1
|
Dehghani-Arani F, Kazemi R, Hallajian AH, Sima S, Boutimaz S, Hedayati S, Koushamoghadam S, Safarifard R, Salehinejad MA. Metaanalysis of Repetitive Transcranial Magnetic Stimulation (rTMS) Efficacy for OCD Treatment: The Impact of Stimulation Parameters, Symptom Subtype and rTMS-Induced Electrical Field. J Clin Med 2024; 13:5358. [PMID: 39336846 PMCID: PMC11432318 DOI: 10.3390/jcm13185358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) has recently demonstrated significant potential in treating obsessive-compulsive disorder (OCD). However, its effectiveness depends on various parameters, including stimulation parameters, OCD subtypes and electrical fields (EFs) induced by rTMS in targeted brain regions that are less studied. Methods: Using the PRISMA approach, we examined 27 randomized control trials (RCTs) conducted from 1985 to 2024 using rTMS for the treatment of OCD and conducted several meta-analyses to investigate the role of rTMS parameters, including the EFs induced by each rTMS protocol, and OCD subtypes on treatment efficacy. Results: A significant, medium effect size was found, favoring active rTMS (gPPC = 0.59, p < 0.0001), which was larger for the obsession subscale. Both supplementary motor area (SMA) rTMS (gPPC = 0.82, p = 0.048) and bilateral dorsolateral prefrontal cortex (DLPFC) rTMS (gPPC = 1.14, p = 0.04) demonstrated large effect sizes, while the right DLPFC showed a significant moderate effect size for reducing OCD severity (gPPC = 0.63, p = 0.012). These protocols induced the largest EFs in dorsal cognitive, ventral cognitive and sensorimotor circuits. rTMS protocols targeting DLPFC produced the strongest electrical fields in cognitive circuits, while pre-supplementary motor area (pre-SMA) and orbitofrontal cortex (OFC) rTMS protocols induced larger fields in regions linked to emotional and affective processing in addition to cognitive circuits. The pre-SMA rTMS modulated more circuits involved in OCD pathophysiology-sensorimotor, cognitive, affective, and frontolimbic-with larger electrical fields than the other protocols. Conclusions: While rTMS shows moderate overall clinical efficacy, protocols targeting ventral and dorsal cognitive and sensorimotor circuits demonstrate the highest potential. The pre-SMA rTMS appears to induce electrical fields in more circuits relevant to OCD pathophysiology.
Collapse
Affiliation(s)
- Fateme Dehghani-Arani
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
| | - Reza Kazemi
- Faculty of Entrepreneurship, University of Tehran, Tehran 1738953355, Iran;
| | - Amir-Homayun Hallajian
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 Nijmegen, The Netherlands
| | - Sepehr Sima
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 1956836613, Iran
| | - Samaneh Boutimaz
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
| | - Sepideh Hedayati
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Saba Koushamoghadam
- Department of Clinical Psychology, School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran 1445613111, Iran;
| | - Razieh Safarifard
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
| | - Mohammad Ali Salehinejad
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 1956836613, Iran
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
| |
Collapse
|
2
|
Hervault M, Wessel JR. Common and unique neurophysiological signatures for the stopping and revising of actions reveal the temporal dynamics of inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.597172. [PMID: 38948849 PMCID: PMC11212930 DOI: 10.1101/2024.06.18.597172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Inhibitory control is a crucial cognitive-control ability for behavioral flexibility that has been extensively investigated through action-stopping tasks. Multiple neurophysiological features have been proposed to represent 'signatures' of inhibitory control during action-stopping, though the processes signified by these signatures are still controversially discussed. The present study aimed to disentangle these processes by comparing simple stopping situations with those in which additional action revisions were needed. Three experiments in female and male humans were performed to characterize the neurophysiological dynamics involved in action-stopping and - changing, with hypotheses derived from recently developed two-stage 'pause-then-cancel' models of inhibitory control. Both stopping and revising an action triggered an early broad 'pause'-process, marked by frontal EEG β-bursts and non-selective suppression of corticospinal excitability. However, partial-EMG responses showed that motor activity was only partially inhibited by this 'pause', and that this activity can be further modulated during action-revision. In line with two-stage models of inhibitory control, subsequent frontocentral EEG activity after this initial 'pause' selectively scaled depending on the required action revisions, with more activity observed for more complex revisions. This demonstrates the presence of a selective, effector-specific 'retune' phase as the second process involved in action-stopping and -revision. Together, these findings show that inhibitory control is implemented over an extended period of time and in at least two phases. We are further able to align the most commonly proposed neurophysiological signatures to these phases and show that they are differentially modulated by the complexity of action-revision.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| | - Jan R. Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
3
|
He Q, Geißler CF, Ferrante M, Hartwigsen G, Friehs MA. Effects of transcranial magnetic stimulation on reactive response inhibition. Neurosci Biobehav Rev 2024; 157:105532. [PMID: 38194868 DOI: 10.1016/j.neubiorev.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Reactive response inhibition cancels impending actions to enable adaptive behavior in ever-changing environments and has wide neuropsychiatric implications. A canonical paradigm to measure the covert inhibition latency is the stop-signal task (SST). To probe the cortico-subcortical network underlying motor inhibition, transcranial magnetic stimulation (TMS) has been applied over central nodes to modulate SST performance, especially to the right inferior frontal cortex and the presupplementary motor area. Since the vast parameter spaces of SST and TMS enabled diverse implementations, the insights delivered by emerging TMS-SST studies remain inconclusive. Therefore, a systematic review was conducted to account for variability and synthesize converging evidence. Results indicate certain protocol specificity through the consistent perturbations induced by online TMS, whereas offline protocols show paradoxical effects on different target regions besides numerous null effects. Ancillary neuroimaging findings have verified and dissociated the underpinning network dynamics. Sources of heterogeneity in designs and risk of bias are highlighted. Finally, we outline best-practice recommendations to bridge methodological gaps and subserve the validity as well as replicability of future work.
Collapse
Affiliation(s)
- Qu He
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Christoph F Geißler
- Institute for Cognitive & Affective Neuroscience (ICAN), Trier University, Trier, Germany
| | - Matteo Ferrante
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany; Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maximilian A Friehs
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Psychology of Conflict Risk and Safety, University of Twente, the Netherlands; University College Dublin, School of Psychology, Dublin, Ireland.
| |
Collapse
|
4
|
West TO, Duchet B, Farmer SF, Friston KJ, Cagnan H. When do bursts matter in the primary motor cortex? Investigating changes in the intermittencies of beta rhythms associated with movement states. Prog Neurobiol 2023; 221:102397. [PMID: 36565984 PMCID: PMC7614511 DOI: 10.1016/j.pneurobio.2022.102397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Brain activity exhibits significant temporal structure that is not well captured in the power spectrum. Recently, attention has shifted to characterising the properties of intermittencies in rhythmic neural activity (i.e. bursts), yet the mechanisms that regulate them are unknown. Here, we present evidence from electrocorticography recordings made over the motor cortex to show that the statistics of bursts, such as duration or amplitude, in the beta frequency (14-30 Hz) band, significantly aid the classification of motor states such as rest, movement preparation, execution, and imagery. These features reflect nonlinearities not detectable in the power spectrum, with states increasing in nonlinearity from movement execution to preparation to rest. Further, we show using a computational model of the cortical microcircuit, constrained to account for burst features, that modulations of laminar specific inhibitory interneurons are responsible for the temporal organisation of activity. Finally, we show that the temporal characteristics of spontaneous activity can be used to infer the balance of cortical integration between incoming sensory information and endogenous activity. Critically, we contribute to the understanding of how transient brain rhythms may underwrite cortical processing, which in turn, could inform novel approaches for brain state classification, and modulation with novel brain-computer interfaces.
