1
|
White TA, Miller SL, Sutherland AE, Allison BJ, Camm EJ. Perinatal compromise affects development, form, and function of the hippocampus part two; preclinical studies. Pediatr Res 2024; 95:1709-1719. [PMID: 38519795 PMCID: PMC11245392 DOI: 10.1038/s41390-024-03144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/25/2024]
Abstract
The hippocampus is a vital brain structure deep in the medial temporal lobe that mediates a range of functions encompassing emotional regulation, learning, memory, and cognition. Hippocampal development is exquisitely sensitive to perturbations and adverse conditions during pregnancy and at birth, including preterm birth, fetal growth restriction (FGR), acute hypoxic-ischaemic encephalopathy (HIE), and intrauterine inflammation. Disruptions to hippocampal development due to these conditions can have long-lasting functional impacts. Here, we discuss a range of preclinical models of prematurity and FGR and conditions that induce hypoxia and inflammation, which have been critical in elucidating the underlying mechanisms and cellular and subcellular structures implicated in hippocampal dysfunction. Finally, we discuss potential therapeutic targets to reduce the burden of these perinatal insults on the developing hippocampus. IMPACT: The review explores the preclinical literature examining the association between pregnancy and birth complications, and hippocampal form and function. The developmental processes and cellular mechanisms that are disrupted within the hippocampus following perinatal compromise are described, and potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Tegan A White
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Li Z, Ma Y, Dong B, Hu B, He H, Jia J, Xiong M, Xu T, Xu B, Xi W. Functional magnetic resonance imaging study on anxiety and depression disorders induced by chronic restraint stress in rats. Behav Brain Res 2023; 450:114496. [PMID: 37201894 DOI: 10.1016/j.bbr.2023.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Persistent and negative stress stimulation is one of the most important factors leading to anxiety and depression in individuals, and it can negatively affect the normal function and structure of brain-related regions. However, the maladaptive changes of brain neural networks in anxiety and depression induced by chronic stress have not been explored in detail. In this study, we analyzed the changes in global information transfer efficiency, stress related blood oxygen level dependent (BOLD)- and diffusion tensor imaging (DTI)- signals and functional connectivity (FC) in rat models based on resting-state functional magnetic resonance imaging (rs-fMRI). The results showed that compared to control group, rats treated with chronic restraint stress (CRS) for 5 weeks had reconstructed the small-world network properties. In addition, CRS group had increased coherence and activity in bilateral Striatum (ST_R & L), but decreased coherence and activity in unilateral (left) Frontal Association Cortex (FrA_L) and unilateral (left) Medial Entorhinal Cortex (MEC_L). DTI analysis and correlation analysis confirmed the disrupted integrity of MEC_L and ST_R & L and their correlation to anxiety- and depressive-liked behaviors. Functional connectivity further showed these regions of interest (ROI) had decreased positive correlations with several brain areas, respectively. Our study comprehensively revealed the adaptive changes of brain neural networks induced by chronic stress and emphasized the abnormal activity and functional connectivity of ST_R & L and MEC_L in the pathological condition.
Collapse
Affiliation(s)
- Zhaoju Li
- The First School of Clinical Medicine, Southern Medical University, Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China; Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| | - Yongyuan Ma
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| | - Bo Dong
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P.R.China
| | - Bo Hu
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China.
| | - Huan He
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| | - Ji Jia
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| | - Ming Xiong
- Department of Anesthesiology & Peri-Operative Medicine, New Jersey Medical School, Newark, NJ, USA
| | - Ting Xu
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P.R.China.
| | - Bo Xu
- The First School of Clinical Medicine, Southern Medical University, Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China; Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China.
| | - Wenbin Xi
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| |
Collapse
|
3
|
Jindachomthong K, Yang C, Huang Y, Coman D, Rapanelli M, Hyder F, Dougherty J, Frick L, Pittenger C. White matter abnormalities in the Hdc knockout mouse, a model of tic and OCD pathophysiology. Front Mol Neurosci 2022; 15:1037481. [PMID: 36504678 PMCID: PMC9731796 DOI: 10.3389/fnmol.2022.1037481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction An inactivating mutation in the histidine decarboxylase gene (Hdc) has been identified as a rare but high-penetrance genetic cause of Tourette syndrome (TS). TS is a neurodevelopmental syndrome characterized by recurrent motor and vocal tics; it is accompanied by structural and functional abnormalities in the cortico-basal ganglia circuitry. Hdc, which is expressed both in the posterior hypothalamus and peripherally, encodes an enzyme required for the biosynthesis of histamine. Hdc knockout mice (Hdc-KO) functionally recapitulate this mutation and exhibit behavioral and neurochemical abnormalities that parallel those seen in patients with TS. Materials and methods We performed exploratory RNA-seq to identify pathological alterations in several brain regions in Hdc-KO mice. Findings were corroborated with RNA and protein quantification, immunohistochemistry, and ex vivo brain imaging using MRI. Results Exploratory RNA-Seq analysis revealed, unexpectedly, that genes associated with oligodendrocytes and with myelin production are upregulated in the dorsal striatum of these mice. This was confirmed by qPCR, immunostaining, and immunoblotting. These results suggest an abnormality in myelination in the striatum. To test this in an intact mouse brain, we performed whole-brain ex vivo diffusion tensor imaging (DTI), which revealed reduced fractional anisotropy (FA) in the dorsal striatum. Discussion While the DTI literature in individuals with TS is sparse, these results are consistent with findings of disrupted descending cortical projections in patients with tics. The Hdc-KO model may represent a powerful system in which to examine the developmental mechanisms underlying this abnormality.
Collapse
Affiliation(s)
- Kantiya Jindachomthong
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chengran Yang
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Maximiliano Rapanelli
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States,Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph Dougherty
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - Luciana Frick
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States,*Correspondence: Luciana Frick,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States,Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States,Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States,Christopher Pittenger,
| |
Collapse
|
4
|
Kushwah S, Kumar A, Verma A, Basu S, Kumar A. Comparison of fractional anisotropy and apparent diffusion coefficient among hypoxic ischemic encephalopathy stages 1, 2, and 3 and with nonasphyxiated newborns in 18 areas of brain. Indian J Radiol Imaging 2021; 27:447-456. [PMID: 29379241 PMCID: PMC5761173 DOI: 10.4103/ijri.ijri_384_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose To determine the area and extent of injury in hypoxic encephalopathy stages by diffusion tensor imaging (DTI) using parameters apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values and their comparison with controls without any evidence of asphyxia. To correlate the outcome of hypoxia severity clinically and significant changes on DTI parameter. Materials and Methods DTI was done in 50 cases at median age of 12 and 20 controls at median age of 7 days. FA and apparent diffusion coefficient (ADC) were measured in several regions of interest (ROI). Continuous variables were analyzed using Student's t-test. Categorical variables were compared by Fisher's exact test. Comparison among multiple groups was done using analysis of variance (ANOVA) and post hoc Bonferroni test. Results Abnormalities were more easily and accurately determined in ROI with the help of FA and ADC values. When compared with controls FA values were significantly decreased and ADC values were significantly increased in cases, in ROI including both right and left side of thalamus, basal ganglia, posterior limb of internal capsule, cerebral peduncle, corticospinal tracts, frontal, parietal, temporal, occipital with P value < 0.05. The extent of injury was maximum in stage-III. There was no significant difference among males and females. Conclusion Compared to conventional magnetic resonance imaging (MRI), the evaluation of FA and ADC values using DTI can determine the extent and severity of injury in hypoxic encephalopathy. It can be used for early determination of brain injury in these patients.
Collapse
Affiliation(s)
- Supriya Kushwah
- Department of Paediatrics, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Ashok Kumar
- Department of Paediatrics, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Department of Paediatrics, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Sriparna Basu
- Department of Paediatrics, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Ashutosh Kumar
- Department of Anaesthesia, KMC, Mangalore, Karnataka, India
| |
Collapse
|
5
|
Disruption of neonatal Purkinje cell function underlies injury-related learning deficits. Proc Natl Acad Sci U S A 2021; 118:2017876118. [PMID: 33688045 PMCID: PMC7980280 DOI: 10.1073/pnas.2017876118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Injury to the cerebellum during late fetal and early postnatal life is associated with long-term motor and cognitive deficits. It is thought that injury at this stage of development results in delayed maturation of neural circuitry, causing altered behavior at later stages. This study identifies the neural basis of locomotor learning deficits in the cerebellum using a clinically relevant model of neonatal brain injury. By combining fiber-optic-enabled Purkinje cell activity measurement during locomotor behavior, we provide evidence for long-term changes in neuronal responses during learning. By artificially reducing Purkinje cell function during the neonatal stage, we observed similarly altered physiological responses as those seen in injury. Our findings indicate that injury-related inhibition of developing Purkinje cells causes long-term locomotor dysfunction. It is hypothesized that perinatal cerebellar injury leads to long-term functional deficits due to circuit dysmaturation. Using a novel integration of GCaMP6f fiber photometry with automated measurement of cerebellar behavior using the ErasmusLadder, we causally link cerebellar injury to altered Purkinje cell responses during maladaptive behavior. Chemogenetic inhibition of neonatal Purkinje cells is sufficient to phenocopy the effects of perinatal cerebellar injury. Our results uncover a direct link between perinatal cerebellar injury and activity-dependent maturation of cerebellar cortex.
