA, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
15
|
Schellekens W, Bakker C, Ramsey NF, Petridou N. Moving in on human motor cortex. Characterizing the relationship between body parts with non-rigid population response fields. PLoS Comput Biol 2022; 18:e1009955. [PMID: 35377877 PMCID: PMC9009778 DOI: 10.1371/journal.pcbi.1009955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/14/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
For cortical motor activity, the relationships between different body part representations is unknown. Through reciprocal body part relationships, functionality of cortical motor areas with respect to whole body motor control can be characterized. In the current study, we investigate the relationship between body part representations within individual neuronal populations in motor cortices, following a 7 Tesla fMRI 18-body-part motor experiment in combination with our newly developed non-rigid population Response Field (pRF) model and graph theory. The non-rigid pRF metrics reveal somatotopic structures in all included motor cortices covering frontal, parietal, medial and insular cortices and that neuronal populations in primary sensorimotor cortex respond to fewer body parts than secondary motor cortices. Reciprocal body part relationships are estimated in terms of uniqueness, clique-formation, and influence. We report unique response profiles for the knee, a clique of body parts surrounding the ring finger, and a central role for the shoulder and wrist. These results reveal associations among body parts from the perspective of the central nervous system, while being in agreement with intuitive notions of body part usage.
Collapse
Affiliation(s)
- Wouter Schellekens
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
- Radiology department, Center for Image Sciences, UMC Utrecht, Utrecht, Netherlands
| | - Carlijn Bakker
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
| | - Nick F. Ramsey
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
| | - Natalia Petridou
- Radiology department, Center for Image Sciences, UMC Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
Pondelis NJ, Moulton EA. Supraspinal Mechanisms Underlying Ocular Pain. Front Med (Lausanne) 2022; 8:768649. [PMID: 35211480 PMCID: PMC8862711 DOI: 10.3389/fmed.2021.768649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Supraspinal mechanisms of pain are increasingly understood to underlie neuropathic ocular conditions previously thought to be exclusively peripheral in nature. Isolating individual causes of centralized chronic conditions and differentiating them is critical to understanding the mechanisms underlying neuropathic eye pain and ultimately its treatment. Though few functional imaging studies have focused on the eye as an end-organ for the transduction of noxious stimuli, the brain networks related to pain processing have been extensively studied with functional neuroimaging over the past 20 years. This article will review the supraspinal mechanisms that underlie pain as they relate to the eye.
Collapse
Affiliation(s)
- Nicholas J Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Stronger proprioceptive BOLD-responses in the somatosensory cortices reflect worse sensorimotor function in adolescents with and without cerebral palsy. Neuroimage Clin 2022; 32:102795. [PMID: 34474316 PMCID: PMC8411230 DOI: 10.1016/j.nicl.2021.102795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022]
Abstract
Cerebral palsy (CP) is a motor disorder where the motor defects are partly due to impaired proprioception. We studied cortical proprioceptive responses and sensorimotor performance in adolescents with CP and their typically-developed (TD) peers. Passive joint movements were used to stimulate proprioceptors during functional magnetic resonance imaging (fMRI) session to quantify the proprioceptive responses whose associations to behavioral sensorimotor performance were also examined. Twenty-three TD (15 females, age: mean ± standard deviation 14.2 ± 2.4 years) and 18 CP (12 females, age: mean ± standard deviation, 13.8 ± 2.3 years; 12 hemiplegic, 6 diplegic) participants were included in this study. Participants' index fingers and ankles were separately stimulated at 3 Hz and 1 Hz respectively with pneumatic movement actuators. Regions-of-interest were used to quantify BOLD-responses from the primary sensorimotor (SM1) and secondary (SII) somatosensory cortices and were compared across the groups. Associations between responses strengths and sensorimotor performance measures were also examined. Proprioceptive responses were stronger for the individuals with CP compared to their TD peers in SM1 (p < 0.001) and SII (p < 0.05) cortices contralateral to their more affected index finger. The ankle responses yielded no significant differences between the groups. The CP group had worse sensorimotor performance for hands and feet (p < 0.001). Stronger responses to finger stimulation in the dominant SM1 (p < 0.001) and both dominant and non-dominant SII (p < 0.01, p < 0.001) cortices were associated with the worse hand sensorimotor performance across all participants. Worse hand function was associated with stronger cortical activation to the proprioceptive stimulation. This association was evident both in adolescents with CP and their typically-developed controls, thus it likely reflects both clinical factors and normal variation in the sensorimotor function. The specific mechanisms need to be clarified in future studies.
Collapse
|
18
|
Sirigu A, Desmurget M. Somatosensory awareness in the parietal operculum. Brain 2021; 144:3558-3560. [PMID: 34791060 DOI: 10.1093/brain/awab415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Tonic somatosensory responses and deficits of tactile awareness converge in the parietal operculum’ by Del Vecchio et al. (doi:10.1093/brain/awab384).
Collapse
Affiliation(s)
- Angela Sirigu
- Institute of Cognitive Sciences Marc Jeannerod, CNRS/UMR, 5229 Bron, France.,iMIND, Center of Excellence for Autism, le Vinatier Hospital, Bron, France
| | - Michel Desmurget
- Institute of Cognitive Sciences Marc Jeannerod, CNRS/UMR, 5229 Bron, France
| |
Collapse
|
19
|
Pellicano A, Mingoia G, Ritter C, Buccino G, Binkofski F. Respiratory function modulated during execution, observation, and imagination of walking via SII. Sci Rep 2021; 11:23752. [PMID: 34887478 PMCID: PMC8660877 DOI: 10.1038/s41598-021-03147-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
The Mirror Neurons System (MNS) consists of brain areas active during actions execution, as well as observation-imagination of the same actions. MNS represents a potential mechanism by which we understand other's action goals. We investigated MNS activation for legs actions, and its interaction with the autonomic nervous system. We performed a physiological and fMRI investigation on the common neural structures recruited during the execution, observation, and imagination of walking, and their effects on respiratory activity. Bilateral SMA were activated by all three tasks, suggesting that these areas are responsible for the core of the MNS effect for walking. Moreover, we observed in bilateral parietal opercula (OP1, secondary somatosensory cortex-SII) evidence of an MNS subtending walking execution-observation-imagination that also modulated the respiratory function. We suggest that SII, in modulating the vegetative response during motor activity but also during observation-imagination, consists of a re-enacting function which facilitates the understanding of motor actions.
Collapse
Affiliation(s)
- Antonello Pellicano
- Division for Clinical and Cognitive Sciences, Medical Faculty, RWTH Aachen University, Pauwelsstr. 17, 52074, Aachen, Germany.
| | | | - Christoph Ritter
- Brain Imaging Facility, Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Giovanni Buccino
- Division of Neuroscience, San Raffaele Scientific Institute, Faculty of Medicine, University San Raffaele, Milan, Italy
| | - Ferdinand Binkofski
- Division for Clinical and Cognitive Sciences, Medical Faculty, RWTH Aachen University, Pauwelsstr. 17, 52074, Aachen, Germany.
