1
|
Liu Y, Chen X, Ma Y, Song C, Ma J, Chen C, Su J, Ma L, Saiyin H. Endogenous mutant Huntingtin alters the corticogenesis via lowering Golgi recruiting ARF1 in cortical organoid. Mol Psychiatry 2024; 29:3024-3039. [PMID: 38654124 PMCID: PMC11449793 DOI: 10.1038/s41380-024-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Pathogenic mutant huntingtin (mHTT) infiltrates the adult Huntington's disease (HD) brain and impairs fetal corticogenesis. However, most HD animal models rarely recapitulate neuroanatomical alterations in adult HD and developing brains. Thus, the human cortical organoid (hCO) is an alternative approach to decode mHTT pathogenesis precisely during human corticogenesis. Here, we replicated the altered corticogenesis in the HD fetal brain using HD patient-derived hCOs. Our HD-hCOs had pathological phenotypes, including deficient junctional complexes in the neural tubes, delayed postmitotic neuronal maturation, dysregulated fate specification of cortical neuron subtypes, and abnormalities in early HD subcortical projections during corticogenesis, revealing a causal link between impaired progenitor cells and chaotic cortical neuronal layering in the HD brain. We identified novel long, oriented, and enriched polyQ assemblies of HTTs that hold large flat Golgi stacks and scaffold clathrin+ vesicles in the neural tubes of hCOs. Flat Golgi stacks conjugated polyQ assemblies by ADP-ribosylation factor 1 (ARF1). Inhibiting ARF1 activation with Brefeldin A (BFA) disassociated polyQ assemblies from Golgi. PolyQ assembles with mHTT scaffolded fewer ARF1 and formed shorter polyQ assembles with fewer and shorter Golgi and clathrin vesicles in neural tubes of HD-hCOs compared with those in hCOs. Inhibiting the activation of ARF1 by BFA in healthy hCOs replicated impaired junctional complexes in the neural tubes. Together, endogenous polyQ assemblies with mHTT reduced the Golgi recruiting ARF1 in the neuroepithelium, impaired the Golgi structure and activities, and altered the corticogenesis in HD-hCO.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunlong Ma
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chenyun Song
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jixin Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cheng Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jianzhong Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Han JY, Kim TY, Gwack J, Park J. The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant. Int J Mol Sci 2024; 25:10327. [PMID: 39408661 PMCID: PMC11476583 DOI: 10.3390/ijms251910327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The ARX mutations encompass a nearly continuous spectrum of neurodevelopmental disorders (NDDs), ranging from lissencephaly to Proud syndrome, as well as infantile spasms without brain malformations, and including both syndromic and non-syndromic intellectual disabilities (IDs). We describe worsening neuropsychiatric symptoms in the offspring of a Korean family with ID/developmental delay (DD) caused by a novel ARX p.Lys385Ter variant. Sequential genetic testing was performed to investigate the ID, DD, agenesis of the corpus callosum (ACC), and developmental epileptic encephalopathy (DEE) observed in the proband. A comprehensive trio clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Given the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous ARX variant, c.1153A>T/p.Lys385Ter (Reference transcript ID: NM_139058.3), as the most likely cause of ID, DD, ACC, and DEE in the proband. Sanger sequencing confirmed the segregation of the ARX variant, c.1153A>T/p.Lys385Ter, with the phenotype and established the maternally inherited dominant status of the heterozygous variant in the patient, as well as in her grandmother, mother, and aunt. Our case report adds to the understanding of the female phenotype in ARX-related disorders caused by loss-of-function variants in the ARX gene. Genetic counseling for ARX families should proceed with caution, as female carriers can exhibit a wide range of phenotypes, from normal cognitive development to ID/DD, ACC, and DEE.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Tae Yun Kim
- Department of Thoracic and Cardiovascular Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
| | - Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
3
|
Nieto-Estevez V, Varma P, Mirsadeghi S, Caballero J, Gamero-Alameda S, Hosseini A, Silvosa MJ, Thodeson DM, Lybrand ZR, Giugliano M, Navara C, Hsieh J. Dual effects of ARX poly-alanine mutations in human cortical and interneuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577271. [PMID: 38328230 PMCID: PMC10849640 DOI: 10.1101/2024.01.25.577271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Infantile spasms, with an incidence of 1.6 to 4.5 per 10,000 live births, are a relentless and devastating childhood epilepsy marked by severe seizures but also leads to lifelong intellectual disability. Alarmingly, up to 5% of males with this condition carry a mutation in the Aristaless-related homeobox ( ARX ) gene. Our current lack of human-specific models for developmental epilepsy, coupled with discrepancies between animal studies and human data, underscores the gap in knowledge and urgent need for innovative human models, organoids being one of the best available. Here, we used human neural organoid models, cortical organoids (CO) and ganglionic eminences organoids (GEO) which mimic cortical and interneuron development respectively, to study the consequences of PAE mutations, one of the most prevalent mutation in ARX . ARX PAE produces a decrease expression of ARX in GEOs, and an enhancement in interneuron migration. That accelerated migration is cell autonomously driven, and it can be rescued by inhibiting CXCR4. We also found that PAE mutations result in an early increase in radial glia cells and intermediate progenitor cells, followed by a subsequent loss of cortical neurons at later timepoints. Moreover, ARX expression is upregulated in COs derived from patients at 30 DIV and is associated with alterations in the expression of CDKN1C . Furthermore, ARX PAE assembloids had hyperactivity which were evident at early stages of development. With effective treatments for infantile spasms and developmental epilepsies still elusive, delving into the role of ARX PAE mutations in human brain organoids represents a pivotal step toward uncovering groundbreaking therapeutic strategies.
Collapse
|
4
|
Lim Y, Akula SK, Myers AK, Chen C, Rafael KA, Walsh CA, Golden JA, Cho G. ARX regulates cortical interneuron differentiation and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578282. [PMID: 38895467 PMCID: PMC11185560 DOI: 10.1101/2024.01.31.578282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in aristaless-related homeobox ( ARX ) are associated with neurodevelopmental disorders including developmental epilepsies, intellectual disabilities, and autism spectrum disorders, with or without brain malformations. Aspects of these disorders have been linked to abnormal cortical interneuron (cIN) development and function. To further understand ARX's role in cIN development, multiple Arx mutant mouse lines were interrogated. We found that ARX is critical for controlling cIN numbers and distribution, especially, in the developing marginal zone (MZ). Single cell transcriptomics and ChIP-seq, combined with functional studies, revealed ARX directly or indirectly regulates genes involved in proliferation and the cell cycle (e.g., Bub3 , Cspr3 ), fate specification (e.g., Nkx2.1 , Maf , Mef2c ), and migration (e.g., Nkx2.1 , Lmo1 , Cxcr4 , Nrg1 , ErbB4 ). Our data suggest that the MZ stream defects primarily result from disordered cell-cell communication. Together our findings provide new insights into the mechanisms underlying cIN development and migration and how they are disrupted in several disorders.