Collapse
|
6
|
Vaes JEG, van Kammen CM, Trayford C, van der Toorn A, Ruhwedel T, Benders MJNL, Dijkhuizen RM, Möbius W, van Rijt SH, Nijboer CH. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity. Glia 2020; 69:655-680. [PMID: 33045105 PMCID: PMC7821154 DOI: 10.1002/glia.23919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
Encephalopathy of prematurity (EoP) is a common cause of long-term neurodevelopmental morbidity in extreme preterm infants. Diffuse white matter injury (dWMI) is currently the most commonly observed form of EoP. Impaired maturation of oligodendrocytes (OLs) is the main underlying pathophysiological mechanism. No therapies are currently available to combat dWMI. Intranasal application of mesenchymal stem cells (MSCs) is a promising therapeutic option to boost neuroregeneration after injury. Here, we developed a double-hit dWMI mouse model and investigated the therapeutic potential of intranasal MSC therapy. Postnatal systemic inflammation and hypoxia-ischemia led to transient deficits in cortical myelination and OL maturation, functional deficits and neuroinflammation. Intranasal MSCs migrated dispersedly into the injured brain and potently improved myelination and functional outcome, dampened cerebral inflammationand rescued OL maturation after dWMI. Cocultures of MSCs with primary microglia or OLs show that MSCs secrete factors that directly promote OL maturation and dampen neuroinflammation. We show that MSCs adapt their secretome after ex vivo exposure to dWMI milieu and identified several factors including IGF1, EGF, LIF, and IL11 that potently boost OL maturation. Additionally, we showed that MSC-treated dWMI brains express different levels of these beneficial secreted factors. In conclusion, the combination of postnatal systemic inflammation and hypoxia-ischemia leads to a pattern of developmental brain abnormalities that mimics the clinical situation. Intranasal delivery of MSCs, that secrete several beneficial factors in situ, is a promising strategy to restore myelination after dWMI and subsequently improve the neurodevelopmental outcome of extreme preterm infants in the future.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caren M van Kammen
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sabine H van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Hamdy N, Eide S, Sun HS, Feng ZP. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 2020; 334:113457. [PMID: 32889009 DOI: 10.1016/j.expneurol.2020.113457] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia and resulting encephalopathies are of significant concern. Intrapartum asphyxia is a leading cause of neonatal death globally. Among surviving infants, there remains a high incidence of hypoxic-ischemic encephalopathy due to neonatal hypoxic-ischemic brain injury, manifesting as mild conditions including attention deficit hyperactivity disorder, and debilitating disorders such as cerebral palsy. Various animal models of neonatal hypoxic brain injury have been implemented to explore cellular and molecular mechanisms, assess the potential of novel therapeutic strategies, and characterize the functional and behavioural correlates of injury. Each of the animal models has individual advantages and limitations. The present review looks at several widely-used and alternative rodent models of neonatal hypoxia and hypoxia-ischemia; it highlights their strengths and limitations, and their potential for continued and improved use.
Collapse
Affiliation(s)
- Nancy Hamdy
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sarah Eide
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
8
|
Bouyssi-Kobar M, De Asis-Cruz J, Murnick J, Chang T, Limperopoulos C. Altered Functional Brain Network Integration, Segregation, and Modularity in Infants Born Very Preterm at Term-Equivalent Age. J Pediatr 2019; 213:13-21.e1. [PMID: 31358292 PMCID: PMC6765421 DOI: 10.1016/j.jpeds.2019.06.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To determine the functional network organization of the brain in infants born very preterm at term-equivalent age and to relate network alterations to known clinical risk factors for poor neurologic outcomes in prematurity. STUDY DESIGN Resting-state functional magnetic resonance imaging data from 66 infants born very preterm (gestational age <32 weeks and birth weight <1500 g) and 66 healthy neonates born at full term, acquired as part of a prospective, cross-sectional study, were compared at term age using graph theory. Features of resting-state networks, including integration, segregation, and modularity, were derived from correlated hemodynamic activity arising from 93 cortical and subcortical regions of interest and compared between groups. RESULTS Despite preserved small-world topology and modular organization, resting-state networks of infants born very preterm at term-equivalent age were less segregated and less integrated than those of infants born full term. Chronic respiratory illness (ie, bronchopulmonary dysplasia and the length of oxygen support) was associated with decreased global efficiency and increased path lengths (P < .05). In both cohorts, 4 functional modules with similar composition were observed (parietal/temporal, frontal, subcortical/limbic, and occipital). The density of connections in 3 of the 4 modules was decreased in the very preterm network (P < .01); however, in the occipital/visual cortex module, connectivity was increased in infants born very preterm relative to control infants (P < .0001). CONCLUSIONS Early exposure to the ex utero environment is associated with altered resting-state network functional organization in infants born very preterm at term-equivalent age, likely reflecting disrupted brain maturational processes.
Collapse
Affiliation(s)
- Marine Bouyssi-Kobar
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children’s National Health System, Washington, DC,Institute for Biomedical Sciences, George Washington University, Washington, DC
| | - Josepheen De Asis-Cruz
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children’s National Health System, Washington, DC
| | - Jonathan Murnick
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children’s National Health System, Washington, DC
| | - Taeun Chang
- Department of Neurology, Children’s National Health System, Washington, DC
| | - Catherine Limperopoulos
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC.
| |
Collapse
|
9
|
Maternal pomegranate juice intake and brain structure and function in infants with intrauterine growth restriction: A randomized controlled pilot study. PLoS One 2019; 14:e0219596. [PMID: 31433809 PMCID: PMC6703683 DOI: 10.1371/journal.pone.0219596] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/24/2019] [Indexed: 12/16/2022] Open
Abstract
Polyphenol-rich pomegranate juice has been shown to have benefit as a neuroprotectant in animal models of neonatal hypoxic-ischemia. No published studies have investigated maternal polyphenol administration as a potential neuroprotectant in at-risk newborns, such as those with intrauterine growth restriction (IUGR). This was a randomized, placebo-controlled, double-blind pilot study to investigate the impact of maternal pomegranate juice intake in pregnancies with IUGR, on newborn brain structure and function at term-equivalent age (TEA). Mothers with IUGR at 24-34 weeks' gestation were recruited from Barnes-Jewish Hospital obstetrical clinic. Consented mothers were randomized to treatment (8 oz. pomegranate juice) or placebo (8 oz. polyphenol-free juice) and continued to take juice daily from enrollment until delivery (mean 20.1 and 27.1 days, respectively). Infants underwent brain MRI at TEA (36-41 weeks' gestation). Brain measures were compared between groups including: brain injury score, brain metrics, brain volumes, diffusion tensor imaging and resting state functional connectivity. Statistical analyses were undertaken as modified intention-to-treat (including randomized participants who received their allocated intervention and whose infants received brain MRI) and per-protocol (including participants who strictly adhered to the protocol, based on metabolite status). Seventy-seven mothers were randomized to treatment (n = 40) or placebo (n = 37). Of these, 28 and 27 infants, respectively, underwent term-equivalent MRI. There were no group differences in brain injury, metrics or volumes. However, treatment subjects displayed reduced diffusivity within the anterior and posterior limbs of the internal capsule compared with placebo. Resting state functional connectivity demonstrated increased correlation and covariance within several networks in treatment subjects, with alterations most apparent in the visual network in per-protocol analyses. Direct effects on health were not found. In conclusion, maternal pomegranate juice intake in pregnancies with known IUGR was associated with altered white matter organization and functional connectivity in the infant brain, suggesting differences in brain structure and function following in utero pomegranate juice exposure, warranting continued investigation. Clinical trial registration. NCT00788866, registered November 11, 2008, initial participant enrollment August 21, 2012.