- Institute for Neuroscience and Medicine (INM-4), Research Center Jülich GmbH, Jülich, Germany.
- Jülich-Aachen-Research-Alliance (JARA), Jülich, Germany.
| |
Collapse
|
20
|
Wilkinson F. Aura Mapping: Where Vision and Somatosensation Meet. Vision (Basel) 2021; 5:52. [PMID: 34842832 PMCID: PMC8628888 DOI: 10.3390/vision5040052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
While migraine auras are most frequently visual, somatosensory auras are also relatively common. Both are characterized by the spread of activation across a cortical region containing a spatial mapping of the sensory (retinal or skin) surface. When both aura types occur within a single migraine episode, they may offer an insight into the neural mechanism which underlies them. Could they both be initiated by a single neural event, or do the timing and laterality relationships between them demand multiple triggers? The observations reported here were carried out 25 years ago by a group of six individuals with migraine with aura. They timed, described and mapped their visual and somatosensory auras as they were in progress. Twenty-nine episode reports are summarized here. The temporal relationship between the onset of the two auras was quite variable within and across participants. Various forms of the cortical spreading depression hypothesis of migraine aura are evaluated in terms of whether they can account for the timing, pattern of symptom spread and laterality of the recorded auras.
Collapse
Affiliation(s)
- Frances Wilkinson
- Centre for Vision Research & Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
21
|
Huber J, Ruehl M, Flanagin V, Zu Eulenburg P. Delineating neural responses and functional connectivity changes during vestibular and nociceptive stimulation reveal the uniqueness of cortical vestibular processing. Brain Struct Funct 2021; 227:779-791. [PMID: 34611776 PMCID: PMC8930960 DOI: 10.1007/s00429-021-02394-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
Vestibular information is ubiquitous and often processed jointly with visual, somatosensory and proprioceptive information. Among the cortical brain regions associated with human vestibular processing, area OP2 in the parietal operculum has been proposed as vestibular core region. However, delineating responses uniquely to vestibular stimulation in this region using neuroimaging is challenging for several reasons: First, the parietal operculum is a cytoarchitectonically heterogeneous region responding to multisensory stimulation. Second, artificial vestibular stimulation evokes confounding somatosensory and nociceptive responses blurring responses contributing to vestibular perception. Furthermore, immediate effects of vestibular stimulation on the organization of functional networks have not been investigated in detail yet. Using high resolution neuroimaging in a task-based and functional connectivity approach, we compared two equally salient stimuli—unilateral galvanic vestibular (GVS) and galvanic nociceptive stimulation (GNS)—to disentangle the processing of both modalities in the parietal operculum and characterize their effects on functional network architecture. GNS and GVS gave joint responses in area OP1, 3, 4, and the anterior and middle insula, but not in area OP2. GVS gave stronger responses in the parietal operculum just adjacent to OP3 and OP4, whereas GNS evoked stronger responses in area OP1, 3 and 4. Our results underline the importance of considering this common pathway when interpreting vestibular neuroimaging experiments and underpin the role of area OP2 in central vestibular processing. Global network changes were found during GNS, but not during GVS. This lack of network reconfiguration despite the saliency of GVS may reflect the continuous processing of vestibular information in the awake human.
Collapse
Affiliation(s)
- Judita Huber
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Maxine Ruehl
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Virginia Flanagin
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Zu Eulenburg
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- Institute for Neuroradiology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
22
|
Gale DJ, Flanagan JR, Gallivan JP. Human Somatosensory Cortex Is Modulated during Motor Planning. J Neurosci 2021; 41:5909-5922. [PMID: 34035139 PMCID: PMC8265805 DOI: 10.1523/jneurosci.0342-21.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Recent data and motor control theory argues that movement planning involves preparing the neural state of primary motor cortex (M1) for forthcoming action execution. Theories related to internal models, feedback control, and predictive coding also emphasize the importance of sensory prediction (and processing) before (and during) the movement itself, explaining why motor-related deficits can arise from damage to primary somatosensory cortex (S1). Motivated by this work, here we examined whether motor planning, in addition to changing the neural state of M1, changes the neural state of S1, preparing it for the sensory feedback that arises during action. We tested this idea in two human functional MRI studies (N = 31, 16 females) involving delayed object manipulation tasks, focusing our analysis on premovement activity patterns in M1 and S1. We found that the motor effector to be used in the upcoming action could be decoded, well before movement, from neural activity in M1 in both studies. Critically, we found that this effector information was also present, well before movement, in S1. In particular, we found that the encoding of effector information in area 3b (S1 proper) was linked to the contralateral hand, similarly to that found in M1, whereas in areas 1 and 2 this encoding was present in both the contralateral and ipsilateral hemispheres. Together, these findings suggest that motor planning not only prepares the motor system for movement but also changes the neural state of the somatosensory system, presumably allowing it to anticipate the sensory information received during movement.SIGNIFICANCE STATEMENT Whereas recent work on motor cortex has emphasized the critical role of movement planning in preparing neural activity for movement generation, it has not investigated the extent to which planning also modulates the activity in the adjacent primary somatosensory cortex. This reflects a key gap in knowledge, given that recent motor control theories emphasize the importance of sensory feedback processing in effective movement generation. Here, we find through a convergence of experiments and analyses, that the planning of object manipulation tasks, in addition to modulating the activity in the motor cortex, changes the state of neural activity in different subfields of the human S1. We suggest that this modulation prepares the S1 for the sensory information it will receive during action execution.
Collapse
Affiliation(s)
- Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
23
|
Koelsch S, Cheung VKM, Jentschke S, Haynes JD. Neocortical substrates of feelings evoked with music in the ACC, insula, and somatosensory cortex. Sci Rep 2021; 11:10119. [PMID: 33980876 PMCID: PMC8115666 DOI: 10.1038/s41598-021-89405-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/21/2021] [Indexed: 12/01/2022] Open
Abstract
Neurobiological models of emotion focus traditionally on limbic/paralimbic regions as neural substrates of emotion generation, and insular cortex (in conjunction with isocortical anterior cingulate cortex, ACC) as the neural substrate of feelings. An emerging view, however, highlights the importance of isocortical regions beyond insula and ACC for the subjective feeling of emotions. We used music to evoke feelings of joy and fear, and multivariate pattern analysis (MVPA) to decode representations of feeling states in functional magnetic resonance (fMRI) data of n = 24 participants. Most of the brain regions providing information about feeling representations were neocortical regions. These included, in addition to granular insula and cingulate cortex, primary and secondary somatosensory cortex, premotor cortex, frontal operculum, and auditory cortex. The multivoxel activity patterns corresponding to feeling representations emerged within a few seconds, gained in strength with increasing stimulus duration, and replicated results of a hypothesis-generating decoding analysis from an independent experiment. Our results indicate that several neocortical regions (including insula, cingulate, somatosensory and premotor cortices) are important for the generation and modulation of feeling states. We propose that secondary somatosensory cortex, which covers the parietal operculum and encroaches on the posterior insula, is of particular importance for the encoding of emotion percepts, i.e., preverbal representations of subjective feeling.
