1
|
Hunt CPJ, Moriarty N, van Deursen CBJ, Gantner CW, Thompson LH, Parish CL. Understanding and modeling regional specification of the human ganglionic eminence. Stem Cell Reports 2023; 18:654-671. [PMID: 36801004 PMCID: PMC10031306 DOI: 10.1016/j.stemcr.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Inhibitory neurons originating from the ventral forebrain are associated with several neurological conditions. Distinct ventral forebrain subpopulations are generated from topographically defined zones; lateral-, medial- and caudal ganglionic eminences (LGE, MGE and CGE), yet key specification factors often span across developing zones contributing to difficulty in defining unique LGE, MGE or CGE profiles. Here we use human pluripotent stem cell (hPSC) reporter lines (NKX2.1-GFP and MEIS2-mCherry) and manipulation of morphogen gradients to gain greater insight into regional specification of these distinct zones. We identified Sonic hedgehog (SHH)-WNT crosstalk in regulating LGE and MGE fate and uncovered a role for retinoic acid signaling in CGE development. Unraveling the influence of these signaling pathways permitted development of fully defined protocols that favored generation of the three GE domains. These findings provide insight into the context-dependent role of morphogens in human GE specification and are of value for in vitro disease modeling and advancement of new therapies.
Collapse
Affiliation(s)
- Cameron P J Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Coen B J van Deursen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Carlos W Gantner
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
2
|
Fontes-Dutra M, Righes Marafiga J, Santos-Terra J, Deckmann I, Brum Schwingel G, Rabelo B, Kazmierzak de Moraes R, Rockenbach M, Vendramin Pasquetti M, Gottfried C, Calcagnotto ME. GABAergic synaptic transmission and cortical oscillation patterns in the primary somatosensory area of a valproic acid rat model of autism spectrum disorder. Eur J Neurosci 2023; 57:527-546. [PMID: 36504470 DOI: 10.1111/ejn.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social communication and interaction associated with repetitive or stereotyped behaviour. Prenatal valproic acid (VPA) exposure in rodents is a commonly used model of ASD. Resveratrol (RSV) has been shown to prevent interneuronal and behavioural impairments in the VPA model. We investigated the effects of prenatal VPA exposure and RSV on the GABAergic synaptic transmission, brain oscillations and on the genic expression of interneuron-associated transcription factor LHX6 in the primary somatosensory area (PSSA). Prenatal VPA exposure decreased the sIPSC and mIPSC frequencies and the sIPSC decay kinetics onto layers 4/5 pyramidal cells of PSSA. About 40% of VPA animals exhibited absence-like spike-wave discharge (SWD) events associated with behaviour arrest and increased power spectrum density of delta, beta and gamma cortical oscillations. VPA animals had reduced LHX6 expression in PSSA, but VPA animals treated with RSV had no changes on synaptic inhibition or LHX6 expression in the PSSA. SWD events associated with behaviour arrest and the abnormal increment of cortical oscillations were also absent in VPA animals treated with RSV. These findings provide new venues to investigate the role of both RSV and VPA in the pathophysiology of ASD and highlight the VPA animal model as an interesting tool to investigate pathways related to the aetiology and possible future therapies to this neuropsychiatric disorder.
Collapse
Affiliation(s)
- Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Joseane Righes Marafiga
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Bruna Rabelo
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rafael Kazmierzak de Moraes
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marília Rockenbach
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mayara Vendramin Pasquetti
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Wang M, Yang Y, Xu Y. Brain nuclear receptors and cardiovascular function. Cell Biosci 2023; 13:14. [PMID: 36670468 PMCID: PMC9854230 DOI: 10.1186/s13578-023-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Brain-heart interaction has raised up increasing attentions. Nuclear receptors (NRs) are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of cardiovascular diseases (CVDs), including hypertension, heart failure, atherosclerosis, etc. In this review, we will elaborate recent findings that have established the physiological relevance of brain NRs in the context of cardiovascular function. In addition, we will discuss the currently available evidence regarding the distinct neuronal populations that respond to brain NRs in the cardiovascular control. These findings suggest connections between cardiac control and brain dynamics through NR signaling, which may lead to novel tools for the treatment of pathological changes in the CVDs.
Collapse
Affiliation(s)
- Mengjie Wang
- grid.508989.50000 0004 6410 7501Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yongjie Yang
- grid.508989.50000 0004 6410 7501Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yong Xu
- grid.508989.50000 0004 6410 7501Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
4
|
Joung J, Ma S, Tay T, Geiger-Schuller KR, Kirchgatterer PC, Verdine VK, Guo B, Arias-Garcia MA, Allen WE, Singh A, Kuksenko O, Abudayyeh OO, Gootenberg JS, Fu Z, Macrae RK, Buenrostro JD, Regev A, Zhang F. A transcription factor atlas of directed differentiation. Cell 2023; 186:209-229.e26. [PMID: 36608654 PMCID: PMC10344468 DOI: 10.1016/j.cell.2022.11.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.
Collapse
Affiliation(s)
- Julia Joung
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Sai Ma
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tristan Tay
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn R Geiger-Schuller
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paul C Kirchgatterer
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Vanessa K Verdine
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Baolin Guo
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mario A Arias-Garcia
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William E Allen
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA; Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Ankita Singh
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Olena Kuksenko
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Omar O Abudayyeh
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Jonathan S Gootenberg
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Zhanyan Fu
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rhiannon K Macrae
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Feng Zhang
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Giffin-Rao Y, Sheng J, Strand B, Xu K, Huang L, Medo M, Risgaard KA, Dantinne S, Mohan S, Keshan A, Daley RA, Levesque B, Amundson L, Reese R, Sousa AMM, Tao Y, Wang D, Zhang SC, Bhattacharyya A. Altered patterning of trisomy 21 interneuron progenitors. Stem Cell Reports 2022; 17:1366-1379. [PMID: 35623352 PMCID: PMC9214050 DOI: 10.1016/j.stemcr.2022.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with Down syndrome (DS; Ts21), the most common genetic cause of intellectual disability, have smaller brains that reflect fewer neurons at pre- and post-natal stages, implicating impaired neurogenesis during development. Our stereological analysis of adult DS cortex indicates a reduction of calretinin-expressing interneurons. Using Ts21 human induced pluripotent stem cells (iPSCs) and isogenic controls, we find that Ts21 progenitors generate fewer COUP-TFII+ progenitors with reduced proliferation. Single-cell RNA sequencing of Ts21 progenitors confirms the altered specification of progenitor subpopulations and identifies reduced WNT signaling. Activation of WNT signaling partially restores the COUP-TFII+ progenitor population in Ts21, suggesting that altered WNT signaling contributes to the defective development of cortical interneurons in DS.