Collapse
|
5
|
Akula SK, Quiroz V, D'Gama AM, Chiu MY, Koh HY, Saffari A, Zaman Z, Tam A, Srouji R, Valentine R, Wiltrout K, Pinto A, Harini C, Pearl PL, Poduri A, Ebrahimi‐Fakhari D. The spectrum of movement disorders in young children with ARX-related epilepsy-dyskinesia syndrome. Ann Clin Transl Neurol 2024; 11:1643-1647. [PMID: 38711225 PMCID: PMC11187834 DOI: 10.1002/acn3.52055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
Children with developmental and epileptic encephalopathies often present with co-occurring dyskinesias. Pathogenic variants in ARX cause a pleomorphic syndrome that includes infantile epilepsy with a variety of movement disorders ranging from focal hand dystonia to generalized dystonia with frequent status dystonicus. In this report, we present three patients with severe movement disorders as part of ARX-associated epilepsy-dyskinesia syndrome, including a patient with a novel pathogenic missense variant (p.R371G). These cases illustrate diagnostic and management challenges of ARX-related disorder and shed light on broader challenges concerning epilepsy-dyskinesia syndromes.
Collapse
Affiliation(s)
- Shyam K. Akula
- Movement Disorders Program, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Division of Genetics and Genomics, Boston Children's HospitalHarvard Medical SchoolBostonMassachusetts02115USA
| | - Vicente Quiroz
- Movement Disorders Program, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Alissa M. D'Gama
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Michelle Y. Chiu
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Hyun Yong Koh
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Afshin Saffari
- Movement Disorders Program, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Division of Child Neurology and Inherited Metabolic DiseasesHeidelberg University HospitalHeidelbergGermany
| | - Zainab Zaman
- Movement Disorders Program, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Amy Tam
- Movement Disorders Program, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Rasha Srouji
- Movement Disorders Program, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Rozalia Valentine
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kimberly Wiltrout
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Anna Pinto
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Chellamani Harini
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Darius Ebrahimi‐Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
6
|
Meka DP, Richter M, Rücker T, Voss H, Rissiek A, Krisp C, Kumar NH, Schwanke B, Fornasiero EF, Schlüter H, Calderon de Anda F. Protocol for differential multi-omic analyses of distinct cell types in the mouse cerebral cortex. STAR Protoc 2024; 5:102793. [PMID: 38157295 PMCID: PMC10792265 DOI: 10.1016/j.xpro.2023.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Here, we present a protocol for differential multi-omic analyses of distinct cell types in the developing mouse cerebral cortex. We describe steps for in utero electroporation, subsequent flow-cytometry-based isolation of developing mouse cortical cells, bulk RNA sequencing or quantitative liquid chromatography-tandem mass spectrometry, and bioinformatic analyses. This protocol can be applied to compare the proteomes and transcriptomes of developing mouse cortical cell populations after various manipulations (e.g., epigenetic). For complete details on the use and execution of this protocol, please refer to Meka et al. (2022).1.
Collapse
Affiliation(s)
- Durga Praveen Meka
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melanie Richter
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tabitha Rücker
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Hannah Voss
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne Rissiek
- Cytometry und Cell Sorting Core Unit, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Krisp
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Birgit Schwanke
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Hartmut Schlüter
- Diagnostic Center, Section Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Froylan Calderon de Anda
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
7
|
Gras M, Heide S, Keren B, Valence S, Garel C, Whalen S, Jansen AC, Keymolen K, Stouffs K, Jennesson M, Poirsier C, Lesca G, Depienne C, Nava C, Rastetter A, Curie A, Cuisset L, Des Portes V, Milh M, Charles P, Mignot C, Héron D. Further characterisation of ARX-related disorders in females due to inherited or de novo variants. J Med Genet 2024; 61:103-108. [PMID: 37879892 DOI: 10.1136/jmg-2023-109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.
Collapse
Affiliation(s)
- Mathilde Gras
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Solveig Heide
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Boris Keren
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Stéphanie Valence
- Unit of Pediatric Neurology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilites of rare causes » Déficiences Intellectuelles de Causes Rares, Armand-Trousseau Hospital, Paris, France
| | - Catherine Garel
- Unit of Pediatric Radiology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Sandra Whalen
- Department of Clinical Genetics and Reference Center for Rare Diseases « Developmental disorders and syndromes », APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katrien Stouffs
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mélanie Jennesson
- Pediatrics Unit, University Hospital of Reims, American Memorial Hospital, Reims, France
| | - Céline Poirsier
- UF génétique clinique, Pôle Femme-Parents-Enfants, CHU Reims, Reims, France
| | - Gaetan Lesca
- Department of Genetics, Referral Center for Developmental Anomalies and Malformative Syndromes, Centre-est HCL, Hospices Civils de Lyon, Lyon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Aurore Curie
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Laurence Cuisset
- APHP Centre Université Paris Cité, Service de Médecine Génomique des Maladies de Système et d'Organe, Cochin Hospital, Paris, France
| | - Vincent Des Portes
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Mathieu Milh
- Department of Neurology Pediatrics, AP-HM, Hôpital de la Timone, Marseille, France
| | - Perrine Charles
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Delphine Héron
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| |
Collapse
|
8
|
Lim Y. Transcription factors in microcephaly. Front Neurosci 2023; 17:1302033. [PMID: 38094004 PMCID: PMC10716367 DOI: 10.3389/fnins.2023.1302033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024] Open
Abstract
Higher cognition in humans, compared to other primates, is often attributed to an increased brain size, especially forebrain cortical surface area. Brain size is determined through highly orchestrated developmental processes, including neural stem cell proliferation, differentiation, migration, lamination, arborization, and apoptosis. Disruption in these processes often results in either a small (microcephaly) or large (megalencephaly) brain. One of the key mechanisms controlling these developmental processes is the spatial and temporal transcriptional regulation of critical genes. In humans, microcephaly is defined as a condition with a significantly smaller head circumference compared to the average head size of a given age and sex group. A growing number of genes are identified as associated with microcephaly, and among them are those involved in transcriptional regulation. In this review, a subset of genes encoding transcription factors (e.g., homeobox-, basic helix-loop-helix-, forkhead box-, high mobility group box-, and zinc finger domain-containing transcription factors), whose functions are important for cortical development and implicated in microcephaly, are discussed.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Science Education, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
9
|
Phenotypes of a female patient with novel de novo frameshift ARX variant identified by whole-exome sequencing: a case report. Ann Med Surg (Lond) 2023; 85:236-241. [PMID: 36845779 PMCID: PMC9949785 DOI: 10.1097/ms9.0000000000000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/24/2022] [Indexed: 02/28/2023] Open
Abstract
Variants in the aristaless-related homeobox (ARX) gene cause a diverse spectrum of phenotypes of neurodevelopmental disorders (NDD) in male patients. This article describes the role of genetic testing using whole-exome sequencing (WES) in detecting a novel de novo frameshift variant in the ARX gene in a female patient with autism, seizure, and global developmental delay. Case presentation A 2-year-old girl with frequent seizures, global developmental delay, and autistic features was referred to our hospital. She was the second child of consanguineous non-affected parents. She had a high forehead, mildly prominent ears, and prominent nasal root. A generalized epileptiform discharge was noted in her electroencephalography. Brain MRI revealed corpus callosum agenesis, cerebral atrophy, and a left parafalcine cyst. The WES result showed a likely pathogenic variant identified as a novel de novo deletion in exon 4 of the ARX gene, which creates a frameshift variant. The patient is on dual therapy of antiepilepsy drugs, physiotherapy, speech therapy, occupational therapy, and oral motor exercises. Clinical discussion Variants in the ARX gene can result in various phenotypes in males transmitted from asymptomatic carrier females. However, several reports showed that the ARX variants might cause phenotypes in females with milder symptoms than affected males. Conclusion We report a novel de novo ARX variant in an affected female with a NDD. Our study confirms that the ARX variant might cause remarkable pleiotropy phenotypes in females. Moreover, WES could help to identify the pathogenic variant in NDD patients with diverse phenotypes.
