1
|
Del Rosario Hernández T, Gore SV, Kreiling JA, Creton R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed Pharmacother 2024; 171:116096. [PMID: 38185043 PMCID: PMC10922774 DOI: 10.1016/j.biopha.2023.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Hernández TDR, Gore SV, Kreiling JA, Creton R. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557235. [PMID: 37745452 PMCID: PMC10515830 DOI: 10.1101/2023.09.12.557235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
4
|
Li S. The β-adrenergic hypothesis of synaptic and microglial impairment in Alzheimer's disease. J Neurochem 2023; 165:289-302. [PMID: 36799441 DOI: 10.1111/jnc.15782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease originating partly from amyloid β protein-induced synaptic failure. As damaging of noradrenergic neurons in the locus coeruleus (LC) occurs at the prodromal stage of AD, activation of adrenergic receptors could serve as the first line of defense against the onset of the disease. Activation of β2 -ARs strengthens long-term potentiation (LTP) and synaptic activity, thus improving learning and memory. Physical stimulation of animals exposed to an enriched environment (EE) leads to the activation of β2 -ARs and prevents synaptic dysfunction. EE also suppresses neuroinflammation, suggesting that β2 -AR agonists may play a neuroprotective role. The β2 -AR agonists used for respiratory diseases have been shown to have an anti-inflammatory effect. Epidemiological studies further support the beneficial effects of β2 -AR agonists on several neurodegenerative diseases. Thus, I propose that β2 -AR agonists may provide therapeutic value in combination with novel treatments for AD.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Martínez-Torres S, Bergadà-Martínez A, Ortega JE, Galera-López L, Hervera A, de Los Reyes-Ramírez L, Ortega-Álvaro A, Remmers F, Muñoz-Moreno E, Soria G, Del Río JA, Lutz B, Ruíz-Ortega JÁ, Meana JJ, Maldonado R, Ozaita A. Peripheral CB1 receptor blockade acts as a memory enhancer through a noradrenergic mechanism. Neuropsychopharmacology 2023; 48:341-350. [PMID: 36088492 PMCID: PMC9750989 DOI: 10.1038/s41386-022-01436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022]
Abstract
Peripheral inputs continuously shape brain function and can influence memory acquisition, but the underlying mechanisms have not been fully understood. Cannabinoid type-1 receptor (CB1R) is a well-recognized player in memory performance, and its systemic modulation significantly influences memory function. By assessing low arousal/non-emotional recognition memory in mice, we found a relevant role of peripheral CB1R in memory persistence. Indeed, the peripherally-restricted CB1R specific antagonist AM6545 showed significant mnemonic effects that were occluded in adrenalectomized mice, and after peripheral adrenergic blockade. AM6545 also transiently impaired contextual fear memory extinction. Vagus nerve chemogenetic inhibition reduced AM6545-induced mnemonic effect. Genetic CB1R deletion in dopamine β-hydroxylase-expressing cells enhanced recognition memory persistence. These observations support a role of peripheral CB1R modulating adrenergic tone relevant for cognition. Furthermore, AM6545 acutely improved brain connectivity and enhanced extracellular hippocampal norepinephrine. In agreement, intra-hippocampal β-adrenergic blockade prevented AM6545 mnemonic effects. Altogether, we disclose a novel CB1R-dependent peripheral mechanism with implications relevant for lengthening the duration of non-emotional memory.
Collapse
Affiliation(s)
- Sara Martínez-Torres
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia. Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Araceli Bergadà-Martínez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jorge E Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Lorena Galera-López
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia. Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Lucía de Los Reyes-Ramírez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio Ortega-Álvaro
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Floortje Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Emma Muñoz-Moreno
- Experimental 7T MRI Unit, Magnetic Resonance Imaging Core Facility (IDIBAPS), Barcelona, Spain
| | - Guadalupe Soria
- Experimental 7T MRI Unit, Magnetic Resonance Imaging Core Facility (IDIBAPS), Barcelona, Spain
- Laboratory of Surgical Neuroanatomy, Faculty of Medicine and Health Sciences, Institute of Neurosciencies, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia. Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | | | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- IMIM Hospital del Mar Research Institute, Barcelona, Spain.
| | - Andrés Ozaita
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- IMIM Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
6
|
Birch JN, Vanderheyden WM. The Molecular Relationship between Stress and Insomnia. Adv Biol (Weinh) 2022; 6:e2101203. [PMID: 35822937 DOI: 10.1002/adbi.202101203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/15/2022] [Indexed: 01/28/2023]
Abstract
The bi-directional relationship between sleep and stress has been actively researched as sleep disturbances and stress have become increasingly common in society. Interestingly, the brain and underlying neural circuits important for sleep regulation may respond uniquely to stress that leads to post-traumatic stress disorder (PTSD) and stress that does not. In stress that does not lead to PTSD, the hypothalamic-pituitary-adrenal axis (HPA) pathway is activated normally that results in sympathetic nervous system activation that allows the brain and body to return to baseline functioning. However, exposure to stress that leads to PTSD, causes enhanced negative feedback of this same pathway and results in long-term physiological and psychological changes. In this review, how stress regulates glucocorticoid signaling pathways in brain glial cells called astrocytes, and then mediates stress-induced insomnia are examined. Astrocytes are critical sleep regulatory cells and their connections to sleep and stress due to disturbed glucocorticoid signaling provide a novel mechanism to explain how stress leads to insomnia. This review will examine the interactions of stress neurobiology, astrocytes, sleep, and glucocorticoid signaling pathways and will examine the how stress that leads to PTSD and stress that does not impacts sleep-regulatory processes.
Collapse
Affiliation(s)
- Jasmine N Birch
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, 412 E. Spokane Falls Blvd, Spokane, WA, 99 202, USA
| | - William M Vanderheyden
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Pharmaceutical and Biomedical Sciences Building, Room 213/Lab 230, 412 E. Spokane Falls Blvd, (Lab) 509-368-6809, Spokane, WA, 99 202, USA
| |
Collapse
|
7
|
Babushkina N, Manahan-Vaughan D. Frequency-dependency of the involvement of dopamine D1/D5 and beta-adrenergic receptors in hippocampal LTD triggered by locus coeruleus stimulation. Hippocampus 2022; 32:449-465. [PMID: 35478421 DOI: 10.1002/hipo.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Patterned stimulation of the locus coeruleus (LC, 100 Hz), in conjunction with test-pulse stimulation of hippocampal afferents, results in input-specific long-term depression (LTD) of synaptic plasticity in the hippocampus. Effects are long-lasting and have been described in Schaffer-collateral-CA1 and perforant path-dentate gyrus synapses in behaving rats. To what extent LC-mediated hippocampal LTD (LC-LTD) is frequency-dependent is unclear. Here, we report that LC-LTD can be triggered by LC stimulation with 2 and 5 Hz akin to tonic activity, 10 Hz equivalent to phasic activity, and 100 Hz akin to high-phasic activity in the dentate gyrus (DG) of freely behaving rats. LC-LTD at both 2 and 100 Hz can be significantly prevented by an NMDA receptor antagonist. The LC releases both noradrenaline (NA) and dopamine (DA) from its hippocampal terminals and may also trigger hippocampal DA release by activating the ventral tegmental area (VTA). Unclear is whether both neurotransmitters contribute equally to hippocampal LTD triggered by LC stimulation (LC-LTD). Both DA D1/D5 receptors (D1/D5R) and beta-adrenergic receptors (β-AR) are critically required for hippocampal LTD that is induced by patterned stimulation of hippocampal afferents, or is facilitated by spatial learning. We, therefore, explored to what extent these receptor subtypes mediate frequency-dependent hippocampal LC-LTD. LC-LTD elicited by 2, 5, and 10 Hz stimulation was unaffected by antagonism of β-AR with propranolol, whereas LC-LTD induced by these frequencies was prevented by D1/D5R-antagonism using SCH23390. By contrast, LC-LTD evoked at 100 Hz was prevented by β-AR-antagonism and only mildly affected by D1/D5R-antagonism. Taken together, these findings support that LC-LTD can be triggered by LC activity at a wide range of frequencies. Furthermore, the contribution of D1/D5R and β-AR to hippocampal LTD that is triggered by LC activity is frequency-dependent and suggests that D1/D5R may be involved in LC-mediated hippocampal tonus.
Collapse
Affiliation(s)
- Natalia Babushkina
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Stacho M, Manahan-Vaughan D. The Intriguing Contribution of Hippocampal Long-Term Depression to Spatial Learning and Long-Term Memory. Front Behav Neurosci 2022; 16:806356. [PMID: 35548697 PMCID: PMC9084281 DOI: 10.3389/fnbeh.2022.806356] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) comprise the principal cellular mechanisms that fulfill established criteria for the physiological correlates of learning and memory. Traditionally LTP, that increases synaptic weights, has been ascribed a prominent role in learning and memory whereas LTD, that decreases them, has often been relegated to the category of "counterpart to LTP" that serves to prevent saturation of synapses. In contradiction of these assumptions, studies over the last several years have provided functional evidence for distinct roles of LTD in specific aspects of hippocampus-dependent associative learning and information encoding. Furthermore, evidence of the experience-dependent "pruning" of excitatory synapses, the majority of which are located on dendritic spines, by means of LTD has been provided. In addition, reports exist of the temporal and physical restriction of LTP in dendritic compartments by means of LTD. Here, we discuss the role of LTD and LTP in experience-dependent information encoding based on empirical evidence derived from conjoint behavioral and electrophysiological studies conducted in behaving rodents. We pinpoint the close interrelation between structural modifications of dendritic spines and the occurrence of LTP and LTD. We report on findings that support that whereas LTP serves to acquire the general scheme of a spatial representation, LTD enables retention of content details. We argue that LTD contributes to learning by engaging in a functional interplay with LTP, rather than serving as its simple counterpart, or negator. We propose that similar spatial experiences that share elements of neuronal representations can be modified by means of LTD to enable pattern separation. Therewith, LTD plays a crucial role in the disambiguation of similar spatial representations and the prevention of generalization.