Collapse
Affiliation(s)
- Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway. .,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Vincent K M Cheung
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | | | - John-Dylan Haynes
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
24
|
Tamè L, Tucciarelli R, Sadibolova R, Sereno MI, Longo MR. Reconstructing neural representations of tactile space. Neuroimage 2021; 229:117730. [PMID: 33454399 DOI: 10.1016/j.neuroimage.2021.117730] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/18/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023] Open
Abstract
Psychophysical experiments have demonstrated large and highly systematic perceptual distortions of tactile space. Such a space can be referred to our experience of the spatial organisation of objects, at representational level, through touch, in analogy with the familiar concept of visual space. We investigated the neural basis of tactile space by analysing activity patterns induced by tactile stimulation of nine points on a 3 × 3 square grid on the hand dorsum using functional magnetic resonance imaging. We used a searchlight approach within pre-defined regions of interests to compute the pairwise Euclidean distances between the activity patterns elicited by tactile stimulation. Then, we used multidimensional scaling to reconstruct tactile space at the neural level and compare it with skin space at the perceptual level. Our reconstructions of the shape of skin space in contralateral primary somatosensory and motor cortices reveal that it is distorted in a way that matches the perceptual shape of skin space. This suggests that early sensorimotor areas critically contribute to the distorted internal representation of tactile space on the hand dorsum.
Collapse
Affiliation(s)
- Luigi Tamè
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK; School of Psychology, University of Kent, Canterbury CT2 7NP, UK.
| | - Raffaele Tucciarelli
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - Renata Sadibolova
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK; Department of Psychology, Goldsmith, University of London, London, UK
| | - Martin I Sereno
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK; University College London, University of London, London, UK; San Diego State University, San Diego, USA
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK.
| |
Collapse
|
25
|
Schmidt TT, Schröder P, Reinhardt P, Blankenburg F. Rehearsal of tactile working memory: Premotor cortex recruits two dissociable neuronal content representations. Hum Brain Mapp 2021; 42:245-258. [PMID: 33009881 PMCID: PMC7721226 DOI: 10.1002/hbm.25220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022] Open
Abstract
Recent working memory (WM) research has focused on identifying brain regions that retain different types of mental content. Only few neuroimaging studies have explored the mechanism of attention-based refreshing, which is a type of rehearsal and is thought to implement the dynamic components of WM allowing for update of WM contents. Here, we took advantage of the distinct coding properties of the superior parietal lobe (SPL), which retains spatial layout information, and the right inferior frontal gyrus (IFG), which retains frequency information of vibrotactile stimuli during tactile WM. In an fMRI delayed match-to-sample task, participants had to internally rehearse sequences of spatial layouts or vibratory frequencies. Our results replicate the dissociation of SPL and IFG for the retention of layout and frequency information in terms of activation differences between conditions. Additionally, we found strong premotor cortex (PMC) activation during rehearsal of either stimulus type. To explore interactions between these regions we used dynamic causal modeling and found that activation within the network was best explained by a model that allows the PMC to drive activity in the SPL and IFG during rehearsal. This effect was content-specific, meaning that the PMC showed stronger influence on the SPL during pattern rehearsal and stronger influence on the IFG during frequency rehearsal. In line with previously established PMC contributions to sequence processing, our results suggest that it acts as a content-independent area that flexibly recruits content-specific regions to bring a WM item into the focus of attention during the rehearsal of tactile stimulus sequences.
Collapse
Affiliation(s)
- Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Pia Schröder
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Pablo Reinhardt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| |
Collapse
|
26
|
Thomas J, Sharma D, Mohanta S, Jain N. Resting-State functional networks of different topographic representations in the somatosensory cortex of macaque monkeys and humans. Neuroimage 2020; 228:117694. [PMID: 33385552 DOI: 10.1016/j.neuroimage.2020.117694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Information processing in the brain is mediated through a complex functional network architecture whose comprising nodes integrate and segregate themselves on different timescales. To gain an understanding of the network function it is imperative to identify and understand the network structure with respect to the underlying anatomical connectivity and the topographic organization. Here we show that the previously described resting-state network for the somatosensory area 3b comprises of distinct networks that are characteristic for different topographic representations. Seed-based resting-state functional connectivity analysis in macaque monkeys and humans using BOLD-fMRI signals from the face, the hand and rest of the medial somatosensory representations of area 3b revealed different correlation patterns. Both monkeys and humans have many similarities in the connectivity networks, although the networks are more complex in humans with many more nodes. In both the species face area network has the highest ipsilateral and contralateral connectivity, which included areas 3b and 4, and ventral premotor area. The area 3b hand network included ipsilateral hand representation in area 4. The emergent functional network structures largely reflect the known anatomical connectivity. Our results show that different body part representations in area 3b have independent functional networks perhaps reflecting differences in the behavioral use of different body parts. The results also show that large cortical areas if considered together, do not give a complete and accurate picture of the network architecture.
Collapse
Affiliation(s)
- John Thomas
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Dixit Sharma
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Sounak Mohanta
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Neeraj Jain
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India.
| |
Collapse
|
27
|
Changes in the Organization of the Secondary Somatosensory Cortex While Processing Lumbar Proprioception and the Relationship With Sensorimotor Control in Low Back Pain. Clin J Pain 2020; 35:394-406. [PMID: 30730445 DOI: 10.1097/ajp.0000000000000692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Patients with nonspecific low back pain (NSLBP) rely more on the ankle compared with the lower back proprioception while standing, perform sit-to-stand-to-sit (STSTS) movements slower, and exhibit perceptual impairments at the lower back. However, no studies investigated whether these sensorimotor impairments relate to a reorganization of the primary and secondary somatosensory cortices (S1 and S2) and primary motor cortex (M1) during proprioceptive processing. MATERIALS AND METHODS Proprioceptive stimuli were applied at the lower back and ankle muscles during functional magnetic resonance imaging in 15 patients with NSLBP and 13 controls. The location of the activation peaks during the processing of proprioception within S1, S2, and M1 were determined and compared between groups. Proprioceptive use during postural control was evaluated, the duration to perform 5 STSTS movements was recorded, and participants completed the Fremantle Back Awareness Questionnaire (FreBAQ) to assess back-specific body perception. RESULTS The activation peak during the processing of lower back proprioception in the right S2 was shifted laterally in the NSLBP group compared with the healthy group (P=0.007). Moreover, patients with NSLSP performed STSTS movements slower (P=0.018), and reported more perceptual impairments at the lower back (P<0.001). Finally, a significant correlation between a more lateral location of the activation peak during back proprioceptive processing and a more disturbed body perception was found across the total group (ρ=0.42, P=0.025). CONCLUSIONS The results suggest that patients with NSLBP show a reorganization of the higher-order processing of lower back proprioception, which could negatively affect spinal control and body perception.