Collapse
|
10
|
Gao M, Wang K, Zhao H. GABAergic neurons maturation is regulated by a delicate network. Int J Dev Neurosci 2023; 83:3-15. [PMID: 36401305 DOI: 10.1002/jdn.10242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022] Open
Abstract
Gamma-aminobutyric acid-expressing (GABAergic) neurons are implicated in a variety of neuropsychiatric disorders, such as epilepsy, anxiety, autism, and other pathological processes, including cerebral ischemia injury and drug addiction. Therefore, GABAergic neuronal processes warrant further research. The development of GABAergic neurons is a tightly controlled process involving the activity of multiple transcription and growth factors. Here, we focus on the gene expression pathways and the molecular modulatory networks that are engaged during the development of GABAergic neurons with the goal of exploring regulatory mechanisms that influence GABAergic neuron fate (i.e., maturation). Overall, we hope to provide a basis for clarifying the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingxing Gao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| | - Kaizhong Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Bypassing Mendel's First Law: Transmission Ratio Distortion in Mammals. Int J Mol Sci 2023; 24:ijms24021600. [PMID: 36675116 PMCID: PMC9863905 DOI: 10.3390/ijms24021600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mendel's law of segregation states that the two alleles at a diploid locus should be transmitted equally to the progeny. A genetic segregation distortion, also referred to as transmission ratio distortion (TRD), is a statistically significant deviation from this rule. TRD has been observed in several mammal species and may be due to different biological mechanisms occurring at diverse time points ranging from gamete formation to lethality at post-natal stages. In this review, we describe examples of TRD and their possible mechanisms in mammals based on current knowledge. We first focus on the differences between TRD in male and female gametogenesis in the house mouse, in which some of the most well studied TRD systems have been characterized. We then describe known TRD in other mammals, with a special focus on the farmed species and in the peculiar common shrew species. Finally, we discuss TRD in human diseases. Thus far, to our knowledge, this is the first time that such description is proposed. This review will help better comprehend the processes involved in TRD. A better understanding of these molecular mechanisms will imply a better comprehension of their impact on fertility and on genome evolution. In turn, this should allow for better genetic counseling and lead to better care for human families.
Collapse
|
12
|
Samara A, Spildrejorde M, Sharma A, Falck M, Leithaug M, Modafferi S, Bjørnstad PM, Acharya G, Gervin K, Lyle R, Eskeland R. A multi-omics approach to visualize early neuronal differentiation from hESCs in 4D. iScience 2022; 25:105279. [PMID: 36304110 PMCID: PMC9593815 DOI: 10.1016/j.isci.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.
Collapse
Affiliation(s)
- Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| | - Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Sun Q, Xu W, Piao J, Su J, Ge T, Cui R, Yang W, Li B. Transcription factors are potential therapeutic targets in epilepsy. J Cell Mol Med 2022; 26:4875-4885. [PMID: 36065764 PMCID: PMC9549512 DOI: 10.1111/jcmm.17518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Academics generally believe that imbalance between excitation and inhibition of the nervous system is the root cause of epilepsy. However, the aetiology of epilepsy is complex, and its pathogenesis remains unclear. Many studies have shown that epilepsy is closely related to genetic factors. Additionally, the involvement of a variety of tumour‐related transcription factors in the pathogenesis of epilepsy has been confirmed, which also confirms the heredity of epilepsy. In this review, we summarize the existing research on a variety of transcription factors and epilepsy and present relevant evidence related to transcription factors that may be targets in epilepsy. This information is of great significance for revealing the in‐depth molecular and cellular mechanisms of epilepsy.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Drongitis D, Caterino M, Verrillo L, Santonicola P, Costanzo M, Poeta L, Attianese B, Barra A, Terrone G, Lioi MB, Paladino S, Di Schiavi E, Costa V, Ruoppolo M, Miano MG. Deregulation of microtubule organization and RNA metabolism in Arx models for lissencephaly and developmental epileptic encephalopathy. Hum Mol Genet 2022; 31:1884-1908. [PMID: 35094084 PMCID: PMC9169459 DOI: 10.1093/hmg/ddac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Loredana Poeta
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Adriano Barra
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Child Neurology Unit, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| |
Collapse
|
15
|
Lim Y, Cho IT, Golden JA, Cho G. Generation of FLAG-tagged Arx knock-in mouse model. Genesis 2022; 60:e23479. [PMID: 35656878 PMCID: PMC9333336 DOI: 10.1002/dvg.23479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
The Aristaless-related homeobox (ARX) is a paired-like homeodomain transcription factor playing important roles in brain development. Patients with mutations in ARX have a spectrum of neurodevelopmental disorders such as epilepsy, intellectual disability, and autism spectrum disorder, with or without structural abnormalities of the brain such as lissencephaly (smooth brain), microcephaly (small brain), and/or agenesis of the corpus callosum. Mouse models have provided important clues on the pathophysiologic roles of ARX in these disorders. However, successfully isolating specific in vivo complexes of ARX, with DNA and proteins, has remained as a challenge. To facilitate in vivo detection of ARX complexes, we generated a mouse line containing one epitope of FLAG-tag (1 × FLAG) targeted at the translational start site of the endogenous Arx gene using CRSPR/Cas9 strategy. Homozygous Flag-Arx mice are viable and fertile without gross abnormality, suggesting that the FLAG-tag does not perturb the normal function of ARX. Using a FLAG antibody, we successfully detected ARX with immunofluorescent staining and pulled down ARX in embryonic brain tissues. This Flag-Arx mouse line will be a useful tool to isolate ARX complexes from mouse tissues for many applications.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Il-Taeg Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ginam Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Tang JLY, Hakes AE, Krautz R, Suzuki T, Contreras EG, Fox PM, Brand AH. NanoDam identifies Homeobrain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the Drosophila central brain and visual system. Dev Cell 2022; 57:1193-1207.e7. [PMID: 35483359 PMCID: PMC9616798 DOI: 10.1016/j.devcel.2022.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Abstract
Temporal patterning of neural progenitors is an evolutionarily conserved strategy for generating neuronal diversity. Type II neural stem cells in the Drosophila central brain produce transit-amplifying intermediate neural progenitors (INPs) that exhibit temporal patterning. However, the known temporal factors cannot account for the neuronal diversity in the adult brain. To search for missing factors, we developed NanoDam, which enables rapid genome-wide profiling of endogenously tagged proteins in vivo with a single genetic cross. Mapping the targets of known temporal transcription factors with NanoDam revealed that Homeobrain and Scarecrow (ARX and NKX2.1 orthologs) are also temporal factors. We show that Homeobrain and Scarecrow define middle-aged and late INP temporal windows and play a role in cellular longevity. Strikingly, Homeobrain and Scarecrow have conserved functions as temporal factors in the developing visual system. NanoDam enables rapid cell-type-specific genome-wide profiling with temporal resolution and is easily adapted for use in higher organisms.
Collapse
Affiliation(s)
- Jocelyn L Y Tang
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Anna E Hakes
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Robert Krautz
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Takumi Suzuki
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Esteban G Contreras
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Paul M Fox
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andrea H Brand
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
17
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
19
|
Regulation of mRNA translation in stem cells; links to brain disorders. Cell Signal 2021; 88:110166. [PMID: 34624487 DOI: 10.1016/j.cellsig.2021.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022]
Abstract
Translational control of gene expression is emerging as a cardinal step in the regulation of protein abundance. Especially for embryonic (ESC) and neuronal stem cells (NSC), regulation of mRNA translation is involved in the maintenance of pluripotency but also differentiation. For neuronal stem cells this regulation is linked to the various neuronal subtypes that arise in the developing brain and is linked to numerous brain disorders. Herein, we review translational control mechanisms in ESCs and NSCs during development and differentiation, and briefly discuss their link to brain disorders.