Collapse
Affiliation(s)
| | - Jie Sheng
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bennett Strand
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ke Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Leslie Huang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Margaret Medo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Samuel Dantinne
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sruti Mohan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aratrika Keshan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Roger A Daley
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bradley Levesque
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lindsey Amundson
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca Reese
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yunlong Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Tocco C, Bertacchi M, Studer M. Structural and Functional Aspects of the Neurodevelopmental Gene NR2F1: From Animal Models to Human Pathology. Front Mol Neurosci 2022; 14:767965. [PMID: 34975398 PMCID: PMC8715095 DOI: 10.3389/fnmol.2021.767965] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.
Collapse
Affiliation(s)
- Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
7
|
Ding SL, Royall JJ, Lesnar P, Facer BAC, Smith KA, Wei Y, Brouner K, Dalley RA, Dee N, Dolbeare TA, Ebbert A, Glass IA, Keller NH, Lee F, Lemon TA, Nyhus J, Pendergraft J, Reid R, Sarreal M, Shapovalova NV, Szafer A, Phillips JW, Sunkin SM, Hohmann JG, Jones AR, Hawrylycz MJ, Hof PR, Ng L, Bernard A, Lein ES. Cellular resolution anatomical and molecular atlases for prenatal human brains. J Comp Neurol 2021; 530:6-503. [PMID: 34525221 PMCID: PMC8716522 DOI: 10.1002/cne.25243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Increasing interest in studies of prenatal human brain development, particularly using new single‐cell genomics and anatomical technologies to create cell atlases, creates a strong need for accurate and detailed anatomical reference atlases. In this study, we present two cellular‐resolution digital anatomical atlases for prenatal human brain at postconceptional weeks (PCW) 15 and 21. Both atlases were annotated on sequential Nissl‐stained sections covering brain‐wide structures on the basis of combined analysis of cytoarchitecture, acetylcholinesterase staining, and an extensive marker gene expression dataset. This high information content dataset allowed reliable and accurate demarcation of developing cortical and subcortical structures and their subdivisions. Furthermore, using the anatomical atlases as a guide, spatial expression of 37 and 5 genes from the brains, respectively, at PCW 15 and 21 was annotated, illustrating reliable marker genes for many developing brain structures. Finally, the present study uncovered several novel developmental features, such as the lack of an outer subventricular zone in the hippocampal formation and entorhinal cortex, and the apparent extension of both cortical (excitatory) and subcortical (inhibitory) progenitors into the prenatal olfactory bulb. These comprehensive atlases provide useful tools for visualization, segmentation, targeting, imaging, and interpretation of brain structures of prenatal human brain, and for guiding and interpreting the next generation of cell census and connectome studies.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Yina Wei
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Amanda Ebbert
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Ian A Glass
- Department of Pediatrics and Medicine, University of Washington School of Medicine, Seattle, WA, 98105
| | - Nika H Keller
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Tracy A Lemon
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Robert Reid
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | | | - Allan R Jones
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 11029
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, 98109
| |
Collapse
|
8
|
The Importance of Studying Human Brain. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Due to its numerous distinctive functions and unique pathology, the human brain, or rather forebrain has been difficult to study in common animal models. Although many basic molecular and cellular events are conserved across species, human brain connectivity, pertinent especially to the cerebral cortex circuitry, is unique and demands extensive research. Despite a great advancement in functional imaging methods accomplished over the last two decades, many basic features of healthy and diseased human forebrain remain elusive. Here we address difficulties in anatomical studies of developing and adult human brain and indicate the new directions and challenges to be addressed in the future. We pay special attention to possibilities of translating animal brain research to human cases. We consider that, although animal experiments play a vital role in understanding fundamental molecular and cellular mechanisms behind brain function, understanding of higher brain functions (language, intelligence, memory) has to be based on understanding uniqueness of human circuitries. Furthermore, brain is the site of many human-specific diseases, such as multiple sclerosis, schizophrenia, and Alzheimer’s disease, for which only partial animal models exist. To study human brain, thus, remains irreplaceable in the quest for new therapeutic tools, as well as in understanding the essence of our being.
Collapse
|
9
|
Alzu'bi A, Clowry GJ. Multiple Origins of Secretagogin Expressing Cortical GABAergic Neuron Precursors in the Early Human Fetal Telencephalon. Front Neuroanat 2020; 14:61. [PMID: 32982702 PMCID: PMC7492523 DOI: 10.3389/fnana.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 01/31/2023] Open
Abstract
Secretagogin (SCGN) which acts as a calcium signaling sensor, has previously been shown to be expressed by a substantial population of cortical GABAergic neurons at mid-gestation in humans but not in mice. The present study traced SCGN expression in cortical GABAergic neurons in human fetal forebrain from earlier stages than previously studied. Multiple potential origins of SCGN-expressing neurons were identified in the caudal ganglionic eminence (CGE) lateral ganglionic eminence (LGE) septum and preoptic area; these cells largely co-expressed SP8 but not the medial ganglionic eminence marker LHX6. They followed various migration routes to reach their target regions in the neocortex, insular and olfactory cortex (OC) and olfactory bulbs. A robust increase in the number of SCGN-expressing GABAergic cortical neurons was observed in the midgestational period; 58% of DLX2+ neurons expressed SCGN in the cortical wall at 19 post-conceptional weeks (PCW), a higher proportion than expressed calretinin, a marker for GABAergic neurons of LGE/CGE origin. Furthermore, although most SCGN+ neurons co-expressed calretinin in the cortical plate (CP) and deeper layers, in the marginal zone (MZ) SCGN+ and calretinin+ cells formed separate populations. In the adult mouse, it has previously been shown that in the rostral migratory stream (RMS), SCGN, annexin V (ANXA5), and matrix metalloprotease 2 (MMP2) are co-expressed forming a functioning complex that exocytoses MMP2 in response to calcium. In the present study, ANXA5 showed widespread expression throughout the cortical wall, although MMP2 expression was very largely limited to the CP. We found co-expression of these proteins in some SCGN+ neurons in the subventricular zones (SVZ) suggesting a limited role for these cells in remodeling the extracellular matrix, perhaps during cell migration.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Polvani S, Pepe S, Milani S, Galli A. COUP-TFII in Health and Disease. Cells 2019; 9:E101. [PMID: 31906104 PMCID: PMC7016888 DOI: 10.3390/cells9010101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors (NRs) belong to a vast family of evolutionary conserved proteins acting as ligand-activated transcription factors. Functionally, NRs are essential in embryogenesis and organogenesis and in adulthood they are involved in almost every physiological and pathological process. Our knowledge of NRs action has greatly improved in recent years, demonstrating that both their expression and activity are tightly regulated by a network of signaling pathways, miRNA and reciprocal interactions. The Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII, NR2F2) is a NR classified as an orphan due to the lack of a known natural ligand. Although its expression peaks during development, and then decreases considerably, in adult tissues, COUP-TFII is an important regulator of differentiation and it is variably implicated in tissues homeostasis. As such, alterations of its expression or its transcriptional activity have been studied and linked to a spectrum of diseases in organs and tissues of different origins. Indeed, an altered COUP-TFII expression and activity may cause infertility, abnormality in the vascular system and metabolic diseases like diabetes. Moreover, COUP-TFII is actively investigated in cancer research but its role in tumor progression is yet to be fully understood. In this review, we summarize the current understanding of COUP-TFII in healthy and pathological conditions, proposing an updated and critical view of the many functions of this NR.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