Collapse
|
28
|
Hannanu FF, Goundous I, Detante O, Naegele B, Jaillard A. Spatiotemporal patterns of sensorimotor fMRI activity influence hand motor recovery in subacute stroke: A longitudinal task-related fMRI study. Cortex 2020; 129:80-98. [DOI: 10.1016/j.cortex.2020.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/27/2019] [Accepted: 03/13/2020] [Indexed: 01/01/2023]
|
29
|
Assessment of cortical reorganization and preserved function in phantom limb pain: a methodological perspective. Sci Rep 2020; 10:11504. [PMID: 32661345 PMCID: PMC7359300 DOI: 10.1038/s41598-020-68206-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Phantom limb pain (PLP) has been associated with reorganization in primary somatosensory cortex (S1) and preserved S1 function. Here we examined if methodological differences in the assessment of cortical representations might explain these findings. We used functional magnetic resonance imaging during a virtual reality movement task, analogous to the classical mirror box task, in twenty amputees with and without PLP and twenty matched healthy controls. We assessed the relationship between task-related activation maxima and PLP intensity in S1 and motor cortex (M1) in individually-defined or group-conjoint regions of interest (ROI) (overlap of task-related activation between the groups). We also measured cortical distances between both locations and correlated them with PLP intensity. Amputees compared to controls showed significantly increased activation in M1, S1 and S1M1 unrelated to PLP. Neural activity in M1 was positively related to PLP intensity in amputees with PLP when a group-conjoint ROI was chosen. The location of activation maxima differed between groups in S1 and M1. Cortical distance measures were unrelated to PLP. These findings suggest that sensory and motor maps differentially relate to PLP and that methodological differences might explain discrepant findings in the literature.
Collapse
|
30
|
Kim Y, Usui N, Miyazaki A, Haji T, Matsumoto K, Taira M, Nakamura K, Katsuyama N. Cortical Regions Encoding Hardness Perception Modulated by Visual Information Identified by Functional Magnetic Resonance Imaging With Multivoxel Pattern Analysis. Front Syst Neurosci 2019; 13:52. [PMID: 31632245 PMCID: PMC6779815 DOI: 10.3389/fnsys.2019.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/11/2019] [Indexed: 01/09/2023] Open
Abstract
Recent studies have revealed that hardness perception is determined by visual information along with the haptic input. This study investigated the cortical regions involved in hardness perception modulated by visual information using functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA). Twenty-two healthy participants were enrolled. They were required to place their left and right hands at the front and back, respectively, of a mirror attached to a platform placed above them while lying in a magnetic resonance scanner. In conditions SFT, MED, and HRD, one of three polyurethane foam pads of varying hardness (soft, medium, and hard, respectively) was presented to the left hand in a given trial, while only the medium pad was presented to the right hand in all trials. MED was defined as the control condition, because the visual and haptic information was congruent. During the scan, the participants were required to push the pad with the both hands while observing the reflection of the left hand and estimate the hardness of the pad perceived by the right (hidden) hand based on magnitude estimation. Behavioral results showed that the perceived hardness was significantly biased toward softer or harder in >73% of the trials in conditions SFT and HRD; we designated these trials as visually modulated (SFTvm and HRDvm, respectively). The accuracy map was calculated individually for each of the pair-wise comparisons of (SFTvm vs. MED), (HRDvm vs. MED), and (SFTvm vs. HRDvm) by a searchlight MVPA, and the cortical regions encoding the perceived hardness with visual modulation were identified by conjunction of the three accuracy maps in group analysis. The cluster was observed in the right sensory motor cortex, left anterior intraparietal sulcus (aIPS), bilateral parietal operculum (PO), and occipito-temporal cortex (OTC). Together with previous findings on such cortical regions, we conclude that the visual information of finger movements processed in the OTC may be integrated with haptic input in the left aIPS, and the subjective hardness perceived by the right hand with visual modulation may be processed in the cortical network between the left PO and aIPS.
Collapse
Affiliation(s)
- Yuri Kim
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuo Usui
- Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tomoki Haji
- Tamagawa University Brain Science Institute, Tokyo, Japan
| | | | - Masato Taira
- Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Narumi Katsuyama
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
31
|
Borra E, Luppino G. Large-scale temporo–parieto–frontal networks for motor and cognitive motor functions in the primate brain. Cortex 2019; 118:19-37. [DOI: 10.1016/j.cortex.2018.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
32
|
Shah VA, Casadio M, Scheidt RA, Mrotek LA. Spatial and temporal influences on discrimination of vibrotactile stimuli on the arm. Exp Brain Res 2019; 237:2075-2086. [PMID: 31175382 PMCID: PMC6640119 DOI: 10.1007/s00221-019-05564-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/18/2019] [Indexed: 11/29/2022]
Abstract
Body-machine interfaces (BMIs) provide a non-invasive way to control devices. Vibrotactile stimulation has been used by BMIs to provide performance feedback to the user, thereby reducing visual demands. To advance the goal of developing a compact, multivariate vibrotactile display for BMIs, we performed two psychophysical experiments to determine the acuity of vibrotactile perception across the arm. The first experiment assessed vibration intensity discrimination of sequentially presented stimuli within four dermatomes of the arm (C5, C7, C8, and T1) and on the ulnar head. The second experiment compared vibration intensity discrimination when pairs of vibrotactile stimuli were presented simultaneously vs. sequentially within and across dermatomes. The first experiment found a small but statistically significant difference between dermatomes C7 and T1, but discrimination thresholds at the other three locations did not differ. Thus, while all tested dermatomes of the arm and hand could serve as viable sites of vibrotactile stimulation for a practical BMI, ideal implementations should account for small differences in perceptual acuity across dermatomes. The second experiment found that sequential delivery of vibrotactile stimuli resulted in better intensity discrimination than simultaneous delivery, independent of whether the pairs were located within the same dermatome or across dermatomes. Taken together, our results suggest that the arm may be a viable site to transfer multivariate information via vibrotactile feedback for body-machine interfaces. However, user training may be needed to overcome the perceptual disadvantage of simultaneous vs. sequentially presented stimuli.
