1
|
Burns AP, Fortel I, Zhan L, Lazarov O, Mackin RS, Demos AP, Bendlin B, Leow A. Longitudinal excitation-inhibition balance altered by sex and APOE-ε4. Commun Biol 2025; 8:488. [PMID: 40133608 PMCID: PMC11937384 DOI: 10.1038/s42003-025-07876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Neuronal hyperexcitation affects memory and neural processing across the Alzheimer's disease (AD) cognitive continuum. Levetiracetam, an antiepileptic, shows promise in improving cognitive impairment by restoring the neural excitation/inhibition balance in AD patients. We previously identified a hyper-excitable phenotype in cognitively unimpaired female APOE-ε4 carriers relative to male counterparts cross-sectionally. This sex difference lacks longitudinal validation; however, clarifying the vulnerability of female ε4-carriers could better inform antiepileptic treatment efficacy. Here, we investigated this sex-by-ε4 interaction using a longitudinal design. We used resting-state fMRI and diffusion tensor imaging collected longitudinally from 106 participants who were cognitively unimpaired for at least one scan event but may have been assessed to have clinical dementia ratings corresponding to early mild cognitive impairment over time. By including scan events where participants transitioned to mild cognitive impairment, we modeled the trajectory of the whole-brain excitation-inhibition ratio throughout the preclinical cognitively healthy continuum and extended to early impairment. A linear mixed model revealed a significant three-way interaction among sex, ε4-status, and time, with female ε4-carriers showing a significant hyper-excitable trajectory. These findings suggest a possible pathway for preventative therapy targeting preclinical hyperexcitation in female ε4-carriers.
Collapse
Affiliation(s)
- Andrew P Burns
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| | - Igor Fortel
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St, Chicago, IL, 60612, USA
| | - R Scott Mackin
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 675 18th St, San Francisco, CA, 94107, USA
- Department of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Alexander P Demos
- Department of Psychology, University of Illinois Chicago (UIC), 1007 W Harrison St, Chicago, IL, 60607, USA
| | - Barbara Bendlin
- Department of Medicine, University of Wisconsin-Madison, 5158 Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Ave J5/1 Mezzanine, Madison, WI, 53792, USA
| | - Alex Leow
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| |
Collapse
|
2
|
Hrybouski S, Das SR, Xie L, Brown CA, Flamporis M, Lane J, Nasrallah IM, Detre JA, Yushkevich PA, Wolk DA. BOLD amplitude correlates of preclinical Alzheimer's disease. Neurobiol Aging 2025; 150:157-171. [PMID: 40138942 DOI: 10.1016/j.neurobiolaging.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Alzheimer's disease (AD) is characterized by a long preclinical stage during which molecular markers of amyloid beta and tau pathology rise, but there is minimal neurodegeneration or cognitive decline. Previous literature suggests that measures of brain function might be more sensitive to neuropathologic burden during the preclinical stage of AD than conventional measures of macrostructure, such as cortical thickness. Among studies that used resting-state functional Magnetic Resonance Imaging (fMRI) acquisitions with Blood Oxygenation Level Dependent (BOLD) contrast, most employed connectivity-based analytic approaches. Consequently, little is known about the effects of amyloid and tau pathology on amplitude of intrinsic BOLD signal fluctuations. To address this knowledge gap, we characterized the effects of preclinical and prodromal AD on the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal both at the whole-brain level and at a more granular level focused on subregions of the medial temporal lobe. We observed reduced ALFF in both preclinical and prodromal AD. In preclinical AD, amyloid positivity was associated with a spatially diffuse ALFF reduction in the frontal, medial parietal, and lateral temporal association cortices. In contrast, tau pathology was negatively associated with ALFF in the entorhinal cortex. These ALFF effects were observed in the absence of observable macrostructural changes in preclinical AD and remained after adjusting for structural atrophy in prodromal AD, indicating that ALFF offers additional sensitivity to early disease processes beyond what is provided by traditional structural imaging biomarkers of neurodegeneration. We conclude that ALFF may be a promising imaging-based biomarker in preclinical AD.
Collapse
Affiliation(s)
- Stanislau Hrybouski
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, United States; Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; Penn Memory Center, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A Brown
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Melissa Flamporis
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Jacqueline Lane
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| | - John A Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; Penn Memory Center, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Kim M, Lee JJ, Choi KY, Kim BC, Gwak J, Lee KH, Kim JG. Alteration of prefrontal functional connectivity in preclinical Alzheimer's disease: an fNIRS study. Front Aging Neurosci 2025; 17:1507180. [PMID: 40134533 PMCID: PMC11933025 DOI: 10.3389/fnagi.2025.1507180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/10/2025] [Indexed: 03/27/2025] Open
Abstract
Background Early detection of Alzheimer's disease (AD) is vital for delaying its progression through timely intervention. The preclinical stage, the longest phase of AD, often goes undetected due to a lack of noticeable symptoms. Developing an accessible and quantitative screening method for AD is essential for enabling appropriate interventions during this stage. Methods Functional near-infrared spectroscopy was used to investigate prefrontal functional connectivity in preclinical AD subjects. A total of 99 participants, including healthy controls and preclinical subjects who were amyloid beta (Aβ) positive (n = 45), were recruited. We designed a mixed phonemic and semantic verbal fluency task for the experimental protocol. Functional connectivity was then analyzed as z-values in the left, right, and interhemispheric prefrontal regions during a verbal fluency task. Finally, we assessed the correlation between the participants' z-values and clinical indices. Results The preclinical AD group exhibited increased interhemispheric functional connectivity derived from oxygenated and deoxygenated hemoglobin during verbal tasks involving the first phonemic letter. Additionally, significant right and left functional connectivity differences were observed in the healthy control group during verbal tasks with the letter and categories, but not in the preclinical AD group. Lastly, the difference in interhemispheric functional connectivity of oxygenated hemoglobin between the first and second verbal trials was significantly greater in the preclinical AD group. These interhemispheric functional connectivity values were significantly correlated with Aβ results from positron emission tomography. Conclusion The initial increase and subsequent reduction of interhemispheric functional connectivity in the preclinical AD group across task repetitions suggests that task-related prefrontal network alterations may occur during the preclinical phase of AD and shows its potential as a biomarker for screening preclinical AD.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jang Jae Lee
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju, Republic of Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Yan W, Limin G, Zhizhong S, Zidong C, Shijun Q. Altered individual-based morphological brain network in type 2 diabetes mellitus. Brain Res Bull 2025; 222:111228. [PMID: 39892582 DOI: 10.1016/j.brainresbull.2025.111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a risk factor for cognitive decline, potentially linked to disrupted network connectivity. However, few previous studies have examined individual-based morphological brain networks in T2DM and their association with clinical characteristics. In our study, we enrolled 123 patients with T2DM and 91 healthy controls (HC). We constructed the networks using symmetric Kullback-Leibler (KL) divergence-based similarity (KLS) and calculated various global and nodal metrics based on graph theory to describe the topological properties of the networks. Firstly, T2DM exhibited increased nodal degree in the left para-hippocampus, left amygdala, left precuneus, bilateral putamen, and right inferior temporal gyrus, and the concentrations of glycosylated hemoglobin (HbA1c) were positively correlated with the nodal degree of the left precuneus. Secondly, we identified hypo-connected and hyper-connected subnetworks, primarily involved with reward circuits and attention network, respectively. Lastly, altered morphological connectivity (MC) was linked to cognitive performance, and the aforementioned subnetworks may serve as predictors of cognitive performance. In conclusion, this study provided neuroimaging evidence for understanding cognitive changes by analyzing the properties and connections of individual-based morphological brain networks (MBNs) in T2DM patients.
Collapse
Affiliation(s)
- Wang Yan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Ge Limin
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Sun Zhizhong
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Cao Zidong
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Qiu Shijun
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China.
| |
Collapse
|
5
|
Ozturk G, Hari E, Yildirim K, Bayram A, Yildirim Z, Demiralp T, Gurvit H. Prospective memory performance and its resting-state functional connectivity correlates in individuals with memory complaints. Neuropsychologia 2025; 208:109082. [PMID: 39855424 DOI: 10.1016/j.neuropsychologia.2025.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
This study aimed to investigate prospective memory (PM) in patients with memory complaints but without dementia (PWD) and correlate findings with resting-state functional connectivity (rsFC) alterations. We hypothesized that PM impairment would be evident at a certain relatively early point in the continuum and specific rsFC patterns would be the neuroimaging signature of this impairment. Sixty PWD participated in the study. The Memory Screening Test for Intentions and the Virtual Week were used to assess PM. Using the participants' PM scores as a regressor, the rsFC for PM was analyzed by Network-Based Statistics (NBS). Participants were divided into high and low PM groups (HPMG, LPMG) according to their PM scores and then their neuropsychological scores, rsFC patterns, and CSF biomarker levels were compared. The effect of education on the relationship between connectivity and CSF Aβ42 level was examined by moderation analysis. Compared with HPMG, LPMG was impaired in both event- and time-based PM tasks, but the difference was more distinct in the event-based ones. While HPMG was more successful in event-based tasks than time-based ones, LPMG was not. As a result of NBS analysis, the middle frontal gyrus (MFG), supramarginal gyrus (SMG), and anterior cingulate cortex (ACC) were determined as central seeds. The HPMG's performance and connectivity were higher for most comparisons but had lower CSF Aβ42 than LPMG and therefore was closer to the positivity threshold. When the education level was at the mean and above, there was a negative correlation between CSF Aβ42 level and overall connectivity. The connectivities of MFG, SMG, and ACC play an important role in PM performance in the PWD. In more advanced PM impairment, the impairment of spontaneous processes is more prominent. At the onset of amyloidosis, the cognitive reserve may compensate for cognitive impairment by increasing connectivity.
Collapse
Affiliation(s)
- Gulcan Ozturk
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey.
| | - Emre Hari
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Kardelen Yildirim
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Zerrin Yildirim
- Department of Neurology, Bagcilar Training and Research Hospital, University of Health Sciences, 34200, Istanbul, Turkey
| | - Tamer Demiralp
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Hakan Gurvit
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey; Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| |
Collapse
|
6
|
Pezzoli S, Giorgio J, Chen X, Ward TJ, Harrison TM, Jagust WJ. Cognitive aging outcomes are related to both tau pathology and maintenance of cingulate cortex structure. Alzheimers Dement 2025; 21:e14515. [PMID: 39807642 PMCID: PMC11848174 DOI: 10.1002/alz.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Successful cognitive aging is related to both maintaining brain structure and avoiding Alzheimer's disease (AD) pathology, but how these factors interplay is unclear. METHODS A total of 109 cognitively normal older adults (70+ years old) underwent amyloid beta (Aβ) and tau positron emission tomography (PET) imaging, structural magnetic resonance imaging (MRI), and cognitive testing. Cognitive aging was quantified using the cognitive age gap (CAG), subtracting chronological age from predicted cognitive age. RESULTS Lower CAG (younger cognitive age) was related to slower decline in episodic memory, multi-domain cognition, and atrophy of the midcingulate cortex (MCC). Lower entorhinal cortical tau was linked to slower decline in episodic memory, multi-domain cognition, and hippocampal atrophy. DISCUSSION These results suggest that aging outcomes may be influenced by two independent pathways: one associated with tau accumulation, affecting primarily memory and hippocampal atrophy, and another involving tau-independent structural preservation of the MCC, benefiting multi-domain cognition over time. HIGHLIGHTS Younger cognitive age (lower cognitive age gap [CAG]) is related to slower cognitive decline. Lower CAG is linked to slower midcingulate cortex (MCC) atrophy. Reduced tau in the entorhinal cortex is related to less hippocampal atrophy and cognitive decline. Structural preservation of the MCC benefits multi-domain cognition over time. Two independent pathways influence cognitive aging: tau accumulation and MCC preservation.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Joseph Giorgio
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- School of Psychological Sciences, College of EngineeringScience and the EnvironmentUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Xi Chen
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Department of PsychologyStony Brook UniversityStony BrookNew YorkUSA
| | - Tyler J. Ward
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
| | | | - William J. Jagust
- Department of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
7
|
Li JS, Tun SM, Ficek-Tani B, Xu W, Wang S, Horien CL, Toyonaga T, Nuli SS, Zeiss CJ, Powers AR, Zhao Y, Mormino EC, Fredericks CA. Medial Amygdalar Tau Is Associated With Mood Symptoms in Preclinical Alzheimer's Disease. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1301-1311. [PMID: 39059466 PMCID: PMC11625605 DOI: 10.1016/j.bpsc.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS We examined 598 individuals (347 amyloid positive [58% female], 251 amyloid negative [62% female] subset in tau positron emission tomography and functional magnetic resonance imaging cohorts) from the A4 (Anti-Amyloid Treatment in Asymptomatic AD) Study. In the tau positron emission tomography cohort, we used amygdalar segmentations to examine representative nuclei from 3 functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the functional magnetic resonance imaging cohort. Finally, we conducted exploratory post hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS Amyloid-positive individuals demonstrated increased tau binding in the medial and lateral amygdala, and tau binding in these regions was associated with mood symptoms. Across amygdalar divisions, amyloid-positive individuals had relatively higher regional connectivity from the amygdala to other temporal regions, the insula, and the orbitofrontal cortex, but medial amygdala to retrosplenial cortex connectivity was lower. Medial amygdala to retrosplenial connectivity was negatively associated with anxiety symptoms, as was retrosplenial tau. CONCLUSIONS Our findings suggest that preclinical tau deposition in the amygdala and associated changes in functional connectivity may be related to early mood symptoms in AD.