- Department of Experimental and Clinical Medicine, University of Florence, largo Brambilla 50, 50139 Firenze, Italy
| | - Sara Pepe
- Istituto per la Ricerca, la Prevenzione e la rete Oncologica (ISPRO), viale Pieraccini 6, 50139 Firenze, Italy;
- Department of Medical Biotechnologies, University of Siena, via M. Bracci 16, 53100 Siena, Italy
| | - Stefano Milani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| |
Collapse
|
11
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
12
|
Raju CS, Spatazza J, Stanco A, Larimer P, Sorrells SF, Kelley KW, Nicholas CR, Paredes MF, Lui JH, Hasenstaub AR, Kriegstein AR, Alvarez-Buylla A, Rubenstein JL, Oldham MC. Secretagogin is Expressed by Developing Neocortical GABAergic Neurons in Humans but not Mice and Increases Neurite Arbor Size and Complexity. Cereb Cortex 2018; 28:1946-1958. [PMID: 28449024 PMCID: PMC6019052 DOI: 10.1093/cercor/bhx101] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/10/2017] [Indexed: 11/14/2022] Open
Abstract
The neocortex of primates, including humans, contains more abundant and diverse inhibitory neurons compared with rodents, but the molecular foundations of these observations are unknown. Through integrative gene coexpression analysis, we determined a consensus transcriptional profile of GABAergic neurons in mid-gestation human neocortex. By comparing this profile to genes expressed in GABAergic neurons purified from neonatal mouse neocortex, we identified conserved and distinct aspects of gene expression in these cells between the species. We show here that the calcium-binding protein secretagogin (SCGN) is robustly expressed by neocortical GABAergic neurons derived from caudal ganglionic eminences (CGE) and lateral ganglionic eminences during human but not mouse brain development. Through electrophysiological and morphometric analyses, we examined the effects of SCGN expression on GABAergic neuron function and form. Forced expression of SCGN in CGE-derived mouse GABAergic neurons significantly increased total neurite length and arbor complexity following transplantation into mouse neocortex, revealing a molecular pathway that contributes to morphological differences in these cells between rodents and primates.
Collapse
Affiliation(s)
- Chandrasekhar S Raju
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - Julien Spatazza
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Neurona Therapeutics, South San Francisco, CA, USA
| | - Amelia Stanco
- Department of Psychiatry, University of California, San Francisco, USA
- EntroGen, Woodland Hills, CA, USA
| | - Phillip Larimer
- Center for Integrative Neuroscience, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| | - Shawn F Sorrells
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - Kevin W Kelley
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - Cory R Nicholas
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
- Neurona Therapeutics, South San Francisco, CA, USA
| | - Mercedes F Paredes
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| | - Jan H Lui
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA, USA
| | - Andrea R Hasenstaub
- Center for Integrative Neuroscience, University of California, San Francisco, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California, San Francisco, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| |
Collapse
|
13
|
Bertacchi M, Parisot J, Studer M. The pleiotropic transcriptional regulator COUP-TFI plays multiple roles in neural development and disease. Brain Res 2018; 1705:75-94. [PMID: 29709504 DOI: 10.1016/j.brainres.2018.04.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
Abstract
Transcription factors are expressed in a dynamic fashion both in time and space during brain development, and exert their roles by activating a cascade of multiple target genes. This implies that understanding the precise function of a transcription factor becomes a challenging task. In this review, we will focus on COUP-TFI (or NR2F1), a nuclear receptor belonging to the superfamily of the steroid/thyroid hormone receptors, and considered to be one of the major transcriptional regulators orchestrating cortical arealization, cell-type specification and maturation. Recent data have unraveled the multi-faceted functions of COUP-TFI in the development of several mouse brain structures, including the neocortex, hippocampus and ganglionic eminences. Despite NR2F1 mutations and deletions in humans have been linked to a complex neurodevelopmental disease mainly associated to optic atrophy and intellectual disability, its role during the formation of the retina and optic nerve remains unclear. In light of its major influence in cortical development, we predict that its haploinsufficiency might be the cause of other cognitive diseases, not identified so far. Mouse models offer a unique opportunity of dissecting COUP-TFI function in different regions during brain assembly; hence, the importance of comparing and discussing common points linking mouse models to human patients' symptoms.
Collapse
Affiliation(s)
- Michele Bertacchi
- Université Côte d'Azur, CNRS, Inserm, iBV - Institut de Biologie Valrose, 06108 Nice, France.
| | - Josephine Parisot
- Université Côte d'Azur, CNRS, Inserm, iBV - Institut de Biologie Valrose, 06108 Nice, France
| | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, iBV - Institut de Biologie Valrose, 06108 Nice, France.
| |
Collapse
|
14
|
Alzu'bi A, Lindsay SJ, Harkin LF, McIntyre J, Lisgo SN, Clowry GJ. The Transcription Factors COUP-TFI and COUP-TFII have Distinct Roles in Arealisation and GABAergic Interneuron Specification in the Early Human Fetal Telencephalon. Cereb Cortex 2017; 27:4971-4987. [PMID: 28922831 PMCID: PMC5903418 DOI: 10.1093/cercor/bhx185] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
In human telencephalon at 8-12 postconceptional weeks, ribonucleic acid quantitative sequencing and immunohistochemistry revealed cortical chicken ovalbumin upstream promotor-transcription factor 1 (COUP-TFI) expression in a high ventro-posterior to low anterior gradient except for raised immunoreactivity in the anterior ventral pallium. Unlike in mouse, COUP-TFI and SP8 were extensively co-expressed in dorsal sensory neocortex and dorsal hippocampus whereas COUPTFI/COUPTFII co-expression defined ventral temporal cortex and ventral hippocampus. In the ganglionic eminences (GEs) COUP-TFI immunoreactivity demarcated the proliferative zones of caudal GE (CGE), dorsal medial GE (MGE), MGE/lateral GE (LGE) boundary, and ventral LGE whereas COUP-TFII was limited to ventral CGE and the MGE/LGE boundary. Co-labeling with gamma amino butyric acidergic interneuron markers revealed that COUP-TFI was expressed in subpopulations of either MGE-derived (SOX6+) or CGE-derived (calretinin+/SP8+) interneurons. COUP-TFII was mainly confined to CGE-derived interneurons. Twice as many GAD67+ cortical cells co-labeled for COUP-TFI than for COUP-TFII. A fifth of COUP-TFI cells also co-expressed COUP-TFII, and cells expressing either transcription factor followed posterior or anterio-lateral pathways into the cortex, therefore, a segregation of migration pathways according to COUP-TF expression as proposed in mouse was not observed. In cultures differentiated from isolated human cortical progenitors, many cells expressed either COUP-TF and 30% also co-expressed GABA, however no cells expressed NKX2.1. This suggests interneurons could be generated intracortically from progenitors expressing either COUP-TF.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Susan J Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Lauren F Harkin
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
- Present address: School of Healthcare Science, Manchester Metropolitan University, UK
| | - Jack McIntyre
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Steven N Lisgo
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
15
|
Laclef C, Métin C. Conserved rules in embryonic development of cortical interneurons. Semin Cell Dev Biol 2017; 76:86-100. [PMID: 28918121 DOI: 10.1016/j.semcdb.2017.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022]
Abstract
This review will focus on early aspects of cortical interneurons (cIN) development from specification to migration and final positioning in the human cerebral cortex. These mechanisms have been largely studied in the mouse model, which provides unique possibilities of genetic analysis, essential to dissect the molecular and cellular events involved in cortical development. An important goal here is to discuss the conservation and the potential divergence of these mechanisms, with a particular interest for the situation in the human embryo. We will thus cover recent works, but also revisit older studies in the light of recent data to better understand the developmental mechanisms underlying cIN differentiation in human. Because cIN are implicated in severe developmental disorders, understanding the molecular and cellular mechanisms controlling their differentiation might clarify some causes and potential therapeutic approaches to these important clinical conditions.