Collapse
|
10
|
Zhang J, Zhang W, Gao X, Zhao Y, Chen D, Xu N, Pu H, Stetler RA, Gao Y. Preconditioning with partial caloric restriction confers long-term protection against grey and white matter injury after transient focal ischemia. J Cereb Blood Flow Metab 2019; 39:1394-1409. [PMID: 29972653 PMCID: PMC6668518 DOI: 10.1177/0271678x18785480] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) has been extensively examined as a preventative strategy against aging and various diseases, but CR effects on cerebral ischemia are largely unknown. We subjected C57BL6/J mice to ad libitum food access (LF) or a diet restricted to 70% of ad libitum food access (RF) for two to four weeks followed by 60 min of transient focal ischemia (tFCI). RF for four weeks protected against subsequent tFCI-induced infarct. RF improved sensorimotor function after stroke in the foot fault and corner tests, as well as performance in the Morris water maze test. In addition, RF preserved ischemic white matter tract integrity assessed by histology and compound action potential. Sirt1 and Sirt3 were both upregulated in RF ischemic brain, but heterozygous deletion of Sirt1 or knockout of Sirt3 did not alter the protection induced by RF against ischemic injury. RF induced significant release of adiponectin, a hormone related to glucose metabolism. Knockout of adiponectin decreased RF-induced protection after tFCI. These data demonstrate the novel finding that white matter, as well as neurons, benefit from CR prior to cerebral ischemic injury, and that adiponectin may contribute to these protective effects.
Collapse
Affiliation(s)
- Jia Zhang
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wenting Zhang
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xuguang Gao
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yongfang Zhao
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Na Xu
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,2 Pittsburgh Institute for Brain Disease and Recovery (PIBDR) and the Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| | - Hongjian Pu
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,2 Pittsburgh Institute for Brain Disease and Recovery (PIBDR) and the Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| | - R Anne Stetler
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,2 Pittsburgh Institute for Brain Disease and Recovery (PIBDR) and the Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
11
|
Pregnolato S, Chakkarapani E, Isles AR, Luyt K. Glutamate Transport and Preterm Brain Injury. Front Physiol 2019; 10:417. [PMID: 31068830 PMCID: PMC6491644 DOI: 10.3389/fphys.2019.00417] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Preterm birth complications are the leading cause of child death worldwide and a top global health priority. Among the survivors, the risk of life-long disabilities is high, including cerebral palsy and impairment of movement, cognition, and behavior. Understanding the molecular mechanisms of preterm brain injuries is at the core of future healthcare improvements. Glutamate excitotoxicity is a key mechanism in preterm brain injury, whereby the accumulation of extracellular glutamate damages the delicate immature oligodendrocytes and neurons, leading to the typical patterns of injury seen in the periventricular white matter. Glutamate excitotoxicity is thought to be induced by an interaction between environmental triggers of injury in the perinatal period, particularly cerebral hypoxia-ischemia and infection/inflammation, and developmental and genetic vulnerabilities. To avoid extracellular build-up of glutamate, the brain relies on rapid uptake by sodium-dependent glutamate transporters. Astrocytic excitatory amino acid transporter 2 (EAAT2) is responsible for up to 95% of glutamate clearance, and several lines of evidence suggest that it is essential for brain functioning. While in the adult EAAT2 is predominantly expressed by astrocytes, EAAT2 is transiently upregulated in the immature oligodendrocytes and selected neuronal populations during mid-late gestation, at the peak time for preterm brain injury. This developmental upregulation may interact with perinatal hypoxia-ischemia and infection/inflammation and contribute to the selective vulnerability of the immature oligodendrocytes and neurons in the preterm brain. Disruption of EAAT2 may involve not only altered expression but also impaired function with reversal of transport direction. Importantly, elevated EAAT2 levels have been found in the reactive astrocytes and macrophages of human infant post-mortem brains with severe white matter injury (cystic periventricular leukomalacia), potentially suggesting an adaptive mechanism against excitotoxicity. Interestingly, EAAT2 is suppressed in animal models of acute hypoxic-ischemic brain injury at term, pointing to an important and complex role in newborn brain injuries. Enhancement of EAAT2 expression and transport function is gathering attention as a potential therapeutic approach for a variety of adult disorders and awaits exploration in the context of the preterm brain injuries.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elavazhagan Chakkarapani
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Karen Luyt
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Bonkowsky JL, Son JH. Hypoxia and connectivity in the developing vertebrate nervous system. Dis Model Mech 2018; 11:11/12/dmm037127. [PMID: 30541748 PMCID: PMC6307895 DOI: 10.1242/dmm.037127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The developing nervous system depends upon precise regulation of oxygen levels. Hypoxia, the condition of low oxygen concentration, can interrupt developmental sequences and cause a range of molecular, cellular and neuronal changes and injuries. The roles and effects of hypoxia on the central nervous system (CNS) are poorly characterized, even though hypoxia is simultaneously a normal component of development, a potentially abnormal environmental stressor in some settings, and a clinically important complication, for example of prematurity. Work over the past decade has revealed that hypoxia causes specific disruptions in the development of CNS connectivity, altering axon pathfinding and synapse development. The goals of this article are to review hypoxia's effects on the development of CNS connectivity, including its genetic and molecular mediators, and the changes it causes in CNS circuitry and function due to regulated as well as unintended mechanisms. The transcription factor HIF1α is the central mediator of the CNS response to hypoxia (as it is elsewhere in the body), but hypoxia also causes a dysregulation of gene expression. Animals appear to have evolved genetic and molecular responses to hypoxia that result in functional behavioral alterations to adapt to the changes in oxygen concentration during CNS development. Understanding the molecular pathways underlying both the normal and abnormal effects of hypoxia on CNS connectivity may reveal novel insights into common neurodevelopmental disorders. In addition, this Review explores the current gaps in knowledge, and suggests important areas for future studies. Summary: The nervous system's exposure to hypoxia has developmental and clinical relevance. In this Review, the authors discuss the effects of hypoxia on the development of the CNS, and its long-term behavioral and neurodevelopmental consequences.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - Jong-Hyun Son
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,Department of Biology, University of Scranton, Scranton, PA 18510, USA
| |
Collapse
|
13
|
Yang LQ, Chen M, Zhang JL, Ren DL, Hu B. Hypoxia Delays Oligodendrocyte Progenitor Cell Migration and Myelin Formation by Suppressing Bmp2b Signaling in Larval Zebrafish. Front Cell Neurosci 2018; 12:348. [PMID: 30337858 PMCID: PMC6180284 DOI: 10.3389/fncel.2018.00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Hypoxia in newborns tends to result in developmental deficiencies in the white matter of the brain. As previous studies of the effects of hypoxia on neuronal development in rodents and human infants have been unable to use in vivo imaging, insight into the dynamic development of oligodendrocytes (OLs) in the central nervous system under hypoxia is limited. Here, we developed a visual model to study OL development using sublethal postnatal hypoxia in zebrafish larvae. We observed that hypoxia significantly suppressed OL progenitor cell migration toward the dorsum using in vivo imaging. Further, we found that hypoxia affected myelination, as indicated by thinner myelin sheaths and by a downregulation of myelin basic protein expression. Bmp2b protein expression was also significantly downregulated following hypoxia onset. Using gain of function and loss of function experiments, we demonstrated that the Bmp2b protein was associated with the regulation of OL development. Thus, our work provides a visual hypoxia model within which to observe OL development in vivo, and reveals the underlying mechanisms involved in these processes.
Collapse
Affiliation(s)
- Lei-Qing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Min Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun-Long Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Da-Long Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Neonatal brain injury causes cerebellar learning deficits and Purkinje cell dysfunction. Nat Commun 2018; 9:3235. [PMID: 30104642 PMCID: PMC6089917 DOI: 10.1038/s41467-018-05656-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/16/2018] [Indexed: 11/08/2022] Open
Abstract
Premature infants are more likely to develop locomotor disorders than term infants. In a chronic sub-lethal hypoxia (Hx) mouse model of neonatal brain injury, we recently demonstrated the presence of cellular and physiological changes in the cerebellar white matter. We also observed Hx-induced delay in Purkinje cell (PC) arborization. However, the behavioral consequences of these cellular alterations remain unexplored. Using the Erasmus Ladder to study cerebellar behavior, we report the presence of locomotor malperformance and long-term cerebellar learning deficits in Hx mice. Optogenetics experiments in Hx mice reveal a profound reduction in spontaneous and photoevoked PC firing frequency. Finally, treatment with a gamma-aminobutyric acid (GABA) reuptake inhibitor partially rescues locomotor performance and improves PC firing. Our results demonstrate a long-term miscoordination phenotype characterized by locomotor malperformance and cerebellar learning deficits in a mouse model of neonatal brain injury. Our findings also implicate the developing GABA network as a potential therapeutic target for prematurity-related locomotor deficits.