Collapse
|
9
|
Broncel A, Bocian R, Kłos-Wojtczak P, Konopacki J. Noradrenergic Profile of Hippocampal Formation Theta Rhythm in Anaesthetized Rats. Neuroscience 2021; 473:13-28. [PMID: 34418519 DOI: 10.1016/j.neuroscience.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
The present study was undertaken to identify the noradrenergic receptors underlying the production of hippocampal formation (HPC) type 2 theta rhythm. The experiments were performed on urethanized rats wherein type 2 theta is the only rhythm present. In three independent stages of experiments, the effects of noradrenaline (NE) and selective noradrenergic α and β agonists and antagonists were tested. We indicate that the selective activation of three HPC noradrenergic receptors, α1, α2 and β1, induced a similar effect (i.e., inhibition) on type 2 theta rhythm. The remaining HPC β2 and β3 noradrenergic receptors do not seem to be directly involved in the pharmacological mechanism responsible for the suppression of theta rhythm in anaesthetized rats. Obtained results provide evidence for the suppressant effect of exogenous NE on HPC type 2 theta rhythm and show the crucial role of α1, α2 and β1 noradrenergic receptors in the modulation of HPC mechanisms of oscillations and synchrony. This finding is in contrast to the effects of endogenous NE produced by electrical stimulation of the locus coeruleus (LC) and procaine injection into the LC (Broncel et al., 2020).
Collapse
Affiliation(s)
- A Broncel
- Neuromedical, Research Department, Natolin 15, 92-701 Lodz, Poland.
| | - R Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No 141/143, 90-236 Lodz, Poland.
| | - P Kłos-Wojtczak
- Neuromedical, Research Department, Natolin 15, 92-701 Lodz, Poland.
| | - J Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
10
|
Goodman AM, Langner BM, Jackson N, Alex C, McMahon LL. Heightened Hippocampal β-Adrenergic Receptor Function Drives Synaptic Potentiation and Supports Learning and Memory in the TgF344-AD Rat Model during Prodromal Alzheimer's Disease. J Neurosci 2021; 41:5747-5761. [PMID: 33952633 PMCID: PMC8244969 DOI: 10.1523/jneurosci.0119-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023] Open
Abstract
The central noradrenergic (NA) system is critical for the maintenance of attention, behavioral flexibility, spatial navigation, and learning and memory, those cognitive functions lost first in early Alzheimer's disease (AD). In fact, the locus coeruleus (LC), the sole source of norepinephrine (NE) for >90% of the brain, is the first site of pathologic tau accumulation in human AD with axon loss throughout forebrain, including hippocampus. The dentate gyrus is heavily innervated by LC-NA axons, where released NE acts on β-adrenergic receptors (ARs) at excitatory synapses from entorhinal cortex to facilitate long-term synaptic plasticity and memory formation. These synapses experience dysfunction in early AD before cognitive impairment. In the TgF344-AD rat model of AD, degeneration of LC-NA axons in hippocampus recapitulates human AD, providing a preclinical model to investigate synaptic and behavioral consequences. Using immunohistochemistry, Western blot analysis, and brain slice electrophysiology in 6- to 9-month-old wild-type and TgF344-AD rats, we discovered that the loss of LC-NA axons coincides with the heightened β-AR function at medial perforant path-dentate granule cell synapses that is responsible for the increase in LTP magnitude at these synapses. Furthermore, novel object recognition is facilitated in TgF344-AD rats that requires β-ARs, and pharmacological blockade of β-ARs unmasks a deficit in extinction learning only in TgF344-AD rats, indicating a greater reliance on β-ARs in both behaviors. Thus, a compensatory increase in β-AR function during prodromal AD in TgF344-AD rats heightens synaptic plasticity and preserves some forms of learning and memory.SIGNIFICANCE STATEMENT The locus coeruleus (LC), a brain region located in the brainstem which is responsible for attention and arousal, is damaged first by Alzheimer's disease (AD) pathology. The LC sends axons to hippocampus where released norepinephrine (NE) modulates synaptic function required for learning and memory. How degeneration of LC axons and loss of NE in hippocampus in early AD impacts synaptic function and learning and memory is not well understood despite the importance of LC in cognitive function. We used a transgenic AD rat model with LC axon degeneration mimicking human AD and found that heightened function of β-adrenergic receptors in the dentate gyrus increased synaptic plasticity and preserved learning and memory in early stages of the disease.
Collapse
Affiliation(s)
- Anthoni M Goodman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Bethany M Langner
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Nateka Jackson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Capri Alex
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| |
Collapse
|
11
|
Rojic-Becker D, Portero-Tresserra M, Martí-Nicolovius M, Vale-Martínez A, Guillazo-Blanch G. Caloric restriction modulates the monoaminergic and glutamatergic systems in the hippocampus, and attenuates age-dependent spatial memory decline. Neurobiol Learn Mem 2019; 166:107107. [DOI: 10.1016/j.nlm.2019.107107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
|
12
|
Dyer-Reaves K, Goodman AM, Nelson AR, McMahon LL. Alpha1-Adrenergic Receptor Mediated Long-Term Depression at CA3-CA1 Synapses Can Be Induced via Accumulation of Endogenous Norepinephrine and Is Preserved Following Noradrenergic Denervation. Front Synaptic Neurosci 2019; 11:27. [PMID: 31649525 PMCID: PMC6794465 DOI: 10.3389/fnsyn.2019.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
Locus coeruleus (LC) provides the sole source of noradrenergic (NA) innervation to hippocampus, and it undergoes significant degeneration early in Alzheimer's disease (AD). Norepinephrine (NE) modulates synaptic transmission and plasticity at hippocampal synapses which likely contributes to hippocampus-dependent learning and memory. We previously reported that pharmacological activation of α1 adrenergic receptors (α1ARs) induces long-term depression (LTD) at CA3-CA1 synapses. Here, we investigated whether accumulation of endogenous NE via pharmacological blockade of norepinephrine transporters (NETs) and the NE degradative enzyme, monoamine oxidase (MAO), can induce α1AR LTD, as these inhibitors are used clinically. Further, we sought to determine how degeneration of hippocampal NA innervation, as occurs in AD, impacts α1AR function and α1AR LTD. Bath application of NET and MAO inhibitors in slices from control rats reliably induced α1AR LTD when β adrenergic receptors were inhibited. To induce degeneration of LC-NA innervation, rats were treated with the specific NA neurotoxin DSP-4 and recordings performed 1-3 weeks later when NA axon degeneration had stabilized. Even with 85% loss of hippocampal NA innervation, α1AR LTD was successfully induced using either the α1AR agonist phenylephrine or the combined NET and MAO inhibitors, and importantly, the LTD magnitude was not different from saline-treated control. These data suggest that despite significant decreases in NA input to hippocampus, the mechanisms necessary for the induction of α1AR LTD remain functional. Furthermore, we posit that α1AR activation could be a viable therapeutic target for pharmacological intervention in AD and other diseases involving malfunctions of NA neurotransmission.
Collapse
Affiliation(s)
- Katie Dyer-Reaves
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anthoni M. Goodman
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy R. Nelson
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Schicknick H, Henschke JU, Budinger E, Ohl FW, Gundelfinger ED, Tischmeyer W. β-adrenergic modulation of discrimination learning and memory in the auditory cortex. Eur J Neurosci 2019; 50:3141-3163. [PMID: 31162753 PMCID: PMC6900137 DOI: 10.1111/ejn.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023]
Abstract
Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long‐term memory formation is scarce. Our previous pharmacological studies on cortex‐dependent frequency‐modulated tone‐sweep discrimination learning of Mongolian gerbils showed that auditory‐cortical D1/5‐dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D1/5‐dopamine receptors and β‐adrenoceptors, we hypothesised a role of β‐adrenergic signalling in the auditory cortex for sweep discrimination learning and memory. Supporting this hypothesis, the β1/2‐adrenoceptor antagonist propranolol bilaterally applied to the gerbil auditory cortex after task acquisition prevented the discrimination increment that was normally monitored 1 day later. The increment in the total number of hurdle crossings performed in response to the sweeps per se was normal. Propranolol infusion after the seventh training session suppressed the previously established sweep discrimination. The suppressive effect required antagonist injection in a narrow post‐session time window. When applied to the auditory cortex 1 day before initial conditioning, β1‐adrenoceptor‐antagonising and β1‐adrenoceptor‐stimulating agents retarded and facilitated, respectively, sweep discrimination learning, whereas β2‐selective drugs were ineffective. In contrast, single‐sweep detection learning was normal after propranolol infusion. By immunohistochemistry, β1‐ and β2‐adrenoceptors were identified on the neuropil and somata of pyramidal and non‐pyramidal neurons of the gerbil auditory cortex. The present findings suggest that β‐adrenergic signalling in the auditory cortex has task‐related importance for discrimination learning of complex sounds: as previously shown for D1/5‐dopamine receptor signalling, β‐adrenoceptor activity supports long‐term memory consolidation and reconsolidation; additionally, tonic input through β1‐adrenoceptors may control mechanisms permissive for memory acquisition.