Collapse
Affiliation(s)
- Christine Laclef
- INSERM, UMR-S839, Paris, France; Sorbonne Universités, UPMC University Paris 6, UMR-S839, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Christine Métin
- INSERM, UMR-S839, Paris, France; Sorbonne Universités, UPMC University Paris 6, UMR-S839, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
16
|
Charting the protomap of the human telencephalon. Semin Cell Dev Biol 2017; 76:3-14. [PMID: 28834762 DOI: 10.1016/j.semcdb.2017.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/15/2017] [Indexed: 12/16/2022]
Abstract
The cerebral cortex is divided stereotypically into a number of functionally distinct areas. According to the protomap hypothesis formulated by Rakic neural progenitors in the ventricular zone form a mosaic of proliferative units that provide a primordial species-specific cortical map. Positional information of newborn neurons is maintained during their migration to the overlying cortical plate. Much evidence has been found to support this hypothesis from studies of primary cortical areas in mouse models in particular. Differential expansion of cortical areas and the introduction of new functional modules during evolution might be the result of changes in the progenitor cells. The human cerebral cortex shows a wide divergence from the mouse containing a much higher proportion of association cortex and a more complicated regionalised repertoire of neuron sub-types. To what extent does the protomap hypothesis hold true for the primate brain? This review summarises a growing number of studies exploring arealised gene expression in the early developing human telencephalon. The evidence so far is that the human and mouse brain do share fundamental mechanisms of areal specification, however there are subtle differences which could lead us to a better understanding of cortical evolution and the origins of neurodevelopmental diseases.
Collapse
|
17
|
Furchtgott LA, Melton S, Menon V, Ramanathan S. Discovering sparse transcription factor codes for cell states and state transitions during development. eLife 2017; 6:e20488. [PMID: 28296636 PMCID: PMC5352226 DOI: 10.7554/elife.20488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
Computational analysis of gene expression to determine both the sequence of lineage choices made by multipotent cells and to identify the genes influencing these decisions is challenging. Here we discover a pattern in the expression levels of a sparse subset of genes among cell types in B- and T-cell developmental lineages that correlates with developmental topologies. We develop a statistical framework using this pattern to simultaneously infer lineage transitions and the genes that determine these relationships. We use this technique to reconstruct the early hematopoietic and intestinal developmental trees. We extend this framework to analyze single-cell RNA-seq data from early human cortical development, inferring a neocortical-hindbrain split in early progenitor cells and the key genes that could control this lineage decision. Our work allows us to simultaneously infer both the identity and lineage of cell types as well as a small set of key genes whose expression patterns reflect these relationships.
Collapse
Affiliation(s)
- Leon A Furchtgott
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
- Biophysics Program, Harvard University, Cambridge, United States
| | - Samuel Melton
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, United States
| | - Vilas Menon
- Allen Institute for Brain Science, Seattle, United States
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Sharad Ramanathan
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, United States
- Allen Institute for Brain Science, Seattle, United States
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
- School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| |
Collapse
|
18
|
Direct Conversion of Human Fibroblasts into Neural Progenitors Using Transcription Factors Enriched in Human ESC-Derived Neural Progenitors. Stem Cell Reports 2016; 8:54-68. [PMID: 27940274 PMCID: PMC5233298 DOI: 10.1016/j.stemcr.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 01/22/2023] Open
Abstract
Early human embryonic stem cell (hESC)-derived neural populations consist of various embryonic neural progenitors (ENPs) with broad neural developmental propensity. Here, we sought to directly convert human somatic cells into ENP-like phenotypes using hESC-ENP-enriched neural transcription factors (TFs). We demonstrated that induced ENP could be efficiently converted from human fibroblasts using two TF combinations. The iENPs exhibit cellular and molecular characteristics resembling hESC-ENPs and can give rise to astrocytes, oligodendrocytes, and functional neuronal subtypes of the central and peripheral nervous system. Nevertheless, our analyses further revealed that these two iENP populations differ in terms of their proliferation ability and neuronal propensity. Finally, we demonstrated that the iENPs can be induced from fibroblasts from patients with Huntington's disease and Alzheimer’s disease, and the diseased iENPs and their neuronal derivatives recapitulated the hallmark pathological features of the diseases. Collectively, our results point toward a promising strategy for generating iENPs from somatic cells for disease modeling and future clinical intervention. iENPs can be converted from fibroblasts using hESC-ENP enriched factors iENPs exhibit cellular and molecular characteristics resembling hESC-ENPs iENPs induced by different TF combinations exhibit different neural propensity iENP and their neuronal derivatives recapitulated HD and AD phenotypes
Collapse
|
19
|
Alzu'bi A, Lindsay S, Kerwin J, Looi SJ, Khalil F, Clowry GJ. Distinct cortical and sub-cortical neurogenic domains for GABAergic interneuron precursor transcription factors NKX2.1, OLIG2 and COUP-TFII in early fetal human telencephalon. Brain Struct Funct 2016; 222:2309-2328. [PMID: 27905023 PMCID: PMC5504260 DOI: 10.1007/s00429-016-1343-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023]
Abstract
The extent of similarities and differences between cortical GABAergic interneuron generation in rodent and primate telencephalon remains contentious. We examined expression of three interneuron precursor transcription factors, alongside other markers, using immunohistochemistry on 8–12 post-conceptional weeks (PCW) human telencephalon sections. NKX2.1, OLIG2, and COUP-TFII expression occupied distinct (although overlapping) neurogenic domains which extended into the cortex and revealed three CGE compartments: lateral, medial, and ventral. NKX2.1 expression was very largely confined to the MGE, medial CGE, and ventral septum confirming that, at this developmental stage, interneuron generation from NKX2.1+ precursors closely resembles the process observed in rodents. OLIG2 immunoreactivity was observed in GABAergic cells of the proliferative zones of the MGE and septum, but not necessarily co-expressed with NKX2.1, and OLIG2 expression was also extensively seen in the LGE, CGE, and cortex. At 8 PCW, OLIG2+ cells were only present in the medial and anterior cortical wall suggesting a migratory pathway for interneuron precursors via the septum into the medial cortex. By 12 PCW, OLIG2+ cells were present throughout the cortex and many were actively dividing but without co-expressing cortical progenitor markers. Dividing COUP-TFII+ progenitor cells were localized to ventral CGE as previously described but were also numerous in adjacent ventral cortex; in both the cases, COUP-TFII was co-expressed with PAX6 in proliferative zones and TBR1 or calretinin in post-mitotic cortical neurons. Thus COUP-TFII+ progenitors gave rise to pyramidal cells, but also interneurons which not only migrated posteriorly into the cortex from ventral CGE but also anteriorly via the LGE.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne, NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Janet Kerwin
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne, NE1 3BZ, UK
| | - Shi Jie Looi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne, NE1 3BZ, UK
| | - Fareha Khalil
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne, NE1 3BZ, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
20
|
Induction of specific neuron types by overexpression of single transcription factors. In Vitro Cell Dev Biol Anim 2016; 52:961-973. [PMID: 27251161 DOI: 10.1007/s11626-016-0056-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.