Collapse
Affiliation(s)
- Joyce S Li
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Samantha M Tun
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | | | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, Connecticut
| | - Selena Wang
- Department of Biostatistics, Yale School of Medicine, New Haven, Connecticut
| | | | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | | | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Albert R Powers
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Yize Zhao
- Department of Biostatistics, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | | |
Collapse
|
8
|
Wang S, Wang Y, Xu FH, Tian X, Fredericks CA, Shen L, Zhao Y. Sex-specific topological structure associated with dementia via latent space estimation. Alzheimers Dement 2024; 20:8387-8401. [PMID: 39530632 PMCID: PMC11667551 DOI: 10.1002/alz.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION We investigate sex-specific topological structures associated with typical Alzheimer's disease (AD) dementia using a novel state-of-the-art latent space estimation technique. METHODS This study applies a probabilistic approach for latent space estimation that extends current multiplex network modeling approaches and captures the higher-order dependence in functional connectomes by preserving transitivity and modularity structures. RESULTS We find sex differences in network topology with females showing more default mode network (DMN)-centered hyperactivity and males showing more limbic system (LS)-centered hyperactivity, while both show DMN-centered hypoactivity. We find that centrality plays an important role in dementia-related dysfunction with stronger association between connectivity changes and regional centrality in females than in males. DISCUSSION The study contributes to the current literature by providing a more comprehensive picture of dementia-related neurodegeneration linking centrality, network segregation, and DMN-centered changes in functional connectomes, and how these components of neurodegeneration differ between the sexes. HIGHLIGHTS We find evidence supporting the active role network topology plays in neurodegeneration with an imbalance between the excitatory and inhibitory mechanisms that can lead to whole-brain destabilization in dementia patients. We find sex-based differences in network topology with females showing more default mode network (DMN)-centered hyperactivity, males showing more limbic system (LS)-centered hyperactivity, while both show DMN-centered hypoactivity. We find that brain region centrality plays an important role in dementia-related dysfunction with a stronger association between connectivity changes and regional centrality in females than in males. Females, compared to males, tend to exhibit stronger dementia-related changes in regions that are the central actors of the brain networks. Taken together, this research uniquely contributes to the current literature by providing a more comprehensive picture of dementia-related neurodegeneration linking centrality, network segregation, and DMN-centered changes in functional connectomes, and how these components of neurodegeneration differ between the sexes.
Collapse
Affiliation(s)
- Selena Wang
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yiting Wang
- Department of StatisticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Frederick H. Xu
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Xinyuan Tian
- Department of NeurologyYale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Carolyn A. Fredericks
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Li Shen
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | - Yize Zhao
- Department of NeurologyYale School of MedicineYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
9
|
Xu L, Zhao Y, Choi S, Li M, Schilling KG, Zu Z, Rogers BP, Ding Z, Anderson AW, Landman BA, Gore JC, Gao Y. Reductions in the white-gray functional connectome in preclinical Alzheimer's disease and their associations with amyloid and cognition. Alzheimers Dement 2024; 20:8317-8330. [PMID: 39439365 PMCID: PMC11667518 DOI: 10.1002/alz.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The magnitudes and patterns of alterations of the white-gray matter (WM-GM) functional connectome in preclinical Alzheimer's disease (AD), and their associations with amyloid and cognition, remain unclear. METHODS We compared regional WM-GM functional connectivity (FC) and network properties in subjects with preclinical AD (or AD dementia) and controls (total n = 344). Their associations with positron emission tomography AV45-measured amyloid beta (Aβ) load and modified Preclinical Alzheimer Cognitive Composite (mPACC) scores were examined. RESULTS Preclinical AD subjects showed lower FC in specific WM-GM pairs and reduced segregation of control, dorsal attention, and somatomotor networks. A major portion of the reduced FC and network segregations were linked to elevated Aβ. Reduced FC of one WM-GM pair correlated with impaired mPACC. AD dementia exhibited broader reductions and stronger associations. DISCUSSION The WM-GM functional connectome undergoes regional and systemic dysfunctions as early as in the preclinical stage, correlating with amyloid deposition and predicting cognitive impairment. HIGHLIGHTS Preclinical Alzheimer's disease (AD) subjects showed lower functional connectivity in specific white-gray matter (WM-GM) pairs and reduced segregations of control, dorsal attention, and somatomotor networks. A major portion of the reduced connectivity and network segregations were linked to elevated amyloid beta load. Only one WM-GM pair's reduced connectivity was linearly correlated with impaired cognitive composite scores. AD dementia showed more extensive reductions in connectivity, network integration, and segregation, with stronger associations with amyloid elevation and cognitive impairment. The WM-GM functional connectome offers a distinct perspective for understanding changes in brain functional architecture throughout the AD continuum.
Collapse
Affiliation(s)
- Lyuan Xu
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Soyoung Choi
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Muwei Li
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kurt G. Schilling
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Adam W. Anderson
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Bennett A. Landman
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - John C. Gore
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | |
Collapse
|
10
|
Hrybouski S, Das SR, Xie L, Brown CA, Flamporis M, Lane J, Nasrallah IM, Detre JA, Yushkevich PA, Wolk DA. BOLD Amplitude Correlates of Preclinical Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.27.24316243. [PMID: 39574853 PMCID: PMC11581098 DOI: 10.1101/2024.10.27.24316243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is characterized by a long preclinical stage during which molecular markers of amyloid beta and tau pathology rise, but there is minimal neurodegeneration or cognitive decline. Previous literature suggests that measures of brain function might be more sensitive to neuropathologic burden during the preclinical stage of AD than conventional measures of macrostructure, such as cortical thickness. However, among studies that used resting-state functional Magnetic Resonance Imaging (fMRI) acquisitions with Blood Oxygenation Level Dependent (BOLD) contrast, most employed connectivity-based analytic approaches, which discard information about the amplitude of spontaneous brain activity. Consequently, little is known about the effects of amyloid and tau pathology on BOLD amplitude. To address this knowledge gap, we characterized the effects of preclinical and prodromal AD on the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal both at the whole-brain level and, at a more granular level, focused on subregions of the medial temporal lobe. We observed reduced ALFF in both preclinical and prodromal AD. In preclinical AD, amyloid positivity was associated with a spatially diffuse ALFF reduction in the frontal, medial parietal, and lateral temporal association cortices, while tau pathology was negatively associated with ALFF in the entorhinal cortex. These ALFF effects were observed in the absence of observable macrostructural changes in preclinical AD and remained after adjusting for structural atrophy in prodromal AD, indicating that ALFF offers additional sensitivity to early disease processes beyond what is provided by traditional structural imaging biomarkers of neurodegeneration. We conclude that ALFF may be a promising imaging-based biomarker for assessing the effects of amyloid-clearing immunotherapies in preclinical AD.
Collapse
|
11
|
Zang W, Zou Q, Xiao N, Fang M, Wang S, Chen J. A methodological and reporting quality assessment of systematic reviews/meta-analyses on exercise interventions for cognitive function in older adults with mild cognitive impairment. PeerJ 2024; 12:e17773. [PMID: 39071117 PMCID: PMC11283171 DOI: 10.7717/peerj.17773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Objective To assess the methodological quality of meta-analytic literature on exercise interventions for cognitive function in patients with mild cognitive impairment (MCI) and the certainty of evidence for its outcome indicators, and to provide clinicians and researchers with more reliable data for making decisions. Methods Meta-analytic literature related to the effect of exercise intervention on cognitive function in patients with mild cognitive impairment was searched through PubMed, Cochrane Library, Embase, Scopus, Physiotherapy Evidence Database and Web of Science, all with a search period frame of each database until June 1, 2024. The AMSTAR2 scale was used to evaluate the methodological quality of the included studies. Results Seventeen meta-analyses were included. The AMSTAR2 scale evaluation results showed that there was one medium-quality studies (5.55%), seven low-quality studies (38.88%), and 10 very low-quality studies (55.55%). Methodological deficiencies included failure to prepare a plan and provide a registration number, literature screening, data extraction, reasons for exclusion not described in detail, poor implementation process for systematic evaluation, and failure to describe the source of funding for the included studies or relevant conflicts of interest. Conclusion The overall methodological quality of the meta-analytic literature is low, and the certainty of evidence is low. We encourage the conduction of high-quality randomized trials to generate stronger evidence. Subsequent systematic reviews can then synthesize this evidence to inform future research and clinical guidelines.
Collapse
Affiliation(s)
| | - Qinghai Zou
- Physical Education Department, Harbin Engineering University, Harbin, China
| | - Ningkun Xiao
- Department of Psychology, Ural Federal University, Yekaterinburg, Russia
| | - Mingqing Fang
- Xiangya Hospital, Central South University, Changsha, China
| | - Su Wang
- Harbin Sport University, Harbin, China
| | - Jingjing Chen
- School of Basic Medicine, Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
12
|
Li J, Li X, Chen F, Li W, Chen J, Zhang B. Studying the Alzheimer's disease continuum using EEG and fMRI in single-modality and multi-modality settings. Rev Neurosci 2024; 35:373-386. [PMID: 38157429 DOI: 10.1515/revneuro-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is a biological, clinical continuum that covers the preclinical, prodromal, and clinical phases of the disease. Early diagnosis and identification of the stages of Alzheimer's disease (AD) are crucial in clinical practice. Ideally, biomarkers should reflect the underlying process (pathological or otherwise), be reproducible and non-invasive, and allow repeated measurements over time. However, the currently known biomarkers for AD are not suitable for differentiating the stages and predicting the trajectory of disease progression. Some objective parameters extracted using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are widely applied to diagnose the stages of the AD continuum. While electroencephalography (EEG) has a high temporal resolution, fMRI has a high spatial resolution. Combined EEG and fMRI (EEG-fMRI) can overcome single-modality drawbacks and obtain multi-dimensional information simultaneously, and it can help explore the hemodynamic changes associated with the neural oscillations that occur during information processing. This technique has been used in the cognitive field in recent years. This review focuses on the different techniques available for studying the AD continuum, including EEG and fMRI in single-modality and multi-modality settings, and the possible future directions of AD diagnosis using EEG-fMRI.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Futao Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weiping Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, Jiangsu, 210008, China
- Institute of Brain Science, Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
13
|
Nabizadeh F. Disruption in functional networks mediated tau spreading in Alzheimer's disease. Brain Commun 2024; 6:fcae198. [PMID: 38978728 PMCID: PMC11227975 DOI: 10.1093/braincomms/fcae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease may be conceptualized as a 'disconnection syndrome', characterized by the breakdown of neural connectivity within the brain as a result of amyloid-beta plaques, tau neurofibrillary tangles and other factors leading to progressive degeneration and shrinkage of neurons, along with synaptic dysfunction. It has been suggested that misfolded tau proteins spread through functional connections (known as 'prion-like' properties of tau). However, the local effect of tau spreading on the synaptic function and communication between regions is not well understood. I aimed to investigate how the spreading of tau aggregates through connections can locally influence functional connectivity. In total, the imaging data of 211 participants including 117 amyloid-beta-negative non-demented and 94 amyloid-beta-positive non-demented participants were recruited from the Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional MRI connectomes were used to model tau spreading through functional connections, and functional MRI of the included participants was used to determine the effect of tau spreading on functional connectivity. I found that lower functional connectivity to tau epicentres is associated with tau spreading through functional connections in both amyloid-beta-negative and amyloid-beta-positive participants. Also, amyloid-beta-PET in tau epicentres mediated the association of tau spreading and functional connectivity to epicentres suggesting a partial mediating effect of amyloid-beta deposition in tau epicentres on the local effect of tau spreading on functional connectivity. My findings provide strong support for the notion that tau spreading through connection is locally associated with disrupted functional connectivity between tau epicentre and non-epicentre regions independent of amyloid-beta pathology. Also, I defined several groups based on the relationship between tau spreading and functional disconnection, which provides quantitative assessment to investigate susceptibility or resilience to functional disconnection related to tau spreading. I showed that amyloid-beta, other copathologies and the apolipoprotein E epsilon 4 allele can be a leading factor towards vulnerability to tau relative functional disconnection.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran 441265421414, Iran
| |
Collapse
|
14
|
Huo Y, Jing R, Li P, Chen P, Si J, Liu G, Liu Y. Delineating the Heterogeneity of Alzheimer's Disease and Mild Cognitive Impairment Using Normative Models of Dynamic Brain Functional Networks. Biol Psychiatry 2024:S0006-3223(24)01365-9. [PMID: 38857821 DOI: 10.1016/j.biopsych.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), which has been identified as the most common type of dementia, presents considerable heterogeneity in its clinical manifestations. Early intervention at the stage of mild cognitive impairment (MCI) holds potential in AD prevention. However, characterizing the heterogeneity of neurobiological abnormalities and identifying MCI subtypes pose significant challenges. METHODS We constructed sex-specific normative age models of dynamic brain functional networks and mapped the deviations of the brain characteristics for individuals from multiple datasets, including 295 patients with AD, 441 patients with MCI, and 1160 normal control participants. Then, based on these individual deviation patterns, subtypes for both AD and MCI were identified using the clustering method, and their similarities and differences were comprehensively assessed. RESULTS Individuals with AD and MCI were clustered into 2 subtypes, and these subtypes exhibited significant differences in their intrinsic brain functional phenotypes and spatial atrophy patterns, as well as in disease progression and cognitive decline trajectories. The subtypes with positive deviations in AD and MCI shared similar deviation patterns, as did those with negative deviations. There was a potential transformation of MCI with negative deviation patterns into AD, and participants with MCI had a more severe cognitive decline rate. CONCLUSIONS In this study, we quantified neurophysiological heterogeneity by analyzing deviation patterns from the dynamic functional connectome normative model and identified disease subtypes of AD and MCI using a comprehensive resting-state functional magnetic resonance imaging multicenter dataset. The findings provide new insights for developing early prevention and personalized treatment strategies for AD.