Collapse
|
15
|
Yu M, Chen L, Peng Z, Nüssler AK, Wu Q, Liu L, Yang W. Mechanism of deoxynivalenol effects on the reproductive system and fetus malformation: Current status and future challenges. Toxicol In Vitro 2017; 41:150-158. [PMID: 28286114 DOI: 10.1016/j.tiv.2017.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
Deoxynivalenol (DON) is a toxic fungal secondary metabolite produced by molds of the Fusarium genus, and it is known to cause a spectrum of diseases both in humans and animals, such as emesis, diarrhea, anorexia, immunotoxicity, hematological disorders, impairment of maternal reproduction, and fetal development. The recently revealed teratogenic potential of DON has received much attention. In various animal models, it has been shown that DON led to skeletal deformities of the fetus. However, the underlying mechanisms are not yet fully understood, and toxicological data are also scarce. Several animal research studies highlight the potential link between morphological abnormalities and changes of autophagy in the reproductive system. Because autophagy is involved in fetal development, maintenance of placental function, and bone remodeling, this mechanism has become a high priority for future research. The general aim of the present review is to deliver a comprehensive overview of the current state of knowledge of DON-induced reproductive toxicity in different animal models and to provide some prospective ideas for further research. The focus of the current review is to summarize toxic and negative effects of DON exposure on the reproductive system and the potential underlying molecular mechanisms in various animal models.
Collapse
Affiliation(s)
- Miao Yu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
16
|
A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment. Biomaterials 2016; 77:227-34. [DOI: 10.1016/j.biomaterials.2015.11.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/25/2022]
|
17
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Salmaso N, Dominguez M, Kravitz J, Komitova M, Vaccarino FM, Schwartz ML. Contribution of maternal oxygenic state to the effects of chronic postnatal hypoxia on mouse body and brain development. Neurosci Lett 2015. [PMID: 26222256 DOI: 10.1016/j.neulet.2015.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1-2% of live births are to very low birth weight, premature infants that often show a developmental trajectory plagued with neurological sequelae including ventriculomegaly and significant decreases in cortical volume. We are able to recapitulate these sequelae using a mouse model of hypoxia where early postnatal pups are exposed to chronic hypoxia for one week. However, because the timing of hypoxic exposure occurs so early in development, dams and pups are housed together in the hypoxic chamber, and therefore, dams are also subjected to the same hypoxic conditions as the pups. To understand the relative contribution of hypoxia directly on the pups as opposed to the indirect contribution mediated by the effects of hypoxia and potential alterations in the dam's care of the pups, we examined whether reducing the dams exposure to hypoxia may significantly increase pup outcomes on measures that we have found consistently changed immediately following chronic hypoxia exposure. To achieve this, we rotated dams between normoxic and hypoxic conditions, leaving the litters untouched in their respective conditions and compared gross anatomical measures of normoxic and hypoxic pups with non-rotating or rotating mothers. As we expected, hypoxic-rearing decreased pup body weight, brain weight and cortical volume. Reducing the dam's exposure to hypoxic conditions actually amplified the effects of hypoxia on body weight, such that hypoxic pups with rotating mothers showed significantly less growth. Interestingly, rotation of hypoxic mothers did not have the same deleterious effect on brain weight, suggesting the presence of compensatory mechanisms conserving brain weight and development even under extremely low body weight conditions. The factors that potentially contribute to these compensatory changes remain to be determined, however, nutrition, pup feeding/metabolism, or changes in maternal care are important candidates, acting either together or independently to change pup body and brain development.
Collapse
Affiliation(s)
- Natalina Salmaso
- Child Study Center, and Department of Neurobiology, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA.
| | - Moises Dominguez
- Child Study Center, and Department of Neurobiology, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA.
| | - Jacob Kravitz
- Department of Neurobiology, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Mila Komitova
- Child Study Center, and Department of Neurobiology, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA.
| | - Flora M Vaccarino
- Child Study Center, and Department of Neurobiology, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA.
| | - Michael L Schwartz
- Department of Neurobiology, Yale University, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Watzlawik JO, Kahoud RJ, O’Toole RJ, White KAM, Ogden AR, Painter MM, Wootla B, Papke LM, Denic A, Weimer JM, Carey WA, Rodriguez M. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice. PLoS One 2015; 10:e0128007. [PMID: 26020269 PMCID: PMC4447462 DOI: 10.1371/journal.pone.0128007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2–3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed by dysmyelination, abnormal spinal neuron composition, and neuro-motor deficits in adulthood.
Collapse
Affiliation(s)
- Jens O. Watzlawik
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Robert J. Kahoud
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Ryan J. O’Toole
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. M. White
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Alyssa R. Ogden
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Meghan M. Painter
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Louisa M. Papke
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Jill M. Weimer
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - William A. Carey
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hardt DJ, James RA, Gut CP, McInturf SM, Sweeney LM, Erickson RP, Gargas ML. Evaluation of submarine atmospheres: effects of carbon monoxide, carbon dioxide and oxygen on general toxicology, neurobehavioral performance, reproduction and development in rats. II. Ninety-day study. Inhal Toxicol 2015; 27:121-37. [PMID: 25687554 DOI: 10.3109/08958378.2014.999294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Carbon monoxide (CO), carbon dioxide (CO2) and low-level oxygen (O2) (hypoxia) are submarine atmosphere components of highest concern because of a lack of toxicological data available to address the potential effects from long-duration, combined exposures on female reproductive and developmental health. In this study, subchronic toxicity of mixed atmospheres of these three submarine air components was evaluated in rats. Male and female rats were exposed via inhalation to clean air (0.4 ppm CO; 0.13% CO2; 20.6% O2) (control), a low-dose (5.0 ppm CO; 0.41% CO2; 17.1% O2), a mid-dose (13.9 ppm CO; 1.19 or 1.20% CO2; 16.1% O2) and a high-dose (89.9 ppm CO; 2.5% CO2; 15.0% O2) gas mixture for 23 h per day for 70 d premating and a 14-d mating period. Impregnated dams continued exposure to gestation day 19. Adverse reproductive effects were not identified in exposed parents (P0) or first (F1) and second generation (F2) offspring during mating, gestation or parturition. No adverse changes to the estrous cycle or in reproductive hormone concentrations were identified. The exposure-related effects were reduced weight gains and adaptive up-regulation of erythropoiesis in male rats from the high-dose group. No adverse, dose-related health effects on clinical data or physiological data were observed. Neurobehavioral tests identified no apparent developmental deficits at the tested levels of exposure. In summary, subchronic exposures to the submarine atmosphere gases did not affect the ability of the exposed rats or their offspring to reproduce and did not appear to have any significant adverse health effects.
Collapse
Affiliation(s)
- Daniel J Hardt
- Naval Medical Research Unit Dayton (NAMRU Dayton), Wright-Patterson Air Force Base , OH , USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hardt DJ, James RA, Gut CP, McInturf SM, Sweeney LM, Erickson RP, Gargas ML. Evaluation of submarine atmospheres: effects of carbon monoxide, carbon dioxide and oxygen on general toxicology, neurobehavioral performance, reproduction and development in rats. I. Subacute exposures. Inhal Toxicol 2015; 27:83-99. [PMID: 25600219 DOI: 10.3109/08958378.2014.995386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The inhalation toxicity of submarine contaminants is of concern to ensure the health of men and women aboard submarines during operational deployments. Due to a lack of adequate prior studies, potential general, neurobehavioral, reproductive and developmental toxicity was evaluated in male and female rats exposed to mixtures of three critical submarine atmospheric components: carbon monoxide (CO) and carbon dioxide (CO2; levels elevated above ambient), and oxygen (O2; levels decreased below ambient). In a 14-day, 23 h/day, whole-body inhalation study of exposure to clean air (0.4 ppm CO, 0.1% CO2 and 20.6% O2), low-dose, mid-dose and high-dose gas mixtures (high dose of 88.4 ppm CO, 2.5% CO2 and 15.0% O2), no adverse effects on survival, body weight or histopathology were observed. Reproductive, developmental and neurobehavioral performance were evaluated after a 28-day exposure in similar atmospheres. No adverse effects on estrus phase, mating, gestation or parturition were observed. No developmental or functional deficits were observed in either exposed parents or offspring related to motor activity, exploratory behavior or higher-level cognitive functions (learning and memory). Only minimal effects were discovered in parent-offspring emotionality tests. While statistically significant increases in hematological parameters were observed in the offspring of exposed parents compared to controls, these parameters remained within normal clinical ranges for blood cells and components and were not considered adverse. In summary, subacute exposures to elevated concentrations of the submarine atmosphere gases did not affect the ability of rats to reproduce and did not appear to have any significant adverse health effects.