Collapse
|
21
|
Touzot A, Ruiz-Reig N, Vitalis T, Studer M. Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. Development 2016; 143:1753-65. [DOI: 10.1242/dev.131102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/17/2016] [Indexed: 01/15/2023]
Abstract
GABAergic interneurons are highly heterogenous and originate in the subpallium mainly from the medial (MGE) and caudal (CGE) ganglionic eminences according to a precise temporal sequence. While MGE-derived cells disperse dorsally and migrate towards all regions of the cortex, little is known on how CGE-derived cells reach their targets during development. Here, we unravel the existence of two novel CGE caudo-rostral migratory streams, one located laterally (LMS) and the other one more medially (MMS) that, together with the well-known caudal migratory stream (CMS), contribute to populate the neocortex, hippocampus and amygdala. These paths appear in a precise temporal sequence and express a distinct combination of transcription factors, such as Sp8, Prox1, COUP-TFI and COUP-TFII. By inactivating COUP-TFI in developing interneurons, the lateral and medial streams are perturbed and expression of Sp8 and COUP-TFII affected. As a consequence, adult mutant neocortices have laminar-specific alterations of distinct cortical interneuron subtypes. Overall, we propose that the existence of spatially and temporally regulated migratory paths in the subpallium contributes to the laminar distribution and specification of distinct interneuron subpopulations in the adult brain.
Collapse
Affiliation(s)
- Audrey Touzot
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, 06100 Nice, France
- iBV, Institut de Biologie Valrose, Univ. Sophia Antipolis, Bâtiment Sciences Naturelles; UFR Sciences; Parc Valrose, 28, avenue Valrose, 06108 Nice Cedex 2, France
| | - Nuria Ruiz-Reig
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, 06100 Nice, France
- iBV, Institut de Biologie Valrose, Univ. Sophia Antipolis, Bâtiment Sciences Naturelles; UFR Sciences; Parc Valrose, 28, avenue Valrose, 06108 Nice Cedex 2, France
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Cientificas-Universidad Miguel Hernandez, CSIC-UMH), 03550 Alicante, Spain
| | - Tania Vitalis
- Inserm U1141 PROTECT, Hôpital Robert-Debré, 75019 Paris, France
| | - Michèle Studer
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, 06100 Nice, France
- iBV, Institut de Biologie Valrose, Univ. Sophia Antipolis, Bâtiment Sciences Naturelles; UFR Sciences; Parc Valrose, 28, avenue Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
22
|
Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A. Brain size and limits to adult neurogenesis. J Comp Neurol 2015; 524:646-64. [PMID: 26417888 DOI: 10.1002/cne.23896] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022]
Abstract
The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
| | - Shawn F Sorrells
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA.,University of California, San Francisco, CA, 94143, USA
| | - Jose M Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, 46980 Valencia, Spain
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
23
|
The COUP-TFII/Neuropilin-2 is a molecular switch steering diencephalon-derived GABAergic neurons in the developing mouse brain. Proc Natl Acad Sci U S A 2015; 112:E4985-94. [PMID: 26305926 DOI: 10.1073/pnas.1420701112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The preoptic area (POa) of the rostral diencephalon supplies the neocortex and the amygdala with GABAergic neurons in the developing mouse brain. However, the molecular mechanisms that determine the pathway and destinations of POa-derived neurons have not yet been identified. Here we show that Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII)-induced expression of Neuropilin-2 (Nrp2) and its down-regulation control the destination of POa-derived GABAergic neurons. Initially, a majority of the POa-derived migrating neurons express COUP-TFII and form a caudal migratory stream toward the caudal subpallium. When a subpopulation of cells steers toward the neocortex, they exhibit decreased expression of COUP-TFII and Nrp2. The present findings show that suppression of COUP-TFII/Nrp2 changed the destination of the cells into the neocortex, whereas overexpression of COUP-TFII/Nrp2 caused cells to end up in the medial part of the amygdala. Taken together, these results reveal that COUP-TFII/Nrp2 is a molecular switch determining the pathway and destination of migrating GABAergic neurons born in the POa.
Collapse
|
24
|
Johnson JL, Wittgenstein H, Mitchell SE, Hyma KE, Temnykh SV, Kharlamova AV, Gulevich RG, Vladimirova AV, Fong HWF, Acland GM, Trut LN, Kukekova AV. Genotyping-By-Sequencing (GBS) Detects Genetic Structure and Confirms Behavioral QTL in Tame and Aggressive Foxes (Vulpes vulpes). PLoS One 2015; 10:e0127013. [PMID: 26061395 PMCID: PMC4465646 DOI: 10.1371/journal.pone.0127013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.