Collapse
Affiliation(s)
- Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
14
|
Kim JW, Han KR, Kim W, Jung HY, Nam SM, Yoo DY, Hwang IK, Seong JK, Yoon YS. Adult Hippocampal Neurogenesis Can Be Enhanced by Cold Challenge Independently From Beigeing Effects. Front Neurosci 2019; 13:92. [PMID: 30890905 PMCID: PMC6411820 DOI: 10.3389/fnins.2019.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the effects of cold challenge on adult hippocampal neurogenesis (AHN) and hippocampal gene expression and whether these are mediated by beigeing of peripheral fat tissues. Cold challenge (6 ± 2°C) for 1 and 4 weeks was found to induce beigeing effects in inguinal white adipose tissue based on hematoxylin and eosin staining as well as uncoupled protein-1 immunohistochemical staining. In the hippocampus, cold challenge for 1 or 4 weeks increased dentate gyrus neurogenesis and expression of genes related to AHN, including notch signaling, G protein-coupled receptor signaling, and adrenergic beta receptor-1. However, this enhancement of neurogenesis and gene expression by cold challenge was not shown by administration of CL 316,243, which induces peripheral beigeing similar to cold challenge but does not cross the blood-brain barrier. These results suggest that cold challenge promotes AHN and central expression of AHN-related, signaling, and β1-adrenergic receptors genes, and that peripheral beigeing by itself is not sufficient to mediate these effects. Considering the increase in AHN and gene expression changes, cold challenge may offer a novel approach to hippocampal modulation.
Collapse
Affiliation(s)
- Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Kyu Ri Han
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Asan, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Sun DG, Kang H, Tetteh H, Su J, Lee J, Park SW, He J, Jo J, Yang S, Yang S. Long term potentiation, but not depression, in interlamellar hippocampus CA1. Sci Rep 2018; 8:5187. [PMID: 29581468 PMCID: PMC5979950 DOI: 10.1038/s41598-018-23369-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/12/2018] [Indexed: 01/23/2023] Open
Abstract
Synaptic plasticity in the lamellar CA3 to CA1 circuitry has been extensively studied while interlamellar CA1 to CA1 connections have not yet received much attention. One of our earlier studies demonstrated that axons of CA1 pyramidal neurons project to neighboring CA1 neurons, implicating information transfer along a longitudinal interlamellar network. Still, it remains unclear whether long-term synaptic plasticity is present within this longitudinal CA1 network. Here, we investigate long-term synaptic plasticity between CA1 pyramidal cells, using in vitro and in vivo extracellular recordings and 3D holography glutamate uncaging. We found that the CA1-CA1 network exhibits NMDA receptor-dependent long-term potentiation (LTP) without direction or layer selectivity. By contrast, we find no significant long-term depression (LTD) under various LTD induction protocols. These results implicate unique synaptic properties in the longitudinal projection suggesting that the interlamellar CA1 network could be a promising structure for hippocampus-related information processing and brain diseases.
Collapse
Affiliation(s)
- Duk-Gyu Sun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Hyeri Kang
- Department of Nano-bioengineering, Incheon National University, Incheon, Korea
| | - Hannah Tetteh
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Junfeng Su
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jihwan Lee
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sung-Won Park
- Department of Nano-bioengineering, Incheon National University, Incheon, Korea
| | - Jufang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jihoon Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea. .,Department of Neurology, Chonnam National University Medical School, Gwangju, Korea. .,NeuroMedical Convergence Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea.
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| | - Sunggu Yang
- Department of Nano-bioengineering, Incheon National University, Incheon, Korea.
| |
Collapse
|
16
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Activation of β-adrenoceptor facilitates active avoidance learning through enhancement of glutamate levels in the hippocampal dentate gyrus. Neuroreport 2017; 28:973-979. [DOI: 10.1097/wnr.0000000000000868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Kuo HI, Paulus W, Batsikadze G, Jamil A, Kuo MF, Nitsche MA. Acute and Chronic Noradrenergic Effects on Cortical Excitability in Healthy Humans. Int J Neuropsychopharmacol 2017; 20:634-643. [PMID: 28430976 PMCID: PMC5574667 DOI: 10.1093/ijnp/pyx026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/05/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Background Noradrenaline is a major neuromodulator in the central nervous system, and it is involved in the pathophysiology of diverse neuropsychiatric diseases. Previous transcranial magnetic stimulation studies suggested that acute application of selective noradrenaline reuptake inhibitors enhances cortical excitability in the human brain. However, other, such like clinical effects, usually require prolonged noradrenaline reuptake inhibitor treatment, which might go along with different physiological effects. Methods The purpose of this study was to investigate the acute and chronic effects of the selective noradrenaline reuptake inhibitor reboxetine on cortical excitability in healthy humans in a double-blind, placebo-controlled, randomized crossover study. Sixteen subjects were assessed with different transcranial magnetic stimulation measurements: motor thresholds, input-output curve, short-latency intracortical inhibition and intracortical facilitation, I-wave facilitation, and short-interval afferent inhibition before and after placebo or reboxetine (8 mg) single-dose administration. Afterwards, the same subjects took reboxetine (8 mg/d) consecutively for 21 days. During this period (subjects underwent 2 experimental sessions with identical transcranial magnetic stimulation measures under placebo or reboxetine), transcranial magnetic stimulation measurements were assessed before and after drug intake. Results Both single-dose and chronic administration of reboxetine increased cortical excitability; increased the slope of the input-output curve, intracortical facilitation, and I-wave facilitation; but decreased short-latency intracortical inhibition and short-interval afferent inhibition. Moreover, chronic reboxetine showed a larger enhancement of intracortical facilitation and I-wave facilitation compared with single-dose application. Conclusions The results show physiological mechanisms of noradrenergic enhancement possibly underlying the functional effects of reboxetine regarding acute and chronic application.
Collapse
Affiliation(s)
- Hsiao-I Kuo
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany (Ms H.-I. Kuo, Paulus, Mr Jamil, and Nitsche); Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany (Ms H.-I. Kuo, Mr Jamil, M.-F. Kuo, and Nitsche); Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany (Dr Nitsche); Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Germany (Dr Batsikadze)
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany (Ms H.-I. Kuo, Paulus, Mr Jamil, and Nitsche); Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany (Ms H.-I. Kuo, Mr Jamil, M.-F. Kuo, and Nitsche); Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany (Dr Nitsche); Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Germany (Dr Batsikadze)
| | - Giorgi Batsikadze
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany (Ms H.-I. Kuo, Paulus, Mr Jamil, and Nitsche); Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany (Ms H.-I. Kuo, Mr Jamil, M.-F. Kuo, and Nitsche); Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany (Dr Nitsche); Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Germany (Dr Batsikadze)
| | - Asif Jamil
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany (Ms H.-I. Kuo, Paulus, Mr Jamil, and Nitsche); Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany (Ms H.-I. Kuo, Mr Jamil, M.-F. Kuo, and Nitsche); Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany (Dr Nitsche); Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Germany (Dr Batsikadze)
| | - Min-Fang Kuo
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany (Ms H.-I. Kuo, Paulus, Mr Jamil, and Nitsche); Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany (Ms H.-I. Kuo, Mr Jamil, M.-F. Kuo, and Nitsche); Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany (Dr Nitsche); Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Germany (Dr Batsikadze)
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany (Ms H.-I. Kuo, Paulus, Mr Jamil, and Nitsche); Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany (Ms H.-I. Kuo, Mr Jamil, M.-F. Kuo, and Nitsche); Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany (Dr Nitsche); Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Germany (Dr Batsikadze)
| |
Collapse
|
19
|
Kuo H, Paulus W, Batsikadze G, Jamil A, Kuo M, Nitsche MA. Acute and chronic effects of noradrenergic enhancement on transcranial direct current stimulation-induced neuroplasticity in humans. J Physiol 2017; 595:1305-1314. [PMID: 27925214 PMCID: PMC5309376 DOI: 10.1113/jp273137] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/17/2016] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Chronic administration of the selective noradrenaline reuptake inhibitor (NRI) reboxetine (RBX) increased and prolonged the long-term potentiation-like plasticity induced by anodal transcranial direct current stimulation (tDCS) for over 24 h. Chronic administration of RBX converted cathodal tDCS-induced long-term depression-like plasticity into facilitation for 120 min. Chronic noradrenergic activity enhancement on plasticity of the human brain might partially explain the delayed therapeutic impact of selective NRIs in depression and other neuropsychiatric diseases. ABSTRACT Noradrenaline affects cognition and motor learning processes via its impact on long-term potentiation (LTP) and depression (LTD). We aimed to explore the impact of single dose and chronic administration of the selective noradrenaline reuptake inhibitor (NRI) reboxetine (RBX) on plasticity induced by transcranial direct current stimulation (tDCS) in healthy humans via a double-blinded, placebo-controlled, randomized crossover study. Sixteen healthy volunteers received placebo or single dose RBX (8 mg) before anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took RBX (8 mg day-1 ) consecutively for 21 days. During this period, two additional interventions were performed (RBX with anodal or cathodal tDCS), to explore the impact of chronic RBX treatment on plasticity. Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic administration of RBX increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h. Chronic RBX significantly converted cathodal tDCS-induced LTD-like plasticity into facilitation, as compared to the single dose condition, for 120 min after stimulation. The results show a prominent impact of chronic noradrenergic enhancement on plasticity of the human brain that might partially explain the delayed therapeutic impact of selective NRIs in depression and other neuropsychiatric diseases.