Collapse
Affiliation(s)
- Timothy O West
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Benoit Duchet
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, UK; Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Hayriye Cagnan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
5
|
Daniel PL, Bonaiuto JJ, Bestmann S, Aron AR, Little S. High precision magnetoencephalography reveals increased right-inferior frontal gyrus beta power during response conflict. Cortex 2023; 158:127-136. [PMID: 36521374 PMCID: PMC9840697 DOI: 10.1016/j.cortex.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
Flexibility of behavior and the ability to rapidly switch actions is critical for adaptive living in humans. It is well established that the right-inferior frontal gyrus (R-IFG) is recruited during outright action-stopping, relating to increased beta (12-30 Hz) power. It has also been posited that inhibiting incorrect response tendencies and switching is central to motor flexibility. However, it is not known if the commonly reported R-IFG beta signature of response inhibition in action-stopping is also recruited during response conflict, which would suggest overlapping networks for stopping and switching. In the current study, we analyzed high precision magnetoencephalography (hpMEG) data recorded with multiple within subject recording sessions (trials n > 10,000) from 8 subjects during different levels of response conflict. We hypothesized that a R-IFG-triggered network for response inhibition is domain general and therefore also involved in mediating response conflict. We tested whether R-IFG showed increased beta power dependent on the level of response conflict. Using event-related spectral perturbations and linear mixed modeling, we found that R-IFG beta power increased for response conflict trials. The R-IFG beta increase was specific to trials with strong response conflict, and increased R-IFG beta power related to less error. This supports a more generalized role for R-IFG beta, beyond simple stopping behavior towards response switching.
Collapse
Affiliation(s)
- Pria L. Daniel
- Department of Psychology, University of California San Diego, 92093
| | - James J. Bonaiuto
- Institut des Sciences Cognitives, Marc Jeannerod, CNRS UMR5229, 69500,Université Claude Bernard Lyon 1, Université de Lyon, 72501
| | - Sven Bestmann
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Adam R. Aron
- Department of Psychology, University of California San Diego, 92093
| | - Simon Little
- Department of Neurology, University of California San Francisco, CA, USA.
| |
Collapse
|
6
|
Leunissen I, Van Steenkiste M, Heise KF, Monteiro TS, Dunovan K, Mantini D, Coxon JP, Swinnen SP. Effects of beta-band and gamma-band rhythmic stimulation on motor inhibition. iScience 2022; 25:104338. [PMID: 35602965 PMCID: PMC9117874 DOI: 10.1016/j.isci.2022.104338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
To investigate whether beta oscillations are causally related to motor inhibition, thirty-six participants underwent two concurrent transcranial alternating current stimulation (tACS) and electroencephalography (EEG) sessions during which either beta (20 Hz) or gamma (70 Hz) stimulation was applied while participants performed a stop-signal task. In addition, we acquired magnetic resonance images to simulate the electric field during tACS. 20 Hz stimulation targeted at the pre-supplementary motor area enhanced inhibition and increased beta oscillatory power around the time of the stop-signal in trials directly following stimulation. The increase in inhibition on stop trials followed a dose-response relationship with the strength of the individually simulated electric field. Computational modeling revealed that 20 and 70 Hz stimulation had opposite effects on the braking process. These results highlight that the effects of tACS are state-dependent and demonstrate that fronto-central beta activity is causally related to successful motor inhibition, supporting its use as a functional biomarker. Beta tACS over preSMA improved motor inhibition Gamma tACS slowed down the stop process but primarily affected movement execution Beta tACS resulted in higher beta spectral power around the time of the stop-signal Effects of tACS showed a dose-response relationship with electric field strength
Collapse
Affiliation(s)
- Inge Leunissen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200MD, Maastricht, the Netherlands
| | - Manon Van Steenkiste
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Kirstin-Friederike Heise
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, 3000, Leuven, Belgium
| | - Thiago Santos Monteiro
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, 3000, Leuven, Belgium
| | - Kyle Dunovan
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126, Venice, Italy
| | - James P Coxon
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
7
|
Cheng B, Zhou Y, Kwok VPY, Li Y, Wang S, Zhao Y, Meng Y, Deng W, Wang J. Altered Functional Connectivity Density and Couplings in Postpartum Depression with and Without Anxiety. Soc Cogn Affect Neurosci 2021; 17:756-766. [PMID: 34904174 PMCID: PMC9340108 DOI: 10.1093/scan/nsab127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
Postpartum depression (PPD) is the most common psychological health issue among women, which often comorbids with anxiety (PPD-A). PPD and PPD-A showed highly overlapping clinical symptoms. Identifying disorder-specific neurophysiological markers of PDD and PPD-A is important for better clinical diagnosis and treatments. Here, we performed functional connectivity density (FCD) and resting-state functional connectivity (rsFC) analyses in 138 participants (45 unmedicated patients with first-episode PPD, 31 PDD-A patients and 62 healthy postnatal women, respectively). FCD mapping revealed specifically weaker long-range FCD in right lingual gyrus (LG.R) for PPD patients and significantly stronger long-range FCD in left ventral striatum (VS.L) for PPD-A patients. The follow-up rsFC analyses further revealed reduced functional connectivity between dorsomedial prefrontal cortex (dmPFC) and VS.L in both PPD and PPD-A. PPD showed specific changes of rsFC between LG.R and dmPFC, right angular gyrus and left precentral gyrus, while PPD-A represented specifically abnormal rsFC between VS.L and left ventrolateral prefrontal cortex. Moreover, the altered FCD and rsFC were closely associated with depression and anxiety symptoms load. Taken together, our study is the first to identify common and disorder-specific neural circuit disruptions in PPD and PPD-A, which may facilitate more effective diagnosis and treatments.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China.,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yushan Zhou
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Veronica P Y Kwok
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Yuanyuan Li
- Key Laboratory for NeuroInformation of the Ministry of Education, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yajun Zhao
- School of Sociality and Psychology, Southwest Minzu University, Chengdu, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
8
|