Collapse
Affiliation(s)
- Jennifer L. Johnson
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Helena Wittgenstein
- Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, United States of America
| | - Sharon E. Mitchell
- Institute of Biotechnology, Genomic Diversity Facility, Cornell University, Ithaca, NY, 14853, United States of America
| | - Katie E. Hyma
- Institute of Biotechnology, Genomic Diversity Facility, Cornell University, Ithaca, NY, 14853, United States of America
| | - Svetlana V. Temnykh
- Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, United States of America
| | - Anastasiya V. Kharlamova
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Rimma G. Gulevich
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | - Hiu Wa Flora Fong
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Gregory M. Acland
- Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, United States of America
| | - Lyudmila N. Trut
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Anna V. Kukekova
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- * E-mail:
| |
Collapse
|
25
|
Arshad A, Vose LR, Vinukonda G, Hu F, Yoshikawa K, Csiszar A, Brumberg JC, Ballabh P. Extended Production of Cortical Interneurons into the Third Trimester of Human Gestation. Cereb Cortex 2015; 26:2242-2256. [PMID: 25882040 DOI: 10.1093/cercor/bhv074] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In humans, the developmental origins of interneurons in the third trimester of pregnancy and the timing of completion of interneuron neurogenesis have remained unknown. Here, we show that the total and cycling Nkx2.1(+)and Dlx2(+)interneuron progenitors as well as Sox2(+)precursor cells were higher in density in the medial ganglionic eminence (MGE) compared with the lateral ganglionic eminence and cortical ventricular/subventricular zone (VZ/SVZ) of 16-35 gw subjects. The proliferation of these progenitors reduced as a function of gestational age, almost terminating by 35 gw. Proliferating Dlx2(+)cells were higher in density in the caudal ganglionic eminence (CGE) compared with the MGE, and persisted beyond 35 gw. Consistent with these findings, Sox2, Nkx2.1, Dlx2, and Mash1 protein levels were higher in the ganglionic eminences relative to the cortical VZ/SVZ. The density of gamma-aminobutyric acid-positive (GABA(+)) interneurons was higher in the cortical VZ/SVZ relative to MGE, but Nkx2.1 or Dlx2-expressing GABA(+)cells were more dense in the MGE compared with the cortical VZ/SVZ. The data suggest that the MGE and CGE are the primary source of cortical interneurons. Moreover, their generation continues nearly to the end of pregnancy, which may predispose premature infants to neurobehavioral disorders.
Collapse
Affiliation(s)
| | - Linnea R Vose
- Department of Pediatrics.,Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Govindaiah Vinukonda
- Department of Pediatrics.,Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | | | - Kazuaki Yoshikawa
- Institute for Protein Research Osaka University Yamadaoka, Osaka, Japan
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center of Aging, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Joshua C Brumberg
- Psychology and Biology PhD Programs, The Graduate Center, City University of New York, New York, NY, USA.,Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Praveen Ballabh
- Department of Pediatrics.,Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| |
Collapse
|
26
|
Varga C, Tamas G, Barzo P, Olah S, Somogyi P. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex. Cereb Cortex 2015; 25:4430-49. [PMID: 25787832 PMCID: PMC4768361 DOI: 10.1093/cercor/bhv045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells.
Collapse
Affiliation(s)
- Csaba Varga
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Current address: Szentágothai Research Centre, Department of Physiology, University of Pécs, Pécs, Hungary
| | - Gabor Tamas
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Szabolcs Olah
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Peter Somogyi
- MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
27
|
Al-Jaberi N, Lindsay S, Sarma S, Bayatti N, Clowry GJ. The early fetal development of human neocortical GABAergic interneurons. Cereb Cortex 2015; 25:631-45. [PMID: 24047602 PMCID: PMC4318531 DOI: 10.1093/cercor/bht254] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GABAergic interneurons are crucial to controlling the excitability and responsiveness of cortical circuitry. Their developmental origin may differ between rodents and human. We have demonstrated the expression of 12 GABAergic interneuron-associated genes in samples from human neocortex by quantitative rtPCR from 8 to 12 postconceptional weeks (PCW) and shown a significant anterior to posterior expression gradient, confirmed by in situ hybridization or immunohistochemistry for GAD1 and 2, DLX1, 2, and 5, ASCL1, OLIG2, and CALB2. Following cortical plate (CP) formation from 8 to 9 PCW, a proportion of cells were strongly stained for all these markers in the CP and presubplate. ASCL1 and DLX2 maintained high expression in the proliferative zones and showed extensive immunofluorescent double-labeling with the cell division marker Ki-67. CALB2-positive cells increased steadily in the SVZ/VZ from 10 PCW but were not double-labeled with Ki-67. Expression of GABAergic genes was generally higher in the dorsal pallium than in the ganglionic eminences, with lower expression in the intervening ventral pallium. It is widely accepted that the cortical proliferative zones may generate CALB2-positive interneurons from mid-gestation; we now show that the anterior neocortical proliferative layers especially may be a rich source of interneurons in the early neocortex.
Collapse
Affiliation(s)
- Nahidh Al-Jaberi
- Institute of Neuroscience Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Subrot Sarma
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Nadhim Bayatti
- Institute of Neuroscience Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK Current address: Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | | |
Collapse
|
28
|
Radonjić NV, Ayoub AE, Memi F, Yu X, Maroof A, Jakovcevski I, Anderson SA, Rakic P, Zecevic N. Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche. Cell Rep 2014; 9:2139-51. [PMID: 25497090 PMCID: PMC4306459 DOI: 10.1016/j.celrep.2014.11.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/16/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022] Open
Abstract
Evolutionary elaboration of tissues starts with changes in the genome and location of the stem cells. For example, GABAergic interneurons of the mammalian neocortex are generated in the ventral telencephalon and migrate tangentially to the neocortex, in contrast to the projection neurons originating in the ventricular/subventricular zone (VZ/SVZ) of the dorsal telencephalon. In human and nonhuman primates, evidence suggests that an additional subset of neocortical GABAergic interneurons is generated in the cortical VZ and a proliferative niche, the outer SVZ. The origin, magnitude, and significance of this species-specific difference are not known. We use a battery of assays applicable to the human, monkey, and mouse organotypic cultures and supravital tissue to identify neuronal progenitors in the cortical VZ/SVZ niche that produce a subset of GABAergic interneurons. Our findings suggest that these progenitors constitute an evolutionary novelty contributing to the elaboration of higher cognitive functions in primates.
Collapse
Affiliation(s)
- Nevena V Radonjić
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA; Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Albert E Ayoub
- Department of Neurobiology, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT 06510, USA
| | - Fani Memi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Xiaojing Yu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Asif Maroof
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Igor Jakovcevski
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA; Experimental Neurophysiology, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
| | - Stewart A Anderson
- The Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA
| | - Pasko Rakic
- Department of Neurobiology, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT 06510, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
29
|
Shoemaker LD, Fuentes LF, Santiago SM, Allen BM, Cook DJ, Steinberg GK, Chang SD. Human brain arteriovenous malformations express lymphatic-associated genes. Ann Clin Transl Neurol 2014; 1:982-95. [PMID: 25574473 PMCID: PMC4284124 DOI: 10.1002/acn3.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022] Open
Abstract
Objective Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may have a role in AVM disease biology. Methods We examined 40 human brain AVMs by immunohistochemistry (IHC) and qRT-PCR for the expression of COUP-TFII as well as other genes involved in venous and lymphatic development, maintenance, and signaling. We also examined proliferation and EC tube formation with human umbilical ECs (HUVEC) following COUP-TFII overexpression. Results We report that AVMs expressed COUP-TFII, SOX18, PROX1, NFATC1, FOXC2, TBX1, LYVE1, Podoplanin, and vascular endothelial growth factor (VEGF)-C, contained Ki67-positive cells and heterogeneously expressed genes involved in Hedgehog, Notch, Wnt, and VEGF signaling pathways. Overexpression of COUP-TFII alone in vitro resulted in increased EC proliferation and dilated tubes in an EC tube formation assay in HUVEC. Interpretation This suggests AVM ECs are further losing their arterial/venous specificity and acquiring a partial lymphatic molecular phenotype. There was significant correlation of gene expression with presence of clinical edema and acute hemorrhage. While the precise role of these genes in the formation, stabilization, growth and risk of hemorrhage of AVMs remains unclear, these findings have potentially important implications for patient management and treatment choice, and opens new avenues for future work on AVM disease mechanisms.