Collapse
Affiliation(s)
- Hsiao‐I. Kuo
- Department of Clinical Neurophysiology, University Medical CenterGeorg‐August‐UniversityRobert‐Koch‐Straße 4037075GöttingenGermany
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human FactorsArdeystrasse 67DortmundGermany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical CenterGeorg‐August‐UniversityRobert‐Koch‐Straße 4037075GöttingenGermany
| | - Giorgi Batsikadze
- Department of Clinical Neurophysiology, University Medical CenterGeorg‐August‐UniversityRobert‐Koch‐Straße 4037075GöttingenGermany
- Department of Neurology, Essen University HospitalUniversity of Duisburg‐EssenGermany
| | - Asif Jamil
- Department of Clinical Neurophysiology, University Medical CenterGeorg‐August‐UniversityRobert‐Koch‐Straße 4037075GöttingenGermany
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human FactorsArdeystrasse 67DortmundGermany
| | - Min‐Fang Kuo
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human FactorsArdeystrasse 67DortmundGermany
| | - Michael A. Nitsche
- Department of Clinical Neurophysiology, University Medical CenterGeorg‐August‐UniversityRobert‐Koch‐Straße 4037075GöttingenGermany
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human FactorsArdeystrasse 67DortmundGermany
- Department of NeurologyUniversity Medical Hospital BergmannsheilBochumGermany
| |
Collapse
|
20
|
Jensen CJ, Demol F, Bauwens R, Kooijman R, Massie A, Villers A, Ris L, De Keyser J. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice. PLoS One 2016; 11:e0164721. [PMID: 27776147 PMCID: PMC5077086 DOI: 10.1371/journal.pone.0164721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function.
Collapse
Affiliation(s)
- Cathy Joanna Jensen
- Department of Neurology, University Hospital Brussels and Center for Neuroscience, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Neurobiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- * E-mail:
| | - Frauke Demol
- Department of Neurology, University Hospital Brussels and Center for Neuroscience, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Romy Bauwens
- Center for Neurosiences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ron Kooijman
- Center for Neurosiences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Massie
- Center for Neurosiences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Agnès Villers
- Department of Neuroscience, Health, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neuroscience, Health, University of Mons, Mons, Belgium
| | - Jacques De Keyser
- Department of Neurology, University Hospital Brussels and Center for Neuroscience, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Twarkowski H, Manahan-Vaughan D. Loss of Catecholaminergic Neuromodulation of Persistent Forms of Hippocampal Synaptic Plasticity with Increasing Age. Front Synaptic Neurosci 2016; 8:30. [PMID: 27725799 PMCID: PMC5035743 DOI: 10.3389/fnsyn.2016.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Neuromodulation by means of the catecholaminergic system is a key component of motivation-driven learning and behaviorally modulated hippocampal synaptic plasticity. In particular, dopamine acting on D1/D5 receptors and noradrenaline acting on beta-adrenergic receptors exert a very potent regulation of forms of hippocampal synaptic plasticity that last for very long-periods of time (>24 h), and occur in conjunction with novel spatial learning. Antagonism of these receptors not only prevents long-term potentiation (LTP) and long-term depression (LTD), but prevents the memory of the spatial event that, under normal circumstances, leads to the perpetuation of these plasticity forms. Spatial learning behavior that normally comes easily to rats, such as object-place learning and spatial reference learning, becomes increasingly impaired with aging. Middle-aged animals display aging-related deficits of specific, but not all, components of spatial learning, and one possibility is that this initial manifestation of decrements in learning ability that become apparent in middle-age relate to changes in motivation, attention and/or the regulation by neuromodulatory systems of these behavioral states. Here, we compared the regulation by dopaminergic D1/D5 and beta-adrenergic receptors of persistent LTP in young (2-4 month old) and middle-aged (8-14 month old) rats. We observed in young rats, that weak potentiation that typically lasts for ca. 2 h could be strengthened into persistent (>24 h) LTP by pharmacological activation of either D1/D5 or beta-adrenergic receptors. By contrast, no such facilitation occurred in middle-aged rats. This difference was not related to an ostensible learning deficit: a facilitation of weak potentiation into LTP by spatial learning was possible both in young and middle-aged rats. It was also not directly linked to deficits in LTP: strong afferent stimulation resulted in equivalent LTP in both age groups. We postulate that this change in catecholaminergic control of synaptic plasticity that emerges with aging, does not relate to a learning deficit per se, rather it derives from an increase in behavioral thresholds for novelty and motivation that emerge with increasing age that impact, in turn, on learning efficacy.
Collapse
Affiliation(s)
- Hannah Twarkowski
- Department of Neurophysiology, Medical Faculty, Ruhr University BochumBochum, Germany; International Graduate School of Neuroscience, Ruhr University BochumBochum, Germany
| | | |
Collapse
|
22
|
Dietz B, Manahan-Vaughan D. Hippocampal long-term depression is facilitated by the acquisition and updating of memory of spatial auditory content and requires mGlu5 activation. Neuropharmacology 2016; 115:30-41. [PMID: 27055771 DOI: 10.1016/j.neuropharm.2016.02.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are key cellular processes that support memory formation. Whereas increases of synaptic strength by means of LTP may support the creation of a spatial memory 'engram', LTD appears to play an important role in refining and optimising experience-dependent encoding. A differentiation in the role of hippocampal subfields is apparent. For example, LTD in the dentate gyrus (DG) is enabled by novel learning about large visuospatial features, whereas in area CA1, it is enabled by learning about discrete aspects of spatial content, whereby, both discrete visuospatial and olfactospatial cues trigger LTD in CA1. Here, we explored to what extent local audiospatial cues facilitate information encoding in the form of LTD in these subfields. Coupling of low frequency afferent stimulation (LFS) with discretely localised, novel auditory tones in the sonic hearing, or ultrasonic range, facilitated short-term depression (STD) into LTD (>24 h) in CA1, but not DG. Re-exposure to the now familiar audiospatial configuration ca. 1 week later failed to enhance STD. Reconfiguration of the same audiospatial cues resulted anew in LTD when ultrasound, but not non-ultrasound cues were used. LTD facilitation that was triggered by novel exposure to spatially arranged tones, or to spatial reconfiguration of the same tones were both prevented by an antagonism of the metabotropic glutamate receptor, mGlu5. These data indicate that, if behaviourally salient enough, the hippocampus can use audiospatial cues to facilitate LTD that contributes to the encoding and updating of spatial representations. Effects are subfield-specific, and require mGlu5 activation, as is the case for visuospatial information processing. These data reinforce the likelihood that LTD supports the encoding of spatial features, and that this occurs in a qualitative and subfield-specific manner. They also support that mGlu5 is essential for synaptic encoding of spatial experience. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Birte Dietz
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
23
|
Hagena H, Hansen N, Manahan-Vaughan D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cereb Cortex 2016; 26:1349-64. [PMID: 26804338 PMCID: PMC4785955 DOI: 10.1093/cercor/bhv330] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
24
|
Bidirectional synaptic plasticity can explain bidirectional retrograde effects of emotion on memory. Behav Brain Sci 2016; 39:e224. [PMID: 28355835 DOI: 10.1017/s0140525x15001958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Emotional events can either impair or enhance memory for immediately preceding items. The GANE model explains this bidirectional effect as a glutamate "priority" signal that modulates noradrenaline release depending on arousal state. We argue for an alternative explanation: that priority itself evokes phasic noradrenaline release. Thus, contrasting E-1 memory effects are explained by a mechanism based on the Bienenstock-Cooper-Munro theory.
Collapse
|
25
|
Maity S, Rah S, Sonenberg N, Gkogkas CG, Nguyen PV. Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs. ACTA ACUST UNITED AC 2015; 22:499-508. [PMID: 26373828 PMCID: PMC4579357 DOI: 10.1101/lm.039222.115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Norepinephrine (NE) is a key modulator of synaptic plasticity in the hippocampus, a brain structure crucially involved in memory formation. NE boosts synaptic plasticity mostly through initiation of signaling cascades downstream from beta (β)-adrenergic receptors (β-ARs). Previous studies demonstrated that a β-adrenergic receptor agonist, isoproterenol, can modify the threshold for long-term potentiation (LTP), a putative cellular mechanism for learning and memory, in a process known as “metaplasticity.” Metaplasticity is the ability of synaptic plasticity to be modified by prior experience. We asked whether NE itself could engage metaplastic mechanisms in area CA1 of mouse hippocampal slices. Using extracellular field potential recording and stimulation, we show that application of NE (10 µM), which did not alter basal synaptic strength, enhances the future maintenance of LTP elicited by subthreshold, high-frequency stimulation (HFS: 1 × 100 Hz, 1 sec). HFS applied 30 min after NE washout induced long-lasting (>4 h) LTP, which was significantly extended in duration relative to HFS alone. This NE-induced metaplasticity required β1-AR activation, as coapplication of the β1-receptor antagonist CGP-20712A (1 µM) attenuated maintenance of LTP. We also found that NE-mediated metaplasticity was translation- and transcription-dependent. Polysomal profiles of CA1 revealed increased translation rates for specific mRNAs during NE-induced metaplasticity. Thus, activation of β-ARs by NE primes synapses for future long-lasting plasticity on time scales extending beyond fast synaptic transmission; this may facilitate neural information processing and the subsequent formation of lasting memories.
Collapse
Affiliation(s)
- Sabyasachi Maity
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - Sean Rah
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Christos G Gkogkas
- Patrick Wild Centre and Centre for Integrative Biology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Peter V Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada Department of Psychiatry, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada Neuroscience and Mental Health Institute, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
26
|
Schomaker J, Meeter M. Short- and long-lasting consequences of novelty, deviance and surprise on brain and cognition. Neurosci Biobehav Rev 2015; 55:268-79. [DOI: 10.1016/j.neubiorev.2015.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
|
27
|
Sarubbo F, Ramis MR, Aparicio S, Ruiz L, Esteban S, Miralles A, Moranta D. Improving effect of chronic resveratrol treatment on central monoamine synthesis and cognition in aged rats. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9777. [PMID: 25895558 PMCID: PMC4404420 DOI: 10.1007/s11357-015-9777-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/10/2015] [Indexed: 05/19/2023]
Abstract
Resveratrol is a polyphenol exhibiting antioxidant and neuroprotective effects in neurodegenerative diseases. However, neuroprotective properties during normal aging have not been clearly demonstrated. We analyzed the in vivo effects of chronic administration of resveratrol (20 mg/kg/day for 4 weeks) in old male rats (Wistar, 20 months), on tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) activities which mediate central monoaminergic neurotransmitters synthesis, and besides, on hippocampal-dependent working memory test (radial maze). Our results show an age-related decline in neurochemical parameters that were reversed by resveratrol administration. The resveratrol treatment enhances serotonin (5-HT) levels in pineal gland, in hippocampus, and in striatum, and those of noradrenaline (NA) in hippocampus and also dopamine (DA) in striatum. These changes were largely due to an increased activity of TPH-1 (463 % in pineal gland), TPH-2 (70-51 % in hippocampus and striatum), and TH (150-36 % in hippocampus and striatum). Additionally, the observed hippocampal effects correlate with a resveratrol-induced restorative effect on working memory (radial maze). In conclusion, this study suggests resveratrol treatment as a restoring therapy for the impaired cognitive functions occurring along normal aging process, by preventing 5-HT, DA, and NA neurotransmission decline.