Collapse
Affiliation(s)
- Daniel J Hardt
- Naval Medical Research Unit Dayton (NAMRU-D) , Wright-Patterson Air Force Base, OH , USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The incidence of preterm birth is on the rise. The outcome of premature birth can vary widely, spanning completely normal development to severe neurologic deficits, with most children showing mild to moderate cognitive delay and increased incidence of neuropsychiatric conditions such as anxiety, attention deficit hyperactivity, and autism spectrum disorders. Several animal models have been employed to study the consequences of prematurity, one of the most promising being chronic perinatal hypoxia in mouse, which recapitulates the cognitive impairments, partial recovery over time and enhanced recovery with environmental enrichment.
Collapse
|
23
|
Scafidi J, Hammond TR, Scafidi S, Ritter J, Jablonska B, Roncal M, Szigeti-Buck K, Coman D, Huang Y, McCarter RJ, Hyder F, Horvath TL, Gallo V. Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature 2014; 506:230-4. [PMID: 24390343 PMCID: PMC4106485 DOI: 10.1038/nature12880] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/13/2013] [Indexed: 12/19/2022]
Abstract
There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.
Collapse
Affiliation(s)
- Joseph Scafidi
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
- Department of Neurology, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Timothy R. Hammond
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
- Institute for Biomedical Sciences, The George Washington University, Washington, District of Columbia, 20052 USA
| | - Susanna Scafidi
- Department of Anesthesiology & Critical Care Medicine, John’s Hopkins University School of Medicine, Baltimore, Maryland, 21287 USA
| | - Jonathan Ritter
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Beata Jablonska
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Maria Roncal
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Klara Szigeti-Buck
- Dept of Neurobiology, Yale University, New Haven, Connecticut, 06520 USA
| | - Daniel Coman
- MRRC, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, 06520, USA
| | - Yuegao Huang
- MRRC, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, 06520, USA
| | - Robert J. McCarter
- Center for Translational Science, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Fahmeed Hyder
- MRRC, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, 06520, USA
| | - Tamas L. Horvath
- Dept of Neurobiology, Yale University, New Haven, Connecticut, 06520 USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| |
Collapse
|
24
|
Schmitz T, Krabbe G, Weikert G, Scheuer T, Matheus F, Wang Y, Mueller S, Kettenmann H, Matyash V, Bührer C, Endesfelder S. Minocycline protects the immature white matter against hyperoxia. Exp Neurol 2014; 254:153-65. [PMID: 24491957 DOI: 10.1016/j.expneurol.2014.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/21/2013] [Accepted: 01/23/2014] [Indexed: 01/06/2023]
Abstract
Poor neurological outcome in preterm infants is associated with periventricular white matter damage and hypomyelination, often caused by perinatal inflammation, hypoxia-ischemia, and hyperoxia. Minocycline has been demonstrated in animal models to protect the immature brain against inflammation and hypoxia-ischemia by microglial inhibition. Here we studied the effect of minocycline on white matter damage caused by hyperoxia. To mimic the 3- to 4-fold increase of oxygen tension caused by preterm birth, we have used the hyperoxia model in neonatal rats providing 24h exposure to 4-fold increased oxygen concentration (80% instead of 21% O2) from P6 to P7. We analyzed whether minocycline prevents activation of microglia and damage of oligodendroglial precursor cell development, and whether acute treatment of hyperoxia-exposed rats with minocycline improves long term white matter integrity. Minocycline administration during exposure to hyperoxia resulted in decreased apoptotic cell death and in improved proliferation and maturation of oligodendroglial precursor cells (OPC). Minocycline blocked changes in microglial morphology and IL-1β release induced by hyperoxia. In primary microglial cell cultures, minocycline inhibited cytokine release while in mono-cultures of OPCs, it improved survival and proliferation. Long term impairment of white matter diffusivity in MRI/DTI in P30 and P60 animals after neonatal hyperoxia was attenuated by minocycline. Minocycline protects white matter development against oxygen toxicity through direct protection of oligodendroglia and by microglial inhibition. This study moreover demonstrates long term benefits of minocycline on white matter integrity.
Collapse
Affiliation(s)
- Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Berlin, Germany.
| | - Grietje Krabbe
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin, Germany
| | - Georg Weikert
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Till Scheuer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Friederike Matheus
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Yan Wang
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Susanne Mueller
- Berlin Center for Stroke Research, Charité University Medical Center, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin, Germany
| | - Vitali Matyash
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin, Germany
| | - Christoph Bührer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | | |
Collapse
|
25
|
Doll E, Wilkes J, Cook LJ, Korgenski EK, Faix RG, Yoder BA, Srivastava R, Sherwin CMT, Spigarelli MG, Clark EAS, Bonkowsky JL. Neonatal magnesium levels correlate with motor outcomes in premature infants: a long-term retrospective cohort study. Front Pediatr 2014; 2:120. [PMID: 25414842 PMCID: PMC4220726 DOI: 10.3389/fped.2014.00120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/22/2014] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE Chronic neurological deficits are a significant complication of preterm birth. Magnesium supplementation has been suggested to have neuroprotective function in the developing brain. Our objective was to determine whether higher neonatal serum magnesium levels were associated with better long-term neurodevelopmental outcomes in very-low birth weight infants. STUDY DESIGN A retrospective cohort of 75 preterm infants (<1500 g, gestational age <27 weeks) had follow-up for the outcomes of abnormal motor exam and for epilepsy. Average total serum magnesium level in the neonate during the period of prematurity was the main independent variable assessed, tested using a Wilcoxon rank-sum test. RESULTS Higher average serum magnesium level was associated with a statistically significant decreased risk for abnormal motor exam (p = 0.037). A lower risk for epilepsy in the group with higher magnesium level did not reach statistical significance (p = 0.06). CONCLUSION This study demonstrates a correlation between higher neonatal magnesium levels and decreased risk for long-term abnormal motor exam. Larger studies are needed to evaluate the hypothesis that higher neonatal magnesium levels can improve long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Elizabeth Doll
- Division of Pediatric Neurology, School of Medicine, University of Utah , Salt Lake City, UT , USA
| | - Jacob Wilkes
- Intermountain Healthcare , Salt Lake City, UT , USA
| | - Lawrence J Cook
- Division of Critical Care Medicine, School of Medicine, University of Utah , Salt Lake City, UT , USA
| | | | - Roger G Faix
- Division of Neonatology, School of Medicine, University of Utah , Salt Lake City, UT , USA
| | - Bradley A Yoder
- Division of Neonatology, School of Medicine, University of Utah , Salt Lake City, UT , USA
| | - Rajendu Srivastava
- Intermountain Healthcare , Salt Lake City, UT , USA ; Division of Inpatient Medicine, School of Medicine, University of Utah , Salt Lake City, UT , USA
| | - Catherine M T Sherwin
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah , Salt Lake City, UT , USA
| | - Michael G Spigarelli
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah , Salt Lake City, UT , USA
| | - Erin A S Clark
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of Utah , Salt Lake City, UT , USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, School of Medicine, University of Utah , Salt Lake City, UT , USA
| |
Collapse
|
26
|
Hancock C, Bernal B, Medina C, Medina S. Cost Analysis of Diffusion Tensor Imaging and MR Tractography of the Brain. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojrad.2014.43034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Alexandrou G, Mårtensson G, Skiöld B, Blennow M, Ådén U, Vollmer B. White matter microstructure is influenced by extremely preterm birth and neonatal respiratory factors. Acta Paediatr 2014; 103:48-56. [PMID: 24118089 DOI: 10.1111/apa.12445] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/27/2013] [Indexed: 11/26/2022]
Abstract
AIM The aim of this study was to investigate whether prematurity per se or perinatal risk factors explain altered brain structure after preterm birth, in extremely preterm (EPT) infants without focal brain lesions. METHODS A population-based cohort of 58 EPT infants [gestational age (GA) <27 + 0 weeks] was examined with diffusion magnetic resonance imaging at term-equivalent age and compared with 14 term-born controls. Associations of diffusion measures with prematurity and neonatal risk factors were explored. Data were analysed with tract-based spatial statistics (TBSS) for whole-brain analysis and region-of-interest (ROI) analysis. RESULTS Whole-brain analyses showed lower fractional anisotropy (FA) and higher mean diffusivity (MD) in several white matter (WM) tracts in the preterms, which was essentially confirmed by ROI analyses. Within the preterm GA range (23 + 0 to 26 + 6 weeks), GA at birth was not significantly associated with diffusion measures. Bronchopulmonary dysplasia predicted lower FA in the corpus callosum and right inferior longitudinal fasciculus; mechanical ventilation >2 days was predictive of higher MD in the right external capsule. CONCLUSION White matter microstructure is influenced by preterm birth and by neonatal respiratory factors, whereas the degree of prematurity within the EPT range appears to be of less importance.