Collapse
Affiliation(s)
- Yanxi Huo
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Rixing Jing
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China.
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit, Peking University, Beijing, China
| | - Pindong Chen
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Juanning Si
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Guozhong Liu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| |
Collapse
|
15
|
Li JS, Tun SM, Ficek-Tani B, Xu W, Wang S, Horien CL, Toyonaga T, Nuli SS, Zeiss CJ, Powers AR, Zhao Y, Mormino EC, Fredericks CA. Medial amygdalar tau is associated with anxiety symptoms in preclinical Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597160. [PMID: 38895308 PMCID: PMC11185761 DOI: 10.1101/2024.06.03.597160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS We examined n=598 individuals (n=347 amyloid-positive (58% female), n=251 amyloid-negative (62% female); subset into tau PET and fMRI cohorts) from the A4 Study. In our tau PET cohort, we used amygdalar segmentations to examine representative nuclei from three functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the fMRI cohort. Finally, we conducted exploratory post-hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS Amyloid-positive individuals demonstrated increased tau binding in medial and lateral amygdala (F(4,442)=14.61, p=0.00045; F(4,442)=5.83, p=0.024, respectively). Across amygdalar divisions, amyloid-positive individuals had relatively increased regional connectivity from amygdala to other temporal regions, insula, and orbitofrontal cortex. There was an interaction by amyloid group between tau binding in the medial and lateral amygdala and anxiety. Medial amygdala to retrosplenial connectivity negatively correlated with anxiety symptoms (rs=-0.103, p=0.015). CONCLUSIONS Our findings suggest that preclinical tau deposition in the amygdala may result in meaningful changes in functional connectivity which may predispose patients to mood symptoms.
Collapse
Affiliation(s)
- Joyce S Li
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Samantha M Tun
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | | | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT
| | - Selena Wang
- Department of Biostatistics, Yale School of Medicine, New Haven, CT
| | | | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | | | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT
| | - Albert R Powers
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Yize Zhao
- Department of Biostatistics, Yale School of Medicine, New Haven, CT
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
16
|
Yue K, Webster J, Grabowski T, Jahanian H, Shojaie A. Unraveling Alzheimer's Disease: Investigating Dynamic Functional Connectivity in the Default Mode Network through DCC-GARCH Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597071. [PMID: 38895209 PMCID: PMC11185527 DOI: 10.1101/2024.06.02.597071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) has a prolonged latent phase. Sensitive biomarkers of amyloid beta ( A β ), in the absence of clinical symptoms, offer opportunities for early detection and identification of patients at risk. Current A β biomarkers, such as CSF and PET biomarkers, are effective but face practical limitations due to high cost and limited availability. Recent blood plasma biomarkers, though accessible, still incur high costs and lack physiological significance in the Alzheimer's process. This study explores the potential of brain functional connectivity (FC) alterations associated with AD pathology as a non-invasive avenue for A β detection. While current stationary FC measurements lack sensitivity at the single-subject level, our investigation focuses on dynamic FC using resting-state functional MRI (rs-fMRI) and introduces the Generalized Auto-Regressive Conditional Heteroscedastic Dynamic Conditional Correlation (DCC-GARCH) model. Our findings demonstrate the superior sensitivity of DCC-GARCH to CSF A β status, and offer key insights into dynamic functional connectivity analysis in AD.
Collapse
Affiliation(s)
- Kun Yue
- Department of Biostatistics, University of Washington, Seattle
| | - Jason Webster
- Department of Radiology, University of Washington, Seattle
| | - Thomas Grabowski
- Department of Radiology, University of Washington, Seattle
- Department of Neurology, University of Washington, Seattle
| | | | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle
| |
Collapse
|
17
|
Pedrero-Chamizo R, Zhuang K, Juarez A, Janabi M, Jagust WJ, Landau SM. Alzheimer's disease prevention: Apolipoprotein e4 moderates the effect of physical activity on brain beta-amyloid deposition in healthy older adults. J Sci Med Sport 2024; 27:402-407. [PMID: 38664148 DOI: 10.1016/j.jsams.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVES To investigate if higher baseline physical activity levels are associated with less β-amyloid burden and whether the ApoE4 genotype moderates this association cross-sectionally and longitudinally. DESIGN Prospective cohort study. METHODS 204 cognitively normal older adults (74.5 ± 6.6 years; 26 % ApoE4-carrier) were analyzed. Baseline physical activity was measured using the Minnesota Physical Activity Questionnaire. Brain β-amyloid burden was measured with positron emission tomography using 11C-labeled Pittsburgh compound. A subsample of 128 participants underwent longitudinal positron emission tomography (2.0 ± 0.9 scans over 5 ± 3 years). Statistical analysis was run according to physical activity (high/low group) and the ApoE4 genotype (carrier/noncarrier). RESULTS The ApoE4 genotype moderated the relationship between physical activity and β-amyloid, such that low physical activity had a greater impact on β-amyloid deposition in ApoE4-carriers than noncarriers. This ApoE4 × physical activity effect on brain β-amyloid deposition was also observed when all available β-amyloid scan timepoints were included in the model. β-amyloid deposition increased over time (p < 0.001), and ApoE4-carriers had disproportionately greater β-amyloid accumulation than ApoE4-noncarriers. The lower physical activity group had marginally greater β-amyloid accumulation than the higher physical activity group (p = 0.099), but there was no significant ApoE4 effect on β-amyloid accumulation. CONCLUSIONS Low physical activity in combination with the ApoE4-carrier genotype is associated with increased β-amyloid burden, suggesting that ApoE4 moderates the effect of physical activity on β-amyloid load. However, this effect was insufficient for baseline physical activity to modulate the change in β-amyloid accumulation over time.
Collapse
Affiliation(s)
- Raquel Pedrero-Chamizo
- ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Spain; EXERNET Spanish Research Network on Physical Exercise and Health, Spain.
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California Berkeley, USA
| | - Alexis Juarez
- Helen Wills Neuroscience Institute, University of California Berkeley, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California Berkeley, USA
| |
Collapse
|
18
|
Shen Y, Peng L, Chen H, Xu P, Lv K, Xu Z, Shen H, Ji G, Xiong J, Hu D, Li Y, Lou M, Zeng LL, Qu L. Effects of long-term closed and socially isolating spaceflight analog environment on default mode network connectivity as indicated by fMRI. iScience 2024; 27:109617. [PMID: 38660401 PMCID: PMC11039341 DOI: 10.1016/j.isci.2024.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Long-term manned spaceflight and extraterrestrial planet settlement become the focus of space powers. However, the potential influence of closed and socially isolating spaceflight on the brain function remains unclear. A 180-day controlled ecological life support system integrated experiment was conducted, establishing a spaceflight analog environment to explore the effect of long-term socially isolating living. Three crewmembers were enrolled and underwent resting-state fMRI scanning before and after the experiment. We performed both seed-based and network-based analyses to investigate the functional connectivity (FC) changes of the default mode network (DMN), considering its key role in multiple higher-order cognitive functions. Compared with normal controls, the leader of crewmembers exhibited significantly reduced within-DMN and between-DMN FC after the experiment, while two others exhibited opposite trends. Moreover, individual differences of FC changes were further supported by evidence from behavioral analyses. The findings may shed new light on the development of psychological protection for space exploration.
Collapse
Affiliation(s)
- Yunxia Shen
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Hailong Chen
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, Guangdong 518060, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, Guangdong 518057, China
| | - Ke Lv
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Zi Xu
- Department of Health Technology Research and Development, Space Institute of Southern China, Shenzhen, Guangdong 518117, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohua Ji
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Jianghui Xiong
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| | - Mingwu Lou
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, Beijing 100094, China
| |
Collapse
|
19
|
Bueichekú E, Diez I, Gagliardi G, Kim CM, Mimmack K, Sepulcre J, Vannini P. Multi-modal Neuroimaging Phenotyping of Mnemonic Anosognosia in the Aging Brain. COMMUNICATIONS MEDICINE 2024; 4:65. [PMID: 38580832 PMCID: PMC10997795 DOI: 10.1038/s43856-024-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Unawareness is a behavioral condition characterized by a lack of self-awareness of objective memory decline. In the context of Alzheimer's Disease (AD), unawareness may develop in predementia stages and contributes to disease severity and progression. Here, we use in-vivo multi-modal neuroimaging to profile the brain phenotype of individuals presenting altered self-awareness of memory during aging. METHODS Amyloid- and tau-PET (N = 335) and resting-state functional MRI (N = 713) imaging data of individuals from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4)/Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) Study were used in this research. We applied whole-brain voxel-wise and region-of-interest analyses to characterize the cortical intersections of tau, amyloid, and functional connectivity networks underlying unawareness in the aging brain compared to aware, complainer and control groups. RESULTS Individuals with unawareness present elevated amyloid and tau burden in midline core regions of the default mode network compared to aware, complainer or control individuals. Unawareness is characterized by an altered network connectivity pattern featuring hyperconnectivity in the medial anterior prefrontal cortex and posterior occipito-parietal regions co-locating with amyloid and tau deposition. CONCLUSIONS Unawareness is an early behavioral biomarker of AD pathology. Failure of the self-referential system in unawareness of memory decline can be linked to amyloid and tau burden, along with functional network connectivity disruptions, in several medial frontal and parieto-occipital areas of the human brain.
Collapse
Affiliation(s)
- Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Geoffroy Gagliardi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kayden Mimmack
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Department of Radiology, Yale PET Center, Yale Medical School, Yale University, New Haven, CT, USA.
| | - Patrizia Vannini
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Cabrera-Álvarez J, Stefanovski L, Martin L, Susi G, Maestú F, Ritter P. A Multiscale Closed-Loop Neurotoxicity Model of Alzheimer's Disease Progression Explains Functional Connectivity Alterations. eNeuro 2024; 11:ENEURO.0345-23.2023. [PMID: 38565295 PMCID: PMC11026343 DOI: 10.1523/eneuro.0345-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 04/04/2024] Open
Abstract
The accumulation of amyloid-β (Aβ) and hyperphosphorylated-tau (hp-tau) are two classical histopathological biomarkers in Alzheimer's disease (AD). However, their detailed interactions with the electrophysiological changes at the meso- and macroscale are not yet fully understood. We developed a mechanistic multiscale model of AD progression, linking proteinopathy to its effects on neural activity and vice-versa. We integrated a heterodimer model of prion-like protein propagation and a brain network model of Jansen-Rit neural masses derived from human neuroimaging data whose parameters varied due to neurotoxicity. Results showed that changes in inhibition guided the electrophysiological alterations found in AD, and these changes were mainly attributed to Aβ effects. Additionally, we found a causal disconnection between cellular hyperactivity and interregional hypersynchrony contrary to previous beliefs. Finally, we demonstrated that early Aβ and hp-tau depositions' location determine the spatiotemporal profile of the proteinopathy. The presented model combines the molecular effects of both Aβ and hp-tau together with a mechanistic protein propagation model and network effects within a closed-loop model. This holds the potential to enlighten the interplay between AD mechanisms on various scales, aiming to develop and test novel hypotheses on the contribution of different AD-related variables to the disease evolution.