Collapse
Affiliation(s)
- F. Sarubbo
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - M. R. Ramis
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - S. Aparicio
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - L. Ruiz
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - S. Esteban
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - A. Miralles
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - D. Moranta
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
- />Laboratorio de Infección e Inmunidad, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB)-Instituto de Investigación Sanitaria de Palma (IdISPa), Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Hospital Joan March, Mallorca, Spain
| |
Collapse
|
28
|
André MAE, Wolf OT, Manahan-Vaughan D. Beta-adrenergic receptors support attention to extinction learning that occurs in the absence, but not the presence, of a context change. Front Behav Neurosci 2015; 9:125. [PMID: 26074793 PMCID: PMC4444826 DOI: 10.3389/fnbeh.2015.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
The noradrenergic (NA)-system is an important regulator of cognitive function. It contributes to extinction learning (EL), and in disorders where EL is impaired NA-dysfunction has been postulated. We explored whether NA acting on beta-adrenergic-receptors (β-AR), regulates EL that depends on context, but is not fear-associated. We assessed behavior in an "AAA" or "ABA" paradigm: rats were trained for 3 days in a T-maze (context-A) to learn that a reward is consistently found in the goal arm, despite low reward probability. This was followed on day 4 by EL (unrewarded), whereby in the ABA-paradigm, EL was reinforced by a context change (B), and in the AAA-paradigm, no context change occurred. On day 5, re-exposure to the A-context (unrewarded) occurred. Typically, in control "AAA" animals EL occurred on day 4 that progressed further on day 5. In control "ABA" animals, EL also occurred on day 4, followed by renewal of the previously learned (A) behavior on day 5, that was succeeded (on day 5) by extinction of this behavior, as the animals realised that no food reward would be given. Treatment with the β-AR-antagonist, propranolol, prior to EL on day 4, impaired EL in the AAA-paradigm. In the "ABA" paradigm, antagonist treatment on day 4, had no effect on extinction that was reinforced by a context change (B). Furthermore, β-AR-antagonism prior to renewal testing (on day 5) in the ABA-paradigm, resulted in normal renewal behavior, although subsequent extinction of responses during day 5 was prevented by the antagonist. Thus, under both treatment conditions, β-AR-antagonism prevented extinction of the behavior learned in the "A" context. β-AR-blockade during an overt context change did not prevent EL, whereas β-AR were required for EL in an unchanging context. These data suggest that β-AR may support EL by reinforcing attention towards relevant changes in the previously learned experience, and that this process supports extinction learning in constant-context conditions.
Collapse
Affiliation(s)
| | - Oliver T Wolf
- International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany ; Faculty of Psychology, Department of Cognitive Psychology, Ruhr University Bochum Bochum, Germany
| | - Denise Manahan-Vaughan
- International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany ; Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
29
|
Grüter T, Wiescholleck V, Dubovyk V, Aliane V, Manahan-Vaughan D. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis. Front Behav Neurosci 2015; 9:117. [PMID: 26042007 PMCID: PMC4438226 DOI: 10.3389/fnbeh.2015.00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023] Open
Abstract
Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signaling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR) results in similar molecular, cellular, cognitive and behavioral changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse (PP) facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A), and increase in GABA(B)-receptor-expression in PFC, along with a significant increase of GABA(B)- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.
Collapse
Affiliation(s)
- Thomas Grüter
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| | | | - Valentyna Dubovyk
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany
| | - Verena Aliane
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
30
|
Kalweit AN, Yang H, Colitti-Klausnitzer J, Fülöp L, Bozsó Z, Penke B, Manahan-Vaughan D. Acute intracerebral treatment with amyloid-beta (1-42) alters the profile of neuronal oscillations that accompany LTP induction and results in impaired LTP in freely behaving rats. Front Behav Neurosci 2015; 9:103. [PMID: 25999827 PMCID: PMC4422036 DOI: 10.3389/fnbeh.2015.00103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022] Open
Abstract
Accumulation of amyloid plaques comprises one of the major hallmarks of Alzheimer’s disease (AD). In rodents, acute treatment with amyloid-beta (Aβ; 1–42) elicits immediate debilitating effects on hippocampal long-term potentiation (LTP). Whereas LTP contributes to synaptic information storage, information is transferred across neurons by means of neuronal oscillations. Furthermore, changes in theta-gamma oscillations, that appear during high-frequency stimulation (HFS) to induce LTP, predict whether successful LTP will occur. Here, we explored if intra-cerebral treatment with Aβ(1–42), that prevents LTP, also results in alterations of hippocampal oscillations that occur during HFS of the perforant path-dentate gyrus synapse in 6-month-old behaving rats. HFS resulted in LTP that lasted for over 24 h. In Aβ-treated animals, LTP was significantly prevented. During HFS, spectral power for oscillations below 100 Hz (δ, θ, α, β and γ) was significantly higher in Aβ-treated animals compared to controls. In addition, the trough-to-peak amplitudes of theta and gamma cycles were higher during HFS in Aβ-treated animals. We also observed a lower amount of envelope-to-signal correlations during HFS in Aβ-treated animals. Overall, the characteristic profile of theta-gamma oscillations that accompany successful LTP induction was disrupted. These data indicate that alterations in network oscillations accompany Aβ-effects on hippocampal LTP. This may comprise an underlying mechanism through which disturbances in synaptic information storage and hippocampus-dependent memory occurs in AD.
Collapse
Affiliation(s)
- Alexander Nikolai Kalweit
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| | - Honghong Yang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| | | | - Livia Fülöp
- Department of Medical Chemistry, University of Szeged Szeged, Hungary
| | - Zsolt Bozsó
- Department of Medical Chemistry, University of Szeged Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged Szeged, Hungary
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
31
|
Hansen N, Manahan-Vaughan D. Hippocampal long-term potentiation that is elicited by perforant path stimulation or that occurs in conjunction with spatial learning is tightly controlled by beta-adrenoreceptors and the locus coeruleus. Hippocampus 2015; 25:1285-98. [PMID: 25727388 PMCID: PMC6680149 DOI: 10.1002/hipo.22436] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2015] [Indexed: 11/19/2022]
Abstract
The noradrenergic system, driven by locus coeruleus (LC) activation, plays a key role in the regulating and directing of changes in hippocampal synaptic efficacy. The LC releases noradrenaline in response to novel experience and LC activation leads to an enhancement of hippocampus‐based learning, and facilitates synaptic plasticity in the form of long‐term depression (LTD) and long‐term potentiation (LTP) that occur in association with spatial learning. The predominant receptor for mediating these effects is the β‐adrenoreceptor. Interestingly, the dependency of synaptic plasticity on this receptor is different in the hippocampal subfields whereby in the CA1 in vivo, LTP, but not LTD requires β‐adrenoreceptor activation, whereas in the mossy fiber synapse LTP and LTD do not depend on this receptor. By contrast, synaptic plasticity that is facilitated by spatial learning is highly dependent on β‐adrenoreceptor activation in both hippocampal subfields. Here, we explored whether LTP induced by perforant‐path (pp) stimulation in vivo or that is facilitated by spatial learning depends on β‐adrenoreceptors. We found that under both LTP conditions, antagonising the receptors disabled the persistence of LTP. β‐adrenoreceptor‐antagonism also prevented spatial learning. Strikingly, activation of the LC before high‐frequency stimulation (HFS) of the pp prevented short‐term potentiation but not LTP, and LC stimulation after pp‐HFS‐induced depotentiation of LTP. This depotentiation was prevented by β‐adrenoreceptor‐antagonism. These data suggest that β‐adrenoreceptor‐activation, resulting from noradrenaline release from the LC during enhanced arousal and learning, comprises a mechanism whereby the duration and degree of LTP is regulated and fine tuned. This may serve to optimize the creation of a spatial memory engram by means of LTP and LTD. This process can be expected to support the special role of the dentate gyrus as a crucial subregional locus for detecting and processing novelty within the hippocampus. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
32
|
Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F. TMS and drugs revisited 2014. Clin Neurophysiol 2014; 126:1847-68. [PMID: 25534482 DOI: 10.1016/j.clinph.2014.08.028] [Citation(s) in RCA: 494] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/03/2014] [Accepted: 08/24/2014] [Indexed: 12/18/2022]
Abstract
The combination of pharmacology and transcranial magnetic stimulation to study the effects of drugs on TMS-evoked EMG responses (pharmaco-TMS-EMG) has considerably improved our understanding of the effects of TMS on the human brain. Ten years have elapsed since an influential review on this topic has been published in this journal (Ziemann, 2004). Since then, several major developments have taken place: TMS has been combined with EEG to measure TMS evoked responses directly from brain activity rather than by motor evoked potentials in a muscle, and pharmacological characterization of the TMS-evoked EEG potentials, although still in its infancy, has started (pharmaco-TMS-EEG). Furthermore, the knowledge from pharmaco-TMS-EMG that has been primarily obtained in healthy subjects is now applied to clinical settings, for instance, to monitor or even predict clinical drug responses in neurological or psychiatric patients. Finally, pharmaco-TMS-EMG has been applied to understand the effects of CNS active drugs on non-invasive brain stimulation induced long-term potentiation-like and long-term depression-like plasticity. This is a new field that may help to develop rationales of pharmacological treatment for enhancement of recovery and re-learning after CNS lesions. This up-dated review will highlight important knowledge and recent advances in the contribution of pharmaco-TMS-EMG and pharmaco-TMS-EEG to our understanding of normal and dysfunctional excitability, connectivity and plasticity of the human brain.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Janine Reis
- Department of Neurology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milan, Italy
| | - Antonio Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | - Radwa Badawy
- Department of Neurology, Saint Vincent's Hospital, Fitzroy, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Wiescholleck V, Manahan-Vaughan D. Antagonism of D1/D5 receptors prevents long-term depression (LTD) and learning-facilitated LTD at the perforant path-dentate gyrus synapse in freely behaving rats. Hippocampus 2014; 24:1615-22. [PMID: 25112177 DOI: 10.1002/hipo.22340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2014] [Indexed: 11/11/2022]
Abstract
Hippocampal synaptic plasticity, in the form of long-term potentiation (LTP) and long-term depression (LTD), enables spatial memory formation, whereby LTP and LTD are likely to contribute different elements to the resulting spatial representation. Dopamine, released from the ventral tegmental area particularly under conditions of reward, acts on the hippocampus, and may specifically influence the encoding of information into long-term memory. The dentate gyrus (DG), as the "gateway" to the hippocampus is likely to play an important role in this process. D1/D5 dopamine receptors are importantly involved in the regulation of synaptic plasticity thresholds in the CA1 region of the hippocampus and determine the direction of change in synaptic strength that occurs during novel spatial learning. Here, we explored whether D1/D5-receptors influence LTD that is induced in the DG following patterned afferent stimulation of the perforant path of freely behaving adult rats, or influence LTD that occurs in association with spatial learning. We found that LTD that is induced by afferent stimulation, and LTD that is facilitated by learning about novel landmark configurations, were both prevented by D1/D5-receptor antagonism, whereas agonist activation of the D1/D5-receptor had no effect on basal tonus or short-term depression. Other studies have reported that in the DG, D1/D5-receptor agonism or antagonism do not affect LTP, but agonism prevents depotentiation. These findings suggest that the dopaminergic system, acting via D1/D5-receptors, influences information gating by the DG and modulates the direction of change in synaptic strength that underlies information storage in this hippocampal substructure. Information encoded by robust forms of LTD is especially dependent on D1/D5-receptor activation. Thus, dopamine acting on D1/D5-receptors is likely to support specific experience-dependent encoding, and may influence the content of hippocampal representations of experience.