Collapse
|
20
|
Rodgers J, Calvert S, Shoubridge C, McGaughran J. A novel ARX loss of function variant in female monozygotic twins is associated with chorea. Eur J Med Genet 2021; 64:104315. [PMID: 34419634 DOI: 10.1016/j.ejmg.2021.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Pathogenic variants in ARX lead to a variety of phenotypes with intellectual disability being a uniform feature. Other features can include severe epilepsy, spasticity, movement disorders, agenesis of the corpus callosum, lissencephaly, hydranencephaly and ambiguous genitalia in males. We present the first report of monozygotic female twins with a de novo ARX pathogenic variant (c.1406_1415del; p. Ala469Aspfs*20), predicted to result in a truncated ARX protein missing the important regulatory Aristaless domain. The twins presented with profound developmental delay and seizures, consistent with the known genotype-phenotype correlation. Twin 2's features were significantly more severe. She also developed chorea; the first time this movement disorder has been seen in an ARX variant other than an expansion of the first polyalanine tract. Differential X-chromosome inactivation was the most likely explanation for the differing severities but could not be conclusively proven.
Collapse
Affiliation(s)
- Jonathan Rodgers
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, QLD, Australia; School of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Sophie Calvert
- Department of Neurosciences, Queensland Children's Hospital, Brisbane, QLD, Australia; School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl Shoubridge
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, QLD, Australia; School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Identification and validation of the phosphorylation sites on Aristaless-related homeobox protein. Biosci Rep 2021; 40:225651. [PMID: 32608477 PMCID: PMC7364481 DOI: 10.1042/bsr20194513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
The Aristaless-related homeobox protein (ARX) is a transcription factor expressed in the developing forebrain, skeletal muscle, pancreas, testis, and a variety of other tissues. It is known to have context-dependent transcriptional activator and repressor activity, although how it can achieve these opposing functions remains poorly understood. We hypothesized phosphorylation status might play a role in pivoting ARX between functioning as an activator or repressor. To gain further mechanistic insight as to how ARX functions, we identified multiple phosphorylation sites on ARX. We further established PKA as the kinase that phosphorylates ARX at least at Ser266 in mice. Two other kinases, CK2α and CDK4/cyclin D1, were also identified as kinases that phosphorylate ARX in vitro. Unexpectedly, phosphorylation status did not change either the nuclear localization or transcriptional function of ARX.
Collapse
|
22
|
Maeyama H, Shinmyo Y, Kawasaki H. The expression of aristaless-related homeobox in neural progenitors of gyrencephalic carnivore ferrets. Biochem Biophys Rep 2021; 26:100970. [PMID: 33732905 PMCID: PMC7941032 DOI: 10.1016/j.bbrep.2021.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
Aristaless-related homeobox (ARX) has important functions in the development of various organs including the brain. Mutations of the human ARX gene have been associated with malformations of the cerebral cortex such as microcephaly and lissencephaly. Although the expression patterns of ARX in the lissencephalic cerebral cortex of mice have been intensively investigated, those in expanded gyrencephalic brains remained unclear. Here, we show the expression patterns of ARX in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that ARX was expressed not only in intermediate progenitor (IP) cells but also in outer radial glial (oRG) cells, which are neural progenitors preferentially observed in the gyrencephalic cerebral cortex. We found that the majority of ARX-positive oRG cells expressed the proliferating cell marker Ki-67. These results may indicate that ARX in oRG cells mediates the expansion of the gyrencephalic cerebral cortex during development and evolution. We investigated the distribution of ARX in the germinal zone of the ferret cerebrum. ARX was abundantly expressed in outer radial glial (oRG) cells. Most of the ARX-positive oRG cells were positive for the proliferation marker Ki-67.
Collapse
Affiliation(s)
- Hiroki Maeyama
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
23
|
Genes containing hexanucleotide repeats resembling C9ORF72 and expressed in the central nervous system are frequent in the human genome. Neurobiol Aging 2020; 97:148.e1-148.e7. [PMID: 32843153 DOI: 10.1016/j.neurobiolaging.2020.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
More than 40 human diseases, mainly diseases affecting the central nervous system, are caused by the expansion of unstable nucleotide repeats. Repeats of sequences like (CAG)n present in different genes can be responsible for various diseases of the central nervous system. An expanded hexanucleotide repeat (GGGGCC)n in the C9ORF72 gene has been characterized as the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar dementia. In this study, we performed a genome-wide analysis in the human genome and identified 74 genes containing this precise hexanucleotide repeat, with a preference for a location in exon 1 or intron 1, similar to the C9ORF72 gene. A total of 36 of these 74 genes may be of interest as candidates in neurodevelopmental or neurodegenerative diseases, based on their function.
Collapse
|
24
|
The Role of CDKs and CDKIs in Murine Development. Int J Mol Sci 2020; 21:ijms21155343. [PMID: 32731332 PMCID: PMC7432401 DOI: 10.3390/ijms21155343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) and their inhibitors (CDKIs) play pivotal roles in the regulation of the cell cycle. As a result of these functions, it may be extrapolated that they are essential for appropriate embryonic development. The twenty known mouse CDKs and eight CDKIs have been studied to varying degrees in the developing mouse, but only a handful of CDKs and a single CDKI have been shown to be absolutely required for murine embryonic development. What has become apparent, as more studies have shone light on these family members, is that in addition to their primary functional role in regulating the cell cycle, many of these genes are also controlling specific cell fates by directing differentiation in various tissues. Here we review the extensive mouse models that have been generated to study the functions of CDKs and CDKIs, and discuss their varying roles in murine embryonic development, with a particular focus on the brain, pancreas and fertility.