Cassidy JM, Wodeyar A, Srinivasan R, Cramer SC. Coherent neural oscillations inform early stroke motor recovery. Hum Brain Mapp 2021; 42:5636-5647. [PMID: 34435705 PMCID: PMC8559506 DOI: 10.1002/hbm.25643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Neural oscillations may contain important information pertaining to stroke rehabilitation. This study examined the predictive performance of electroencephalography‐derived neural oscillations following stroke using a data‐driven approach. Individuals with stroke admitted to an inpatient rehabilitation facility completed a resting‐state electroencephalography recording and structural neuroimaging around the time of admission and motor testing at admission and discharge. Using a lasso regression model with cross‐validation, we determined the extent of motor recovery (admission to discharge change in Functional Independence Measurement motor subscale score) prediction from electroencephalography, baseline motor status, and corticospinal tract injury. In 27 participants, coherence in a 1–30 Hz band between leads overlying ipsilesional primary motor cortex and 16 leads over bilateral hemispheres predicted 61.8% of the variance in motor recovery. High beta (20–30 Hz) and alpha (8–12 Hz) frequencies contributed most to the model demonstrating both positive and negative associations with motor recovery, including high beta leads in supplementary motor areas and ipsilesional ventral premotor and parietal regions and alpha leads overlying contralesional temporal–parietal and ipsilesional parietal regions. Electroencephalography power, baseline motor status, and corticospinal tract injury did not significantly predict motor recovery during hospitalization (R2 = 0–6.2%). Findings underscore the relevance of oscillatory synchronization in early stroke rehabilitation while highlighting contributions from beta and alpha frequency bands and frontal, parietal, and temporal–parietal regions overlooked by traditional hypothesis‐driven prediction models.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Allied Health Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anirudh Wodeyar
- Department of Cognitive Sciences, University of California Irvine, Irvine, California, USA
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, University of California Irvine, Irvine, California, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA.,California Rehabilitation Institute, Los Angeles, California, USA
| |
Collapse
|
9
|
Ruitenberg MFL, van Wouwe NC, Wylie SA, Abrahamse EL. The role of dopamine in action control: Insights from medication effects in Parkinson's disease. Neurosci Biobehav Rev 2021; 127:158-170. [PMID: 33905788 DOI: 10.1016/j.neubiorev.2021.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/26/2021] [Accepted: 04/18/2021] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder associated primarily with overt motor symptoms. Several studies show that PD is additionally accompanied by impairments in covert cognitive processes underlying goal-directed motor functioning (e.g., action planning, conflict adaptation, inhibition), and that dopaminergic medication may modulate these action control components. In this review we aim to leverage findings from studies in this domain to elucidate the role of dopamine (DA) in action control. A qualitative review of studies that investigated the effects of medication status (on vs. off) on action control in PD suggests a component-specific role for DA in action control, although the expression of medication effects depends on characteristics of both the patients and experimental tasks used to measure action control. We discuss these results in the light of findings from other research lines examining the role of DA in action control (e.g., animal research, pharmacology), and recommend that future studies use multi-method, within-subject approaches to model DA effects on action control across different components as well as underlying striatal pathways (ventral vs. dorsal).
Collapse
Affiliation(s)
- M F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| | - N C van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - S A Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - E L Abrahamse
- Department of Communication and Cognition, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
10
|
Schaum M, Pinzuti E, Sebastian A, Lieb K, Fries P, Mobascher A, Jung P, Wibral M, Tüscher O. Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans. eLife 2021; 10:e61679. [PMID: 33755019 PMCID: PMC8096430 DOI: 10.7554/elife.61679] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/23/2021] [Indexed: 01/02/2023] Open
Abstract
Motor inhibitory control implemented as response inhibition is an essential cognitive function required to dynamically adapt to rapidly changing environments. Despite over a decade of research on the neural mechanisms of response inhibition, it remains unclear, how exactly response inhibition is initiated and implemented. Using a multimodal MEG/fMRI approach in 59 subjects, our results reliably reveal that response inhibition is initiated by the right inferior frontal gyrus (rIFG) as a form of attention-independent top-down control that involves the modulation of beta-band activity. Furthermore, stopping performance was predicted by beta-band power, and beta-band connectivity was directed from rIFG to pre-supplementary motor area (pre-SMA), indicating rIFG's dominance over pre-SMA. Thus, these results strongly support the hypothesis that rIFG initiates stopping, implemented by beta-band oscillations with potential to open up new ways of spatially localized oscillation-based interventions.
Collapse
Affiliation(s)
- Michael Schaum
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience ResearchMainzGermany
| | - Edoardo Pinzuti
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience ResearchMainzGermany
| | - Alexandra Sebastian
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Arian Mobascher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Patrick Jung
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Michael Wibral
- Campus Institute Dynamics of Biological Networks, Georg-August UniversityGöttingenGermany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| |
Collapse
|
11
|
Sundby KK, Jana S, Aron AR. Double-blind disruption of right inferior frontal cortex with TMS reduces right frontal beta power for action stopping. J Neurophysiol 2021; 125:140-153. [PMID: 33112697 PMCID: PMC8087383 DOI: 10.1152/jn.00459.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 01/25/2023] Open
Abstract
Stopping action depends on the integrity of the right inferior frontal gyrus (rIFG). Electrocorticography from the rIFG shows an increase in beta power during action stopping. Scalp EEG shows a similar right frontal beta increase, but it is unknown whether this beta modulation relates to the underlying rIFG network. Demonstrating a causal relationship between the rIFG and right frontal beta in EEG during action stopping is important for putting this electrophysiological marker on a firmer footing. In a double-blind study with a true sham coil, we used fMRI-guided 1-Hz repetitive transcranial magnetic stimulation (rTMS) to disrupt the rIFG and to test whether this reduced right frontal beta and impaired action stopping. We found that rTMS selectively slowed stop signal reaction time (SSRT) (no effect on Go) and reduced right frontal beta (no effect on sensorimotor mu/beta related to Go); it also reduced the variance of a single-trial muscle marker of stopping. Surprisingly, sham stimulation also slowed SSRTs and reduced beta. Part of this effect, however, resulted from carryover of real stimulation in participants who received real stimulation first. A post hoc between-group comparison of those participants who received real first compared with those who received sham first showed that real stimulation reduced beta significantly more. Thus, real rTMS uniquely affected metrics of stopping in the muscle and resulted in a stronger erosion of beta. We argue that this causal test validates right frontal beta as a functional marker of action stopping.NEW & NOTEWORTHY Action stopping recruits the right inferior frontal gyrus (rIFG) and elicits increases in right frontal beta. The present study now provides causal evidence linking these stopping-related beta oscillations to the integrity of the underlying rIFG network. One-hertz transcranial magnetic stimulation (TMS) over the rIFG impaired stopping and reduced right frontal beta during a stop-signal task. Furthermore, the effect on neural oscillations was specific to stopping-related beta, with no change in sensorimotor mu/beta corresponding to the Go response.