Collapse
Affiliation(s)
- Valay A Shah
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Maura Casadio
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- DIBRIS, University of Genova, Genova, Italy
| | - Robert A Scheidt
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Civil, Mechanical and Manufacturing Innovation, National Science Foundation, Alexandria, VA, USA
| | - Leigh A Mrotek
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
33
|
Limanowski J, Lopes P, Keck J, Baudisch P, Friston K, Blankenburg F. Action-Dependent Processing of Touch in the Human Parietal Operculum and Posterior Insula. Cereb Cortex 2019; 30:607-617. [DOI: 10.1093/cercor/bhz111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jakub Limanowski
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
- Neurocomputation Neuroimaging Unit, Department of Education and Psychology and Center for Cognitive Neuroscience Berlin, IL 60637, Freie Universität Berlin, 14195 Berlin, Germany
| | - Pedro Lopes
- Department of Computer Science, University of Chicago, Chicago IL 60637, USA
- Hasso Plattner Institute, Faculty of Digital Engineering, University of Potsdam, 14482 Potsdam, Germany
| | - Janis Keck
- Neurocomputation Neuroimaging Unit, Department of Education and Psychology and Center for Cognitive Neuroscience Berlin, IL 60637, Freie Universität Berlin, 14195 Berlin, Germany
| | - Patrick Baudisch
- Hasso Plattner Institute, Faculty of Digital Engineering, University of Potsdam, 14482 Potsdam, Germany
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Felix Blankenburg
- Neurocomputation Neuroimaging Unit, Department of Education and Psychology and Center for Cognitive Neuroscience Berlin, IL 60637, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
34
|
Rinderknecht MD, Dueñas JA, Held JP, Lambercy O, Conti FM, Zizlsperger L, Luft AR, Hepp-Reymond MC, Gassert R. Automated and Quantitative Assessment of Tactile Mislocalization After Stroke. Front Neurol 2019; 10:593. [PMID: 31244757 PMCID: PMC6581709 DOI: 10.3389/fneur.2019.00593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022] Open
Abstract
Topesthesia, the recognition of tactile stimulation location on the skin, can be severely affected by neurological injuries, such as stroke. Despite topesthesia being crucial for manipulating objects and interacting with the environment during activities of daily living, deficits cannot be quantitatively captured with current clinical assessments and are, as a consequence, not well-understood. The present work describes a novel automated assessment tool for tactile mislocalization in neurological patients with somatosensory deficits. We present two cases of ischemic stroke patients, describe their tactile localization deficits with the automated assessment, and compare the results to a standard manual clinical assessment. Using the automated assessment tool, it was possible to identify, locate, precisely quantify, and depict the patients' deficits in topesthesia. In comparison, the clinical assessment was not sensitive enough and some deficits would remain undetected due to ceiling effects. In addition, an MRI structural analysis of the lesion supported the existence of somatosensory deficits. This novel and quantitative assessment may not only help to raise awareness of the implications of deficits in topesthesia, but would also allow monitoring recovery throughout the rehabilitation process, informing treatment design, and objectively evaluating treatment efficacy.
Collapse
Affiliation(s)
- Mike D Rinderknecht
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Julio A Dueñas
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Jeremia P Held
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.,Cereneo, Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Fabio M Conti
- Clinica Hildebrand Centro di Riabilitazione Brissago, Brissago, Switzerland
| | - Leopold Zizlsperger
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.,Cereneo, Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Andreas R Luft
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.,Cereneo, Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | | | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Abela E, Missimer JH, Pastore-Wapp M, Krammer W, Wiest R, Weder BJ. Early prediction of long-term tactile object recognition performance after sensorimotor stroke. Cortex 2019; 115:264-279. [DOI: 10.1016/j.cortex.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/20/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023]
|
36
|
Stefancin P, Govindarajan ST, Krupp L, Charvet L, Duong TQ. Resting-state functional connectivity networks associated with fatigue in multiple sclerosis with early age onset. Mult Scler Relat Disord 2019; 31:101-105. [DOI: 10.1016/j.msard.2019.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 02/01/2023]
|
37
|
Altered neocortical tactile but preserved auditory early change detection responses in Friedreich ataxia. Clin Neurophysiol 2019; 130:1299-1310. [PMID: 31176929 DOI: 10.1016/j.clinph.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study using magnetoencephalography (MEG) the spatio-temporal dynamics of neocortical responses involved in sensory processing and early change detection in Friedreich ataxia (FRDA). METHODS Tactile (TERs) and auditory (AERs) evoked responses, and early neocortical change detection responses indexed by the mismatch negativity (MMN) were recorded using tactile and auditory oddballs in sixteen FRDA patients and matched healthy subjects. Correlations between the maximal amplitude of each response, genotype and clinical parameters were investigated. RESULTS Evoked responses were detectable in all FRDA patients but one. In patients, TERs were delayed and reduced in amplitude, while AERs were only delayed. Only tactile MMN responses at the contralateral secondary somatosensory cortex were altered in FRDA patients. Maximal amplitudes of TERs, AERs and tactile MMN correlated with genotype, but did not correlate with clinical parameters. CONCLUSIONS In FRDA, theamplitude of tactile MMN responses at SII cortex are reduced and correlate with the genotype, whileauditory MMN responses are not altered. SIGNIFICANCE Somatosensory pathways and tactile early change detection are selectively impaired in FRDA.
Collapse
|
38
|
Abstract
Long perceived as a primitive and poorly differentiated brain structure, the primate insular cortex recently emerged as a highly evolved, organized and richly connected cortical hub interfacing bodily states with sensorimotor, environmental, and limbic activities. This insular interface likely substantiates emotional embodiment and has the potential to have a key role in the interoceptive shaping of cognitive processes, including perceptual awareness. In this review, we present a novel working model of the insular cortex, based on an accumulation of neuroanatomical and functional evidence obtained essentially in the macaque monkey. This model proposes that interoceptive afferents that represent the ongoing physiological status of all the organs of the body are first being received in the granular dorsal fundus of the insula or “primary interoceptive cortex,” then processed through a series of dysgranular poly-modal “insular stripes,” and finally integrated in anterior agranular areas that serve as an additional sensory platform for visceral functions and as an output stage for efferent autonomic regulation. One of the agranular areas hosts the specialized von Economo and Fork neurons, which could provide a decisive evolutionary advantage for the role of the anterior insula in the autonomic and emotional binding inherent to subjective awareness.
Collapse
Affiliation(s)
- Henry C Evrard
- Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Center for Integrative Neuroscience, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
39
|
Dehghan Nayyeri M, Burgmer M, Pfleiderer B. Impact of pressure as a tactile stimulus on working memory in healthy participants. PLoS One 2019; 14:e0213070. [PMID: 30870456 PMCID: PMC6417705 DOI: 10.1371/journal.pone.0213070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/15/2019] [Indexed: 11/27/2022] Open
Abstract
Studies on cross-modal interaction have demonstrated attenuated as well as facilitated effects for both neural responses as well as behavioral performance. The goals of this pilot study were to investigate possible cross-modal interactions of tactile stimulation on visual working memory and to identify possible neuronal correlates by using functional magnetic resonance imaging (fMRI). During fMRI, participants (n = 12 females, n = 12 males) performed a verbal n-back task (0-back and 2-back tasks) while tactile pressure to the left thumbnail was delivered. Participants presented significantly lower behavioral performances (increased error rates, and reaction times) during the 2-back task as compared to the 0-back task. Task performance was independent of pressure in both tasks. This means that working memory performance was not impacted by a low salient tactile stimulus. Also in the fMRI data, no significant interactions of n-back x pressure were observed. In conclusion, the current study found no influence of tactile pressure on task-related brain activity during n-back (0-back and 2-back) tasks.