Collapse
Affiliation(s)
- Jesús Cabrera-Álvarez
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón 28223, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
| | - Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Gianluca Susi
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid, Madrid 28040, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón 28223, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin 10115, Germany
| |
Collapse
|
21
|
Schweitzer N, Li J, Thurston RC, Lopresti B, Klunk WE, Snitz B, Tudorascu D, Cohen A, Kamboh MI, Halligan‐Eddy E, Iordanova B, Villemagne VL, Aizenstein H, Wu M. Sex-dependent alterations in hippocampal connectivity are linked to cerebrovascular and amyloid pathologies in normal aging. Alzheimers Dement 2024; 20:914-924. [PMID: 37817668 PMCID: PMC10916980 DOI: 10.1002/alz.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Compared to males, females have an accelerated trajectory of cognitive decline in Alzheimer's disease (AD). The neurobiological factors underlying the more rapid cognitive decline in AD in females remain unclear. This study explored how sex-dependent alterations in hippocampal connectivity over 2 years are associated with cerebrovascular and amyloid pathologies in normal aging. METHODS Thirty-three females and 21 males 65 to 93 years of age with no cognitive impairment performed a face-name associative memory functional magnetic resonance imaging (fMRI) task with a 2-year follow-up. We acquired baseline carbon 11-labeled Pittsburgh compound B ([11 C]PiB) positron emission tomography (PET) and T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MRI to quantify amyloid β (Aβ) burden and white matter hyperintensity (WMH) volume, respectively. RESULTS Males had increased hippocampal-prefrontal connectivity over 2 years, associated with greater Aβ burden. Females had increased bilateral hippocampal functional connectivity, associated with greater WMH volume. DISCUSSION These findings suggest sex-dependent compensatory mechanisms in the memory network in the presence of cerebrovascular and AD pathologies and may explain the accelerated trajectory of cognitive decline in females.
Collapse
Affiliation(s)
- Noah Schweitzer
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jinghang Li
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rebecca C. Thurston
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Brian Lopresti
- Department of RadiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Beth Snitz
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Dana Tudorascu
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Ann Cohen
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - M. Ilyas Kamboh
- Department of Human GeneticsSchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Edythe Halligan‐Eddy
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Bistra Iordanova
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Victor L. Villemagne
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Howard Aizenstein
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Minjie Wu
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
22
|
Huang Y, Zhang X, Cheng M, Yang Z, Liu W, Ai K, Tang M, Zhang X, Lei X, Zhang D. Altered cortical thickness-based structural covariance networks in type 2 diabetes mellitus. Front Neurosci 2024; 18:1327061. [PMID: 38332862 PMCID: PMC10851426 DOI: 10.3389/fnins.2024.1327061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cognitive impairment is a common complication of type 2 diabetes mellitus (T2DM), and early cognitive dysfunction may be associated with abnormal changes in the cerebral cortex. This retrospective study aimed to investigate the cortical thickness-based structural topological network changes in T2DM patients without mild cognitive impairment (MCI). Fifty-six T2DM patients and 59 healthy controls underwent neuropsychological assessments and sagittal 3-dimensional T1-weighted structural magnetic resonance imaging. Then, we combined cortical thickness-based assessments with graph theoretical analysis to explore the abnormalities in structural covariance networks in T2DM patients. Correlation analyses were performed to investigate the relationship between the altered topological parameters and cognitive/clinical variables. T2DM patients exhibited significantly lower clustering coefficient (C) and local efficiency (Elocal) values and showed nodal property disorders in the occipital cortical, inferior temporal, and inferior frontal regions, the precuneus, and the precentral and insular gyri. Moreover, the structural topological network changes in multiple nodes were correlated with the findings of neuropsychological tests in T2DM patients. Thus, while T2DM patients without MCI showed a relatively normal global network, the local topological organization of the structural network was disordered. Moreover, the impaired ventral visual pathway may be involved in the neural mechanism of visual cognitive impairment in T2DM patients. This study enriched the characteristics of gray matter structure changes in early cognitive dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Yang Huang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xin Zhang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Zhen Yang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Wanting Liu
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Kai Ai
- Department of Clinical and Technical Support, Philips Healthcare, Xi’an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
23
|
Hojjati SH, Chiang GC, Butler TA, de Leon M, Gupta A, Li Y, Sabuncu MR, Feiz F, Nayak S, Shteingart J, Ozoria S, Gholipour Picha S, Stern Y, Luchsinger JA, Devanand DP, Razlighi QR. Remote Associations Between Tau and Cortical Amyloid-β Are Stage-Dependent. J Alzheimers Dis 2024; 98:1467-1482. [PMID: 38552116 PMCID: PMC11091581 DOI: 10.3233/jad-231362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Background Histopathologic studies of Alzheimer's disease (AD) suggest that extracellular amyloid-β (Aβ) plaques promote the spread of neurofibrillary tau tangles. However, these two proteinopathies initiate in spatially distinct brain regions, so how they interact during AD progression is unclear. Objective In this study, we utilized Aβ and tau positron emission tomography (PET) scans from 572 older subjects (476 healthy controls (HC), 14 with mild cognitive impairment (MCI), 82 with mild AD), at varying stages of the disease, to investigate to what degree tau is associated with cortical Aβ deposition. Methods Using multiple linear regression models and a pseudo-longitudinal ordering technique, we investigated remote tau-Aβ associations in four pathologic phases of AD progression based on tau spread: 1) no-tau, 2) pre-acceleration, 3) acceleration, and 4) post-acceleration. Results No significant tau-Aβ association was detected in the no-tau phase. In the pre-acceleration phase, the earliest stage of tau deposition, associations emerged between regional tau in medial temporal lobe (MTL) (i.e., entorhinal cortex, parahippocampal gyrus) and cortical Aβ in lateral temporal lobe regions. The strongest tau-Aβ associations were found in the acceleration phase, in which tau in MTL regions was strongly associated with cortical Aβ (i.e., temporal and frontal lobes regions). Strikingly, in the post-acceleration phase, including 96% of symptomatic subjects, tau-Aβ associations were no longer significant. Conclusions The results indicate that associations between tau and Aβ are stage-dependent, which could have important implications for understanding the interplay between these two proteinopathies during the progressive stages of AD.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gloria C. Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tracy A. Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mony de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mert R. Sabuncu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Farnia Feiz
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Siddharth Nayak
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Shteingart
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sindy Ozoria
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Saman Gholipour Picha
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Yaakov Stern
- Departments of Neurology, Psychiatry, GH Sergievsky Center, The Taub Institute for the Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - José A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Davangere P. Devanand
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Qolamreza R. Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
24
|
Pezzoli S, Giorgio J, Martersteck A, Dobyns L, Harrison TM, Jagust WJ. Successful cognitive aging is associated with thicker anterior cingulate cortex and lower tau deposition compared to typical aging. Alzheimers Dement 2024; 20:341-355. [PMID: 37614157 PMCID: PMC10916939 DOI: 10.1002/alz.13438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION There is no consensus on either the definition of successful cognitive aging (SA) or the underlying neural mechanisms. METHODS We examined the agreement between new and existing definitions using: (1) a novel measure, the cognitive age gap (SA-CAG, cognitive-predicted age minus chronological age), (2) composite scores for episodic memory (SA-EM), (3) non-memory cognition (SA-NM), and (4) the California Verbal Learning Test (SA-CVLT). RESULTS Fair to moderate strength of agreement was found between the four definitions. Most SA groups showed greater cortical thickness compared to typical aging (TA), especially in the anterior cingulate and midcingulate cortices and medial temporal lobes. Greater hippocampal volume was found in all SA groups except SA-NM. Lower entorhinal 18 F-Flortaucipir (FTP) uptake was found in all SA groups. DISCUSSION These findings suggest that a feature of SA, regardless of its exact definition, is resistance to tau pathology and preserved cortical integrity, especially in the anterior cingulate and midcingulate cortices. HIGHLIGHTS Different approaches have been used to define successful cognitive aging (SA). Regardless of definition, different SA groups have similar brain features. SA individuals have greater anterior cingulate thickness and hippocampal volume. Lower entorhinal tau deposition, but not amyloid beta is related to SA. A combination of cortical integrity and resistance to tau may be features of SA.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Joseph Giorgio
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- University of NewcastleNewcastleNSWAustralia
| | - Adam Martersteck
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Lindsey Dobyns
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Theresa M. Harrison
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - William J. Jagust
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
25
|
Filippi M, Cividini C, Basaia S, Spinelli EG, Castelnovo V, Leocadi M, Canu E, Agosta F. Age-related vulnerability of the human brain connectome. Mol Psychiatry 2023; 28:5350-5358. [PMID: 37414925 DOI: 10.1038/s41380-023-02157-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Multifactorial models integrating brain variables at multiple scales are warranted to investigate aging and its relationship with neurodegeneration. Our aim was to evaluate how aging affects functional connectivity of pivotal regions of the human brain connectome (i.e., hubs), which represent potential vulnerability 'stations' to aging, and whether such effects influence the functional and structural changes of the whole brain. We combined the information of the functional connectome vulnerability, studied through an innovative graph-analysis approach (stepwise functional connectivity), with brain cortical thinning in aging. Using data from 128 cognitively normal participants (aged 20-85 years), we firstly investigated the topological functional network organization in the optimal healthy condition (i.e., young adults) and observed that fronto-temporo-parietal hubs showed a highly direct functional connectivity with themselves and among each other, while occipital hubs showed a direct functional connectivity within occipital regions and sensorimotor areas. Subsequently, we modeled cortical thickness changes over lifespan, revealing that fronto-temporo-parietal hubs were among the brain regions that changed the most, whereas occipital hubs showed a quite spared cortical thickness across ages. Finally, we found that cortical regions highly functionally linked to the fronto-temporo-parietal hubs in healthy adults were characterized by the greatest cortical thinning along the lifespan, demonstrating that the topology and geometry of hub functional connectome govern the region-specific structural alterations of the brain regions.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Camilla Cividini
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo G Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Leocadi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
26
|
Gouilly D, Rafiq M, Nogueira L, Salabert AS, Payoux P, Péran P, Pariente J. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology. Rev Neurol (Paris) 2023; 179:812-830. [PMID: 36906457 DOI: 10.1016/j.neurol.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-etiology disease. The biological system of AD is associated with multidomain genetic, molecular, cellular, and network brain dysfunctions, interacting with central and peripheral immunity. These dysfunctions have been primarily conceptualized according to the assumption that amyloid deposition in the brain, whether from a stochastic or a genetic accident, is the upstream pathological change. However, the arborescence of AD pathological changes suggests that a single amyloid pathway might be too restrictive or inconsistent with a cascading effect. In this review, we discuss the recent human studies of late-onset AD pathophysiology in an attempt to establish a general updated view focusing on the early stages. Several factors highlight heterogenous multi-cellular pathological changes in AD, which seem to work in a self-amplifying manner with amyloid and tau pathologies. Neuroinflammation has an increasing importance as a major pathological driver, and perhaps as a convergent biological basis of aging, genetic, lifestyle and environmental risk factors.
Collapse
Affiliation(s)
- D Gouilly
- Toulouse Neuroimaging Center, Toulouse, France.
| | - M Rafiq
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - L Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - A-S Salabert
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France
| | - P Payoux
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - P Péran
- Toulouse Neuroimaging Center, Toulouse, France
| | - J Pariente
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| |
Collapse
|
27
|
Adams JN, Chappel-Farley MG, Yaros JL, Taylor L, Harris AL, Mikhail A, McMillan L, Keator DB, Yassa MA. Functional network structure supports resilience to memory deficits in cognitively normal older adults with amyloid-β pathology. Sci Rep 2023; 13:13953. [PMID: 37626094 PMCID: PMC10457346 DOI: 10.1038/s41598-023-40092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Older adults may harbor large amounts of amyloid-β (Aβ) pathology, yet still perform at age-normal levels on memory assessments. We tested whether functional brain networks confer resilience or compensatory mechanisms to support memory in the face of Aβ pathology. Sixty-five cognitively normal older adults received high-resolution resting state fMRI to assess functional networks, 18F-florbetapir-PET to measure Aβ, and a memory assessment. We characterized functional networks with graph metrics of local efficiency (information transfer), modularity (specialization of functional modules), and small worldness (balance of integration and segregation). There was no difference in functional network measures between older adults with high Aβ (Aβ+) compared to those with no/low Aβ (Aβ-). However, in Aβ+ older adults, increased local efficiency, modularity, and small worldness were associated with better memory performance, while this relationship did not occur Aβ- older adults. Further, the association between increased local efficiency and better memory performance in Aβ+ older adults was localized to local efficiency of the default mode network and hippocampus, regions vulnerable to Aβ and involved in memory processing. Our results suggest functional networks with modular and efficient structures are associated with resilience to Aβ pathology, providing a functional target for intervention.