Collapse
Affiliation(s)
- Kelsey K Sundby
- Department of Psychology, University of California San Diego, La Jolla, California
| | - Sumitash Jana
- Department of Psychology, University of California San Diego, La Jolla, California
| | - Adam R Aron
- Department of Psychology, University of California San Diego, La Jolla, California
| |
Collapse
|
12
|
Dissociation of Medial Frontal β-Bursts and Executive Control. J Neurosci 2020; 40:9272-9282. [PMID: 33097634 DOI: 10.1523/jneurosci.2072-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023] Open
Abstract
The neural mechanisms of executive and motor control concern both basic researchers and clinicians. In human studies, preparation and cancellation of movements are accompanied by changes in the β-frequency band (15-29 Hz) of electroencephalogram (EEG). Previous studies with human participants performing stop signal (countermanding) tasks have described reduced frequency of transient β-bursts over sensorimotor cortical areas before movement initiation and increased β-bursting over medial frontal areas with movement cancellation. This modulation has been interpreted as contributing to the trial-by-trial control of behavior. We performed identical analyses of EEG recorded over the frontal lobe of macaque monkeys (one male, one female) performing a saccade countermanding task. While we replicate the occurrence and modulation of β-bursts associated with initiation and cancellation of saccades, we found that β-bursts occur too infrequently to account for the observed stopping behavior. We also found β-bursts were more common after errors, but their incidence was unrelated to response time (RT) adaptation. These results demonstrate the homology of this EEG signature between humans and macaques but raise questions about the current interpretation of β band functional significance.SIGNIFICANCE STATEMENT The finding of increased β-bursting over medial frontal cortex with movement cancellation in humans is difficult to reconcile with the finding of modulation too late to contribute to movement cancellation in medial frontal cortex of macaque monkeys. To obtain comparable measurement scales, we recorded electroencephalogram (EEG) over medial frontal cortex of macaques performing a stop signal (countermanding) task. We replicated the occurrence and modulation of β-bursts associated with the cancellation of movements, but we found that β-bursts occur too infrequently to account for observed stopping behavior. Unfortunately, this finding raises doubts whether β-bursts can be a causal mechanism of response inhibition, which impacts future applications in devices such as brain-machine interfaces.
Collapse
|
13
|
Roxburgh AD, White DJ, Cornwell BR. Anxious arousal alters prefrontal cortical control of stopping. Eur J Neurosci 2020; 55:2529-2541. [PMID: 32949060 DOI: 10.1111/ejn.14976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
Anxiety heightens vigilance and stimulus-driven attention to the environment, which may in turn disrupt cognitive control processes such as response inhibition. How this unfolds at the neural level is unclear. Previous evidence implicates the right inferior frontal gyrus (IFG) as an important cortical node in both stimulus-driven attention and inhibitory control. Here we used magnetoencephalography (MEG) to investigate the neural mechanisms involved in the relationship between threat-induced anxiety and stopping during a stop-signal task, where a visual go signal was occasionally followed by an auditory stop signal. Healthy individuals (N = 18) performed the task during the threat of unpredictable shocks and safety to modulate anxious arousal. Behaviorally, we observed that stopping was impaired during threat (i.e. slower estimated stop-signal reaction times), indicating that anxious arousal weakens inhibitory control. MEG source analyses revealed that bilateral IFG and right dorsal prefrontal cortex showed increased beta-band activity (14-30 Hz) to the stop signal that varied as a function of successful stopping during nonanxious (safe) conditions only. Moreover, peak beta-band responses from right IFG were inversely correlated with stopping efficiency during nonanxious conditions. These findings support theoretical claims that beta oscillations function to maintain the current sensorimotor state, and that the lack of differential beta-band activity in prefrontal cortices underlies anxiety-related deficits in inhibitory control. We specifically argue that altered right IFG functioning might directly link impaired cognitive control to heightened stimulus-driven responding in anxiety states.
Collapse
Affiliation(s)
- Ariel D Roxburgh
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Vic., Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Vic., Australia
| | - Brian R Cornwell
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Vic., Australia
| |
Collapse
|
14
|
β-Bursts Reveal the Trial-to-Trial Dynamics of Movement Initiation and Cancellation. J Neurosci 2019; 40:411-423. [PMID: 31748375 DOI: 10.1523/jneurosci.1887-19.2019] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
The neurophysiological basis of motor control is of substantial interest to basic researchers and clinicians alike. Motor processes are accompanied by prominent field potential changes in the β-frequency band (15-29 Hz): in trial-averages, movement initiation is accompanied by β-band desynchronization over sensorimotor areas, whereas movement cancellation is accompanied by β-power increases over (pre)frontal areas. However, averaging misrepresents the true nature of the β-signal. Unaveraged β-band activity is characterized by short-lasting, burst-like events, rather than by steady modulations. Therefore, averaging-based quantifications may miss important brain-behavior relationships. To investigate how β-bursts relate to movement in male and female humans (N = 234), we investigated scalp-recorded β-band activity during the stop-signal task, which operationalizes both movement initiation and cancellation. Both processes were indexed by systematic spatiotemporal changes in β-burst rates. Before movement initiation, β-bursting was prominent at bilateral sensorimotor sites. These burst-rates predicted reaction time (a relationship that was absent in trial-average data), suggesting that sensorimotor β-bursting signifies an inhibited motor system, which has to be overcome to initiate movements. Indeed, during movement initiation, sensorimotor burst-rates steadily decreased, lateralizing just before movement execution. In contrast, successful movement cancellation was signified by increased phasic β-bursting over fronto-central sites. Such β-bursts were followed by short-latency increases of bilateral sensorimotor β-burst rates, suggesting that motor inhibition can be rapidly re-instantiated by frontal areas when movements have to be rapidly cancelled. Together, these findings suggest that β-bursting is a fundamental signature of the motor system, used by both sensorimotor and frontal areas involved in the trial-by-trial control of behavior.SIGNIFICANCE STATEMENT Movement-related β-frequency (15-29 Hz) changes are among the most prominent features of neural recordings across species, scales, and methods. However, standard averaging-based methods obscure the true dynamics of β-band activity, which is dominated by short-lived, burst-like events. Here, we demonstrate that both movement-initiation and cancellation in humans are characterized by unique trial-to-trial patterns of β-bursting. Movement initiation is characterized by steady reductions of β-bursting over bilateral sensorimotor sites. In contrast, during rapid movement cancellation, β-bursts first emerge over fronto-central sites typically associated with motor control, after which sensorimotor β-bursting re-initiates. These findings suggest a fundamentally novel, non-invasive measure of the neural interaction underlying movement-initiation and -cancellation, opening new avenues for the study of motor control in health and disease.
