1
|
Deuter CE, Kaczmarczyk M, Hellmann-Regen J, Kuehl LK, Wingenfeld K, Otte C. The influence of pharmacological mineralocorticoid and glucocorticoid receptor blockade on the cortisol response to psychological stress. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110905. [PMID: 38043634 DOI: 10.1016/j.pnpbp.2023.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The glucocorticoid cortisol is the end product of the hypothalamic-pituitary-adrenal (HPA) axis and crucial for the stress response in humans. Cortisol regulates numerous biological functions by binding to two different types of receptors: the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). Both receptors are found in the brain where they are crucially involved in various mental functions and in feedback inhibition of cortisol release. The precise role of both receptors in the human stress response is not completely understood. In this study, we examined the effects of pharmacological blockade of the MR or the GR on stress-induced cortisol release in a sample of 318 healthy young men (M = 25.42, SD = 5.01). Participants received the MR antagonist spironolactone (300 mg), the GR antagonist mifepristone (600 mg), or a placebo and were subjected 90 min later to a social-evaluative stressor (Trier Social Stress Test) or a non-stressful control condition. We found significantly higher stress-induced cortisol release in the spironolactone group, whereas participants after mifepristone administration did not differ from the control groups. These results suggest that MR blockade results in attenuated fast negative feedback processes and emphasize the important role of the MR during the early phase of the stress response.
Collapse
Affiliation(s)
- Christian E Deuter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany.
| | - Michael Kaczmarczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany; DZPG (German Center for Mental Health), Germany
| | | | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany; DZPG (German Center for Mental Health), Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany; DZPG (German Center for Mental Health), Germany
| |
Collapse
|
2
|
Feng X, Wang J, Wu J, Ren X, Zhou H, Li S, Zhang J, Wang S, Wang Y, Hu Z, Hu X, Jiang T. Abnormality of anxious behaviors and functional connectivity between the amygdala and the frontal lobe in maternally deprived monkeys. Brain Behav 2023; 13:e3027. [PMID: 37464725 PMCID: PMC10498070 DOI: 10.1002/brb3.3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE Anxious behaviors often occur in individuals who have experienced early adversity. Anxious behaviors can bring many hazards, such as social withdrawal, eating disorders, negative self-efficacy, self-injurious thoughts and behaviors, anxiety disorders, and even depression. Abnormal behavior are is closely related to changes in corresponding circuit functions in the brain. This study investigated the relationship between brain circuits and anxious behaviors in maternal-deprived rhesus monkey animal model, which mimic early adversity in human. METHODS Twenty-five rhesus monkeys (Macaca mulatta) were grouped by two different rearing conditions: 11 normal control and mother-reared (MR) monkeys and 14 maternally deprived and peer-reared (MD) monkeys. After obtaining images of the brain areas with significant differences in maternal separation and normal control macaque function, the relationship between functional junction intensity and stereotypical behaviors was determined by correlation analysis. RESULTS The correlation analysis revealed that stereotypical behaviors were negatively correlated with the coupling between the left lateral amygdala subregion and the left inferior frontal gyrus in both MD and MR macaques. CONCLUSION This study suggests that early adversity-induced anxious behaviors are associated with changes in the strength of the amygdala-prefrontal connection. The normalization of the regions involved in the functional connection might reverse the behavioral abnormality. It provides a solid foundation for effective intervention in human early adversity. SIGNIFICANCE STATEMENT This study suggests that early adversity-induced anxious behaviors are associated with changes in the strength of the amygdala-prefrontal connection. The higher the amygdala-prefrontal connection strength, the less stereotyped behaviors exhibited by monkeys experiencing early adversity. Thus, in the future, changing the strength of the amygdala-prefrontal connection may reverse the behavioral abnormalities of individuals who experience early adversity. This study provides a solid foundation for effective intervention in humans' early adversity.
Collapse
Affiliation(s)
- Xiao‐Li Feng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Department of PhysiologyFaculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| | - Jiao‐Jian Wang
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xiao‐Feng Ren
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnanChina
| | - Hui Zhou
- Department of PhysiologyFaculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
| | - Si‐Yu Li
- Department of PhysiologyFaculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
| | - Jie Zhang
- School of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Sheng‐Hai Wang
- School of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Yun Wang
- National Resource Center for Non‐Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Zheng‐Fei Hu
- National Resource Center for Non‐Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xin‐Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- National Resource Center for Non‐Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Center for Excellence in Brain ScienceChinese Academy of SciencesShanghaiChina
| | - Tian‐Zi Jiang
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijingChina
- Research Center for Augmented IntelligenceZhejiang LaboratoryHangzhouChina
- Center for Excellence in Brain ScienceInstitute of AutomationChinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Brosens N, Lesuis SL, Bassie I, Reyes L, Gajadien P, Lucassen PJ, Krugers HJ. Elevated corticosterone after fear learning impairs remote auditory memory retrieval and alters brain network connectivity. Learn Mem 2023; 30:125-132. [PMID: 37487708 PMCID: PMC10519398 DOI: 10.1101/lm.053836.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Glucocorticoids are potent memory modulators that can modify behavior in an adaptive or maladaptive manner. Elevated glucocorticoid levels after learning promote memory consolidation at recent time points, but their effects on remote time points are not well established. Here we set out to assess whether corticosterone (CORT) given after learning modifies remote fear memory. To that end, mice were exposed to a mild auditory fear conditioning paradigm followed by a single 2 mg/kg CORT injection, and after 28 d, auditory memory was assessed. Neuronal activation was investigated using immunohistochemistry for the immediate early gene c-Fos, and coactivation of brain regions was determined using a correlation matrix analysis. CORT-treated mice displayed significantly less remote auditory memory retrieval. While the net activity of studied brain regions was similar compared with the control condition, CORT-induced remote memory impairment was associated with altered correlated activity between brain regions. Specifically, connectivity of the lateral amygdala with the basal amygdala and the dorsal dentate gyrus was significantly reduced in CORT-treated mice, suggesting disrupted network connectivity that may underlie diminished remote memory retrieval. Elucidating the pathways underlying these effects could help provide mechanistic insight into the effects of stress on memory and possibly provide therapeutic targets for psychopathology.