Collapse
Affiliation(s)
- Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine, 1400 Biological Sciences 3, Irvine, CA, 92697-3800, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Miranda G Chappel-Farley
- Department of Neurobiology and Behavior, University of California, Irvine, 1400 Biological Sciences 3, Irvine, CA, 92697-3800, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Jessica L Yaros
- Department of Neurobiology and Behavior, University of California, Irvine, 1400 Biological Sciences 3, Irvine, CA, 92697-3800, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lisa Taylor
- Department of Psychiatry and Human Behavior, University of California, Irvine, 1418 Biological Sciences 3, Irvine, CA, 92697-3800, USA
| | - Alyssa L Harris
- Department of Neurobiology and Behavior, University of California, Irvine, 1400 Biological Sciences 3, Irvine, CA, 92697-3800, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Abanoub Mikhail
- Department of Neurobiology and Behavior, University of California, Irvine, 1400 Biological Sciences 3, Irvine, CA, 92697-3800, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Liv McMillan
- Department of Neurobiology and Behavior, University of California, Irvine, 1400 Biological Sciences 3, Irvine, CA, 92697-3800, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - David B Keator
- Department of Psychiatry and Human Behavior, University of California, Irvine, 1418 Biological Sciences 3, Irvine, CA, 92697-3800, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, 1400 Biological Sciences 3, Irvine, CA, 92697-3800, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Psychiatry and Human Behavior, University of California, Irvine, 1418 Biological Sciences 3, Irvine, CA, 92697-3800, USA.
| |
Collapse
|
28
|
Gagliardi G, Rodriguez-Vieitez E, Montal V, Sepulcre J, Diez I, Lois C, Hanseeuw B, Schultz AP, Properzi MJ, Papp KV, Marshall GA, Fortea J, Johnson KA, Sperling RA, Vannini P. Cortical microstructural changes predict tau accumulation and episodic memory decline in older adults harboring amyloid. COMMUNICATIONS MEDICINE 2023; 3:106. [PMID: 37528163 PMCID: PMC10394044 DOI: 10.1038/s43856-023-00324-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023] Open
Abstract
INTRODUCTION Non-invasive diffusion-weighted imaging (DWI) to assess brain microstructural changes via cortical mean diffusivity (cMD) has been shown to be cross-sectionally associated with tau in cognitively normal older adults, suggesting that it might be an early marker of neuronal injury. Here, we investigated how regional cortical microstructural changes measured by cMD are related to the longitudinal accumulation of regional tau as well as to episodic memory decline in cognitively normal individuals harboring amyloid pathology. METHODS 122 cognitively normal participants from the Harvard Aging Brain Study underwent DWI, T1w-MRI, amyloid and tau PET imaging, and Logical Memory Delayed Recall (LMDR) assessments. We assessed whether the interaction of baseline amyloid status and cMD (in entorhinal and inferior-temporal cortices) was associated with longitudinal regional tau accumulation and with longitudinal LMDR using separate linear mixed-effects models. RESULTS We find a significant interaction effect of the amyloid status and baseline cMD in predicting longitudinal tau in the entorhinal cortex (p = 0.044) but not the inferior temporal lobe, such that greater baseline cMD values predicts the accumulation of entorhinal tau in amyloid-positive participants. Moreover, we find a significant interaction effect of the amyloid status and baseline cMD in the entorhinal cortex (but not inferior temporal cMD) in predicting longitudinal LMDR (p < 0.001), such that baseline entorhinal cMD predicts the episodic memory decline in amyloid-positive participants. CONCLUSIONS The combination of amyloidosis and elevated cMD in the entorhinal cortex may help identify individuals at short-term risk of tau accumulation and Alzheimer's Disease-related episodic memory decline, suggesting utility in clinical trials.
Collapse
Affiliation(s)
- Geoffroy Gagliardi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Rodriguez-Vieitez
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129, USA
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Stockholm, 14152, Sweden
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain
- Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, 28031, Spain
| | - Jorge Sepulcre
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
| | - Ibai Diez
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
| | - Cristina Lois
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
| | - Bernard Hanseeuw
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
- Saint Luc University Hospital, Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Aaron P Schultz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129, USA
| | - Michael J Properzi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Kathryn V Papp
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gad A Marshall
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain
- Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, 28031, Spain
| | - Keith A Johnson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
| | - Reisa A Sperling
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Patrizia Vannini
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129, USA.
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Wang SM, Kang DW, Um YH, Kim S, Lee CU, Lim HK. Depression Is Associated with the Aberration of Resting State Default Mode Network Functional Connectivity in Patients with Amyloid-Positive Mild Cognitive Impairment. Brain Sci 2023; 13:1111. [PMID: 37509041 PMCID: PMC10377088 DOI: 10.3390/brainsci13071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Mild cognitive impairment (MCI) is an intermediate stage between normal aging and dementia, and a significant number of individuals with MCI progress to develop dementia. Depression is prevalent in MCI patients and has been found to influence the disease progression of MCI. The default mode network (DMN), a brain network associated with Alzheimer's disease (AD), and its functional connectivity might be a neurological mechanism linking depression and AD. However, the relationship between depression, DMN functional connectivity, and cerebral beta-amyloid (Aβ) pathology remains unclear. This study aimed to investigate DMN functional connectivity differences in Aβ-positive MCI patients with depression compared to those without depression. A total of 126 Aβ-positive MCI patients were included, with 66 having depression and 60 without depression. The results revealed increased functional connectivity in the anterior DMN in the depression group compared to the non-depression group. The functional connectivity of the anterior DMN positively correlated with depression severity but not with Aβ deposition. Our findings suggest that depression influences DMN functional connectivity in Aβ-positive MCI patients, and the depression-associated DMN functional connectivity aberrance might be an important neural mechanism linking depression, Aβ pathology, and disease progression in the trajectory of AD.
Collapse
Affiliation(s)
- Sheng-Min Wang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Psychiatry, St. Vincent Hospital, Suwon, Korea, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea
| |
Collapse
|
30
|
Wang SM, Kang DW, Um YH, Kim S, Kim REY, Kim D, Lee CU, Lim HK. Cognitive Normal Older Adults with APOE-2 Allele Show a Distinctive Functional Connectivity Pattern in Response to Cerebral Aβ Deposition. Int J Mol Sci 2023; 24:11250. [PMID: 37511008 PMCID: PMC10380008 DOI: 10.3390/ijms241411250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The ε2 allele of apolipoprotein E (ε2) has neuroprotective effects against beta-amyloid (Aβ) pathology in Alzheimer's disease (AD). However, its impact on the functional connectivity and hub efficiency in cognitively normal older adults (CN) with ε2 is unclear. We investigated the functional connectivity differences in the default mode network (DMN), salience network, and central executive network (CEN) between A-PET-negative (N = 29) and A-PET-positive (N = 15) CNs with ε2/ε2 or ε2/ε3 genotypes. The A-PET-positive CNs exhibited a lower anterior DMN functional connectivity, higher posterior DMN functional connectivity, and increased CEN functional connectivity compared to the A-PET-negative CNs. Cerebral Aβ retention was negatively correlated with anterior DMN functional connectivity and positively correlated with posterior DMN and anterior CEN functional connectivity. A graph theory analysis showed that the A-PET-positive CNs displayed a higher betweenness centrality in the middle frontal gyrus (left) and medial fronto-parietal regions (left). The betweenness centrality in the middle frontal gyrus (left) was positively correlated with Aβ retention. Our findings reveal a reversed anterior-posterior dissociation in the DMN functional connectivity and heightened CEN functional connectivity in A-PET-positive CNs with ε2. Hub efficiencies, measured by betweenness centrality, were increased in the DMN and CEN of the A-PET-positive CNs with ε2. These results suggest unique functional connectivity responses to Aβ pathology in CN individuals with ε2.
Collapse
Affiliation(s)
- Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Regina E Y Kim
- Research Institute, Neurophet Inc., Seoul 08380, Republic of Korea
| | - Donghyeon Kim
- Research Institute, Neurophet Inc., Seoul 08380, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
31
|
Wheelock MD, Strain JF, Mansfield P, Tu JC, Tanenbaum A, Preische O, Chhatwal JP, Cash DM, Cruchaga C, Fagan AM, Fox NC, Graff-Radford NR, Hassenstab J, Jack CR, Karch CM, Levin J, McDade EM, Perrin RJ, Schofield PR, Xiong C, Morris JC, Bateman RJ, Jucker M, Benzinger TLS, Ances BM, Eggebrecht AT, Gordon BA, Allegri R, Araki A, Barthelemy N, Bateman R, Bechara J, Benzinger T, Berman S, Bodge C, Brandon S, Brooks W, Brosch J, Buck J, Buckles V, Carter K, Cash D, Cash L, Chen C, Chhatwal J, Chrem P, Chua J, Chui H, Cruchaga C, Day GS, De La Cruz C, Denner D, Diffenbacher A, Dincer A, Donahue T, Douglas J, Duong D, Egido N, Esposito B, Fagan A, Farlow M, Feldman B, Fitzpatrick C, Flores S, Fox N, Franklin E, Friedrichsen N, Fujii H, Gardener S, Ghetti B, Goate A, Goldberg S, Goldman J, Gonzalez A, Gordon B, Gräber-Sultan S, Graff-Radford N, Graham M, Gray J, Gremminger E, Grilo M, Groves A, Haass C, Häsler L, Hassenstab J, Hellm C, Herries E, Hoechst-Swisher L, Hofmann A, Holtzman D, Hornbeck R, Igor Y, Ihara R, Ikeuchi T, Ikonomovic S, Ishii K, Jack C, Jerome G, Johnson E, Jucker M, Karch C, Käser S, Kasuga K, Keefe S, Klunk W, Koeppe R, Koudelis D, Kuder-Buletta E, Laske C, Lee JH, Levey A, Levin J, Li Y, Lopez O, Marsh J, Martinez R, Martins R, Mason NS, Masters C, Mawuenyega K, McCullough A, McDade E, Mejia A, Morenas-Rodriguez E, Mori H, Morris J, Mountz J, Mummery C, Nadkami N, Nagamatsu A, Neimeyer K, Niimi Y, Noble J, Norton J, Nuscher B, O'Connor A, Obermüller U, Patira R, Perrin R, Ping L, Preische O, Renton A, Ringman J, Salloway S, Sanchez-Valle R, Schofield P, Senda M, Seyfried N, Shady K, Shimada H, Sigurdson W, Smith J, Smith L, Snitz B, Sohrabi H, Stephens S, Taddei K, Thompson S, Vöglein J, Wang P, Wang Q, Weamer E, Xiong C, Xu J, Xu X. Brain network decoupling with increased serum neurofilament and reduced cognitive function in Alzheimer's disease. Brain 2023; 146:2928-2943. [PMID: 36625756 PMCID: PMC10316768 DOI: 10.1093/brain/awac498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and CSF and is predictive of cognitive function in individuals with Alzheimer's disease. There has been limited prior work linking neurofilament light and functional connectivity, and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer's disease. Here, we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer's disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks, including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer's disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heightened total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer's disease.