Collapse
|
34
|
Bhagya V, Srikumar B, Raju T, Shankaranarayana Rao B. The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression. J Neurosci Res 2014; 93:104-20. [DOI: 10.1002/jnr.23473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022]
Affiliation(s)
- V. Bhagya
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - B.N. Srikumar
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - T.R. Raju
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - B.S. Shankaranarayana Rao
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| |
Collapse
|
35
|
Laing M, Bashir ZI. β-Adrenoceptors and synaptic plasticity in the perirhinal cortex. Neuroscience 2014; 273:163-73. [PMID: 24836853 PMCID: PMC4067743 DOI: 10.1016/j.neuroscience.2014.04.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/04/2014] [Accepted: 04/29/2014] [Indexed: 11/29/2022]
Abstract
Bath application of isoprenaline induces LTP in the perirhinal cortex. LTP at amygdala to perirhinal synapses requires β1- but not β2-ADRs. Combination of β1-ADRs, NMDARs, and VGCC required for LTP.
Experiences with a high degree of emotional salience are better remembered than events that have little emotional context and the amygdala is thought to play an important role in this enhancement of memory. Visual recognition memory relies on synaptic plasticity in the perirhinal cortex but little is known about the mechanisms that may underlie emotional enhancement of this form of memory. There is good evidence that noradrenaline acting via β-adrenoceptors (β-ADRs) can enhance memory consolidation. In the present study we examine the role of β-ADRs in synaptic plasticity at the amygdala–perirhinal pathway (LA–PRh) and compare this to mechanisms of intra-perirhinal (PRh–PRh) synaptic plasticity. We demonstrate that activity-dependent PRh–PRh long-term potentiation (LTP) does not rely on β1- or β2-ADRs and that LA–PRh LTP relies on β1-ADRs but not β2-ADRs. We further demonstrate that application of the β-ADR agonist isoprenaline produces lasting PRh–PRh potentiation but only transient potentiation at the LA–PRh input. However, at the LA–PRh input, combining stimulation that is subthreshold for LTP induction with isoprenaline results in long-lasting potentiation. Isoprenaline-induced and isoprenaline plus subthreshold stimulation-induced potentiation in the PRh–PRh and LA–PRh inputs, respectively were both dependent on activation of NMDARs (N-methyl-D-aspartate receptors), voltage-gated calcium channels and PKA (protein kinase A). Understanding the mechanisms of amygdala–perirhinal cortex plasticity will allow a greater understanding of how emotionally-charged events are remembered.
Collapse
Affiliation(s)
- M Laing
- School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol University, Bristol BS8 1TD, UK
| | - Z I Bashir
- School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol University, Bristol BS8 1TD, UK.
| |
Collapse
|
36
|
Hansen N, Manahan-Vaughan D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex 2014; 24:845-58. [PMID: 23183712 PMCID: PMC3948488 DOI: 10.1093/cercor/bhs362] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) plays an essential role in the enablement of cognition. It adds color to experience-dependent information storage, conferring salience to the memories that result. At the synaptic level, experience-dependent information storage is enabled by synaptic plasticity, and given its importance for memory formation, it is not surprising that DA comprises a key neuromodulator in the enablement of synaptic plasticity, and particularly of plasticity that persists for longer periods of time: Analogous to long-term memory. The hippocampus, that is a critical structure for the synaptic processing of semantic, episodic, spatial, and declarative memories, is specifically affected by DA, with the D1/D5 receptor proving crucial for hippocampus-dependent memory. Furthermore, D1/D5 receptors are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus. They also facilitate the expression of persistent forms of synaptic plasticity, and given reports that both long-term potentiation and long-term depression encode different aspects of spatial representations, this suggests that D1/D5 receptors can drive the nature and qualitative content of stored information in the hippocampus. In light of these observations, we propose that D1/D5 receptors gate hippocampal long-term plasticity and memory and are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus.
Collapse
Affiliation(s)
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty,Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
37
|
Hansen N, Manahan-Vaughan D. Locus Coeruleus Stimulation Facilitates Long-Term Depression in the Dentate Gyrus That Requires Activation of β-Adrenergic Receptors. Cereb Cortex 2014; 25:1889-96. [PMID: 24464942 PMCID: PMC4459289 DOI: 10.1093/cercor/bht429] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synaptic plasticity comprises a cellular mechanism through which the hippocampus most likely enables memory formation. Neuromodulation, related to arousal, is a key aspect in information storage. The activation of locus coeruleus (LC) neurons by novel experience leads to noradrenaline release in the hippocampus at the level of the dentate gyrus (DG). We explored whether synaptic plasticity in the DG is influenced by activation of the LC via electrical stimulation. Coupling of test-pulses that evoked stable basal synaptic transmission in the DG with stimulation of the LC induced β-adrenoreceptor-dependent long-term depression (LTD) at perforant path–DG synapses in adult rats. Furthermore, persistent LTD (>24 h) induced by perforant path stimulation also required activation of β-adrenergic receptors: Whereas a β-adrenergic receptor antagonist (propranolol) prevented, an agonist (isoproterenol) strengthened the persistence of LTD for over 24 h. These findings support the hypothesis that persistent LTD in the DG is modulated by β-adrenergic receptors. Furthermore, LC activation potently facilitates DG LTD. This suggests in turn that synaptic plasticity in the DG is tightly regulated by activity in the noradrenergic system. This may reflect the role of the LC in selecting salient information for subsequent synaptic processing in the hippocampus.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
38
|
Kemp A, Tischmeyer W, Manahan-Vaughan D. Learning-facilitated long-term depression requires activation of the immediate early gene, c-fos, and is transcription dependent. Behav Brain Res 2013; 254:83-91. [DOI: 10.1016/j.bbr.2013.04.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/16/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022]
|
39
|
del Rey A, Balschun D, Wetzel W, Randolf A, Besedovsky HO. A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain Behav Immun 2013; 33:15-23. [PMID: 23747799 DOI: 10.1016/j.bbi.2013.05.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022] Open
Abstract
We have previously shown that long-term potentiation (LTP) induces hippocampal IL-1β and IL-6 over-expression, and interfering their signalling either inhibits or supports, respectively, LTP maintenance. Consistently, blockade of endogenous IL-1 or IL-6 restricts or favours hippocampal-dependent memory, effects that were confirmed in genetically manipulated mice. Since cytokines are known for their high degree of mutual crosstalk, here we studied whether a network of cytokines with known neuromodulatory actions is activated during LTP and learning. We found that, besides IL-1β and IL-6, also IL-1 receptor antagonist (IL-1ra) and IL-18, but not TNFα are over-expressed during LTP maintenance in freely moving rats. The increased expression of these cytokines is causally related to an increase in synaptic strength since it was abrogated when LTP was interfered by blockade of NMDA-glutamate receptors. Likewise, IL-1 and IL-6 were found to be over-expressed in defined regions of the hippocampus during learning a hippocampus-dependent task. However, during learning, changes in IL-18 were restricted to the dorsal hippocampus, and no differences in TNFα and IL1-ra expression were noticed in the hippocampus. Noticeably, IL-1ra transcripts were significantly reduced in the prefrontal cortex. The relation between cytokine expression and learning was causal because such changes were not observed in animals from a pseudo-trained group that was subject to the same manipulation but could not learn the task. Taken together with previous studies, we conclude that activation of a cytokine network in the brain is a physiologic relevant phenomenon not only for LTP maintenance but also for certain types of learning.