Collapse
Affiliation(s)
- Niek Brosens
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Sylvie L Lesuis
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Ilse Bassie
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Lara Reyes
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Priya Gajadien
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| |
Collapse
|
4
|
Hill A, Johnston C, Agranoff I, Gavade S, Spencer-Segal J. Corticosterone enhances formation of non-fear but not fear memory during infectious illness. Front Behav Neurosci 2023; 17:1144173. [PMID: 37091592 PMCID: PMC10118046 DOI: 10.3389/fnbeh.2023.1144173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Survivors of critical illness are at high risk of developing post-traumatic stress disorder (PTSD) but administration of glucocorticoids during the illness can lower that risk. The mechanism is not known but may involve glucocorticoid modulation of hippocampal- and amygdala-dependent memory formation. In this study, we sought to determine whether glucocorticoids given during an acute illness influence the formation and persistence of fear and non-fear memories from the time of the illness. Methods We performed cecal ligation and puncture in male and female mice to induce an acute infectious illness. During the illness, mice were introduced to a neutral object in their home cage and separately underwent contextual fear conditioning. We then tested the persistence of object and fear memories after recovery. Results Glucocorticoid treatment enhanced object discrimination but did not alter the expression of contextual fear memory. During context re-exposure, neural activity was elevated in the dentate gyrus irrespective of fear conditioning. Conclusions Our results suggest that glucocorticoids given during illness enhance hippocampal-dependent non-fear memory processes. This indicates that PTSD outcomes in critically ill patients may be improved by enhancing non-fear memories from the time of their illness.
Collapse
Affiliation(s)
- Alice Hill
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Colin Johnston
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Isaac Agranoff
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Swapnil Gavade
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Joanna Spencer-Segal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
James KA, Stromin JI, Steenkamp N, Combrinck MI. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front Endocrinol (Lausanne) 2023; 14:1085950. [PMID: 36950689 PMCID: PMC10025564 DOI: 10.3389/fendo.2023.1085950] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Stress is viewed as a state of real or perceived threat to homeostasis, the management of which involves the endocrine, nervous, and immune systems. These systems work independently and interactively as part of the stress response. The scientific stress literature, which spans both animal and human studies, contains heterogeneous findings about the effects of stress on the brain and the body. This review seeks to summarise and integrate literature on the relationships between these systems, examining particularly the roles of physiological and psychosocial stress, the stress hormone cortisol, as controlled by the hypothalamic-pituitary-adrenal (HPA) axis, and the effects of stress on cognitive functioning. Health conditions related to impaired HPA axis functioning and their associated neuropsychiatric symptoms will also be considered. Lastly, this review will provide suggestions of clinical applicability for endocrinologists who are uniquely placed to measure outcomes related to endocrine, nervous and immune system functioning and identify areas of intervention.
Collapse
Affiliation(s)
- Katharine Ann James
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Juliet Ilena Stromin
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Nina Steenkamp
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Marc Irwin Combrinck
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Corticosterone enhances formation of non-fear but not fear memory during infectious illness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.526836. [PMID: 36798285 PMCID: PMC9934541 DOI: 10.1101/2023.02.07.526836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Survivors of critical illness are at high risk of developing post-traumatic stress disorder (PTSD) but administration of glucocorticoids during the illness can lower that risk. The mechanism is not known but may involve glucocorticoid modulation of hippocampal- and amygdalar-dependent memory formation. In this study, we sought to determine whether glucocorticoids given during an acute illness influence the formation and persistence of fear and non-fear memories from the time of the illness. We performed cecal ligation and puncture in male and female mice to induce an acute infectious illness. During the illness, mice were introduced to a neutral object in their home cage and separately underwent contextual fear conditioning. We then tested the persistence of object and fear memories after recovery. Glucocorticoid treatment enhanced object discrimination but did not alter the expression of contextual fear memory. During context re-exposure, neural activity was elevated in the dentate gyrus irrespective of fear conditioning. Our results suggest that glucocorticoids given during illness enhance hippocampal-dependent non-fear memory processes. This indicates that PTSD outcomes in critically ill patients may be improved by enhancing non-fear memories from the time of their illness.