Collapse
Affiliation(s)
- Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Jeremy F Strain
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Aaron Tanenbaum
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David M Cash
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Nick C Fox
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | | | - Jason Hassenstab
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Eric M McDade
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA.,Department of Pathology & Immunology, Washington University in St. Louis, MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Randal J Bateman
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tammie L S Benzinger
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fountain-Zaragoza S, Liu H, Benitez A. Functional Network Alterations Associated with Cognition in Pre-Clinical Alzheimer's Disease. Brain Connect 2023; 13:275-286. [PMID: 36606679 PMCID: PMC10280291 DOI: 10.1089/brain.2022.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective: Accumulation of cerebral amyloid-β (Aβ) is a risk factor for cognitive decline and defining feature of Alzheimer's disease (AD). Aβ is implicated in brain network disruption, but the extent to which these changes correspond with observable cognitive deficits in pre-clinical AD has not been tested. This study utilized individual-specific functional parcellations to sensitively evaluate the relationship between network connectivity and cognition in adults with and without Aβ deposition. Participants and Methods: Cognitively unimpaired adults ages 45-85 completed amyloid positron emission tomography, resting-state-functional magnetic resonance imaging (fMRI), and neuropsychological tests of episodic memory and executive function (EF). Participants in the upper tertile of mean standard uptake value ratio were considered Aβ+ (n = 50) while others were Aβ- (n = 99). Individualized functional network parcellations were generated from resting-state fMRI data. We examined the effects of group, network, and group-by-network interactions on memory and EF. Results: We observed several interactions such that within the Aβ+ group, preserved network integrity (i.e., greater connectivity within specific networks) was associated with better cognition, whereas network desegregation (i.e., greater connectivity between relative to within networks) was associated with worse cognition. This dissociation was most apparent for cognitive networks (frontoparietal, dorsal and ventral attention, limbic, and default mode), with connectivity relating to EF in the Aβ+ group specifically. Conclusions: Using an innovative approach to constructing individual-specified resting-state functional connectomes, we were able to detect differences in brain-cognition associations in pre-clinical AD. Our findings provide novel insight into specific functional network alterations occurring in the presence of Aβ that relate to cognitive function in asymptomatic individuals. Impact statement Elevated cerebral amyloid-β is a biomarker of pre-clinical Alzheimer's disease (AD). Associations between amyloidosis, functional network disruption, and cognitive impairment are evident in the later stages of AD, but these effects have not been substantiated in pre-clinical AD. Using individual-specific parcellations that maximally localize functional networks, we identify network alterations that relate to cognition in pre-clinical AD that have not been previously reported. We demonstrate that these effects localize to networks implicated in cognition. Our findings suggest that there may be subtle, amyloid-related alterations in the functional connectome that are detectable in pre-clinical AD, with potential implications for cognition in asymptomatic individuals.
Collapse
Affiliation(s)
- Stephanie Fountain-Zaragoza
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hesheng Liu
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andreana Benitez
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neurology, and Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
33
|
Ficek-Tani B, Horien C, Ju S, Xu W, Li N, Lacadie C, Shen X, Scheinost D, Constable T, Fredericks C. Sex differences in default mode network connectivity in healthy aging adults. Cereb Cortex 2023; 33:6139-6151. [PMID: 36563018 PMCID: PMC10183749 DOI: 10.1093/cercor/bhac491] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Women show an increased lifetime risk of Alzheimer's disease (AD) compared with men. Characteristic brain connectivity changes, particularly within the default mode network (DMN), have been associated with both symptomatic and preclinical AD, but the impact of sex on DMN function throughout aging is poorly understood. We investigated sex differences in DMN connectivity over the lifespan in 595 cognitively healthy participants from the Human Connectome Project-Aging cohort. We used the intrinsic connectivity distribution (a robust voxel-based metric of functional connectivity) and a seed connectivity approach to determine sex differences within the DMN and between the DMN and whole brain. Compared with men, women demonstrated higher connectivity with age in posterior DMN nodes and lower connectivity in the medial prefrontal cortex. Differences were most prominent in the decades surrounding menopause. Seed-based analysis revealed higher connectivity in women from the posterior cingulate to angular gyrus, which correlated with neuropsychological measures of declarative memory, and hippocampus. Taken together, we show significant sex differences in DMN subnetworks over the lifespan, including patterns in aging women that resemble changes previously seen in preclinical AD. These findings highlight the importance of considering sex in neuroimaging studies of aging and neurodegeneration.
Collapse
Affiliation(s)
- Bronte Ficek-Tani
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, United States
| | - Suyeon Ju
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT 06520, United States
| | - Nancy Li
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Carolyn Fredericks
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
34
|
Rafii MS, Aisen PS. Detection and treatment of Alzheimer's disease in its preclinical stage. NATURE AGING 2023; 3:520-531. [PMID: 37202518 PMCID: PMC11110912 DOI: 10.1038/s43587-023-00410-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Longitudinal multimodal biomarker studies reveal that the continuum of Alzheimer's disease (AD) includes a long latent phase, referred to as preclinical AD, which precedes the onset of symptoms by decades. Treatment during the preclinical AD phase offers an optimal opportunity for slowing the progression of disease. However, trial design in this population is complex. In this Review, we discuss the recent advances in accurate plasma measurements, new recruitment approaches, sensitive cognitive instruments and self-reported outcomes that have facilitated the successful launch of multiple phase 3 trials for preclinical AD. The recent success of anti-amyloid immunotherapy trials in symptomatic AD has increased the enthusiasm for testing this strategy at the earliest feasible stage. We provide an outlook for standard screening of amyloid accumulation at the preclinical stage in clinically normal individuals, during which effective therapy to delay or prevent cognitive decline can be initiated.
Collapse
Affiliation(s)
- Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine University of Southern California, Los Angeles, CA, USA.
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Liu G, Shen C, Qiu A. Amyloid-β Accumulation in Relation to Functional Connectivity in Aging: a Longitudinal Study. Neuroimage 2023; 275:120146. [PMID: 37127190 DOI: 10.1016/j.neuroimage.2023.120146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
The brain undergoes many changes at pathological and functional levels in healthy aging. This study employed a longitudinal and multimodal imaging dataset from the OASIS-3 study (n=300) and explored possible relationships between amyloid beta (Aβ) accumulation and functional brain organization over time in healthy aging. We used positron emission tomography (PET) with Pittsburgh compound-B (PIB) to quantify the Aβ accumulation in the brain and resting-state functional MRI (rs-fMRI) to measure functional connectivity (FC) among brain regions. Each participant had at least 2 to 3 follow-up visits. A linear mixed-effect model was used to examine longitudinal changes of Aβ accumulation and FC throughout the whole brain. We found that the limbic and frontoparietal networks had a greater annual Aβ accumulation and a slower decline in FC in aging. Additionally, the amount of the Aβ deposition in the amygdala network at baseline slowed down the decline in its FC in aging. Furthermore, the functional connectivity of the limbic, default mode network (DMN), and frontoparietal networks accelerated the Aβ propagation across their functionally highly connected regions. The functional connectivity of the somatomotor and visual networks accelerated the Aβ propagation across the brain regions in the limbic, frontoparietal, and DMN networks. These findings suggested that the slower decline in the functional connectivity of the functional hubs may compensate for their greater Aβ accumulation in aging. The Aβ propagation from one brain region to the other may depend on their functional connectivity strength.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Chenye Shen
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore; NUS (Suzhou) Research Institute, National University of Singapore, China; The N.1 Institute for Health, National University of Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore; Department of Biomedical Engineering, the Johns Hopkins University, USA.
| |
Collapse
|
36
|
Korkki SM, Richter FR, Gellersen HM, Simons JS. Reduced memory precision in older age is associated with functional and structural differences in the angular gyrus. Neurobiol Aging 2023; 129:109-120. [PMID: 37300913 DOI: 10.1016/j.neurobiolaging.2023.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023]
Abstract
Decreased fidelity of mnemonic representations plays a critical role in age-related episodic memory deficits, yet the brain mechanisms underlying such reductions remain unclear. Using functional and structural neuroimaging, we examined how changes in two key nodes of the posterior-medial network, the hippocampus and the angular gyrus (AG), might underpin loss of memory precision in older age. Healthy young and older adults completed a memory task that involved reconstructing object features on a continuous scale. Investigation of blood-oxygen-level-dependent (BOLD) activity during retrieval revealed an age-related reduction in activity reflecting successful recovery of object features in the hippocampus, whereas trial-wise modulation of BOLD signal by graded memory precision was diminished in the AG. Gray matter volume of the AG further predicted individual differences in memory precision in older age, beyond likelihood of successful retrieval. These findings provide converging evidence for a role of functional and structural integrity of the AG in constraining the fidelity of episodic remembering in older age, yielding new insights into parietal contributions to age-related episodic memory decline.
Collapse
Affiliation(s)
- Saana M Korkki
- Department of Psychology, University of Cambridge, Cambridge, UK; Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
| | - Franziska R Richter
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
Hani Hojjati S, Butler TA, Chiang GC, Habeck C, RoyChoudhury A, Feiz F, Shteingart J, Nayak S, Ozoria S, Fernández A, Stern Y, Luchsinger JA, Devanand DP, Razlighi QR. Distinct and joint effects of low and high levels of Aβ and tau deposition on cortical thickness. Neuroimage Clin 2023; 38:103409. [PMID: 37104927 PMCID: PMC10165160 DOI: 10.1016/j.nicl.2023.103409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Alzheimer's disease (AD) is defined by the presence of Amyloid-β (Aβ),tau, and neurodegeneration (ATN framework) in the human cerebral cortex. Yet, prior studies have suggested that Aβ deposition can be associated with both cortical thinning and thickening. These contradictory results are attributed to small sample sizes, the presence versus absence of tau, and limited detectability in the earliest phase of protein deposition, which may begin in young adulthood and cannot be captured in studies enrolling only older subjects. In this study, we aimed to find the distinct and joint effects of Aβ andtau on neurodegeneration during the progression from normal to abnormal stages of pathologies that remain elusive. We used18F-MK6240 and 18F-Florbetaben/18F-Florbetapir positron emission tomography (PET) and magnetic resonance imaging (MRI) to quantify tau, Aβ, and cortical thickness in 590 participants ranging in age from 20 to 90. We performed multiple regression analyses to assess the distinct and joint effects of Aβ and tau on cortical thickness using 590 healthy control (HC) and mild cognitive impairment (MCI) participants (141 young, 394 HC elderlies, 52 MCI). We showed thatin participants with normal levels of global Aβdeposition, Aβ uptakewassignificantly associated with increasedcortical thickness regardless of tau (e.g., left entorhinal cortex with t > 3.241, p < 0.0013). The relationship between tau deposition and neurodegeneration was more complex: in participants with abnormal levels of global tau, tau uptake was associated with cortical thinning in several regions of the brain (e.g., left entorhinal with t < -2.80, p < 0.0096 and left insula with t-value < -4.284, p < 0.0001), as reported on prior neuroimaging and neuropathological studies. Surprisingly, in participants with normal levels of global tau, tau was found to be associated with cortical thickening. Moreover, in participants with abnormal levels of global Aβandtau, theresonancebetween them, defined as their correlation throughout the cortex, wasassociated strongly with cortical thinning even when controlling for a direct linear effect. We confirm prior findings of an association between Aβ deposition and cortical thickening and suggest this may also be the case in the earliest stages of deposition in normal aging. We also illustrate that resonance between high levels of Aβ and tau uptake is strongly associated with cortical thinning, emphasizing the effects of Aβ/tau synergy inAD pathogenesis.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States.
| | - Tracy A Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Gloria C Chiang
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Christian Habeck
- Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Arindam RoyChoudhury
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Farnia Feiz
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jacob Shteingart
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Siddharth Nayak
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sindy Ozoria
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Antonio Fernández
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yaakov Stern
- Departments of Neurology, Psychiatry, GH Sergievsky Center, the Taub Institute for the Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - José A Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Davangere P Devanand
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States; Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States; Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States
| | - Qolamreza R Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
38
|
Zhang L, Yu X, Lyu Y, Liu T, Zhu D. REPRESENTATIVE FUNCTIONAL CONNECTIVITY LEARNING FOR MULTIPLE CLINICAL GROUPS IN ALZHEIMER'S DISEASE. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2023; 2023. [PMID: 38414667 PMCID: PMC10897952 DOI: 10.1109/isbi53787.2023.10230521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Mild cognitive impairment (MCI) is a high-risk dementia condition which progresses to probable Alzheimer's disease (AD) at approximately 10% to 15% per year. Characterization of group-level differences between two subtypes of MCI - stable MCI (sMCI) and progressive MCI (pMCI) is the key step to understand the mechanisms of MCI progression and enable possible delay of transition from MCI to AD. Functional connectivity (FC) is considered as a promising way to study MCI progression since which may show alterations even in preclinical stages and provide substrates for AD progression. However, the representative FC patterns during AD development for different clinical groups, especially for sMCI and pMCI, have been understudied. In this work, we integrated autoencoder and multi-class classification into a single deep model and successfully learned a set of clinical group related feature vectors. Specifically, we trained two non-linear mappings which realized the mutual transformations between the original FC space and the feature space. By mapping the learned clinical group related feature vectors to the original FC space, representative FCs were constructed for each group. Moreover, based on these feature vectors, our model achieves a high classification accuracy - 68% for multi-class classification (NC vs SMC vs sMCI vs pMCI vs AD). Code has been released.