Collapse
Affiliation(s)
- Adriana del Rey
- Research Group Immunophysiology, Institute of Physiology and Pathophysiology, Philipps University, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Goh JJ, Manahan-Vaughan D. Hippocampal long-term depression in freely behaving mice requires the activation of beta-adrenergic receptors. Hippocampus 2013; 23:1299-308. [PMID: 23878012 DOI: 10.1002/hipo.22168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/19/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
Abstract
In the intact mouse hippocampus patterned afferent stimulation does not lead to long-term depression (LTD) at Schaffer collateral (Sc)-CA1 synapses, but the same synapses express robust LTD (<24 h) if test-pulse or patterned afferent experience is coupled with novel spatial learning. This suggests that the failure of sole afferent stimulation to elicit LTD relates to the absence of neuromodulatory input related to increased arousal or novelty during learning. Locus coeruleus (LC) firing increases during novel experience, and in rats patterned stimulation of the LC together with test-pulse stimulation of Sc-CA1 synapses leads to robust LTD in vivo. This effect is mediated by beta-adrenergic receptors. Here, we explored if activation of beta-adrenergic receptors supports the expression of LTD in freely behaving mice. We also explored if beta-adrenergic receptors contribute to endogenous LTD that is expressed following spatial learning. Patterned stimulation of Sc-CA1 synapses at 3 Hz (200 pulses) resulted in short-term depression (STD). Pretreatment with isoproterenol, an agonist of beta-adrenergic receptors, resulted in robust LTD (<24 h). Test-pulse stimulation under control conditions elicited field potentials that were stable for the 24-h monitoring period. Coupling of test-pulses with a novel spatial object recognition task resulted in robust endogenous LTD (<24 h). Pretreatment with propranolol, a beta-adrenergic receptor antagonist, completely prevented endogenous LTD that was enabled by learning and prevented object recognition learning itself. These data indicate that the absence of LTD in freely behaving mice, under standard recording conditions, does not reflect an inability of mice to express LTD, rather it is due to the absence of a noradrenalin tonus. Our data also support that spatial object recognition requires beta-adrenergic receptor activation. Furthermore, LTD that is enabled by novel spatial learning critically depends on activation of beta-adrenergic receptors that are presumably activated by noradrenalin released by the LC in response to the novel experience.
Collapse
Affiliation(s)
- Jinzhong Jeremy Goh
- Department of Neurophysiology, Ruhr University Bochum, Medical Faculty, Bochum, 44780, Germany
| | | |
Collapse
|
41
|
Li S, Jin M, Zhang D, Yang T, Koeglsperger T, Fu H, Selkoe DJ. Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. Neuron 2013; 77:929-41. [PMID: 23473322 DOI: 10.1016/j.neuron.2012.12.040] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2012] [Indexed: 01/11/2023]
Abstract
A central question about human brain aging is whether cognitive enrichment slows the development of Alzheimer changes. Here, we show that prolonged exposure to an enriched environment (EE) facilitated signaling in the hippocampus of wild-type mice that promoted long-term potentiation. A key feature of the EE effect was activation of β2-adrenergic receptors and downstream cAMP/PKA signaling. This EE pathway prevented LTP inhibition by soluble oligomers of amyloid β-protein (Aβ) isolated from AD cortex. Protection by EE occurred in both young and middle-aged wild-type mice. Exposure to novelty afforded greater protection than did aerobic exercise. Mice chronically fed a β-adrenergic agonist without EE were protected from hippocampal impairment by Aβ oligomers. Thus, EE enhances hippocampal synaptic plasticity by activating β-adrenoceptor signaling and mitigating synaptotoxicity of human Aβ oligomers. These mechanistic insights support using prolonged exposure to cognitive novelty and/or oral β-adrenergic agonists to lessen the effects of Aβ accumulation during aging.
Collapse
Affiliation(s)
- Shaomin Li
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape HC, Rommelfanger KS, Schroeder JP, Stoll M, Schultze J, Weinshenker D, Heneka MT. Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry 2013; 73:454-63. [PMID: 22883210 PMCID: PMC4712953 DOI: 10.1016/j.biopsych.2012.06.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/24/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC), the major noradrenergic nucleus in the brain, occurs early and is ubiquitous in Alzheimer's disease (AD). Experimental lesions to the LC exacerbate AD-like neuropathology and cognitive deficits in several transgenic mouse models of AD. Because the LC contains multiple neuromodulators known to affect amyloid β toxicity and cognitive function, the specific role of noradrenaline (NA) in AD is not well understood. METHODS To determine the consequences of selective NA deficiency in an AD mouse model, we crossed dopamine β-hydroxylase (DBH) knockout mice with amyloid precursor protein (APP)/presenilin-1 (PS1) mice overexpressing mutant APP and PS1. Dopamine β-hydroxylase (-/-) mice are unable to synthesize NA but otherwise have normal LC neurons and co-transmitters. Spatial memory, hippocampal long-term potentiation, and synaptic protein levels were assessed. RESULTS The modest impairments in spatial memory and hippocampal long-term potentiation displayed by young APP/PS1 or DBH (-/-) single mutant mice were augmented in DBH (-/-)/APP/PS1 double mutant mice. Deficits were associated with reduced levels of total calcium/calmodulin-dependent protein kinase II and N-methyl-D-aspartate receptor 2A and increased N-methyl-D-aspartate receptor 2B levels and were independent of amyloid β accumulation. Spatial memory performance was partly improved by treatment with the NA precursor drug L-threo-dihydroxyphenylserine. CONCLUSIONS These results indicate that early LC degeneration and subsequent NA deficiency in AD may contribute to cognitive deficits via altered levels of calcium/calmodulin-dependent protein kinase II and N-methyl-D-aspartate receptors and suggest that NA supplementation could be beneficial in early AD.
Collapse
Affiliation(s)
- Thea Hammerschmidt
- Department of Neurology, Clinical Neurosciences, University of Bonn, and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Strasse 25, 53127 Bonn, Germany,Institute of Physiology I, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Markus P. Kummer
- Department of Neurology, Clinical Neurosciences, University of Bonn, and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Dick Terwel
- Department of Neurology, Clinical Neurosciences, University of Bonn, and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Ana Martinez
- Genes and Behavior Dept., Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ali Gorji
- Institute of Physiology I, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | | | | | - Monika Stoll
- Leibniz-Institut für Arterioskleroseforschung, Genetische Epidemiologie vaskulärer Erkrankungen, 48149 Münster, Germany
| | - Joachim Schultze
- LIMES Institute, Genomics and Immunoregulation, University of Bonn, 53115 Bonn, Germany
| | | | - Michael T. Heneka
- Department of Neurology, Clinical Neurosciences, University of Bonn, and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Strasse 25, 53127 Bonn, Germany,corresponding author: Michael T. Heneka, University of Bonn, Dept. of Neurology, Clinical Neuroscience, Sigmund-Freud-Strasse 25, 53127 Bonn, +49 228 287 13091, +49 228 287 13166,
| |
Collapse
|
43
|
Gravin orchestrates protein kinase A and β2-adrenergic receptor signaling critical for synaptic plasticity and memory. J Neurosci 2013; 32:18137-49. [PMID: 23238728 DOI: 10.1523/jneurosci.3612-12.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of protein kinase A (PKA) to enable localized signaling events within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for long-lasting forms of synaptic plasticity and memory storage. In the forebrain, the anchoring protein gravin recruits a signaling complex containing PKA, PKC, calmodulin, and PDE4D (phosphodiesterase 4D) to the β2-adrenergic receptor. Here, we show that mice lacking the α-isoform of gravin have deficits in PKA-dependent long-lasting forms of hippocampal synaptic plasticity including β2-adrenergic receptor-mediated plasticity, and selective impairments of long-term memory storage. Furthermore, both hippocampal β2-adrenergic receptor phosphorylation by PKA, and learning-induced activation of ERK in the CA1 region of the hippocampus are attenuated in mice lacking gravin-α. We conclude that gravin compartmentalizes a significant pool of PKA that regulates learning-induced β2-adrenergic receptor signaling and ERK activation in the hippocampus in vivo, thereby organizing molecular interactions between glutamatergic and noradrenergic signaling pathways for long-lasting synaptic plasticity, and memory storage.
Collapse
|
44
|
Goh JJ, Manahan-Vaughan D. Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters. Front Integr Neurosci 2013; 7:1. [PMID: 23355815 PMCID: PMC3555076 DOI: 10.3389/fnint.2013.00001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/02/2013] [Indexed: 11/13/2022] Open
Abstract
Persistent synaptic plasticity has been subjected to intense study in the decades since it was first described. Occurring in the form of long-term potentiation (LTP) and long-term depression (LTD), it shares many cellular and molecular properties with hippocampus-dependent forms of persistent memory. Recent reports of both LTP and LTD occurring endogenously under specific learning conditions provide further support that these forms of synaptic plasticity may comprise the cellular correlates of memory. Most studies of synaptic plasticity are performed using in vitro or in vivo preparations where patterned electrical stimulation of afferent fibers is implemented to induce changes in synaptic strength. This strategy has proven very effective in inducing LTP, even under in vivo conditions. LTD in vivo has proven more elusive: although LTD occurs endogenously under specific learning conditions in both rats and mice, its induction has not been successfully demonstrated with afferent electrical stimulation alone. In this study we screened a large spectrum of protocols that are known to induce LTD either in hippocampal slices or in the intact rat hippocampus, to clarify if LTD can be induced by sole afferent stimulation in the mouse CA1 region in vivo. Low frequency stimulation at 1, 2, 3, 5, 7, or 10 Hz given in the range of 100 through 1800 pulses produced, at best, short-term depression (STD) that lasted for up to 60 min. Varying the administration pattern of the stimuli (e.g., 900 pulses given twice at 5 min intervals), or changing the stimulation intensity did not improve the persistency of synaptic depression. LTD that lasts for at least 24 h occurs under learning conditions in mice. We conclude that a coincidence of factors, such as afferent activity together with neuromodulatory inputs, play a decisive role in the enablement of LTD under more naturalistic (e.g., learning) conditions.