Collapse
Affiliation(s)
- Mahboobeh Dehghan Nayyeri
- Medical Faculty and Institute of Clinical Radiology, University Hospital Muenster, Muenster, Germany
- Department of Psychosomatic Medicine and Psychotherapy, LVR Clinic, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Markus Burgmer
- Department of Psychosomatics and Psychotherapy, University Hospital Muenster, Muenster, Germany
| | - Bettina Pfleiderer
- Medical Faculty and Institute of Clinical Radiology, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
40
|
Orban GA, Ferri S, Platonov A. The role of putative human anterior intraparietal sulcus area in observed manipulative action discrimination. Brain Behav 2019; 9:e01226. [PMID: 30740932 PMCID: PMC6422812 DOI: 10.1002/brb3.1226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Although it has become widely accepted that the action observation network (AON) includes three levels (occipito-temporal, parietal and premotor), little is known concerning the specific role of these levels within perceptual tasks probing action observation. Recent single cell studies suggest that the parietal level carries the information required to discriminate between two-alternative observed actions, but do not exclude possible contributions from the other two levels. METHODS Two functional magnetic resonance imaging experiments used a task-based attentional modulation paradigm in which subjects viewed videos of an actor performing a manipulative action on a coloured object, and discriminated between either two observed manipulative actions, two actors or two colours. RESULTS Both experiments demonstrated that relative to actor and colour discrimination, discrimination between observed manipulative actions involved the putative human anterior intraparietal sulcus (phAIP) area in parietal cortex. In one experiment, where the observed actions also differed with regard to effectors, premotor cortex was also specifically recruited. CONCLUSIONS Our results highlight the primary role of parietal cortex in discriminating between two-alternative observed manipulative actions, consistent with the view that this level plays a major role in representing the identity of an observed action.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Ferri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Artem Platonov
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
41
|
Schmidt TT, Blankenburg F. The Somatotopy of Mental Tactile Imagery. Front Hum Neurosci 2019; 13:10. [PMID: 30833894 PMCID: PMC6387936 DOI: 10.3389/fnhum.2019.00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/10/2019] [Indexed: 01/19/2023] Open
Abstract
To what degree mental imagery (MI) bears on the same neuronal processes as perception has been a central question in the neurophysiological study of imagery. Sensory-recruitment models suggest that imagery of sensory material heavily relies on the involvement of sensory cortices. Empirical evidence mainly stems from the study of visual imagery and suggests that it depends on the mentally imagined material whether hierarchically lower regions are recruited. However, evidence from other modalities is necessary to infer generalized principles. In this fMRI study we used the somatotopic organization of the primary somatosensory cortex (SI) to test in how far MI of tactile sensations activates topographically sensory brain areas. Participants (N = 19) either perceived or imagined vibrotactile stimuli on their left or right thumbs or big toes. The direct comparison to a corresponding perception condition revealed that SI was somatotopically recruited during imagery. While stimulus driven bottom-up processing induced activity throughout all SI subareas, i.e., BA1, BA3a, BA3b, and BA2 defined by probabilistic cytoarchitectonic maps, top-down recruitment during imagery was limited to the hierarchically highest subarea BA2.
Collapse
Affiliation(s)
- Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
42
|
Schmidt TT, Miller TM, Blankenburg F, Pulvermüller F. Neuronal correlates of label facilitated tactile perception. Sci Rep 2019; 9:1606. [PMID: 30733578 PMCID: PMC6367477 DOI: 10.1038/s41598-018-37877-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/14/2018] [Indexed: 11/30/2022] Open
Abstract
It is a long-standing question in neurolinguistics, to what extent language can have a causal effect on perception. A recent behavioural study reported that participants improved their discrimination ability of Braille-like tactile stimuli after one week of implicit association training with language stimuli being co-presented redundantly with the tactile stimuli. In that experiment subjects were exposed twice a day for 1 h to the joint presentation of tactile stimuli presented to the fingertip and auditorily presented pseudowords. Their discrimination ability improved only for those tactile stimuli that were consistently paired with pseudowords, but not for those that were discordantly paired with different pseudowords. Thereby, a causal effect of verbal labels on tactile perception has been demonstrated under controlled laboratory conditions. This raises the question as to what the neuronal mechanisms underlying this implicit learning effect are. Here, we present fMRI data collected before and after the aforementioned behavioral learning to test for changes in brain connectivity as the underlying mechanism of the observed behavioral effects. The comparison of pre- and post-training revealed a language-driven increase in connectivity strength between auditory and secondary somatosensory cortex and the hippocampus as an association-learning related region.
Collapse
Affiliation(s)
- Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195, Berlin, Germany.
| | - Tally McCormick Miller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099, Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099, Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099, Berlin, Germany
| |
Collapse
|
43
|
Wang H, David O, Zhou W, Wang L, Zhang B, Song X, Lin J, Bai J, Ruan J, Li J, Liu X, Wang Q. Distinctive epileptogenic networks for parietal operculum seizures. Epilepsy Behav 2019; 91:59-67. [PMID: 30269938 DOI: 10.1016/j.yebeh.2018.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The present study investigated the electroclinical features and epileptogenic networks of parietal operculum seizures (POS) by using stereoelectroencephalography (SEEG) intracerebral recordings. METHODS Comprehensive presurgical evaluation data of seven patients with drug-resistant epilepsy with POS were analyzed retrospectively. Stereoelectroencephalography-recorded seizures were processed visually and quantitatively by using epileptogenicity mapping (EM), which has been proposed to ergonomically quantify the epileptogenicity of brain structures with a neuroimaging approach. RESULTS Six patients reported initial somatosensory or viscerosensitive symptoms. Ictal clinical signs comprised frequently nocturnal hypermotor seizures and contralateral focal motor seizures, including tonic, tonic-clonic, or dystonic seizures of the face and limbs. Interictal and ictal scalp EEG provided information regarding lateralization in the majority of patients, but the discharges were widely distributed over perisylvian or "rolandic-like" regions and the vertex. Furthermore, two subgroups of epileptogenic network organization were identified within POS by SEEG, visually and quantitatively, using an EM approach: group 1 (mesial frontal/cingulate networks) was observed in three patients who mainly exhibited hypermotor seizures; group 2 (perisylvian networks) was observed in four patients who mainly exhibited contralateral focal motor seizures. CONCLUSION This study indicated that POS could be characterized by initial specific somatosensory sensations, followed by either frequently nocturnal hypermotor seizures or contralateral focal motor seizures. The distinctive seizure semiology depended on the organization of two primary epileptogenic networks. This article is part of the Special Issue "Individualized Epilepsy Management: Medicines, Surgery and Beyond.