Collapse
|
15
|
Rydalch G, Bell HB, Ruddy KL, Bolton DAE. Stop-signal reaction time correlates with a compensatory balance response. Gait Posture 2019; 71:273-278. [PMID: 31121545 DOI: 10.1016/j.gaitpost.2019.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Response inhibition involves suppressing automatic, but unwanted action, which allows for behavioral flexibility. This capacity could theoretically contribute to fall prevention, especially in the cluttered environments we face daily. Although much has been learned from cognitive psychology regarding response inhibition, it is unclear if such findings translate to the intensified challenge of coordinating balance recovery reactions. RESEARCH QUESTION Is the ability to stop a prepotent response preserved when comparing performance on a standard test of response inhibition versus a reactive balance test where compensatory steps must be occasionally suppressed? METHODS Twelve young adults completed a stop signal task and reactive balance test separately. The stop signal task evaluates an individual's ability to quickly suppress a visually-cued button press upon hearing a 'stop' tone, and provides a measure of the speed of response inhibition called the Stop Signal Reaction Time (SSRT). Reactive balance was tested by releasing participants from a supported lean position, in situations where the environment was changed during visual occlusion. Upon receiving vision, participants were required to either step to regain balance following cable release (70% of trials), or suppress a step if an obstacle was present (30% of trials). The early muscle response of the stepping leg was compared between the 'step blocked' and 'step allowed' trials to quantify step suppression. RESULTS SSRT was correlated with muscle activation of the stepping leg when sufficient time was provided to view the response environment (400 ms). Individuals with faster SSRTs exhibited comparably less leg muscle activity when a step was blocked, signifying a superior ability to inhibit an unwanted step. SIGNIFICANCE Performance on a standardized test of response inhibition is related to performance on a reactive balance test where automated stepping responses must occasionally be inhibited. This highlights a generalizable neural mechanism for stopping action across different behavioral contexts.
Collapse
Affiliation(s)
- G Rydalch
- Department of Biology, Utah State University, United States
| | - H B Bell
- Department of Biology, Utah State University, United States
| | - K L Ruddy
- Neural Control of Movement Lab, ETH, Zürich, Switzerland; Institute of Neuroscience, Trinity College Dublin, Ireland
| | - D A E Bolton
- Department of Kinesiology & Health Science, Utah State University, 7000 Old Main Hill, Logan, UT 84322-7000, United States.
| |
Collapse
|
16
|
Beudel M, Sadnicka A, Edwards M, de Jong BM. Linking Pathological Oscillations With Altered Temporal Processing in Parkinsons Disease: Neurophysiological Mechanisms and Implications for Neuromodulation. Front Neurol 2019; 10:462. [PMID: 31133967 PMCID: PMC6523774 DOI: 10.3389/fneur.2019.00462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests that Parkinson's disease (PD) results from disrupted oscillatory activity in cortico-basal ganglia-thalamo-cortical (CBGTC) and cerebellar networks which can be partially corrected by applying deep brain stimulation (DBS). The inherent dynamic nature of such oscillatory activity might implicate that is represents temporal aspects of motor control. While the timing of muscle activities in CBGTC networks constitute the temporal dimensions of distinct motor acts, these very networks are also involved in somatosensory processing. In this respect, a temporal aspect of somatosensory processing in motor control concerns matching predicted (feedforward) and actual (feedback) sensory consequences of movement which implies a distinct contribution to demarcating the temporal order of events. Emerging evidence shows that such somatosensory processing is altered in movement disorders. This raises the question how disrupted oscillatory activity is related to impaired temporal processing and how/whether DBS can functionally restore this. In this perspective article, the neural underpinnings of temporal processing will be reviewed and translated to the specific alternated oscillatory neural activity specifically found in Parkinson's disease. These findings will be integrated in a neurophysiological framework linking somatosensory and motor processing. Finally, future implications for neuromodulation will be discussed with potential implications for strategy across a range of movement disorders.
Collapse
Affiliation(s)
- Martijn Beudel
- Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anna Sadnicka
- Faculty of Brain Sciences, Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, St. George's University of London, London, United Kingdom
| | - Mark Edwards
- Department of Neurology, St. George's University of London, London, United Kingdom
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Sánchez-Carmona AJ, Santaniello G, Capilla A, Hinojosa JA, Albert J. Oscillatory brain mechanisms supporting response cancellation in selective stopping strategies. Neuroimage 2019; 197:295-305. [PMID: 31034967 DOI: 10.1016/j.neuroimage.2019.04.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/17/2023] Open
Abstract
Although considerable progress has been made in understanding the neural substrates of simple or global stopping, the neural mechanisms supporting selective stopping remain less understood. The selectivity of the stop process is often required in our everyday life in situations where responses must be suppressed to certain signals but not others. Here, we examined the oscillatory brain mechanisms of response cancellation in selective stopping by controlling for the different strategies adopted by participants (n = 54) to accomplish a stimulus selective stop-signal task. We found that successfully cancelling an initiated response was specifically associated with increased oscillatory activity in the high-beta frequency range in the strategy characterized by stopping selectively (the so called dependent Discriminate then Stop, dDtS), but not in the strategy characterized by stopping non-selectively (Stop then Discriminate, StD). Beamforming source reconstruction suggests that this high-beta activity was mainly generated in the superior frontal gyrus (including the pre-supplementary motor area) and the middle frontal gyrus. Present findings provide neural support for the existence of different strategies for solving selective stopping tasks. Specifically, differences between strategies were observed in the oscillatory activity associated with the stop process and were restricted to the high-beta frequency range. Moreover, current results provide important evidence suggesting that high-beta oscillations in superior and middle frontal cortices play an essential role in cancelling an initiated motor response.
Collapse
Affiliation(s)
| | - Gerardo Santaniello
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; Departamento de Medicina y Cirugía, Psicología, Medicina Preventiva y Salud Pública Inmunología y Microbiología Médica, Enfermería y Estomatología, Universidad Rey Juan Carlos, Spain
| | - Almudena Capilla
- Facultad de Psicología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Antonio Hinojosa
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; Facultad de Psicología, Universidad Complutense de Madrid, 28223, Madrid, Spain; Facultad de Lenguas y Educación, Universidad de Nebrija, 28015, Madrid, Spain
| | - Jacobo Albert
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; Facultad de Psicología, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Solis-Escalante T, van der Cruijsen J, de Kam D, van Kordelaar J, Weerdesteyn V, Schouten AC. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands. Neuroimage 2018; 188:557-571. [PMID: 30590120 DOI: 10.1016/j.neuroimage.2018.12.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
The contributions of the cerebral cortex to human balance control are clearly demonstrated by the profound impact of cortical lesions on the ability to maintain standing balance. The cerebral cortex is thought to regulate subcortical postural centers to maintain upright balance and posture under varying environmental conditions and task demands. However, the cortical mechanisms that support standing balance remain elusive. Here, we present an EEG-based analysis of cortical oscillatory dynamics during the preparation and execution of balance responses with distinct postural demands. In our experiment, participants responded to backward movements of the support surface either with one forward step or by keeping their feet in place. To challenge the postural control system, we applied participant-specific high accelerations of the support surface such that the postural demand was low for stepping responses and high for feet-in-place responses. We expected that postural demand modulated the power of intrinsic cortical oscillations. Independent component analysis and time-frequency domain statistics revealed stronger suppression of alpha (9-13 Hz) and low-gamma (31-34 Hz) rhythms in the supplementary motor area (SMA) when preparing for feet-in-place responses (i.e., high postural demand). Irrespective of the response condition, support-surface movements elicited broadband (3-17 Hz) power increase in the SMA and enhancement of the theta (3-7 Hz) rhythm in the anterior prefrontal cortex (PFC), anterior cingulate cortex (ACC), and bilateral sensorimotor cortices (M1/S1). Although the execution of reactive responses resulted in largely similar cortical dynamics, comparison between the bilateral M1/S1 showed that stepping responses corresponded with stronger suppression of the beta (13-17 Hz) rhythm in the M1/S1 contralateral to the support leg. Comparison between response conditions showed that feet-in-place responses corresponded with stronger enhancement of the theta (3-7 Hz) rhythm in the PFC. Our results provide novel insights into the cortical dynamics of SMA, PFC, and M1/S1 during the control of human balance.