Collapse
Affiliation(s)
- Jinzhong J Goh
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience Bochum, Germany
| | | |
Collapse
|
45
|
Buschler A, Manahan-Vaughan D. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci 2012; 6:85. [PMID: 23248592 PMCID: PMC3522088 DOI: 10.3389/fnbeh.2012.00085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/17/2012] [Indexed: 11/24/2022] Open
Abstract
Long-term environmental enrichment (EE) elicits enduring effects on the adult brain, including altered synaptic plasticity. Synaptic plasticity may underlie memory formation and includes robust (>24 h) and weak (<2 h) forms of long-term potentiation (LTP) and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy have examined the consequences of very prolonged EE-exposure. It is unclear whether brief exposure to EE can alter synaptic plasticity. Clarifying this issue could help develop strategies to address cognitive deficits arising from neglect in children or adults. We assessed whether short-term EE elicits alterations in hippocampal synaptic plasticity and if social context may play a role. Adult mice were exposed to EE for 14 consecutive days. We found that robust late-LTP (>24 h) and short-term depression (<2 h) at Schaffer-collateral-CA1 synapses in freely behaving mice were unaltered, whereas early-LTP (E-LTP, <2 h) was significantly enhanced by EE. Effects were transient: E-LTP returned to control levels 1 week after cessation of EE. Six weeks later, animals were re-exposed to EE for 14 days. Under these conditions, E-LTP was facilitated into L-LTP (>24 h), suggesting that metaplasticity was induced during the first EE experience and that EE-mediated modifications are cumulative. Effects were absent in mice that underwent solitary enrichment or were group-housed without EE. These data suggest that EE in naïve animals strengthens E-LTP, and also promotes L-LTP in animals that underwent EE in the past. This indicates that brief exposure to EE, particularly under social conditions can elicit lasting positive effects on synaptic strength that may have beneficial consequences for cognition that depends on synaptic plasticity.
Collapse
Affiliation(s)
- Arne Buschler
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum Bochum, Germany ; International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
46
|
Connor SA, Maity S, Roy B, Ali DW, Nguyen PV. Conversion of short-term potentiation to long-term potentiation in mouse CA1 by coactivation of -adrenergic and muscarinic receptors. Learn Mem 2012; 19:535-42. [DOI: 10.1101/lm.026898.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Goh JJ, Manahan-Vaughan D. Endogenous hippocampal LTD that is enabled by spatial object recognition requires activation of NMDA receptors and the metabotropic glutamate receptor, mGlu5. Hippocampus 2012; 23:129-38. [DOI: 10.1002/hipo.22072] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 12/24/2022]
|
48
|
Nitsche MA, Müller-Dahlhaus F, Paulus W, Ziemann U. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J Physiol 2012; 590:4641-62. [PMID: 22869014 DOI: 10.1113/jphysiol.2012.232975] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The term neuroplasticity encompasses structural and functional modifications of neuronal connectivity. Abnormal neuroplasticity is involved in various neuropsychiatric diseases, such as dystonia, epilepsy, migraine, Alzheimer's disease, fronto-temporal degeneration, schizophrenia, and post cerebral stroke. Drugs affecting neuroplasticity are increasingly used as therapeutics in these conditions. Neuroplasticity was first discovered and explored in animal experimentation. However, non-invasive brain stimulation (NIBS) has enabled researchers recently to induce and study similar processes in the intact human brain. Plasticity induced by NIBS can be modulated by pharmacological interventions, targeting ion channels, or neurotransmitters. Importantly, abnormalities of plasticity as studied by NIBS are directly related to clinical symptoms in neuropsychiatric diseases. Therefore, a core theme of this review is the hypothesis that NIBS-induced plasticity can explore and potentially predict the therapeutic efficacy of CNS-acting drugs in neuropsychiatric diseases. We will (a) review the basics of neuroplasticity, as explored in animal experimentation, and relate these to our knowledge about neuroplasticity induced in humans by NIBS techniques. We will then (b) discuss pharmacological modulation of plasticity in animals and humans. Finally, we will (c) review abnormalities of plasticity in neuropsychiatric diseases, and discuss how the combination of NIBS with pharmacological intervention may improve our understanding of the pathophysiology of abnormal plasticity in these diseases and their purposeful pharmacological treatment.
Collapse
Affiliation(s)
- Michael A Nitsche
- M. A. Nitsche: Georg-August-University, University Medical Centre, Dept Clinical Neurophysiology, Robert-Koch-Str. 40, 37099 Göttingen, Germany.
| | | | | | | |
Collapse
|
49
|
Buschler A, Goh JJ, Manahan-Vaughan D. Frequency dependency of NMDA receptor-dependent synaptic plasticity in the hippocampal CA1 region of freely behaving mice. Hippocampus 2012; 22:2238-48. [PMID: 22707377 DOI: 10.1002/hipo.22041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2012] [Indexed: 11/08/2022]
Abstract
Hippocampal synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) is likely to enable synaptic information storage in support of memory formation. The mouse brain has been subjected to intensive scrutiny in this regard; however, a multitude of studies has examined synaptic plasticity in the hippocampal slice preparation, whereas very few have addressed synaptic plasticity in the freely behaving mouse. Almost nothing is known about the frequency or N-methyl-D-aspartate receptor (NMDAR) dependency of hippocampal synaptic plasticity in the intact mouse brain. Therefore, in this study, we investigated the forms of synaptic plasticity that are elicited at different afferent stimulation frequencies. We also addressed the NMDAR dependency of this phenomenon. Adult male C57BL/6 mice were chronically implanted with a stimulating electrode into the Schaffer collaterals and a recording electrode into the Stratum radiatum of the CA1 region. To examine synaptic plasticity, we chose protocols that were previously shown to produce either LTP or LTD in the hippocampal slice preparation. Low-frequency stimulation (LFS) at 1 Hz (900 pulses) had no effect on evoked responses. LFS at 3 Hz (ranging from 200 up to 2 × 900 pulses) elicited short-term depression (STD, <45 min). LFS at 3 Hz (1,200 pulses) elicited slow-onset potentiation, high-frequency stimulation (HFS) at 100 Hz (100 or 200 pulses) or at 50 Hz was ineffective, whereas 100 Hz (50 pulses) elicited short-term potentiation (STP). HFS at 100 Hz given as 2 × 30, 2 × 50, or 4 × 50 pulses elicited LTP (>24 h). Theta-burst stimulation was ineffective. Antagonism of the NMDAR prevented STD, STP, and LTP. This study shows for the first time that protocols that effectively elicit persistent synaptic plasticity in the slice preparation elicit distinctly different effects in the intact mouse brain. Persistent LTD could not be elicited with any of the protocols tested. Plasticity responses are NMDAR dependent, suggesting that these phenomena are relevant for hippocampus-dependent learning.
Collapse
Affiliation(s)
- Arne Buschler
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | | | |
Collapse
|
50
|
Hagena H, Manahan-Vaughan D. Learning-facilitated long-term depression and long-term potentiation at mossy fiber-CA3 synapses requires activation of β-adrenergic receptors. Front Integr Neurosci 2012; 6:23. [PMID: 22654741 PMCID: PMC3358719 DOI: 10.3389/fnint.2012.00023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/04/2012] [Indexed: 11/13/2022] Open
Abstract
Learning-facilitated plasticity refers to hippocampal synaptic plasticity that is facilitated by novel spatial learning events. Both long-term potentiation (LTP) and long-term depression (LTD) are facilitated by novel hippocampus-dependent learning. This has important ramifications for our understanding of how the hippocampus encodes memory. One structure that is rarely studied in vivo, but is believed to be crucially important for working and long-term memory processing is the hippocampal CA3 region. Whereas learning-facilitated plasticity has been described in this structure, the mechanisms underlying this phenomenon have not been explored. The noradrenergic system plays an important role in arousal and qualification of new information as salient. It regulates synaptic plasticity in the dentate gyrus and CA1, but nothing is known about the regulation by the noradrenergic system of synaptic plasticity in the CA3 region. We explored whether β-adrenergic receptors contribute to learning-facilitated plasticity at mossy fiber (mf)-CA3 synapses of behaving rats. We found that receptor antagonism had no effect on basal synaptic transmission, short-term potentiation (STP), short-term depression, LTP, or LTD, that were electrically induced by patterned afferent stimulation. We found, however, that both learning-facilitated LTP and LTD were prevented by antagonism of β-adrenergic receptors, whereas the agonist isoproterenol facilitated STP into LTP. Thus, learning-facilitated and electrically-induced plasticity may not share the same prerequisites. These results support that the mf synapse engages in a distinct aspect of encoding of spatial information that involves both LTP and LTD. Furthermore, changes in arousal that are coupled to new learning are associated with activation of hippocampal β-adrenergic receptors that in turn comprise a key element in this type of information acquisition and processing by the CA3 region.
Collapse
Affiliation(s)
- Hardy Hagena
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|