Collapse
Affiliation(s)
- Georgios Alexandrou
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| | - Gustaf Mårtensson
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| | - Beatrice Skiöld
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
- Department of Neonatology; Karolinska University Hospital; Stockholm Sweden
| | - Mats Blennow
- Department of Neonatology; Karolinska University Hospital; Stockholm Sweden
- Department of CLINTEC; Karolinska Institutet; Stockholm Sweden
| | - Ulrika Ådén
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
- Department of Neonatology; Karolinska University Hospital; Stockholm Sweden
| | - Brigitte Vollmer
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
28
|
Morken TS, Nyman AKG, Sandvig I, Torp SH, Skranes J, Goa PE, Brubakk AM, Widerøe M. Brain development after neonatal intermittent hyperoxia-hypoxia in the rat studied by longitudinal MRI and immunohistochemistry. PLoS One 2013; 8:e84109. [PMID: 24358332 PMCID: PMC3866165 DOI: 10.1371/journal.pone.0084109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/12/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Neonatal intermittent hyperoxia-hypoxia (IHH) is involved in the pathogenesis of retinopathy of prematurity. Whether similar oxygen fluctuations will create pathological changes in the grey and white matter of the brain is unknown. METHODS From birth until postnatal day 14 (P14), two litters (total n = 22) were reared in IHH: hyperoxia (50% O2) interrupted by three consecutive two-minute episodes of hypoxia (12% O2) every sixth hour. Controls (n = 8) were reared in room-air (20.9% O2). Longitudinal MRI (Diffusion Tensor Imaging and T2-mapping) was performed on P14 and P28 and retinal and brain tissue were examined for histopathological changes. Long-term neurodevelopment was assessed on P20 and P27. RESULTS Mean, radial and axial diffusivity were higher in white matter of IHH versus controls at P14 (p < 0.04), while fractional anisotropy (FA) was lower in the hippocampal fimbria and tended to be lower in corpus callosum (p = 0.08) and external capsule (p = 0.05). White matter diffusivity in IHH was similar to controls at P28. Higher cortical vessel density (p = 0.005) was observed at P14. Cortical and thalamic T2-relaxation time and mean diffusivity were higher in the IHH group at P14 (p ≤ 0.03), and albumin leakage was present at P28. Rats in the IHH group ran for a longer time on a Rotarod than the control group (p ≤ 0.005). Pups with lower bodyweight had more severe MRI alterations and albumin leakage. CONCLUSION IHH led to subtle reversible changes in brain white matter diffusivity, grey matter water content and vascular density. However, alterations in blood-brain barrier permeability may point to long-term effects. The changes seen after IHH exposure were more severe in animals with lower bodyweight and future studies should aim at exploring possible interactions between IHH and growth restriction.
Collapse
Affiliation(s)
- Tora Sund Morken
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Karl Gottfrid Nyman
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sverre Helge Torp
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jon Skranes
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Pediatrics, St. Olav University Hospital, Central Norway Regional Health Authority, Trondheim, Norway
| | - Pål Erik Goa
- Department of Radiology, St. Olav University Hospital, Central Norway Regional Health Authority, Trondheim, Norway
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Pediatrics, St. Olav University Hospital, Central Norway Regional Health Authority, Trondheim, Norway
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
29
|
Hypoxia-induced developmental delays of inhibitory interneurons are reversed by environmental enrichment in the postnatal mouse forebrain. J Neurosci 2013; 33:13375-87. [PMID: 23946395 DOI: 10.1523/jneurosci.5286-12.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infants born premature experience hypoxic episodes due to immaturity of their respiratory and central nervous systems. This profoundly affects brain development and results in cognitive impairments. We used a mouse model to examine the impact of hypoxic rearing (9.5-10.5% O2) from postnatal day 3 to 11 (P3-P11) on GABAergic interneurons and the potential for environmental enrichment to ameliorate these developmental abnormalities. At P15 the numbers of cortical interneurons expressing immunohistochemically detectable levels of parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide were decreased in hypoxic-reared mice by 59%, 32%, and 38%, respectively, compared with normoxic controls. Hypoxia also decreased total GABA content in frontal neocortex by 31%. However, GAD67-EGFP knock-in mice reared under hypoxic conditions showed no changes in total number of GAD67-EGFP(+) cells and no evidence of increased interneuron death, suggesting that the total number of interneurons was not decreased, but rather, that hypoxic-rearing decreased interneuron marker expression in these cells. In adulthood, PV and SST expression levels were decreased in hypoxic-reared mice. In contrast, intensity of reelin (RLN) expression was significantly increased in adult hypoxic-reared mice compared with normoxic controls. Housing mice in an enriched environment from P21 until adulthood normalized phenotypic interneuron marker expression without affecting total interneuron numbers or leading to increased neurogenesis. Our data show that (1) hypoxia decreases PV and SST and increases RLN expression in cortical interneurons during postnatal cortical development and (2) enriched environment has the capacity to normalize the interneuron abnormalities in cortex.
Collapse
|
30
|
Maternal separation with early weaning: a rodent model providing novel insights into neglect associated developmental deficits. Dev Psychopathol 2013; 24:1401-16. [PMID: 23062306 DOI: 10.1017/s095457941200079x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Child neglect is the most prevalent form of child maltreatment in the United States, and poses a serious public health concern. Children who survive such episodes go on to experience long-lasting psychological and behavioral problems, including higher rates of post-traumatic stress disorder symptoms, depression, alcohol and drug abuse, attention-deficit/hyperactivity disorder, and cognitive deficits. To date, most research into the causes of these life-long problems has focused on well-established targets such as stress responsive systems, including the hypothalamus-pituitary-adrenal axis. Using the maternal separation and early weaning model, we have attempted to provide comprehensive molecular profiling of a model of early-life neglect in an organism amenable to genomic manipulation: the mouse. In this article, we report new findings generated with this model using chromatin immunoprecipitation sequencing, diffuse tensor magnetic resonance imaging, and behavioral analyses. We also review the validity of the maternal separation and early weaning model, which reflects behavioral deficits observed in neglected humans including hyperactivity, anxiety, and attentional deficits. Finally, we summarize the molecular characterization of these animals, including RNA profiling and label-free proteomics, which highlight protein translation and myelination as novel pathways of interest.
Collapse
|
31
|
Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 2013; 35:102-29. [PMID: 23446060 PMCID: PMC4531048 DOI: 10.1159/000346157] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
32
|
Ramanantsoa N, Fleiss B, Bouslama M, Matrot B, Schwendimann L, Cohen-Salmon C, Gressens P, Gallego J. Bench to cribside: the path for developing a neuroprotectant. Transl Stroke Res 2012; 4:258-77. [PMID: 24323277 DOI: 10.1007/s12975-012-0233-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022]
Abstract
The consequences of perinatal brain injury include immeasurable anguish for families and substantial ongoing costs for care and support of effected children. Factors associated with perinatal brain injury in the preterm infant include inflammation and infection, and with increasing gestational age, a higher proportion is related to hypoxic-ischemic events, such as stroke and placental abruption. Over the past decade, we have acquired new insights in the mechanisms underpinning injury and many new tools to monitor outcome in perinatal brain injury in our experimental models. By embracing these new technologies, we can expedite the screening of novel therapies. This is critical as despite enormous efforts of the research community, hypothermia is the only viable neurotherapeutic, and this procedure is limited to term birth and postcardiac arrest hypoxic-ischemic events. Importantly, experimental and preliminary data in humans also indicate a considerable therapeutic potential for melatonin against perinatal brain injury. However, even if this suggested potential is proven, the complexity of the human condition means we are likely to need additional neuroprotective and regenerative strategies. Thus, within this review, we will outline what we consider the key stages of preclinical testing and development for a neuroprotectant or regenerative neurotherapy for perinatal brain injury. We will also highlight examples of novel small animal physiological and behavioral testing that gives small animal preclinical models greater clinical relevance. We hope these new tools and an integrated bench to cribside strategic plan will facilitate the fulfillment of our overarching goal, improving the long-term brain health and quality of life for infants suffering perinatal brain injury.