Collapse
Affiliation(s)
- Lorelei D Shoemaker
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Laurel F Fuentes
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Shauna M Santiago
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Breanna M Allen
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Douglas J Cook
- Centre for Neuroscience Studies and the Department of Surgery, Queen's University Kingston, Ontario, Canada
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| | - Steven D Chang
- Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University 300 Pasteur Drive, Stanford, California, 94305
| |
Collapse
|
30
|
Radonjić NV, Ortega JA, Memi F, Dionne K, Jakovcevski I, Zecevic N. The complexity of the calretinin-expressing progenitors in the human cerebral cortex. Front Neuroanat 2014; 8:82. [PMID: 25165435 PMCID: PMC4131197 DOI: 10.3389/fnana.2014.00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/24/2014] [Indexed: 01/07/2023] Open
Abstract
The complex structure and function of the cerebral cortex critically depend on the balance of excitation and inhibition provided by the pyramidal projection neurons and GABAergic interneurons, respectively. The calretinin-expressing (CalR+) cell is a subtype of GABAergic cortical interneurons that is more prevalent in humans than in rodents. In rodents, CalR+ interneurons originate in the caudal ganglionic eminence (CGE) from Gsx2+ progenitors, but in humans it has been suggested that a subpopulation of CalR+ cells can also be generated in the cortical ventricular/subventricular zone (VZ/SVZ). The progenitors for cortically generated CalR+ subpopulation in primates are not yet characterized. Hence, the aim of this study was to identify patterns of expression of the transcription factors (TFs) that commit cortical stem cells to the CalR fate, with a focus on Gsx2. First, we studied the expression of Gsx2 and its downstream effectors, Ascl1 and Sp8 in the cortical regions of the fetal human forebrain at midgestation. Next, we established that a subpopulation of cells expressing these TFs are proliferating in the cortical SVZ, and can be co-labeled with CalR. The presence and proliferation of Gsx2+ cells, not only in the ventral telencephalon (GE) as previously reported, but also in the cerebral cortex suggests cortical origin of a subpopulation of CalR+ neurons in humans. In vitro treatment of human cortical progenitors with Sonic hedgehog (Shh), an important morphogen in the specification of interneurons, decreased levels of Ascl1 and Sp8 proteins, but did not affect Gsx2 levels. Taken together, our ex-vivo and in vitro results on human fetal brain suggest complex endogenous and exogenous regulation of TFs implied in the specification of different subtypes of CalR+ cortical interneurons.
Collapse
Affiliation(s)
- Nevena V Radonjić
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA ; Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade Belgrade, Serbia
| | - Juan A Ortega
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA
| | - Fani Memi
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA
| | - Krista Dionne
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA
| | - Igor Jakovcevski
- Experimental Neurophysiology, University Hospital Cologne Köln, Germany ; Experimental Neurophysiology, German Center for Neurodegenerative Diseases Bonn, Germany
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
31
|
Marnetto D, Molineris I, Grassi E, Provero P. Genome-wide identification and characterization of fixed human-specific regulatory regions. Am J Hum Genet 2014; 95:39-48. [PMID: 24995867 DOI: 10.1016/j.ajhg.2014.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 05/29/2014] [Indexed: 01/01/2023] Open
Abstract
Changes in gene regulatory networks are believed to have played an important role in the development of human-specific anatomy and behavior. We identified the human genome regions that show the typical chromatin marks of regulatory regions but cannot be aligned to other mammalian genomes. Most of these regions have become fixed in the human genome. Their regulatory targets are enriched in genes involved in neural processes, CNS development, and diseases such as autism, depression, and schizophrenia. Specific transposable elements contributing to the rewiring of the human regulatory network can be identified by the creation of human-specific regulatory regions. Our results confirm the relevance of regulatory evolution in the emergence of human traits and cognitive abilities and the importance of newly acquired genomic elements for such evolution.
Collapse
Affiliation(s)
- Davide Marnetto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Ivan Molineris
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Elena Grassi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
32
|
González-Gómez M, Meyer G. Dynamic expression of calretinin in embryonic and early fetal human cortex. Front Neuroanat 2014; 8:41. [PMID: 24917793 PMCID: PMC4042362 DOI: 10.3389/fnana.2014.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/16/2014] [Indexed: 02/04/2023] Open
Abstract
Calretinin (CR) is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS) 17 to 23, calbindin (CB) and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem). By contrast, CR is confined to the subventricular zone (SVZ) of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem), from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the “monolayer” of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the “pioneer cortical plate” appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW). At CS 21–23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial steps of human corticogenesis.
Collapse
Affiliation(s)
- Miriam González-Gómez
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna Tenerife, Spain
| | - Gundela Meyer
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna Tenerife, Spain
| |
Collapse
|
33
|
Clowry GJ. An enhanced role and expanded developmental origins for gamma-aminobutyric acidergic interneurons in the human cerebral cortex. J Anat 2014; 227:384-93. [PMID: 24839870 DOI: 10.1111/joa.12198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 12/16/2022] Open
Abstract
Human beings have considerably expanded cognitive abilities compared with all other species and they also have a relatively larger cerebral cortex compared with their body size. But is a bigger brain the only reason for higher cognition or have other features evolved in parallel? Humans have more and different types of GABAergic interneurons, found in different places, than our model species. Studies are beginning to show differences in function. Is this expanded repertoire of functional types matched by an evolution of their developmental origins? Recent studies support the idea that generation of interneurons in the ventral telencephalon may be more complicated in primates, which have evolved a large and complex outer subventricular zone in the ganglionic eminences. In addition, proportionally more interneurons appear to be produced in the caudal ganglionic eminence, the majority of which populate the superficial layers of the cortex. Whether or not the cortical proliferative zones are a source of interneurogenesis, and to what extent and of what significance, is a contentious issue. As there is growing evidence that conditions such as autism, schizophrenia and congenital epilepsy may have developmental origins in the failure of interneuron production and migration, it is important we understand fully the similarities and differences between human development and our animal models.