Collapse
Affiliation(s)
- Lu Zhang
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Xiaowei Yu
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Yanjun Lyu
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Tianming Liu
- Computer Science, The University of Georgia, Athens, USA
| | - Dajiang Zhu
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
39
|
Lorenzini L, Ingala S, Collij LE, Wottschel V, Haller S, Blennow K, Frisoni G, Chételat G, Payoux P, Lage-Martinez P, Ewers M, Waldman A, Wardlaw J, Ritchie C, Gispert JD, Mutsaerts HJMM, Visser PJ, Scheltens P, Tijms B, Barkhof F, Wink AM. Eigenvector centrality dynamics are related to Alzheimer's disease pathological changes in non-demented individuals. Brain Commun 2023; 5:fcad088. [PMID: 37151225 PMCID: PMC10156145 DOI: 10.1093/braincomms/fcad088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/05/2022] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Amyloid-β accumulation starts in highly connected brain regions and is associated with functional connectivity alterations in the early stages of Alzheimer's disease. This regional vulnerability is related to the high neuronal activity and strong fluctuations typical of these regions. Recently, dynamic functional connectivity was introduced to investigate changes in functional network organization over time. High dynamic functional connectivity variations indicate increased regional flexibility to participate in multiple subnetworks, promoting functional integration. Currently, only a limited number of studies have explored the temporal dynamics of functional connectivity in the pre-dementia stages of Alzheimer's disease. We study the associations between abnormal cerebrospinal fluid amyloid and both static and dynamic properties of functional hubs, using eigenvector centrality, and their relationship with cognitive performance, in 701 non-demented participants from the European Prevention of Alzheimer's Dementia cohort. Voxel-wise eigenvector centrality was computed for the whole functional magnetic resonance imaging time series (static), and within a sliding window (dynamic). Differences in static eigenvector centrality between amyloid positive (A+) and negative (A-) participants and amyloid-tau groups were found in a general linear model. Dynamic eigenvector centrality standard deviation and range were compared between groups within clusters of significant static eigenvector centrality differences, and within 10 canonical resting-state networks. The effect of the interaction between amyloid status and cognitive performance on dynamic eigenvector centrality variability was also evaluated with linear models. Models were corrected for age, sex, and education level. Lower static centrality was found in A+ participants in posterior brain areas including a parietal and an occipital cluster; higher static centrality was found in a medio-frontal cluster. Lower eigenvector centrality variability (standard deviation) occurred in A+ participants in the frontal cluster. The default mode network and the dorsal visual networks of A+ participants had lower dynamic eigenvector centrality variability. Centrality variability in the default mode network and dorsal visual networks were associated with cognitive performance in the A- and A+ groups, with lower variability being observed in A+ participants with good cognitive scores. Our results support the role and timing of eigenvector centrality alterations in very early stages of Alzheimer's disease and show that centrality variability over time adds relevant information on the dynamic patterns that cause static eigenvector centrality alterations. We propose that dynamic eigenvector centrality is an early biomarker of the interplay between early Alzheimer's disease pathology and cognitive decline.
Collapse
Affiliation(s)
- Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Department of Radiology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Cerebriu A/S, Copenhagen 1127, Denmark
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Viktor Wottschel
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Sven Haller
- CIMC—Centre d’Imagerie Médicale de Cornavin, 1201Genève, Switzerland
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala 751 85, Sweden
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, P. R. China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 405 30, Sweden
| | - Giovanni Frisoni
- Laboratory Alzheimer’s Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25125, Italy
- University Hospitals and University of Geneva, Geneva 1205, Switzerland
| | - Gaël Chételat
- Université de Normandie, Unicaen, Inserm, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Institut Blood-and-Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Pierre Payoux
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse 31300, France
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse 31300, France
| | - Pablo Lage-Martinez
- Centro de Investigación y Terapias Avanzadas, Neurología, CITA-Alzheimer Foundation, San Sebastián 20009, Spain
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany
| | - Adam Waldman
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Department of Medicine, Imperial College London, London, UK
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Craig Ritchie
- Centre for Dementia Prevention, The University of Edinburgh, Scotland, UK
- Scottish Brain Sciences, Edinburgh, UK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), BarcelonaSpain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Alzheimer Center Limburg, Department of Psychiatry & Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Betty Tijms
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
40
|
Chen HF, Sheng XN, Yang ZY, Shao PF, Xu HH, Qin RM, Zhao H, Bai F. Multi-networks connectivity at baseline predicts the clinical efficacy of left angular gyrus-navigated rTMS in the spectrum of Alzheimer's disease: A sham-controlled study. CNS Neurosci Ther 2023. [PMID: 36942495 DOI: 10.1111/cns.14177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) is effective in alleviating cognitive deficits in Alzheimer's disease (AD). However, the strategy for target determination and the mechanisms for cognitive improvement remain unclear. METHODS One hundred and thirteen elderly subjects were recruited in this study, including both cross-sectional (n = 79) and longitudinal experiments (the rTMS group: n = 24; the sham group: n = 10). The cross-sectional experiment explored the precise intervention target based on the cortical-hippocampal network. The longitudinal experiment investigated the clinical efficacy of neuro-navigated rTMS treatment over a four-week period and explored its underlying neural mechanism using seed-based and network-based analysis. Finally, we applied connectome-based predictive modeling to predict the rTMS response using these functional features at baseline. RESULTS RTMS at a targeted site of the left angular gyrus (MNI: -45, -67, 38) significantly induced cognitive improvement in memory and language function (p < 0.001). The improved cognition correlated with the default mode network (DMN) subsystems. Furthermore, the connectivity patterns of DMN subsystems (r = 0.52, p = 0.01) or large-scale networks (r = 0.85, p = 0.001) at baseline significantly predicted the Δ language cognition after the rTMS treatment. The connectivity patterns of DMN subsystems (r = 0.47, p = 0.019) or large-scale networks (r = 0.80, p = 0.001) at baseline could predict the Δ memory cognition after the rTMS treatment. CONCLUSION These findings suggest that neuro-navigated rTMS targeting the left angular gyrus could improve cognitive function in AD patients. Importantly, dynamic regulation of the intra- and inter-DMN at baseline may represent a potential predictor for favorable rTMS treatment response in patients with cognitive impairment.
Collapse
Affiliation(s)
- Hai-Feng Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiao-Ning Sheng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Zhi-Yuan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Peng-Fei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Heng-Heng Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruo-Meng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- Geriatric Medicine Center, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
41
|
Ju S, Horien C, Shen X, Abuwarda H, Trainer A, Constable RT, Fredericks CA. Connectome-based predictive modeling shows sex differences in brain-based predictors of memory performance. FRONTIERS IN DEMENTIA 2023; 2:1126016. [PMID: 39082002 PMCID: PMC11285565 DOI: 10.3389/frdem.2023.1126016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) takes a more aggressive course in women than men, with higher prevalence and faster progression. Amnestic AD specifically targets the default mode network (DMN), which subserves short-term memory; past research shows relative hyperconnectivity in the posterior DMN in aging women. Higher reliance on this network during memory tasks may contribute to women's elevated AD risk. Here, we applied connectome-based predictive modeling (CPM), a robust linear machine-learning approach, to the Lifespan Human Connectome Project-Aging (HCP-A) dataset (n = 579). We sought to characterize sex-based predictors of memory performance in aging, with particular attention to the DMN. Models were evaluated using cross-validation both across the whole group and for each sex separately. Whole-group models predicted short-term memory performance with accuracies ranging from ρ = 0.21-0.45. The best-performing models were derived from an associative memory task-based scan. Sex-specific models revealed significant differences in connectome-based predictors for men and women. DMN activity contributed more to predicted memory scores in women, while within- and between- visual network activity contributed more to predicted memory scores in men. While men showed more segregation of visual networks, women showed more segregation of the DMN. We demonstrate that women and men recruit different circuitry when performing memory tasks, with women relying more on intra-DMN activity and men relying more on visual circuitry. These findings are consistent with the hypothesis that women draw more heavily upon the DMN for recollective memory, potentially contributing to women's elevated risk of AD.
Collapse
Affiliation(s)
- Suyeon Ju
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Hamid Abuwarda
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Anne Trainer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
42
|
Cacciaglia R, Operto G, Falcón C, de Echavarri-Gómez JMG, Sánchez-Benavides G, Brugulat-Serrat A, Milà-Alomà M, Blennow K, Zetterberg H, Molinuevo JL, Suárez-Calvet M, Gispert JD. Genotypic effects of APOE-ε4 on resting-state connectivity in cognitively intact individuals support functional brain compensation. Cereb Cortex 2023; 33:2748-2760. [PMID: 35753703 PMCID: PMC10016049 DOI: 10.1093/cercor/bhac239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/12/2022] Open
Abstract
The investigation of resting-state functional connectivity (rsFC) in asymptomatic individuals at genetic risk for Alzheimer's disease (AD) enables discovering the earliest brain alterations in preclinical stages of the disease. The APOE-ε4 variant is the major genetic risk factor for AD, and previous studies have reported rsFC abnormalities in carriers of the ε4 allele. Yet, no study has assessed APOE-ε4 gene-dose effects on rsFC measures, and only a few studies included measures of cognitive performance to aid a clinical interpretation. We assessed the impact of APOE-ε4 on rsFC in a sample of 429 cognitively unimpaired individuals hosting a high number of ε4 homozygotes (n = 58), which enabled testing different models of genetic penetrance. We used independent component analysis and found a reduced rsFC as a function of the APOE-ε4 allelic load in the temporal default-mode and the medial temporal networks, while recessive effects were found in the extrastriate and limbic networks. Some of these results were replicated in a subsample with negative amyloid markers. Interaction with cognitive data suggests that such a network reorganization may support cognitive performance in the ε4-homozygotes. Our data indicate that APOE-ε4 shapes the functional architecture of the resting brain and favor the idea of a network-based functional compensation.
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28089 Madrid, Spain
| | - José Maria González de Echavarri-Gómez
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 41390 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 41390 Mölndal, Sweden
- UK Dementia Research Institute at UCL, WC1E 6BT London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
- Honk Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28089 Madrid, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
| |
Collapse
|
43
|
Gaynor LS, Ravi M, Zequeira S, Hampton AM, Pyon WS, Smith S, Colon-Perez LM, Pompilus M, Bizon JL, Maurer AP, Febo M, Burke SN. Touchscreen-Based Cognitive Training Alters Functional Connectivity Patterns in Aged But Not Young Male Rats. eNeuro 2023; 10:ENEURO.0329-22.2023. [PMID: 36754628 PMCID: PMC9961373 DOI: 10.1523/eneuro.0329-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Age-related cognitive decline is related to cellular and systems-level disruptions across multiple brain regions. Because age-related cellular changes within different structures do not show the same patterns of dysfunction, interventions aimed at optimizing function of large-scale brain networks may show greater efficacy at improving cognitive outcomes in older adults than traditional pharmacotherapies. The current study aimed to leverage a preclinical rat model of aging to determine whether cognitive training in young and aged male rats with a computerized paired-associates learning (PAL) task resulted in changes in global resting-state functional connectivity. Moreover, seed-based functional connectivity was used to examine resting state connectivity of cortical areas involved in object-location associative memory and vulnerable in old age, namely the medial temporal lobe (MTL; hippocampal cortex and perirhinal cortex), retrosplenial cortex (RSC), and frontal cortical areas (prelimbic and infralimbic cortices). There was an age-related increase in global functional connectivity between baseline and post-training resting state scans in aged, cognitively trained rats. This change in connectivity following cognitive training was not observed in young animals, or rats that traversed a track for a reward between scan sessions. Relatedly, an increase in connectivity between perirhinal and prelimbic cortices, as well as reduced reciprocal connectivity within the RSC, was found in aged rats that underwent cognitive training, but not the other groups. Subnetwork activation was associated with task performance across age groups. Greater global functional connectivity and connectivity between task-relevant brain regions may elucidate compensatory mechanisms that can be engaged by cognitive training.
Collapse
Affiliation(s)
- Leslie S Gaynor
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158
| | - Meena Ravi
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Sabrina Zequeira
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Andreina M Hampton
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Wonn S Pyon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Samantha Smith
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Luis M Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
44
|
Landau SM, Ward TJ, Murphy A, Iaccarino L, Harrison TM, La Joie R, Baker S, Koeppe RA, Jagust WJ. Quantification of amyloid beta and tau PET without a structural MRI. Alzheimers Dement 2023; 19:444-455. [PMID: 35429219 DOI: 10.1002/alz.12668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Relying on magnetic resonance imaging (MRI) for quantification of positron emission tomography (PET) images may limit generalizability of the results. We evaluated several MRI-free approaches for amyloid beta (Aβ) and tau PET quantification relative to MRI-dependent quantification cross-sectionally and longitudinally. METHODS We compared baseline MRI-free and MRI-dependent measurements of Aβ PET ([18F]florbetapir [FBP], N = 1290, [18F]florbetaben [FBB], N = 290) and tau PET ([18F]flortaucipir [FTP], N = 768) images with respect to continuous and dichotomous agreement, effect sizes of Aβ+ impaired versus Aβ- unimpaired groups, and longitudinal standardized uptake value ratio (SUVR) slopes in a subset of individuals. RESULTS The best-performing MRI-free approaches had high continuous and dichotomous agreement with MRI-dependent SUVRs for Aβ PET and temporal flortaucipir (R2 ≥0.95; ± agreement ≥92%) and for Alzheimer's disease-related effect sizes; agreement was slightly lower for entorhinal flortaucipir and longitudinal slopes. DISCUSSION There is no consistent loss of baseline or longitudinal AD-related signal with MRI-free Aβ and tau PET image quantification.