Collapse
|
25
|
Siehr MS, Massey CA, Noebels JL. Arx expansion mutation perturbs cortical development by augmenting apoptosis without activating innate immunity in a mouse model of X-linked infantile spasms syndrome. Dis Model Mech 2020; 13:dmm042515. [PMID: 32033960 PMCID: PMC7132796 DOI: 10.1242/dmm.042515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
X-linked infantile spasms syndrome (ISSX) is a clinically devastating developmental epileptic encephalopathy with life-long impact. Arx(GCG)10+7 , a mouse model of the most common triplet-repeat expansion mutation of ARX, exhibits neonatal spasms, electrographic phenotypes and abnormal migration of GABAergic interneuron subtypes. Neonatal presymptomatic treatment with 17β-estradiol (E2) in Arx(GCG)10+7 reduces spasms and modifies progression of epilepsy. Cortical pathology during this period, a crucial point for clinical intervention in ISSX, has largely been unexplored, and the pathogenic cellular defects that are targeted by early interventions are unknown. In the first postnatal week, we identified a transient wave of elevated apoptosis in Arx(GCG)10+7 mouse cortex that is non-Arx cell autonomous, since mutant Arx-immunoreactive (Arx+) cells are not preferentially impacted by cell death. NeuN+ (also known as Rbfox3) survival was also not impacted, suggesting a vulnerable subpopulation in the immature Arx(GCG)10+7 cortex. Inflammatory processes during this period might explain this transient elevation in apoptosis; however, transcriptomic and immunohistochemical profiling of several markers of inflammation revealed no innate immune activation in Arx(GCG)10+7 cortex. Neither neonatal E2 hormone therapy, nor ACTH(1-24), the frontline clinical therapy for ISSX, diminished the augmented apoptosis in Arx(GCG)10+7 , but both rescued neocortical Arx+ cell density. Since early E2 treatment effectively prevents seizures in this model, enhanced apoptosis does not solely account for the seizure phenotype, but may contribute to other aberrant brain function in ISSX. However, since both hormone therapies, E2 and ACTH(1-24), elevate the density of cortical Arx+-interneurons, their early therapeutic role in other neurological disorders hallmarked by interneuronopathy should be explored.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meagan S Siehr
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Cory A Massey
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
26
|
Lin HC, Ching YH, Huang CC, Pao PC, Lee YH, Chang WC, Kao TJ, Lee YC. Promyelocytic leukemia zinc finger is involved in the formation of deep layer cortical neurons. J Biomed Sci 2019; 26:30. [PMID: 31027502 PMCID: PMC6485146 DOI: 10.1186/s12929-019-0519-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Promyelocytic leukemia zinc finger (Plzf), a transcriptional regulator involved in a lot of important biological processes during development, has been implied to maintain neural stem cells and inhibit their differentiation into neurons. However, the effects of Plzf on brain structures and functions are still not clarified. RESULTS We showed that Plzf expression was detected as early as embryonic day (E) 9.5 in Pax6+ cells in the mouse brain, and was completely disappeared in telencephalon before the initiation of cortical neurogenesis. Loss of Plzf resulted in a smaller cerebral cortex with a decrease in the number of Tbr1+ deep layer neurons due to a decrease of mitotic cell number in the ventricular zone of forebrain at early developmental stage. Microarray, qRT-PCR, and flow cytometry analysis identified dysregulation of Mash1 proneural gene expression. We also observed an impairment of recognition memory in Plzf-deficient mice. CONCLUSIONS Plzf is expressed at early stages of brain development and involved in the formation of deep layer cortical neurons. Loss of Plzf results in dysregulation of Mash1, microcephaly with reduced numbers of early-born neurons, and impairment of recognition memory.
Collapse
Affiliation(s)
- Hsin-Chuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chi-Chen Huang
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Ping-Chieh Pao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Lee
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Jen Kao
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan. .,Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Dubos A, Meziane H, Iacono G, Curie A, Riet F, Martin C, Loaëc N, Birling MC, Selloum M, Normand E, Pavlovic G, Sorg T, Stunnenberg HG, Chelly J, Humeau Y, Friocourt G, Hérault Y. A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations. Hum Mol Genet 2019; 27:2138-2153. [PMID: 29659809 PMCID: PMC5985730 DOI: 10.1093/hmg/ddy122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.
Collapse
Affiliation(s)
- Aline Dubos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Hamid Meziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Aurore Curie
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Femmes Mères Enfants, Hospices Civils de Lyon, Institut des Sciences Cognitives, CNRS UMR5304, Université Claude Bernard Lyon1, 69675 Bron, France
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Nadège Loaëc
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | | | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Elisabeth Normand
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France.,Pole In Vivo, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| |
Collapse
|
28
|
Lim Y, Cho IT, Shi X, Grinspan JB, Cho G, Golden JA. Arx Expression Suppresses Ventralization of the Developing Dorsal Forebrain. Sci Rep 2019; 9:226. [PMID: 30659230 PMCID: PMC6338776 DOI: 10.1038/s41598-018-36194-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/11/2018] [Indexed: 12/22/2022] Open
Abstract
Early brain development requires a tight orchestration between neural tube patterning and growth. How pattern formation and brain growth are coordinated is incompletely understood. Previously we showed that aristaless-related homeobox (ARX), a paired-like transcription factor, regulates cortical progenitor pool expansion by repressing an inhibitor of cell cycle progression. Here we show that ARX participates in establishing dorsoventral identity in the mouse forebrain. In Arx mutant mice, ventral genes, including Olig2, are ectopically expressed dorsally. Furthermore, Gli1 is upregulated, suggesting an ectopic activation of SHH signaling. We show that the ectopic Olig2 expression can be repressed by blocking SHH signaling, implicating a role for SHH signaling in Olig2 induction. We further demonstrate that the ectopic Olig2 accounts for the reduced Pax6 and Tbr2 expression, both dorsal specific genes essential for cortical progenitor cell proliferation. These data suggest a link between the control of dorsoventral identity of progenitor cells and the control of their proliferation. In summary, our data demonstrate that ARX functions in a gene regulatory network integrating normal forebrain patterning and growth, providing important insight into how mutations in ARX can disrupt multiple aspects of brain development and thus generate a wide spectrum of neurodevelopmental phenotypes observed in human patients.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Il-Taeg Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiuyu Shi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Judith B Grinspan
- Department of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ginam Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Basal ganglia involvement in ARX patients: The reason for ARX patients very specific grasping? NEUROIMAGE-CLINICAL 2018; 19:454-465. [PMID: 29984154 PMCID: PMC6029499 DOI: 10.1016/j.nicl.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/05/2018] [Accepted: 04/01/2018] [Indexed: 01/15/2023]
Abstract
The ARX (Aristaless Related homeoboX) gene was identified in 2002 as responsible for XLAG syndrome, a lissencephaly characterized by an almost complete absence of cortical GABAergic interneurons, and for milder forms of X-linked Intellectual Disability (ID) without apparent brain abnormalities. The most frequent mutation found in the ARX gene, a duplication of 24 base pairs (c.429_452dup24) in exon 2, results in a recognizable syndrome in which patients present ID without primary motor impairment, but with a very specific upper limb distal motor apraxia associated with a pathognomonic hand-grip, described as developmental Limb Kinetic Apraxia (LKA). In this study, we first present ARX expression during human fetal brain development showing that it is strongly expressed in GABAergic neuronal progenitors during the second and third trimester of pregnancy. We show that although ARX expression strongly decreases towards the end of gestation, it is still present after birth in some neurons of the basal ganglia, thalamus and cerebral cortex, suggesting that ARX also plays a role in more mature neuron functioning. Then, using morphometric brain MRI in 13 ARX patients carrying c.429_452dup24 mutation and in 13 sex- and age-matched healthy controls, we show that ARX patients have a significantly decreased volume of several brain structures including the striatum (and more specifically the caudate nucleus), hippocampus and thalamus as well as decreased precentral gyrus cortical thickness. We observe a significant correlation between caudate nucleus volume reduction and motor impairment severity quantified by kinematic parameter of precision grip. As basal ganglia are known to regulate sensorimotor processing and are involved in the control of precision gripping, the combined decrease in cortical thickness of primary motor cortex and basal ganglia volume in ARX dup24 patients is very likely the anatomical substrate of this developmental form of LKA. c.429_452dup24 in ARX is responsible for ID with Limb Kinetic Apraxia. During human brain development, ARX is expressed in GABAergic neuronal progenitors. ARX patients have a significantly decreased caudate nucleus volume by MRI. This caudate nucleus volume reduction is correlated with motor impairment severity. These anatomic findings may explain this developmental form of Limb Kinetic Apraxia.