Collapse
Affiliation(s)
- Haixiang Wang
- Epilepsy Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Olivier David
- Univ. Grenoble Alpes, Grenoble Institute of Neuroscience, GIN, Grenoble, France; Inserm, U1216, Grenoble, France
| | - Wenjing Zhou
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Bingqing Zhang
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Xiancheng Song
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Jiuluan Lin
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Jianjun Bai
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Jing Ruan
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Jia Li
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qun Wang
- Epilepsy Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
44
|
Lamp G, Goodin P, Palmer S, Low E, Barutchu A, Carey LM. Activation of Bilateral Secondary Somatosensory Cortex With Right Hand Touch Stimulation: A Meta-Analysis of Functional Neuroimaging Studies. Front Neurol 2019; 9:1129. [PMID: 30687211 PMCID: PMC6335946 DOI: 10.3389/fneur.2018.01129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Brain regions involved in processing somatosensory information have been well documented through lesion, post-mortem, animal, and more recently, structural and functional neuroimaging studies. Functional neuroimaging studies characterize brain activation related to somatosensory processing; yet a meta-analysis synthesis of these findings is currently lacking and in-depth knowledge of the regions involved in somatosensory-related tasks may also be confounded by motor influences. Objectives: Our Activation Likelihood Estimate (ALE) meta-analysis sought to quantify brain regions that are involved in the tactile processing of the right (RH) and left hands (LH) separately, with the exclusion of motor related activity. Methods: The majority of studies (n = 41) measured activation associated with RH tactile stimulation. RH activation studies were grouped into those which conducted whole-brain analyses (n = 29) and those which examined specific regions of interest (ROI; n = 12). Few studies examined LH activation, though all were whole-brain studies (N = 7). Results: Meta-analysis of brain activation associated with RH tactile stimulation (whole-brain studies) revealed large clusters of activation in the left primary somatosensory cortex (S1) and bilaterally in the secondary somatosensory cortex (S2; including parietal operculum) and supramarginal gyrus (SMG), as well as the left anterior cingulate. Comparison between findings from RH whole-brain and ROI studies revealed activation as expected, but restricted primarily to S1 and S2 regions. Further, preliminary analyses of LH stimulation studies only, revealed two small clusters within the right S1 and S2 regions, likely limited due to the small number of studies. Contrast analyses revealed the one area of overlap for RH and LH, was right secondary somatosensory region. Conclusions: Findings from the whole-brain meta-analysis of right hand tactile stimulation emphasize the importance of taking into consideration bilateral activation, particularly in secondary somatosensory cortex. Further, the right parietal operculum/S2 region was commonly activated for right and left hand tactile stimulation, suggesting a lateralized pattern of somatosensory activation in right secondary somatosensory region. Implications for further research and for possible differences in right and left hemispheric stroke lesions are discussed.
Collapse
Affiliation(s)
- Gemma Lamp
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| | - Peter Goodin
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Susan Palmer
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Essie Low
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Department of Neurology, Sunshine Hospital, Western Health, Melbourne, VIC, Australia
- Department of Psychology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ayla Barutchu
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Balliol College, University of Oxford, Oxford, United Kingdom
| | - Leeanne M. Carey
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
45
|
Nurmi T, Henriksson L, Piitulainen H. Optimization of Proprioceptive Stimulation Frequency and Movement Range for fMRI. Front Hum Neurosci 2018; 12:477. [PMID: 30559657 PMCID: PMC6286983 DOI: 10.3389/fnhum.2018.00477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023] Open
Abstract
For vision, audition and tactile sense, the optimal stimulus frequency for fMRI is somewhat known. For proprioception, i.e., the “movement sense”, however, the optimal frequency is unknown. We studied the effect of passive-finger-movement frequency on proprioceptive fMRI responses using a novel pneumatic-movement actuator. Eleven healthy right-handed volunteers participated in the study. The movement actuator passively moved the participant’s right index finger at frequencies of 0.3, 1, 3, 6, 9, or 12 Hz in a blocked design. A functional localizer was used to define regions-of-interest in SI and SII cortices. In addition, effect of movement range on the fMRI responses was tested in a separate session with 1, 3, 5, and 7 mm movement ranges at a fixed 2 Hz frequency. In primary somatosensory (SI) cortex, the responses were stronger at 3 Hz than at 0.3 Hz (p < 0.001) or 1 Hz (p < 0.05), and at ≥6 Hz than 0.3 Hz (p < 0.001 for frequencies ≥ 6 Hz). In secondary somatosensory (SII) cortex, all movements, except at 0.3 Hz, elicited significant responses of similar strength. In addition, 6, 9, and 12-Hz movements elicited a significant offset response in both SI and SII cortices (p < 0.001–0.05). SI cortex required a total stimulation duration of 4 min to elicit significant activations at the group-level whereas for SII cortex 1 min 20 s was sufficient. Increase in the movement range led to stronger responses in SI cortex, but not in SII cortex. Movements above 3 Hz elicited the strongest SI cortex responses, and increase in the movement range enhanced the response strength. We thus recommend that movements at 3–6 Hz with a movement range of 5 mm or higher to be used in future studies of proprioception. Our results are in-line with previous fMRI and PET studies using tactile or median nerve stimulation at different stimulation frequencies.
Collapse
Affiliation(s)
- Timo Nurmi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Linda Henriksson
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
46
|
Ruehl RM, Hoffstaedter F, Reid A, Eickhoff S, zu Eulenburg P. Functional hierarchy of oculomotor and visual motion subnetworks within the human cortical optokinetic system. Brain Struct Funct 2018; 224:567-582. [DOI: 10.1007/s00429-018-1788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/02/2018] [Indexed: 01/26/2023]
|
47
|
Mălîia MD, Donos C, Barborica A, Popa I, Ciurea J, Cinatti S, Mîndruţă I. Functional mapping and effective connectivity of the human operculum. Cortex 2018; 109:303-321. [PMID: 30414541 DOI: 10.1016/j.cortex.2018.08.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/05/2018] [Accepted: 08/27/2018] [Indexed: 11/30/2022]
Abstract
The operculum, defined as the cortex adjacent to the insula, is a large structure encompassing three lobes, with a recognized role in a variety of neurologic and psychiatric conditions. Its complex functions include sensory, motor, autonomic and cognitive processing. In humans, these are extended with the addition of language. These functions are implemented by highly specialized neuronal populations and their widespread connections, which our study aims at mapping in detail. We studied a group of 31 patients that were explored with intracranial electrodes during the pre-surgical workup for drug-resistant epilepsy. We have selected the subset of contacts implanted in non-epileptogenic opercular cortex and we analyzed the neurophysiological and behavioral responses to direct electrical stimulation. The functional mapping was performed by applying 1 Hz and 50 Hz electrical stimulation on 252 contact pairs and recording the threshold for evoking clinical effects. The effective connectivity was assessed using cortico-cortical evoked potentials elicited by single-pulse electrical stimulation in a subset of 19 patients. The locations of the effects grouped in twelve distinct semiological classes were analyzed. The most frequent effects evoked by stimulation of the frontal operculum were language related (29%). The Rolandic area produced most often oropharyngeal symptoms (47%), the parietal operculum produced somatosensory effects (67%), while the temporal evoked auditory (58%) semiology. The connectivity pattern was complex, with these structures having widespread ipsilateral and contralateral projections. The local connections between the opercular subregions and with the insula, as well as with more distant areas like the cingulate gyrus, were distinguished by strength and between-subjects consistency. In conclusion, we demonstrate specific opercular functionality, distinct from the one of the insular cortex. The study is complemented by a literature review on the opercular functional connectome in human and non-human primates.