Collapse
Affiliation(s)
- Nelina Ramanantsoa
- Inserm U676, Hopital Robert Debre, 48 Blvd Serurier, 75019, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Oguz I, McMurray MS, Styner M, Johns JM. The translational role of diffusion tensor image analysis in animal models of developmental pathologies. Dev Neurosci 2012; 34:5-19. [PMID: 22627095 DOI: 10.1159/000336825] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 01/24/2012] [Indexed: 12/31/2022] Open
Abstract
Diffusion tensor magnetic resonance imaging (DTI) has proven itself a powerful technique for clinical investigation of the neurobiological targets and mechanisms underlying developmental pathologies. The success of DTI in clinical studies has demonstrated its great potential for understanding translational animal models of clinical disorders, and preclinical animal researchers are beginning to embrace this new technology to study developmental pathologies. In animal models, genetics can be effectively controlled, drugs consistently administered, subject compliance ensured, and image acquisition times dramatically increased to reduce between-subject variability and improve image quality. When pairing these strengths with the many positive attributes of DTI, such as the ability to investigate microstructural brain organization and connectivity, it becomes possible to delve deeper into the study of both normal and abnormal development. The purpose of this review is to provide new preclinical investigators with an introductory source of information about the analysis of data resulting from small animal DTI studies to facilitate the translation of these studies to clinical data. In addition to an in-depth review of translational analysis techniques, we present a number of relevant clinical and animal studies using DTI to investigate developmental insults in order to further illustrate techniques and to highlight where small animal DTI could potentially provide a wealth of translational data to inform clinical researchers.
Collapse
Affiliation(s)
- Ipek Oguz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Cerebral palsy is caused by injury or developmental disturbances to the immature brain and leads to substantial motor, cognitive, and learning deficits. In addition to developmental disruption associated with the initial insult to the immature brain, injury processes can persist for many months or years. We suggest that these tertiary mechanisms of damage might include persistent inflammation and epigenetic changes. We propose that these processes are implicit in prevention of endogenous repair and regeneration and predispose patients to development of future cognitive dysfunction and sensitisation to further injury. We suggest that treatment of tertiary mechanisms of damage might be possible by various means, including preventing the repressive effects of microglia and astrocyte over-activation, recapitulating developmentally permissive epigenetic conditions, and using cell therapies to stimulate repair and regeneration Recognition of tertiary mechanisms of damage might be the first step in a complex translational task to tailor safe and effective therapies that can be used to treat the already developmentally disrupted brain long after an insult.
Collapse
|
35
|
Tao JD, Barnette AR, Griffith JL, Neil JJ, Inder TE. Histopathologic correlation with diffusion tensor imaging after chronic hypoxia in the immature ferret. Pediatr Res 2012; 71:192-8. [PMID: 22258131 DOI: 10.1038/pr.2011.32] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Chronic hypoxia in rodents induces white matter (WM) injury similar to that in human preterm infants. We used diffusion tensor imaging (DTI) and immunohistochemistry to study the impact of hypoxia in the immature ferret at two developmental time points relevant to the preterm and term brain. RESULTS On ex vivo imaging, the apparent diffusion coefficient (ADC) was decreased throughout the WM after 10 days of hypoxia (hypoxia from postnatal day 10 (P10) to P20 and killed at P20 (early hypoxia P20)), corresponding to increased astrocytosis and decreased myelination. Diffusion values normalized after 10 days of normoxia (hypoxia from P10 to P20 and killed at P30 (early hypoxia P30)), but immunohistochemistry revealed significant astrocytosis and hypomyelination. In contrast, ADC and anisotropy were increased after 10 days of hypoxia at a later developmental time point (hypoxia from P20 to P30 and killed at P30 (late hypoxia P30)), with less astrocytosis and more prominent myelination. DISCUSSION The patterns of alteration in imaging and histology varied in relation to the developmental time at which hypoxia occurred. Normalization of diffusion measures did not correspond to the normalization of underlying histopathology. METHODS Ferrets were subjected to 10% hypoxia and divided into three groups: early hypoxia P20, early hypoxia P30, and late hypoxia P30.
Collapse
Affiliation(s)
- Joshua D Tao
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
36
|
Cai J, Tuong CM, Zhang Y, Shields CB, Guo G, Fu H, Gozal D. Mouse intermittent hypoxia mimicking apnoea of prematurity: effects on myelinogenesis and axonal maturation. J Pathol 2011; 226:495-508. [PMID: 21953180 DOI: 10.1002/path.2980] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/24/2011] [Accepted: 08/04/2011] [Indexed: 01/09/2023]
Abstract
Premature babies are at high risk for both infantile apnoea and long-term neurobehavioural deficits. Recent studies suggest that diffuse structural changes in brain white matter are a positive predictor of poor cognitive outcomes. Since oligodendrocyte maturation, myelination, axon development, and synapse formation mainly occur in the third trimester of gestation and first postnatal year, infantile apnoea could lead to and/or exaggerate white matter impairments in preterm neonates. Therefore, we investigated oligodendroglia and axon development in a neonatal mouse model of intermittent hypoxia between postnatal days 2 and 10. During critical phases of central nervous system development, intermittent hypoxia induced hypomyelination in the corpus callosum, striatum, fornix, and cerebellum, but not in the pons or spinal cord. Intermittent hypoxia-elicited alterations in myelin-forming processes were reflected by decreased expression of myelin proteins, including MBP, PLP, MAG, and CNPase, possibly due to arrested maturation of oligodendrocytes. Ultrastructural abnormalities were apparent in the myelin sheath and axon. Immature oligodendrocytes were more vulnerable to neonatal intermittent hypoxia exposures than developing axons, suggesting that hypomyelination may contribute, at least partially, to axonal deficits. Insufficient neurofilament synthesis with anomalous components of neurofilament subunits, β-tubulin, and MAP2 isoforms indicated immaturity of axons in intermittent hypoxia-exposed mouse brains. In addition, down-regulation of synapsin I, synaptophysin, and Gap-43 phosphorylation suggested a potential stunt in axonogenesis and synaptogenesis. The region-selective and complex impairment in brain white matter induced by intermittent hypoxia was further associated with electrophysiological changes that may underlie long-term neurobehavioural sequelae.
Collapse
Affiliation(s)
- Jun Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Cortical glial fibrillary acidic protein-positive cells generate neurons after perinatal hypoxic injury. J Neurosci 2011; 31:9205-21. [PMID: 21697371 DOI: 10.1523/jneurosci.0518-11.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glial fibrillary acidic protein-positive (GFAP(+)) cells give rise to new neurons in the neurogenic niches; whether they are able to generate neurons in the cortical parenchyma is not known. Here, we use genetic fate mapping to examine the progeny of GFAP(+) cells after postnatal hypoxia, a model for the brain injury observed in premature children. After hypoxia, immature cortical astroglia underwent a shift toward neuronal fate and generated cortical excitatory neurons that appeared synaptically integrated into the circuitry. Fate-mapped cortical GFAP(+) cells derived ex vivo from hypoxic, but not normoxic, mice were able to form pluripotent, long-term self-renewing neurospheres. Similarly, exposure to low oxygen conditions in vitro induced stem-cell-like potential in immature cortical GFAP(+) cells. Our data support the conclusion that hypoxia promotes pluripotency in GFAP(+) cells in the cortical parenchyma. Such plasticity possibly explains the cognitive recovery found in some preterm children.