Collapse
Key Words
- ARX
- ARX, Aristaless-Related homeoboX gene (according to the genetic convention, ARX was written in italics when it refers to the gene, in plain-text characters when it refers to the protein, in capital letters when it refers to the human gene, and in lowercase when it refers to the mouse gene)
- CGE, caudal ganglionic eminence
- CP, cortical plate
- DS, down syndrome
- GE, ganglionic eminences
- Human brain development
- ICV, intracranial volume
- ID, Intellectual Disability
- IQ, intelligence quotient
- IZ, intermediate zone
- Intellectual disability
- Kinematic
- LGE, lateral ganglionic eminence
- LKA, Limb Kinetic Apraxia
- Limb Kinetic Apraxia
- MGE, medial ganglionic eminence
- MRI, magnetic resonance imaging
- MZ, marginal zone
- Morphometric MRI
- ROI, region of interest
- SGL, subpial granular layer
- SVZ, subventricular zone
- VZ, ventricular zone
- WG, weeks of gestation
- XLAG, X-linked lissencephaly with abnormal genitalia
Collapse
|
30
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
31
|
McNamara GI, John RM, Isles AR. Territorial Behavior and Social Stability in the Mouse Require Correct Expression of Imprinted Cdkn1c. Front Behav Neurosci 2018; 12:28. [PMID: 29535616 PMCID: PMC5834910 DOI: 10.3389/fnbeh.2018.00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/07/2018] [Indexed: 11/21/2022] Open
Abstract
Genomic imprinting, the epigenetic process by which transcription occurs from a single parental allele, is believed to influence social behaviors in mammals. An important social behavior is group living, which is enriched in Eutherian mammals relative to monotremes and marsupials. Group living facilitates resource acquisition, defense of territory and co-care of young, but requires a stable social group with complex inter-individual relationships. Co-occurring with increased group living in Eutherians is an increase in the number of imprinted loci, including that spanning the maternally expressed Cdkn1c. Using a 'loss-of-imprinting' model of Cdkn1c (Cdkn1cBACx1), we demonstrated that twofold over expression of Cdkn1c results in abnormal social behaviors. Although, our previous work indicated that male Cdkn1cBACx1 mice were more dominant as measured by tube test encounters with unfamiliar wild-type (WT) males. Building upon this work, using more ecologically relevant assessments of social dominance, indicated that within their normal social group, Cdkn1cBACx1 mice did not occupy higher ranking positions. Nevertheless, we find that presence of Cdkn1cBACx1 animals within a group leads to instability of the normal social hierarchy, as indicated by greater variability in social rank within the group over time and an increase in territorial behavior in WT cage-mates. Consequently, these abnormal behaviors led to an increased incidence of fighting and wounding within the group. Taken together these data indicate that normal expression of Cdkn1c is required for maintaining stability of the social group and suggests that the acquisition of monoallelic expression of Cdkn1c may have enhanced social behavior in Eutherian mammals to facilitate group living.
Collapse
Affiliation(s)
- Gráinne I. McNamara
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Rosalind M. John
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
32
|
Dickel DE, Ypsilanti AR, Pla R, Zhu Y, Barozzi I, Mannion BJ, Khin YS, Fukuda-Yuzawa Y, Plajzer-Frick I, Pickle CS, Lee EA, Harrington AN, Pham QT, Garvin TH, Kato M, Osterwalder M, Akiyama JA, Afzal V, Rubenstein JLR, Pennacchio LA, Visel A. Ultraconserved Enhancers Are Required for Normal Development. Cell 2018; 172:491-499.e15. [PMID: 29358049 PMCID: PMC5786478 DOI: 10.1016/j.cell.2017.12.017] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/26/2023]
Abstract
Non-coding "ultraconserved" regions containing hundreds of consecutive bases of perfect sequence conservation across mammalian genomes can function as distant-acting enhancers. However, initial deletion studies in mice revealed that loss of such extraordinarily constrained sequences had no immediate impact on viability. Here, we show that ultraconserved enhancers are required for normal development. Focusing on some of the longest ultraconserved sites genome wide, located near the essential neuronal transcription factor Arx, we used genome editing to create an expanded series of knockout mice lacking individual or combinations of ultraconserved enhancers. Mice with single or pairwise deletions of ultraconserved enhancers were viable and fertile but in nearly all cases showed neurological or growth abnormalities, including substantial alterations of neuron populations and structural brain defects. Our results demonstrate the functional importance of ultraconserved enhancers and indicate that remarkably strong sequence conservation likely results from fitness deficits that appear subtle in a laboratory setting.
Collapse
Affiliation(s)
- Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Athena R Ypsilanti
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ramón Pla
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yiwen Zhu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yupar S Khin
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Catherine S Pickle
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Elizabeth A Lee
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Anne N Harrington
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Quan T Pham
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Veena Afzal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California Merced, Merced, CA 95343, USA.
| |
Collapse
|
33
|
Abstract
Epileptic encephalopathies account for a large proportion of the intractable early-onset epilepsies and are characterized by frequent seizures and poor developmental outcome. The epileptic encephalopathies can be loosely divided into two related groups of named syndromes. The first comprises epilepsies where continuous EEG changes directly result in cognitive and developmental dysfunction. The second includes patients where cognitive impairment is present at seizure onset and is due to the underlying etiology but the epileptic activity may then worsen the cognitive abilities over time. Recent, large-scale exome studies have begun to establish the genetic architecture of the epileptic encephalopathies, resulting in a re-consideration of the boundaries of these named syndromes. The emergence of this genetic architecture has lead to three main pathophysiological concepts to provide a mechanistic framework for these disorders. In this article, we will review the classic syndromes, the most significant genetic findings, and relate both to the pathophysiological understanding of epileptic encephalopathies.
Collapse
|
34
|
Cho IT, Lim Y, Golden JA, Cho G. Aristaless Related Homeobox (ARX) Interacts with β-Catenin, BCL9, and P300 to Regulate Canonical Wnt Signaling. PLoS One 2017; 12:e0170282. [PMID: 28103279 PMCID: PMC5245867 DOI: 10.1371/journal.pone.0170282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023] Open
Abstract
Mutations in the Aristaless Related Homeobox (ARX) gene are associated with a spectrum of structural (lissencephaly) and functional (epilepsy and intellectual disabilities) neurodevelopmental disorders. How mutations in this single transcription factor can result in such a broad range of phenotypes remains poorly understood. We hypothesized that ARX functions through distinct interactions with specific transcription factors/cofactors to regulate unique target genes in different cell types. To identify ARX interacting proteins, we performed an unbiased proteomics screen and identified several components of the Wnt/β-catenin signaling pathway, including β-catenin (CTNNB1), B-cell CLL/lymphoma 9 (BCL9) and leucine rich repeat flightless interacting protein 2 (LRRFIP2), in cortical progenitor cells. Our data show that ARX positively regulates Wnt/ β-catenin signaling and that the C-terminal domain of ARX interacts with the armadillo repeats in β-catenin to promote Wnt/β-catenin signaling. In addition, we found BCL9 and P300 also interact with ARX to modulate Wnt/β-catenin signaling. These data provide new insights into how ARX can uniquely regulate cortical neurogenesis, and connect the function of ARX with Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Il-Taeg Cho
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, United States of America
| | - Youngshin Lim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, United States of America
| | - Jeffrey A. Golden
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, United States of America
| | - Ginam Cho
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
The epileptic encephalopathies are severe and often treatment-resistant conditions that are associated with a progressive disturbance of brain function, resulting in a broad range of neurological and non-neurological comorbidities. The concept of epileptic encephalopathies entails that the encephalopathy aspect of the overall condition is primarily driven by the epileptic activity of the disease, which often manifests as specific and pathological features on the electroencephalogram. Genetic factors in epileptic encephalopathies are increasingly recognized. As of 2016, more than 30 genes have been securely implicated as causative genes for genetic epileptic encephalopathies. Even though the traditional concept of epileptic encephalopathies entails that the progressive disturbance of brain dysfunction is primarily due to the abnormal hypersynchronous activity that underlies the seizure disorders, this strict concept rarely holds true for patients with identified genetic etiologies. More commonly, an underlying genetic etiology is thought to predispose both to the neurodevelopmental comorbidities and to the seizure phenotype with a complex interaction between both. In this chapter, we will elucidate to what extent neurodegeneration rather than epilepsy-related regression is a feature of the common epileptic encephalopathies, drawing parallels between two relatively separate fields of neurogenetic research.