Collapse
Affiliation(s)
- Mihai-Dragoş Mălîia
- Neurology Department, University Emergency Hospital, Bucharest, Romania; Physics Department, University of Bucharest, Bucharest, Romania
| | - Cristian Donos
- Physics Department, University of Bucharest, Bucharest, Romania
| | - Andrei Barborica
- Physics Department, University of Bucharest, Bucharest, Romania; FHC Inc., Bowdoin, ME, USA
| | - Irina Popa
- Neurology Department, University Emergency Hospital, Bucharest, Romania; Neurology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Jean Ciurea
- Neurosurgery Department, Bagdasar-Arseni Hospital, Bucharest, Romania
| | - Sandra Cinatti
- Neurology Department, University Emergency Hospital, Bucharest, Romania
| | - Ioana Mîndruţă
- Neurology Department, University Emergency Hospital, Bucharest, Romania; Neurology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
48
|
Tactile learning transfer from the hand to the face but not to the forearm implies a special hand-face relationship. Sci Rep 2018; 8:11752. [PMID: 30082760 PMCID: PMC6079060 DOI: 10.1038/s41598-018-30183-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/20/2018] [Indexed: 02/04/2023] Open
Abstract
In the primary somatosensory cortex, large-scale cortical and perceptual changes have been demonstrated following input deprivation. Recently, we found that the cortical and perceptual changes induced by repetitive somatosensory stimulation (RSS) at a finger transfer to the face. However, whether such cross-border changes are specific to the face remains elusive. Here, we investigated whether RSS-induced acuity changes at the finger can also transfer to the forearm, which is the body part represented on the other side of the hand representation. Our results confirmed the transfer of tactile learning from the stimulated finger to the lip, but no significant changes were observed at the forearm. A second experiment revealed that the same regions on the forearm exhibited improved tactile acuity when RSS was applied there, excluding the possibility of low plastic ability at the arm representation. This provides also the first evidence that RSS can be efficient on body parts other than the hand. These results suggest that RSS-induced tactile learning transfers preferentially from the hand to the face rather than to the forearm. This specificity could arise from a stronger functional connectivity between the cortical hand and face representations, reflecting a fundamental coupling between these body parts.
Collapse
|
49
|
Sanchez Panchuelo RM, Besle J, Schluppeck D, Humberstone M, Francis S. Somatotopy in the Human Somatosensory System. Front Hum Neurosci 2018; 12:235. [PMID: 29950980 PMCID: PMC6008546 DOI: 10.3389/fnhum.2018.00235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
Previous functional magnetic resonance imaging (fMRI) studies have demonstrated digit somatotopy in primary somatosensory cortex (SI), and even shown that at high spatial resolution it is possible to resolve within-digit somatotopy. However, fMRI studies have failed to resolve the spatial organisation of digit representations in secondary somatosensory cortex (SII). One of the major limitations of high spatial resolution fMRI studies of the somatosensory system has been the long acquisition time needed to acquire slices spanning both SI and SII. Here, we exploit the increased blood oxygenation level dependent contrast of ultra-high-field (7 Tesla) fMRI and the use of multiband imaging to study the topographic organisation in SI and SII with high spatial resolution at the individual subject level. A total of n = 6 subjects underwent vibrotactile stimulation of their face, hand digits and foot (body imaging) and their individual hand digits (digit mapping) for each left and right sides of the body. In addition, n = 2 subjects participated only in the body imaging experiment on both their left and right sides. We show an orderly representation of the face, hand digits and foot in contralateral primary cortex in each individual subject. In SII, there is clear separation of the body areas of the face, hand and foot but the spatial organisation varies across individual subjects. However, separate representation of the individual digits of the hand in SII could not be resolved, even at the spatial resolution of 1.5 mm due to largely overlapping representations.
Collapse
Affiliation(s)
- Rosa M Sanchez Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Julien Besle
- Department of Psychology, American University of Beirut, Beirut, Lebanon
| | - Denis Schluppeck
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Miles Humberstone
- Nottingham University Hospitals Trust, University of Nottingham, Nottingham, United Kingdom
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
50
|
Glanz Iljina O, Derix J, Kaur R, Schulze-Bonhage A, Auer P, Aertsen A, Ball T. Real-life speech production and perception have a shared premotor-cortical substrate. Sci Rep 2018; 8:8898. [PMID: 29891885 PMCID: PMC5995900 DOI: 10.1038/s41598-018-26801-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/09/2018] [Indexed: 11/25/2022] Open
Abstract
Motor-cognitive accounts assume that the articulatory cortex is involved in language comprehension, but previous studies may have observed such an involvement as an artefact of experimental procedures. Here, we employed electrocorticography (ECoG) during natural, non-experimental behavior combined with electrocortical stimulation mapping to study the neural basis of real-life human verbal communication. We took advantage of ECoG’s ability to capture high-gamma activity (70–350 Hz) as a spatially and temporally precise index of cortical activation during unconstrained, naturalistic speech production and perception conditions. Our findings show that an electrostimulation-defined mouth motor region located in the superior ventral premotor cortex is consistently activated during both conditions. This region became active early relative to the onset of speech production and was recruited during speech perception regardless of acoustic background noise. Our study thus pinpoints a shared ventral premotor substrate for real-life speech production and perception with its basic properties.
Collapse
Affiliation(s)
- Olga Glanz Iljina
- GRK 1624 'Frequency Effects in Language', University of Freiburg, Freiburg, Germany. .,Department of German Linguistics, University of Freiburg, Freiburg, Germany. .,Hermann Paul School of Linguistics, University of Freiburg, Freiburg, Germany. .,Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany. .,Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Johanna Derix
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany.,Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rajbir Kaur
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andreas Schulze-Bonhage
- BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany.,Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Peter Auer
- GRK 1624 'Frequency Effects in Language', University of Freiburg, Freiburg, Germany.,Department of German Linguistics, University of Freiburg, Freiburg, Germany.,Hermann Paul School of Linguistics, University of Freiburg, Freiburg, Germany
| | - Ad Aertsen
- Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Tonio Ball
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany. .,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany.
| |
Collapse
|