Collapse
Affiliation(s)
- Susan M Landau
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Tyler J Ward
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Alice Murphy
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, University of California, San Francisco, California, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Renaud La Joie
- Memory and Aging Center, University of California, San Francisco, California, USA
| | - Suzanne Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Robert A Koeppe
- Division of Nuclear Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | |
Collapse
|
45
|
Dobyns L, Zhuang K, Baker SL, Mungas D, Jagust WJ, Harrison TM. An empirical measure of resilience explains individual differences in the effect of tau pathology on memory change in aging. NATURE AGING 2023; 3:229-237. [PMID: 37118122 PMCID: PMC10148952 DOI: 10.1038/s43587-022-00353-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/19/2022] [Indexed: 04/30/2023]
Abstract
Accurately measuring resilience to preclinical Alzheimer's disease (AD) pathology is essential to understanding an important source of variability in cognitive aging. In a cohort of cognitively normal older adults (n = 123, age 76.75 ± 6.15 yr), we built a multifactorial measure of resilience which moderated the effect of AD pathology on longitudinal cognitive change. Linear residuals-based measures of resilience, along with other proxy measures (education and vocabulary), were entered into a hierarchical partial least-squares path model defining a putative consolidated resilience latent factor (model goodness of fit = 0.77). In a set of validation analyses using linear mixed models predicting longitudinal cognitive change, there was a significant three-way interaction among consolidated resilience, tau and time on episodic memory change (P = 0.001) such that higher resilience blunted the effect of tau pathology on episodic memory decline. Interactions between consolidated resilience and amyloid pathology on non-memory cognition decline suggested that resilience moderates pathology-specific effects on different cognitive domains.
Collapse
Affiliation(s)
- Lindsey Dobyns
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dan Mungas
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
46
|
Mi Z, Abrahamson EE, Ryu AY, Malek-Ahmadi M, Kofler JK, Fish KN, Sweet RA, Villemagne VL, Schneider JA, Mufson EJ, Ikonomovic MD. Vesicular Glutamate Transporter Changes in the Cortical Default Mode Network During the Clinical and Pathological Progression of Alzheimer's Disease. J Alzheimers Dis 2023; 94:227-246. [PMID: 37212097 PMCID: PMC10994206 DOI: 10.3233/jad-221063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Altered glutamatergic neurotransmission may contribute to impaired default mode network (DMN) function in Alzheimer's disease (AD). Among the DMN hub regions, frontal cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD progression is not known. OBJECTIVE To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing synaptic terminals in PreC and FC across clinical stages of AD. METHODS Unbiased sampling and quantitative confocal immunofluorescence of cortical VGluT1- and VGluT2-immunoreactive profiles and spinophilin-labeled dendritic spines were performed in cases with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild-moderate AD (mAD), or moderate-severe AD (sAD). RESULTS In both regions, loss of VGluT1-positive profile density was seen in sAD compared to NCI, MCI, and mAD. VGluT1-positive profile intensity in PreC did not differ across groups, while in FC it was greater in MCI, mAD, and sAD compared to NCI. VGluT2 measures were stable in PreC while FC had greater VGluT2-positive profile density in MCI compared to sAD, but not NCI or mAD. Spinophilin measures in PreC were lower in mAD and sAD compared to NCI, while in FC they were stable across groups. Lower VGluT1 and spinophilin measures in PreC, but not FC, correlated with greater neuropathology. CONCLUSION Frank loss of VGluT1 in advanced AD relative to NCI occurs in both DMN regions. In FC, an upregulation of VGluT1 protein content in remaining glutamatergic terminals may contribute to this region's plasticity response in AD.
Collapse
Affiliation(s)
- Zhiping Mi
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA
Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Eric E. Abrahamson
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA
Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Angela Y. Ryu
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Michael Malek-Ahmadi
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- Department of Biomedical Informatics, University of Arizona
College of Medicine, Phoenix, AZ, USA
| | - Julia K. Kofler
- Department of Pathology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| | - Robert A. Sweet
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University
Medical Center, Chicago, IL, USA
| | - Elliott J. Mufson
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- Departments of Translational Neurosciences and Neurology,
Barrow Neurological Institute, Phoenix, AZ, USA
| | - Milos D. Ikonomovic
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA
Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Caravaglios G, Muscoso EG, Blandino V, Di Maria G, Gangitano M, Graziano F, Guajana F, Piccoli T. EEG Resting-State Functional Networks in Amnestic Mild Cognitive Impairment. Clin EEG Neurosci 2023; 54:36-50. [PMID: 35758261 DOI: 10.1177/15500594221110036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background. Alzheimer's cognitive-behavioral syndrome is the result of impaired connectivity between nerve cells, due to misfolded proteins, which accumulate and disrupt specific brain networks. Electroencephalography, because of its excellent temporal resolution, is an optimal approach for assessing the communication between functionally related brain regions. Objective. To detect and compare EEG resting-state networks (RSNs) in patients with amnesic mild cognitive impairment (aMCI), and healthy elderly (HE). Methods. We recruited 125 aMCI patients and 70 healthy elderly subjects. One hundred and twenty seconds of artifact-free EEG data were selected and compared between patients with aMCI and HE. We applied standard low-resolution brain electromagnetic tomography (sLORETA)-independent component analysis (ICA) to assess resting-state networks. Each network consisted of a set of images, one for each frequency (delta, theta, alpha1/2, beta1/2). Results. The functional ICA analysis revealed 17 networks common to groups. The statistical procedure demonstrated that aMCI used some networks differently than HE. The most relevant findings were as follows. Amnesic-MCI had: i) increased delta/beta activity in the superior frontal gyrus and decreased alpha1 activity in the paracentral lobule (ie, default mode network); ii) greater delta/theta/alpha/beta in the superior frontal gyrus (i.e, attention network); iii) lower alpha in the left superior parietal lobe, as well as a lower delta/theta and beta, respectively in post-central, and in superior frontal gyrus(ie, attention network). Conclusions. Our study confirms sLORETA-ICA method is effective in detecting functional resting-state networks, as well as between-groups connectivity differences. The findings provide support to the Alzheimer's network disconnection hypothesis.
Collapse
Affiliation(s)
- G Caravaglios
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - E G Muscoso
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - V Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), 18998University of Palermo, Palermo, Italy
| | - G Di Maria
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - M Gangitano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), 18998University of Palermo, Palermo, Italy
| | - F Graziano
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - F Guajana
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - T Piccoli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), 18998University of Palermo, Palermo, Italy
| |
Collapse
|
48
|
Iacobelli P. Circadian dysregulation and Alzheimer’s disease: A comprehensive review. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Alzheimer’s disease (AD), the foremost variant of dementia, has been associated with a menagerie of risk factors, many of which are considered to be modifiable. Among these modifiable risk factors is circadian rhythm, the chronobiological system that regulates sleep‐wake cycles, food consumption timing, hydration timing, and immune responses amongst many other necessary physiological processes. Circadian rhythm at the level of the suprachiasmatic nucleus (SCN), is tightly regulated in the human body by a host of biomolecular substances, principally the hormones melatonin, cortisol, and serotonin. In addition, photic information projected along afferent pathways to the SCN and peripheral oscillators regulates the synthesis of these hormones and mediates the manner in which they act on the SCN and its substructures. Dysregulation of this cycle, whether induced by environmental changes involving irregular exposure to light, or through endogenous pathology, will have a negative impact on immune system optimization and will heighten the deposition of Aβ and the hyperphosphorylation of the tau protein. Given these correlations, it appears that there is a physiologic association between circadian rhythm dysregulation and AD. This review will explore the physiology of circadian dysregulation in the AD brain, and will propose a basic model for its role in AD‐typical pathology, derived from the literature compiled and referenced throughout.
Collapse
Affiliation(s)
- Peter Iacobelli
- Department of Arts and Sciences, University of South Carolina, Columbia, USA
| |
Collapse
|
49
|
Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Differences in resting state functional connectivity underlie visuomotor performance declines in older adults with a genetic risk (APOE ε4) for Alzheimer’s disease. Front Aging Neurosci 2022; 14:1054523. [DOI: 10.3389/fnagi.2022.1054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
IntroductionNon-standard visuomotor integration requires the interaction of large networks in the brain. Previous findings have shown that non-standard visuomotor performance is impaired in individuals with specific dementia risk factors (family history of dementia and presence of the APOE ε4 allele) in advance of any cognitive impairments. These findings suggest that visuomotor impairments are associated with early dementia-related brain changes. The current study examined the underlying resting state functional connectivity (RSFC) associated with impaired non-standard visuomotor performance, as well as the impacts of dementia family history, sex, and APOE status.MethodsCognitively healthy older adults (n = 48) were tested on four visuomotor tasks where reach and gaze were increasingly spatially dissociated. Participants who had a family history of dementia or the APOE ε4 allele were considered to be at an increased risk for AD. To quantify RSFC within networks of interest, an EPI sequence sensitive to BOLD contrast was collected. The networks of interest were the default mode network (DMN), somatomotor network (SMN), dorsal attention network (DAN), ventral attention network (VAN), and frontoparietal control network (FPN).ResultsIndividuals with the ε4 allele showed abnormalities in RSFC between posterior DMN nodes that predicted poorer non-standard visuomotor performance. Specifically, multiple linear regression analyses revealed lower RSFC between the precuneus/posterior cingulate cortex and the left inferior parietal lobule as well as the left parahippocampal cortex. Presence of the APOE ε4 allele also modified the relationship between mean DAN RSFC and visuomotor control, where lower mean RSFC in the DAN predicted worse non-standard visuomotor performance only in APOE ε4 carriers. There were otherwise no effects of family history, APOE ε4 status, or sex on the relationship between RSFC and visuomotor performance for any of the other resting networks.ConclusionThe preliminary findings provide insight into the impact of APOE ε4-related genetic risk on neural networks underlying complex visuomotor transformations, and demonstrate that the non-standard visuomotor task paradigm discussed in this study may be used as a non-invasive, easily accessible assessment tool for dementia risk.
Collapse
|
50
|
González-López M, Gonzalez-Moreira E, Areces-González A, Paz-Linares D, Fernández T. Who's driving? The default mode network in healthy elderly individuals at risk of cognitive decline. Front Neurol 2022; 13:1009574. [PMID: 36530633 PMCID: PMC9749402 DOI: 10.3389/fneur.2022.1009574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2024] Open
Abstract
Introduction Age is the main risk factor for the development of neurocognitive disorders, with Alzheimer's disease being the most common. Its physiopathological features may develop decades before the onset of clinical symptoms. Quantitative electroencephalography (qEEG) is a promising and cost-effective tool for the prediction of cognitive decline in healthy older individuals that exhibit an excess of theta activity. The aim of the present study was to evaluate the feasibility of brain connectivity variable resolution electromagnetic tomography (BC-VARETA), a novel source localization algorithm, as a potential tool to assess brain connectivity with 19-channel recordings, which are common in clinical practice. Methods We explored differences in terms of functional connectivity among the nodes of the default mode network between two groups of healthy older participants, one of which exhibited an EEG marker of risk for cognitive decline. Results The risk group exhibited increased levels of delta, theta, and beta functional connectivity among nodes of the default mode network, as well as reversed directionality patterns of connectivity among nodes in every frequency band when compared to the control group. Discussion We propose that an ongoing pathological process may be underway in healthy elderly individuals with excess theta activity in their EEGs, which is further evidenced by changes in their connectivity patterns. BC-VARETA implemented on 19-channels EEG recordings appears to be a promising tool to detect dysfunctions at the connectivity level in clinical settings.
Collapse
Affiliation(s)
- Mauricio González-López
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Eduardo Gonzalez-Moreira
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Ariosky Areces-González
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Faculty of Technical Sciences, University of Pinar del Río “Hermanos Saiz Montes de Oca, ” Pinar del Rio, Cuba
| | - Deirel Paz-Linares
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Neuroinformatics Department, Cuban Neuroscience Center, Havana, Cuba
| | - Thalía Fernández
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|