Collapse
|
36
|
Abramczuk MK, Burkard TR, Rolland V, Steinmann V, Duchek P, Jiang Y, Wissel S, Reichert H, Knoblich JA. The splicing co-factor Barricade/Tat-SF1, is required for cell cycle and lineage progression in Drosophila neural stem cells. Development 2017; 144:3932-3945. [DOI: 10.1242/dev.152199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Stem cells need to balance self-renewal and differentiation for correct tissue development and homeostasis. Defects in this balance can lead to developmental defects or tumor formation. In recent years, mRNA splicing has emerged as one important mechanism regulating cell fate decisions. Here we address the role of the evolutionary conserved splicing co-factor Barricade (Barc)/Tat-SF1/CUS2 in Drosophila neural stem cell (neuroblast) lineage formation. We show that Barc is required for the generation of neurons during Drosophila brain development by ensuring correct neural progenitor proliferation and differentiation. Barc associates with components of the U2 small nuclear ribonucleic proteins (snRNP), and its depletion causes alternative splicing in form of intron retention in a subset of genes. Using bioinformatics analysis and a cell culture based splicing assay, we found that Barc-dependent introns share three major traits: they are short, GC rich and have weak 3' splice sites. Our results show that Barc, together with the U2snRNP, plays an important role in regulating neural stem cell lineage progression during brain development and facilitates correct splicing of a subset of introns.
Collapse
Affiliation(s)
- Monika K. Abramczuk
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Thomas R. Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Vivien Rolland
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
- Current address: Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Canberra, ACT 2601, Australia
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Yanrui Jiang
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
- Current address: D-BSSE ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Sebastian Wissel
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Juergen A. Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| |
Collapse
|
37
|
Desikan RS, Barkovich AJ. Malformations of cortical development. Ann Neurol 2016; 80:797-810. [PMID: 27862206 PMCID: PMC5177533 DOI: 10.1002/ana.24793] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 01/05/2023]
Abstract
Malformations of cortical development (MCDs) compose a diverse range of disorders that are common causes of neurodevelopmental delay and epilepsy. With improved imaging and genetic methodologies, the underlying molecular and pathobiological characteristics of several MCDs have been recently elucidated. In this review, we discuss genetic and molecular alterations that disrupt normal cortical development, with emphasis on recent discoveries, and provide detailed radiological features of the most common and important MCDs. Ann Neurol 2016;80:797-810.
Collapse
Affiliation(s)
- Rahul S. Desikan
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - A. James Barkovich
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
38
|
Xie Y, Li X, Deng X, Hou Y, O'Hara K, Urso A, Peng Y, Chen L, Zhu S. The Ets protein Pointed prevents both premature differentiation and dedifferentiation of Drosophila intermediate neural progenitors. Development 2016; 143:3109-18. [PMID: 27510969 DOI: 10.1242/dev.137281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/27/2016] [Indexed: 01/01/2023]
Abstract
Intermediate neural progenitors (INPs) need to avoid both dedifferentiation and differentiation during neurogenesis, but the underlying mechanisms are not well understood. In Drosophila, the Ets protein Pointed P1 (PntP1) is required to generate INPs from type II neuroblasts. Here, we investigated how PntP1 promotes INP generation. By generating pntP1-specific mutants and using RNAi knockdown, we show that the loss of PntP1 leads to both an increase in type II neuroblast number and the elimination of INPs. The elimination of INPs results from the premature differentiation of INPs due to ectopic Prospero expression in newly generated immature INPs (imINPs), whereas the increase in type II neuroblasts results from the dedifferentiation of imINPs due to loss of Earmuff at later stages of imINP development. Furthermore, reducing Buttonhead enhances the loss of INPs in pntP1 mutants, suggesting that PntP1 and Buttonhead act cooperatively to prevent premature INP differentiation. Our results demonstrate that PntP1 prevents both the premature differentiation and the dedifferentiation of INPs by regulating the expression of distinct target genes at different stages of imINP development.
Collapse
Affiliation(s)
- Yonggang Xie
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaosu Li
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaobing Deng
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Yanjun Hou
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Krysten O'Hara
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
39
|
Ernst C. Proliferation and Differentiation Deficits are a Major Convergence Point for Neurodevelopmental Disorders. Trends Neurosci 2016; 39:290-299. [DOI: 10.1016/j.tins.2016.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
|
40
|
Moffat JJ, Ka M, Jung EM, Kim WY. Genes and brain malformations associated with abnormal neuron positioning. Mol Brain 2015; 8:72. [PMID: 26541977 PMCID: PMC4635534 DOI: 10.1186/s13041-015-0164-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/31/2015] [Indexed: 01/05/2023] Open
Abstract
Neuronal positioning is a fundamental process during brain development. Abnormalities in this process cause several types of brain malformations and are linked to neurodevelopmental disorders such as autism, intellectual disability, epilepsy, and schizophrenia. Little is known about the pathogenesis of developmental brain malformations associated with abnormal neuron positioning, which has hindered research into potential treatments. However, recent advances in neurogenetics provide clues to the pathogenesis of aberrant neuronal positioning by identifying causative genes. This may help us form a foundation upon which therapeutic tools can be developed. In this review, we first provide a brief overview of neural development and migration, as they relate to defects in neuronal positioning. We then discuss recent progress in identifying genes and brain malformations associated with aberrant neuronal positioning during human brain development.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| |
Collapse
|
41
|
Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene. Hum Genet 2015; 134:1163-82. [PMID: 26337422 DOI: 10.1007/s00439-015-1594-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
Abstract
Protein-coding mutations in the transcription factor-encoding gene ARX cause various forms of intellectual disability (ID) and epilepsy. In contrast, variations in surrounding non-coding sequences are correlated with milder forms of non-syndromic ID and autism and had suggested the importance of ARX gene regulation in the etiology of these disorders. We compile data on several novel and some already identified patients with or without ID that carry duplications of ARX genomic region and consider likely genetic mechanisms underlying the neurodevelopmental defects. We establish the long-range regulatory domain of ARX and identify its brain region-specific autoregulation. We conclude that neurodevelopmental disturbances in the patients may not simply arise from increased dosage due to ARX duplication. This is further exemplified by a small duplication involving a non-functional ARX copy, but with duplicated enhancers. ARX enhancers are located within a 504-kb region and regulate expression specifically in the forebrain in developing and adult zebrafish. Transgenic enhancer-reporter lines were used as in vivo tools to delineate a brain region-specific negative and positive autoregulation of ARX. We find autorepression of ARX in the telencephalon and autoactivation in the ventral thalamus. Fluorescently labeled brain regions in the transgenic lines facilitated the identification of neuronal outgrowth and pathfinding disturbances in the ventral thalamus and telencephalon that occur when arxa dosage is diminished. In summary, we have established a model for how breakpoints in long-range gene regulation alter the expression levels of a target gene brain region-specifically, and how this can cause subtle neuronal phenotypes relating to the etiology of associated neuropsychiatric disease.