Collapse
Affiliation(s)
- Teodoro Solis-Escalante
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Joris van der Cruijsen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Digna de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joost van Kordelaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Sint Maartenskliniek Research, Nijmegen, the Netherlands
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
19
|
Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron 2018; 100:463-475. [PMID: 30359609 PMCID: PMC8112390 DOI: 10.1016/j.neuron.2018.09.023] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Working memory is the fundamental function by which we break free from reflexive input-output reactions to gain control over our own thoughts. It has two types of mechanisms: online maintenance of information and its volitional or executive control. Classic models proposed persistent spiking for maintenance but have not explicitly addressed executive control. We review recent theoretical and empirical studies that suggest updates and additions to the classic model. Synaptic weight changes between sparse bursts of spiking strengthen working memory maintenance. Executive control acts via interplay between network oscillations in gamma (30-100 Hz) in superficial cortical layers (layers 2 and 3) and alpha and beta (10-30 Hz) in deep cortical layers (layers 5 and 6). Deep-layer alpha and beta are associated with top-down information and inhibition. It regulates the flow of bottom-up sensory information associated with superficial layer gamma. We propose that interactions between different rhythms in distinct cortical layers underlie working memory maintenance and its volitional control.
Collapse
Affiliation(s)
- Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Mikael Lundqvist
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - André M Bastos
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
P21. Neural correlates of cognitive control in motor processes. Clin Neurophysiol 2018. [DOI: 10.1016/j.clinph.2018.04.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Yang X, Gao M, Zhang L, Liu L, Liu P, Sun J, Xi Y, Yin H, Qin W. Central Neural Correlates During Inhibitory Control in Lifelong Premature Ejaculation Patients. Front Hum Neurosci 2018; 12:206. [PMID: 29872385 PMCID: PMC5972200 DOI: 10.3389/fnhum.2018.00206] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
Lifelong premature ejaculation (LPE) is a common male sexual dysfunction. Lack of active control for rapid ejaculation brought great distress to sexual harmony and even fertility. Previous neurophysiology studies revealed an ejaculation-related control mechanism in the brain. However, it remains unclear whether this inhibitory network is altered in LPE patients. The present study investigated the central inhibitory network function of LPE patients by using stop signal task (SST)-related functional magnetic resonance imaging (fMRI) and resting-state functional connectivity (FC) analysis. The results showed no difference in task-related behavioral performance or neural activation during response inhibition between LPE patients and controls. However, LPE patients showed a significantly different correlation pattern between the stop signal reaction time (SSRT) and left inferior frontal gyrus (IFG) activation during successful inhibition, in which a typical negative correlation between SSRT and the activation was completely disappeared in patients. In addition, using the left IFG as a seed, patients showed weaker FC between the seed and two areas (left dentate nucleus (DN) and right frontal pole) compared with controls. These data suggest that LPE patients have an abnormal brain control network, which may contribute to the reduced central control of rapid ejaculation. This study provides new insights into the neural mechanism of LPE involving the central inhibitory network, which may offer an underlying intervention target for future treatment.
Collapse
Affiliation(s)
- Xuejuan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ming Gao
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,The ART Center, The Northwest Women's and Children's Hospital, Xi'an, China
| | - Lan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Lin Liu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Peng Liu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Jinbo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yibin Xi
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
22
|
Nayak T, Zhang T, Mao Z, Xu X, Zhang L, Pack DJ, Dong B, Huang Y. Prediction of Human Performance Using Electroencephalography under Different Indoor Room Temperatures. Brain Sci 2018; 8:brainsci8040074. [PMID: 29690601 PMCID: PMC5924410 DOI: 10.3390/brainsci8040074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 02/04/2023] Open
Abstract
Varying indoor environmental conditions is known to affect office worker’s performance; wherein past research studies have reported the effects of unfavorable indoor temperature and air quality causing sick building syndrome (SBS) among office workers. Thus, investigating factors that can predict performance in changing indoor environments have become a highly important research topic bearing significant impact in our society. While past research studies have attempted to determine predictors for performance, they do not provide satisfactory prediction ability. Therefore, in this preliminary study, we attempt to predict performance during office-work tasks triggered by different indoor room temperatures (22.2 °C and 30 °C) from human brain signals recorded using electroencephalography (EEG). Seven participants were recruited, from whom EEG, skin temperature, heart rate and thermal survey questionnaires were collected. Regression analyses were carried out to investigate the effectiveness of using EEG power spectral densities (PSD) as predictors of performance. Our results indicate EEG PSDs as predictors provide the highest R² (> 0.70), that is 17 times higher than using other physiological signals as predictors and is more robust. Finally, the paper provides insight on the selected predictors based on brain activity patterns for low- and high-performance levels under different indoor-temperatures.
Collapse
Affiliation(s)
- Tapsya Nayak
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Tinghe Zhang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Zijing Mao
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Xiaojing Xu
- NSF-DOE CURRENT Center, University of Tennessee, Knoxville, TN 37996, USA.
| | - Lin Zhang
- SIEE, China University of Mining and Technology, Xuzhou 221116, China.
| | - Daniel J Pack
- College of Engineering & Computer Science, University of Tennessee, Chattanooga, TN 37403, USA.
| | - Bing Dong
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
23
|
Cooper PS, Hughes ME. Impaired theta and alpha oscillations underlying stopsignal response inhibition deficits in schizophrenia. Schizophr Res 2018; 193:474-476. [PMID: 28797527 DOI: 10.1016/j.schres.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Patrick S Cooper
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Matthew E Hughes
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia; Australian National Imaging Facility, Australia.
| |
Collapse
|
24
|
Verbruggen F, McLaren R. Effects of reward and punishment on the interaction between going and stopping in a selective stop-change task. PSYCHOLOGICAL RESEARCH 2018; 82:353-370. [PMID: 27888354 PMCID: PMC5834561 DOI: 10.1007/s00426-016-0827-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
Abstract
Inhibition of no-longer relevant go responses supports flexible and goal-directed behavior. The present study explored if the interaction between going and stopping is influenced by monetary incentives. Subjects (N = 108) performed a selective stop-change task, which required them to stop and change a go response if a valid signal occurred, but to execute the planned go response if invalid signals or no signals occurred. There were two incentive groups: the punishment group lost points for unsuccessful valid-signal trials, whereas the reward group gained points for successful valid-signal trials. There was also a control group that could not win or lose points on any trials. We found that, compared with the control group, incentives encouraged subjects to slow down on no-signal trials, suggesting proactive control adjustments. Furthermore, latencies of valid change responses were shorter in the incentive groups than in the control group, suggesting improvements in executing an alternative response. However, incentives did not modulate stop latency or the interaction between going and stopping on valid-signal trials much. Finally, Bayesian analyses indicated that there was no difference between the reward and punishment groups. These findings are inconsistent with the idea that reward and punishment have distinct effects on stop performance.