Collapse
Affiliation(s)
- Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
34
|
Alfano C, Magrinelli E, Harb K, Studer M. The nuclear receptors COUP-TF: a long-lasting experience in forebrain assembly. Cell Mol Life Sci 2014; 71:43-62. [PMID: 23525662 PMCID: PMC11114017 DOI: 10.1007/s00018-013-1320-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 02/14/2013] [Accepted: 03/04/2013] [Indexed: 12/16/2022]
Abstract
Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are nuclear receptors belonging to the superfamily of the steroid/thyroid hormone receptors. Members of this family are internalized to the nucleus both in a ligand-dependent or -independent manner and act as strong transcriptional regulators by binding to the DNA of their target genes. COUP-TFs are defined as orphan receptors, since ligands regulating their activity have not so far been identified. From the very beginning of metazoan evolution, these molecules have been involved in various key events during embryonic development and organogenesis. In this review, we will mainly focus on their function during development and maturation of the central nervous system, which has been well characterized in various animal classes ranging from ctenophores to mammals. We will start by introducing the current knowledge on COUP-TF mechanisms of action and then focus our discussion on the crucial processes underlying forebrain ontogenesis, with special emphasis on mammalian development. Finally, the conserved roles of COUP-TFs along phylogenesis will be highlighted, and some hypotheses, worth exploring in future years to gain more insight into the mechanisms controlled by these factors, will be proposed.
Collapse
Affiliation(s)
- Christian Alfano
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Elia Magrinelli
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Kawssar Harb
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Michèle Studer
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| |
Collapse
|
35
|
|
36
|
Ma T, Wang C, Wang L, Zhou X, Tian M, Zhang Q, Zhang Y, Li J, Liu Z, Cai Y, Liu F, You Y, Chen C, Campbell K, Song H, Ma L, Rubenstein JL, Yang Z. Subcortical origins of human and monkey neocortical interneurons. Nat Neurosci 2013; 16:1588-97. [PMID: 24097041 DOI: 10.1038/nn.3536] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/03/2013] [Indexed: 12/14/2022]
Abstract
Cortical GABAergic inhibitory interneurons have crucial roles in the development and function of the cerebral cortex. In rodents, nearly all neocortical interneurons are generated from the subcortical ganglionic eminences. In humans and nonhuman primates, however, the developmental origin of neocortical GABAergic interneurons remains unclear. Here we show that the expression patterns of several key transcription factors in the developing primate telencephalon are very similar to those in rodents, delineating the three main subcortical progenitor domains (the medial, lateral and caudal ganglionic eminences) and the interneurons tangentially migrating from them. On the basis of the continuity of Sox6, COUP-TFII and Sp8 transcription factor expression and evidence from cell migration and cell fate analyses, we propose that the majority of primate neocortical GABAergic interneurons originate from ganglionic eminences of the ventral telencephalon. Our findings reveal that the mammalian neocortex shares basic rules for interneuron development, substantially reshaping our understanding of the origin and classification of primate neocortical interneurons.
Collapse
Affiliation(s)
- Tong Ma
- 1] Institutes of Brain Science, Fudan University, Shanghai, China. [2] State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China. [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Volk DW, Lewis DA. Prenatal ontogeny as a susceptibility period for cortical GABA neuron disturbances in schizophrenia. Neuroscience 2013; 248:154-64. [PMID: 23769891 DOI: 10.1016/j.neuroscience.2013.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022]
Abstract
Cognitive deficits in schizophrenia have been linked to disturbances in GABA neurons in the prefrontal cortex (PFC). Furthermore, cognitive deficits in schizophrenia appear well before the onset of psychosis and have been reported to be present during early childhood and even during the first year of life. Taken together, these data raise the following question: Does the disease process that produces abnormalities in prefrontal GABA neurons in schizophrenia begin prenatally and disrupt the ontogeny of cortical GABA neurons? Here, we address this question through a consideration of evidence that genetic and/or environmental insults that occur during gestation initiate a pathogenetic process that alters cortical GABA neuron ontogeny and produces the pattern of GABA neuron abnormalities, and consequently cognitive difficulties, seen in schizophrenia. First, we review available evidence from postmortem human brain tissue studies characterizing alterations in certain subpopulations of prefrontal GABA neuron that provide clues to a prenatal origin in schizophrenia. Second, we review recent discoveries of transcription factors, cytokine receptors, and other developmental regulators that govern the birth, migration, specification, maturation, and survival of different subpopulations of prefrontal GABA neurons. Third, we discuss recent studies demonstrating altered expression of these ontogenetic factors in the PFC in schizophrenia. Fourth, we discuss the potential role of disturbances in the maternal-fetal environment such as maternal immune activation in the development of GABA neuron dysfunction. Finally, we propose critical questions that need to be answered in future research to further investigate the role of altered GABA neuron ontogeny in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- D W Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - D A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
38
|
Kolasinski J, Takahashi E, Stevens AA, Benner T, Fischl B, Zöllei L, Grant PE. Radial and tangential neuronal migration pathways in the human fetal brain: anatomically distinct patterns of diffusion MRI coherence. Neuroimage 2013; 79:412-22. [PMID: 23672769 DOI: 10.1016/j.neuroimage.2013.04.125] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/28/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023] Open
Abstract
Corticogenesis is underpinned by a complex process of subcortical neuroproliferation, followed by highly orchestrated cellular migration. A greater appreciation of the processes involved in human fetal corticogenesis is vital to gaining an understanding of how developmental disturbances originating in gestation could establish a variety of complex neuropathology manifesting in childhood, or even in adult life. Magnetic resonance imaging modalities offer a unique insight into anatomical structure, and increasingly infer information regarding underlying microstructure in the human brain. In this study we applied a combination of high-resolution structural and diffusion-weighted magnetic resonance imaging to a unique cohort of three post-mortem fetal brain specimens, aged between 19 and 22 post-conceptual weeks. Specifically, we sought to assess patterns of diffusion coherence associated with subcortical neuroproliferative structures: the pallial ventricular/subventricular zone and subpallial ganglionic eminence. Two distinct three-dimensional patterns of diffusion coherence were evident: a clear radial pattern originating in ventricular/subventricular zone, and a tangentio-radial patterns originating in ganglionic eminence. These patterns appeared to regress in a caudo-rostral and lateral-ventral to medial-dorsal direction across the short period of fetal development under study. Our findings demonstrate for the first time distinct patterns of diffusion coherence associated with known anatomical proliferative structures. The radial pattern associated with dorsopallial ventricular/subventricular zone and the tangentio-radial pattern associated with subpallial ganglionic eminence are consistent with reports of radial-glial mediated neuronal migration pathways identified during human corticogenesis, supported by our prior studies of comparative fetal diffusion MRI and histology. The ability to assess such pathways in the fetal brain using MR imaging offers a unique insight into three-dimensional trajectories beyond those visualized using traditional histological techniques. Our results suggest that ex-vivo fetal MRI is a potentially useful modality in understanding normal human development and various disease processes whose etiology may originate in aberrant fetal neuronal migration.
Collapse
Affiliation(s)
- James Kolasinski
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02119, USA
| | | | | | | | | | | | | |
Collapse
|