Collapse
|
42
|
Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022392. [PMID: 25934463 DOI: 10.1101/cshperspect.a022392] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malformations of cortical development (MCDs) are an important cause of epilepsy and an extremely interesting group of disorders from the perspective of brain development and its perturbations. Many new MCDs have been described in recent years as a result of improvements in imaging, genetic testing, and understanding of the effects of mutations on the ability of their protein products to correctly function within the molecular pathways by which the brain functions. In this review, most of the major MCDs are reviewed from a clinical, embryological, and genetic perspective. The most recent literature regarding clinical diagnosis, mechanisms of development, and future paths of research are discussed.
Collapse
Affiliation(s)
- A James Barkovich
- Department of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, California 94143-0628
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer, University of Florence, Florence 50139, Italy
| |
Collapse
|
43
|
Tuoc TC, Pavlakis E, Tylkowski MA, Stoykova A. Control of cerebral size and thickness. Cell Mol Life Sci 2014; 71:3199-218. [PMID: 24614969 PMCID: PMC11113230 DOI: 10.1007/s00018-014-1590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/24/2022]
Abstract
The mammalian neocortex is a sheet of cells covering the cerebrum that provides the structural basis for the perception of sensory inputs, motor output responses, cognitive function, and mental capacity of primates. Recent discoveries promote the concept that increased cortical surface size and thickness in phylogenetically advanced species is a result of an increased generation of neurons, a process that underlies higher cognitive and intellectual performance in higher primates and humans. Here, we review some of the advances in the field, focusing on the diversity of neocortical progenitors in different species and the cellular mechanisms of neurogenesis. We discuss recent views on intrinsic and extrinsic molecular determinants, including the role of epigenetic chromatin modifiers and microRNA, in the control of neuronal output in developing cortex and in the establishment of normal cortical architecture.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Kreuzbergring 40, 37075, Göttingen, Germany,
| | | | | | | |
Collapse
|
44
|
Cho G, Lim Y, Cho IT, Simonet JC, Golden JA. Arx together with FoxA2, regulates Shh floor plate expression. Dev Biol 2014; 393:137-48. [PMID: 24968361 DOI: 10.1016/j.ydbio.2014.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 11/16/2022]
Abstract
Mutations in the Aristaless related homeodomain transcription factor (ARX) are associated with a diverse set of X-linked mental retardation and epilepsy syndromes in humans. Although most studies have been focused on its function in the forebrain, ARX is also expressed in other regions of the developing nervous system including the floor plate (FP) of the spinal cord where its function is incompletely understood. To investigate the role of Arx in the FP, we performed gain-of-function studies in the chick using in ovo electroporation, and loss-of-function studies in Arx-deficient mice. We have found that Arx, in conjunction with FoxA2, directly induces Sonic hedgehog (Shh) expression through binding to a Shh floor plate enhancer (SFPE2). We also observed that FoxA2 induces Arx through its transcriptional activation domain whereas Nkx2.2, induced by Shh, abolishes this induction. Our data support a feedback loop model for Arx function; through interactions with FoxA2, Arx positively regulates Shh expression in the FP, and Shh signaling in turn activates Nkx2.2, which suppresses Arx expression. Furthermore, our data are evidence that Arx plays a role as a context dependent transcriptional activator, rather than a primary inducer of Shh expression, potentially explaining how mutations in ARX are associated with diverse, and often subtle, defects.
Collapse
Affiliation(s)
- Ginam Cho
- Department of Pathology, Brigham and Women׳s Hospital, Harvard Medical School, USA; Department of Pathology and Laboratory Medicine, Children׳s Hospital of Philadelphia, USA
| | - Youngshin Lim
- Department of Pathology, Brigham and Women׳s Hospital, Harvard Medical School, USA
| | - Il-Taeg Cho
- Department of Pathology, Brigham and Women׳s Hospital, Harvard Medical School, USA
| | - Jacqueline C Simonet
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, USA
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women׳s Hospital, Harvard Medical School, USA; Department of Pathology and Laboratory Medicine, Children׳s Hospital of Philadelphia, USA.
| |
Collapse
|
45
|
Simonet JC, Sunnen CN, Wu J, Golden JA, Marsh ED. Conditional Loss of Arx From the Developing Dorsal Telencephalon Results in Behavioral Phenotypes Resembling Mild Human ARX Mutations. Cereb Cortex 2014; 25:2939-50. [PMID: 24794919 DOI: 10.1093/cercor/bhu090] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations in the Aristaless-Related Homeobox (ARX) gene cause structural anomalies of the brain, epilepsy, and neurocognitive deficits in children. During forebrain development, Arx is expressed in both pallial and subpallial progenitor cells. We previously demonstrated that elimination of Arx from subpallial-derived cortical interneurons generates an epilepsy phenotype with features overlapping those seen in patients with ARX mutations. In this report, we have selectively removed Arx from pallial progenitor cells that give rise to the cerebral cortical projection neurons. While no discernable seizure activity was recorded, these mice exhibited a peculiar constellation of behaviors. They are less anxious, less social, and more active when compared with their wild-type littermates. The overall cortical thickness was reduced, and the corpus callosum and anterior commissure were hypoplastic, consistent with a perturbation in cortical connectivity. Taken together, these data suggest that some of the structural and behavioral anomalies, common in patients with ARX mutations, are specifically due to alterations in pallial progenitor function. Furthermore, our data demonstrate that some of the neurobehavioral features found in patients with ARX mutations may not be due to on-going seizures, as is often postulated, given that epilepsy was eliminated as a confounding variable in these behavior analyses.
Collapse
Affiliation(s)
- Jacqueline C Simonet
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - C Nicole Sunnen
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jue Wu
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey A Golden
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA Current address: Division of Child Neurology, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19072, USA
| |
Collapse
|
46
|
Arx is required for specification of the zona incerta and reticular nucleus of the thalamus. J Neuropathol Exp Neurol 2014; 73:253-61. [PMID: 24487799 DOI: 10.1097/nen.0000000000000048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations in the aristaless-related homeobox (ARX) gene result in a spectrum of structural and functional nervous system disorders including lissencephaly, movement disorders, intellectual disabilities, and epilepsy. Some patients also have symptoms indicating hypothalamic dysfunction, but little is known about the role of ARX in diencephalic development. To begin evaluating diencephalic defects, we examined the expression of a panel of known genes and gene products that label specific diencephalic nuclei in 2 different Arx mutant mouse lines at E18.5. Male mice engineered to have a polyalanine expansion mutation (Arx) revealed no expression differences in any diencephalic nucleus when compared with wild-type littermates. In contrast, mice null for Arx (Arx) lost expression of specific markers of the thalamic reticular nucleus and zona incerta (ZI) while retaining expression in other thalamic nuclei and in the hypothalamus. Tyrosine hydroxylase, a marker of the dopaminergic A13 subnucleus of ZI, was among those lost, suggesting a requirement for Arx in normal thalamic reticular nucleus and ZI development and, specifically, for A13 dopaminergic fate. Because the ZI and A13 regions make connections to several hypothalamic nuclei, such misspecification may contribute to the "hypothalamic dysfunction" observed in some patients.
Collapse
|