Collapse
Affiliation(s)
- Frederick Verbruggen
- School of Psychology, University of Exeter, Exeter, EX4 4QG, UK.
- Department of Experimental Psychology, Ghent University, 9000, Ghent, Belgium.
| | | |
Collapse
|
25
|
Allen C, Singh KD, Verbruggen F, Chambers CD. Evidence for parallel activation of the pre-supplementary motor area and inferior frontal cortex during response inhibition: a combined MEG and TMS study. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171369. [PMID: 29515852 PMCID: PMC5830741 DOI: 10.1098/rsos.171369] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/11/2018] [Indexed: 07/20/2023]
Abstract
This pre-registered experiment sought to uncover the temporal relationship between the inferior frontal cortex (IFC) and the pre-supplementary motor area (pre-SMA) during stopping of an ongoing action. Both regions have previously been highlighted as being central to cognitive control of actions, particularly response inhibition. Here we tested which area is activated first during the stopping process using magnetoencephalography, before assessing the relative chronometry of each region using functionally localized transcranial magnetic stimulation. Both lines of evidence pointed towards simultaneous activity across both regions, suggesting that parallel, mutually interdependent processing may form the cortical basis of stopping. Additional exploratory analysis, however, provided weak evidence in support of previous suggestions that the pre-SMA may provide an ongoing drive of activity to the IFC.
Collapse
Affiliation(s)
- Christopher Allen
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Krish D. Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Frederick Verbruggen
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
- Psychology, University of Exeter, Washington Singer Building, Perry Road, Exeter EX4 4QG, UK
| | - Christopher D. Chambers
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
26
|
Bartoli E, Aron AR, Tandon N. Topography and timing of activity in right inferior frontal cortex and anterior insula for stopping movement. Hum Brain Mapp 2018; 39:189-203. [PMID: 29024235 PMCID: PMC5909846 DOI: 10.1002/hbm.23835] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/27/2017] [Accepted: 09/23/2017] [Indexed: 01/06/2023] Open
Abstract
Stopping incipient action activates both the right inferior frontal cortex (rIFC) and the anterior insula (rAI). Controversy has arisen as to whether these comprise a unitary cortical cluster-the rIFC/rAI-or whether rIFC is the primary stopping locus. To address this, we recorded directly from these structures while taking advantage of the high spatiotemporal resolution of closely spaced stereo-electro-encephalographic (SEEG) electrodes. We studied 12 patients performing a stop-signal task. On each trial they initiated a motor response (Go) and tried to stop to an occasional stop signal. Both the rIFC and rAI exhibited an increase in broadband gamma activity (BGA) after the stop signal and within the time of stopping (stop signal reaction time, SSRT), regardless of the success of stopping. The proportion of electrodes with this response was significantly greater in the rIFC than the rAI. Also, the rIFC response preceded that in the rAI. Last, while the BGA increase in rIFC occurred mainly prior to SSRT, the rAI showed a sustained increase in the beta and low gamma bands after the SSRT. In summary, the rIFC was activated soon after the stop signal, prior to and more robustly than the rAI, which on the other hand, showed a more prolonged response after the onset of stopping. Our results are most compatible with the notion that the rIFC is involved in triggering outright stopping in concert with a wider network, while the rAI is likely engaged by other processes, such as arousal, saliency, or behavioral adjustments. Hum Brain Mapp 39:189-203, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleonora Bartoli
- Vivian L Smith Department of NeurosurgeryUniversity of Texas Health Science Center at HoustonHoustonTexas
| | - Adam R. Aron
- Department of PsychologyUniversity of CaliforniaSan DiegoCalifornia
| | - Nitin Tandon
- Vivian L Smith Department of NeurosurgeryUniversity of Texas Health Science Center at HoustonHoustonTexas
- Mischer Neuroscience Institute, Memorial Hermann Hospital Texas Medical CenterHoustonTexas
| |
Collapse
|
27
|
Duverne S, Koechlin E. Rewards and Cognitive Control in the Human Prefrontal Cortex. Cereb Cortex 2017; 27:5024-5039. [DOI: 10.1093/cercor/bhx210] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sandrine Duverne
- Département d'Etudes Cognitives, Ecole Normale Supérieure, 75005 Paris, France
- Laboratoire de Neurosciences Cognitives, Institut National de la Santé et de la Recherche Médicale, 75005 Paris, France
| | - Etienne Koechlin
- Département d'Etudes Cognitives, Ecole Normale Supérieure, 75005 Paris, France
- Laboratoire de Neurosciences Cognitives, Institut National de la Santé et de la Recherche Médicale, 75005 Paris, France
- Centre de Neuroimagerie pour la Recherche, Université Pierre et Marie Curie, 75013 Paris, France
| |
Collapse
|
28
|
Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re)Activation. eNeuro 2017; 4:eN-REV-0170-17. [PMID: 28785729 PMCID: PMC5539431 DOI: 10.1523/eneuro.0170-17.2017] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
Among the rhythms of the brain, oscillations in the beta frequency range (∼13-30 Hz) have been considered the most enigmatic. Traditionally associated with sensorimotor functions, beta oscillations have recently become more broadly implicated in top-down processing, long-range communication, and preservation of the current brain state. Here, we extend and refine these views based on accumulating new findings of content-specific beta-synchronization during endogenous information processing in working memory (WM) and decision making. We characterize such content-specific beta activity as short-lived, flexible network dynamics supporting the endogenous (re)activation of cortical representations. Specifically, we suggest that beta-mediated ensemble formation within and between cortical areas may awake, rather than merely preserve, an endogenous cognitive set in the service of current task demands. This proposal accommodates key aspects of content-specific beta modulations in monkeys and humans, integrates with timely computational models, and outlines a functional role for beta that fits its transient temporal characteristics.