Collapse
|
38
|
Lan WCJ, Priestley M, Mayoral SR, Tian L, Shamloo M, Penn AA. Sex-specific cognitive deficits and regional brain volume loss in mice exposed to chronic, sublethal hypoxia. Pediatr Res 2011; 70:15-20. [PMID: 21436761 PMCID: PMC3547599 DOI: 10.1203/pdr.0b013e31821b98a3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Male sex is an independent risk factor for long-term neurologic deficits in human preterm infants. Using a chronic, sublethal hypoxia (CSH) mouse model of preterm brain injury, we recently demonstrated acute brain volume loss with an increased male susceptibility to hippocampal volume loss and hypomyelination. We now characterize the long-term, sex-specific effects of CSH on cognition and brain growth. Neonatal mice were treated with CSH for 8 d, raised in normoxia thereafter and underwent behavioral testing at 6 wk of age. Behavioral assays sensitive to hippocampal function were chosen. CSH-treated males had impairments in associative learning, spatial memory, and long-term social memory compared with control males. In contrast, CSH-treated females were less impaired. Persistent reductions in hippocampal and cerebellar volumes were found in adult CSH-treated males, whereas regional brain volumes in adult CSH-treated females were indistinguishable from controls. Similar to human preterm infants, males exposed to hypoxia are especially vulnerable to short-term and long-term deficits in cognition and brain growth.
Collapse
Affiliation(s)
- Wen-Chun J Lan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
39
|
Cengiz P, Uluc K, Kendigelen P, Akture E, Hutchinson E, Song C, Zhang L, Lee J, Budoff GE, Meyerand E, Sun D, Ferrazzano P. Chronic neurological deficits in mice after perinatal hypoxia and ischemia correlate with hemispheric tissue loss and white matter injury detected by MRI. Dev Neurosci 2011; 33:270-9. [PMID: 21701150 DOI: 10.1159/000328430] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/06/2011] [Indexed: 01/01/2023] Open
Abstract
We investigated the effects of perinatal hypoxia-ischemia (HI) on brain injury and neurological functional outcome at postnatal day (P)30 through P90. HI was induced by exposing P9 mice to 8% O(2) for 55 min using the Vannucci HI model. Following HI, mice were treated with either vehicle control or Na(+)/H(+) exchanger isoform 1 (NHE1) inhibitor HOE 642. The animals were examined by the accelerating rotarod test at P30 and the Morris water maze (MWM) test at P60. T(2)-weighted MRI was conducted at P90. Diffusion tensor imaging (DTI) was subsequently performed in ex vivo brains, followed by immunohistochemical staining for changes in myelin basic protein (MBP) and neurofilament protein expression in the corpus callosum (CC). Animals at P30 after HI showed deficits in motor and spatial learning. T(2) MRI detected a wide spectrum of brain injury in these animals. A positive linear correlation was observed between learning deficits and the degree of tissue loss in the ipsilateral hemisphere and hippocampus. Additionally, CC DTI fractional anisotropy (FA) values correlated with MBP expression. Both FA and MBP values correlated with performance on the MWM test. HOE 642-treated mice exhibited improved spatial learning and memory, and less white matter injury in the CC. These findings suggest that HI-induced cerebral atrophy and CC injury contribute to the development of deficits in learning and memory, and that inhibition of NHE1 is neuroprotective in part by reducing white matter injury. T(2)-weighted MRI and DTI are useful indicators of functional outcome after perinatal HI.
Collapse
Affiliation(s)
- Pelin Cengiz
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Impaired neurological development in premature infants frequently arises from periventricular white matter injury (PWMI), a condition associated with myelination abnormalities. Recently, exposure to hyperoxia was reported to disrupt myelin formation in neonatal rats. To identify the causes of hyperoxia-induced PWMI, we characterized cellular changes in the white matter (WM) using neonatal wild-type 2-3-cyclic nucleotide 3-phosphodiesterase-enhanced green fluorescent protein (EGFP) and glial fibrillary acidic protein (GFAP)-EGFP transgenic mice exposed to 48 h of 80% oxygen from postnatal day 6 (P6) to P8. Myelin basic protein expression and CC1(+) oligodendroglia decreased after hyperoxia at P8, but returned to control levels during recovery between P12 and P15. At P8, hyperoxia caused apoptosis of NG2(+)O4(-) progenitor cells and reduced NG2(+) cell proliferation. This was followed by restoration of the NG2(+) cell population and increased oligodendrogenesis in the WM after recovery. Despite apparent cellular recovery, diffusion tensor imaging revealed WM deficiencies at P30 and P60. Hyperoxia did not affect survival or proliferation of astrocytes in vivo, but modified GFAP and glutamate-aspartate transporter expression. The rate of [(3)H]-d-aspartic acid uptake in WM tissue was also decreased at P8 and P12. Furthermore, cultured astrocytes exposed to hyperoxia showed a reduced capacity to protect oligodendrocyte progenitor cells against the toxic effects of exogenous glutamate. This effect was prevented by 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide treatment. Our analysis reveals a role for altered glutamate homeostasis in hyperoxia-induced WM damage. Understanding the cellular dynamics and underlying mechanisms involved in hyperoxia-induced PWMI will allow for future targeted therapeutic intervention.
Collapse
|
41
|
Silbereis JC, Huang EJ, Back SA, Rowitch DH. Towards improved animal models of neonatal white matter injury associated with cerebral palsy. Dis Model Mech 2011; 3:678-88. [PMID: 21030421 DOI: 10.1242/dmm.002915] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Newborn neurological injuries are the leading cause of intellectual and motor disabilities that are associated with cerebral palsy. Cerebral white matter injury is a common feature in hypoxic-ischemic encephalopathy (HIE), which affects full-term infants, and in periventricular leukomalacia (PVL), which affects preterm infants. This article discusses recent efforts to model neonatal white matter injury using mammalian systems. We emphasize that a comprehensive understanding of oligodendrocyte development and physiology is crucial for obtaining new insights into the pathobiology of HIE and PVL as well as for the generation of more sophisticated and faithful animal models.
Collapse
Affiliation(s)
- John C Silbereis
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
42
|
Cai Y, McMurray MS, Oguz I, Yuan H, Styner MA, Lin W, Johns JM, An H. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats. Front Psychiatry 2011; 2:54. [PMID: 22013426 PMCID: PMC3189600 DOI: 10.3389/fpsyt.2011.00054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022] Open
Abstract
High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment.
Collapse
Affiliation(s)
- Yu Cai
- Department of Radiology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
An optimised tract-based spatial statistics protocol for neonates: Applications to prematurity and chronic lung disease. Neuroimage 2010; 53:94-102. [DOI: 10.1016/j.neuroimage.2010.05.055] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022] Open
|
44
|
Li Q, Liu J, Michaud M, Schwartz ML, Madri JA. Strain differences in behavioral and cellular responses to perinatal hypoxia and relationships to neural stem cell survival and self-renewal: Modeling the neurovascular niche. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2133-46. [PMID: 19815710 DOI: 10.2353/ajpath.2009.090354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Premature infants have chronic hypoxia, resulting in cognitive and motor neurodevelopmental handicaps caused by suboptimal neural stem cell (NSC) repair/recovery in neurogenic zones (including the subventricular and the subgranular zones). Understanding the variable central nervous system repair response is crucial to identifying "at risk" infants and to increasing survival and clinical improvement of affected infants. Using mouse strains found to span the range of responsiveness to chronic hypoxia, we correlated differential NSC survival and self-renewal with differences in behavior. We found that C57BL/6 (C57) pups displayed increased hyperactivity after hypoxic insult; CD-1 NSCs exhibited increased hypoxia-induced factor 1alpha (HIF-1alpha) mRNA and protein, increased HIF-1alpha, and decreased prolyl hydroxylase domain 2 in nuclear fractions, which denotes increased transcription/translation and decreased degradation of HIF-1alpha. C57 NSCs exhibited blunted stromal-derived factor 1-induced migratory responsiveness, decreased matrix metalloproteinase-9 activity, and increased neuronal differentiation. Adult C57 mice exposed to hypoxia from P3 to P11 exhibited learning impairment and increased anxiety. These findings support the concept that behavioral differences between C57 and CD-1 mice are a consequence of differential responsiveness to hypoxic insult, leading to differences in HIF-1alpha signaling and resulting in lower NSC proliferative/migratory and higher apoptosis rates in C57 mice. Information gained from these studies will aid in design and effective use of preventive therapies in the very low birth weight infant population.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | | | | | |
Collapse
|
45
|
Scafidi J, Fagel DM, Ment LR, Vaccarino FM. Modeling premature brain injury and recovery. Int J Dev Neurosci 2009; 27:863-71. [PMID: 19482072 DOI: 10.1016/j.ijdevneu.2009.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022] Open
Abstract
Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain.
Collapse
Affiliation(s)
- Joey Scafidi
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|