Collapse
|
29
|
Reduced left precentral regional responses in patients with major depressive disorder and history of suicide attempts. PLoS One 2017; 12:e0175249. [PMID: 28380030 PMCID: PMC5381916 DOI: 10.1371/journal.pone.0175249] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/22/2017] [Indexed: 11/24/2022] Open
Abstract
Previous neuroimaging studies have revealed frontal and temporal functional abnormalities in patients with major depressive disorder (MDD) and a history of suicidal behavior. However, it is unknown whether multi-channel near-infrared spectroscopy (NIRS) signal changes among individuals with MDD are associated with a history of suicide attempts and a diathesis for suicidal behavior (impulsivity, hopelessness, and aggression). Therefore, we aimed to explore frontotemporal hemodynamic responses in depressed patients with a history of suicide attempts using 52-channel NIRS. We recruited 30 patients with MDD and a history of suicidal behavior (suicide attempters; SAs), 38 patient controls without suicidal behavior (non-attempters; NAs), and 40 healthy controls (HCs) matched by age, gender ratio, and estimated IQ. Regional hemodynamic responses during a verbal fluency task (VFT) were monitored using NIRS. Our results showed that severities of depression, impulsivity, aggression, and hopelessness were similar between SAs and NAs. Both patient groups had significantly reduced activation compared with HCs in the bilateral frontotemporal regions. Post hoc analyses revealed that SAs exhibited a smaller hemodynamic response in the left precentral gyrus than NAs and HCs. Furthermore, the reduced response in the left inferior frontal gyrus was negatively correlated with impulsivity level and hemodynamic responses in the right middle frontal gyrus were negatively associated with hopelessness and aggression in SAs but not in NAs and HCs. Our findings suggest that MDD patients with a history of suicide attempts demonstrate patterns of VFT-induced NIRS signal changes different from those demonstrated by individuals without a history of suicidal behaviors, even in cases where clinical symptoms are similar. NIRS has a relatively high time resolution, which may help visually differentiate SAs from NAs.
Collapse
|
30
|
Wei W, Wang XJ. Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes. Neuron 2016; 92:1093-1105. [PMID: 27866799 PMCID: PMC5193098 DOI: 10.1016/j.neuron.2016.10.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 09/12/2016] [Accepted: 10/12/2016] [Indexed: 01/25/2023]
Abstract
We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory.
Collapse
Affiliation(s)
- Wei Wei
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA; NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, 200122 Shanghai, China.
| |
Collapse
|
31
|
Response inhibition rapidly increases single-neuron responses in the subthalamic nucleus of patients with Parkinson's disease. Cortex 2016; 84:111-123. [PMID: 27745848 DOI: 10.1016/j.cortex.2016.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/12/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022]
Abstract
The subthalamic nucleus (STN) plays a critical role during action inhibition, perhaps by acting like a fast brake on the motor system when inappropriate responses have to be rapidly suppressed. However, the mechanisms involving the STN during motor inhibition are still unclear, particularly because of a relative lack of single-cell responses reported in this structure in humans. In this study, we used extracellular microelectrode recordings during deep brain stimulation surgery in patients with Parkinson's disease (PD) to study STN neurophysiological correlates of inhibitory control during a stop signal task. We found two neuronal subpopulations responding either during motor execution (GO units) or during motor inhibition (STOP units). GO units fired selectively before patients' motor responses whereas STOP units fired selectively when patients successfully withheld their move at a latency preceding the duration of the inhibition process. These results provide electrophysiological evidence for the hypothesized role of the STN in current models of response inhibition.
Collapse
|
32
|
Fischer P, Tan H, Pogosyan A, Brown P. High post-movement parietal low-beta power during rhythmic tapping facilitates performance in a stop task. Eur J Neurosci 2016; 44:2202-13. [PMID: 27364852 PMCID: PMC5014120 DOI: 10.1111/ejn.13328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022]
Abstract
Voluntary movements are followed by a post-movement electroencephalography (EEG) beta rebound, which increases with practice and confidence in a task. We hypothesized that greater beta modulation reflects less load on cognitive resources and may thus be associated with faster reactions to new stimuli. EEG was recorded in 17 healthy subjects during rhythmically paced index finger tapping. In a STOP condition, participants had to interrupt the upcoming tap in response to an auditory cue, which was timed such that stopping was successful only in ~ 50% of all trials. In a second condition, participants carried on tapping twice after the stop signal (CONTINUE condition). Thus the conditions were distinct in whether abrupt stopping was required as a second task. Modulation of 12-20 Hz power over motor and parietal areas developed with time on each trial and more so in the CONTINUE condition. Reduced modulation in the STOP condition went along with reduced negative mean asynchronies suggesting less confident anticipation of the timing of the next tap. Yet participants were more likely to stop when beta modulation prior to the stop cue was more pronounced. In the STOP condition, expectancy of the stop signal may have increased cognitive load during movement execution given that the task might have to be stopped abruptly. However, within this condition, stopping ability was increased if the preceding tap was followed by a relatively larger beta increase. Significant, albeit weak, correlations confirmed that increased post-movement beta power was associated with faster reactions to new stimuli, consistent with reduced cognitive load.
Collapse
Affiliation(s)
- Petra Fischer
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alek Pogosyan
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
33
|
Hughes ME, Fulham WR, Michie PT. Electrophysiological signatures of the race model in human primary motor cortex. Psychophysiology 2015; 53:229-36. [DOI: 10.1111/psyp.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/27/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Matthew E. Hughes
- Brain and Psychological Sciences Centre; Swinburne University of Technology; Melbourne Australia
- Schizophrenia Research Institute; Sydney Australia
| | - W. Ross Fulham
- Schizophrenia Research Institute; Sydney Australia
- Centre for Translational Neuroscience and Mental Health; University of Newcastle; Callaghan Australia
- Functional Neuroimaging Laboratory, School of Psychology; University of Newcastle; Callaghan Australia
- Hunter Medical Research Institute; Newcastle Australia
| | - Patricia T. Michie
- Schizophrenia Research Institute; Sydney Australia
- Centre for Translational Neuroscience and Mental Health; University of Newcastle; Callaghan Australia
- Functional Neuroimaging Laboratory, School of Psychology; University of Newcastle; Callaghan Australia
- Hunter Medical Research Institute; Newcastle Australia
| |
Collapse
|
34
|
Verbruggen F, Logan GD. Evidence for capacity sharing when stopping. Cognition 2015; 142:81-95. [PMID: 26036922 PMCID: PMC4787292 DOI: 10.1016/j.cognition.2015.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/19/2022]
Abstract
Research on multitasking indicates that central processing capacity is limited, resulting in a performance decrement when central processes overlap in time. A notable exception seems to be stopping responses. The main theoretical and computational accounts of stop performance assume that going and stopping do not share processing capacity. This independence assumption has been supported by many behavioral studies and by studies modeling the processes underlying going and stopping. However, almost all previous investigations of capacity sharing between stopping and going have manipulated the difficulty of the go task while keeping the stop task simple. In the present study, we held the difficulty of the go task constant and manipulated the difficulty of the stop task. We report the results of four experiments in which subjects performed a selective stop-change task, which required them to stop and change a go response if a valid signal occurred, but to execute the go response if invalid signals occurred. In the consistent-mapping condition, the valid signal stayed the same throughout the whole experiment; in the varied-mapping condition, the valid signal changed regularly, so the demands on the rule-based system remained high. We found strong dependence between stopping and going, especially in the varied-mapping condition. We propose that in selective stop tasks, the decision to stop or not will share processing capacity with the go task. This idea can account for performance differences between groups, subjects, and conditions. We discuss implications for the wider stop-signal and dual-task literature.
Collapse
|
35
|
Kenemans JL. Specific proactive and generic reactive inhibition. Neurosci Biobehav Rev 2015; 56:115-26. [DOI: 10.1016/j.neubiorev.2015.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 11/16/2022]
|