Collapse
|
7
|
Cuccovia V Reis FM, Novaes LS, Dos Santos NB, Ferreira-Rosa KC, Perfetto JG, Baldo MVC, Munhoz CD, Canteras NS. Predator fear memory depends on glucocorticoid receptors and protein synthesis in the basolateral amygdala and ventral hippocampus. Psychoneuroendocrinology 2022; 141:105757. [PMID: 35427951 DOI: 10.1016/j.psyneuen.2022.105757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have suggested that the basolateral amygdala (BLA) and the ventral hippocampus (VH) are critical sites for predator-related fear memory. Predator exposure is an intense emotional experience and should increase plasmatic corticosterone likely to modulate the emotion-related memories. However, it is unclear whether the BLA and VH harbor plastic events underlying predator-related fear memory storage and how molecular and endocrine mechanisms interact to modulate memory to the predatory threat. Here, we first examined the effects of protein synthesis inhibition in the BLA and VH on fear memory to a predatory threat. We next evaluated how exposure to a predatory threat impacts the corticosterone release and how the inhibition of corticosterone synthesis can influence predator-related fear memory. Finally, we examined how predator exposure triggers the activation of glucocorticoid and mineralocorticoid receptors in the BLA and VH and whether the GR antagonist injection affects predator-related fear memory. We showed that predator-related contextual fear is dependent on protein synthesis in the BLA and VH. Moreover, we described the impact of rapid glucocorticoid release during predatory exposure on the formation of contextual fear responses and that GR-induced signaling facilitates memory consolidation within the BLA and VH. The results are relevant in understanding how life-threatening situations such as a predator encounter impact fear memory storage and open exciting perspectives to investigate GR-induced proteins as targets to deciphering and manipulating aversive memories.
Collapse
Affiliation(s)
| | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nilton Barreto Dos Santos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Juliano Genaro Perfetto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcus Vinicius C Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
8
|
Taylor WW, Imhoff BR, Sathi ZS, Liu WY, Garza KM, Dias BG. Contributions of glucocorticoid receptors in cortical astrocytes to memory recall. Learn Mem 2021; 28:126-133. [PMID: 33723032 PMCID: PMC7970741 DOI: 10.1101/lm.053041.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Dysfunctions in memory recall lead to pathological fear; a hallmark of trauma-related disorders, like posttraumatic stress disorder (PTSD). Both, heightened recall of an association between a cue and trauma, as well as impoverished recall that a previously trauma-related cue is no longer a threat, result in a debilitating fear toward the cue. Glucocorticoid-mediated action via the glucocorticoid receptor (GR) influences memory recall. This literature has primarily focused on GRs expressed in neurons or ignored cell-type specific contributions. To ask how GR action in nonneuronal cells influences memory recall, we combined auditory fear conditioning in mice and the knockout of GRs in astrocytes in the prefrontal cortex (PFC), a brain region implicated in memory recall. We found that knocking out GRs in astrocytes of the PFC disrupted memory recall. Specifically, we found that knocking out GRs in astrocytes in the PFC (AstroGRKO) after fear conditioning resulted in higher levels of freezing to the CS+ tone when compared with controls (AstroGRintact). While we did not find any differences in extinction of fear toward the CS+ between these groups, AstroGRKO female but not male mice showed impaired recall of extinction training. These results suggest that GRs in cortical astrocytes contribute to memory recall. These data demonstrate the need to examine GR action in cortical astrocytes to elucidate the basic neurobiology underlying memory recall and potential mechanisms that underlie female-specific biases in the incidence of PTSD.
Collapse
Affiliation(s)
- William W Taylor
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90007, USA
- Developmental Neuroscience and Neurogenetics Program, Division of Research on Children, Youth, and Families, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | - Barry R Imhoff
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA
| | - Zakia Sultana Sathi
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA
| | - Wei Y Liu
- Developmental Neuroscience and Neurogenetics Program, Division of Research on Children, Youth, and Families, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | - Kristie M Garza
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Brian G Dias
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90007, USA
- Developmental Neuroscience and Neurogenetics Program, Division of Research on Children, Youth, and Families, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| |
Collapse
|
9
|
Lin CC, Cheng PY, Liu YP. Effects of early life social experience on fear extinction and related glucocorticoid profiles - behavioral and neurochemical approaches in a rat model of PTSD. Behav Brain Res 2020; 391:112686. [PMID: 32428628 DOI: 10.1016/j.bbr.2020.112686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 01/06/2023]
Abstract
People may agonize over an intrusive fear-inducing memory even when the traumatic event has passed, which is the principle manifestation of posttraumatic stress disorder (PTSD). However, many traumatized people do not present symptoms of PTSD, implying that certain hidden factors help those individuals to cope with the traumatic stress. Increasing evidence suggests that early life experience may serve as a predisposing factor in the development of PTSD. For example, early life social deprivation disrupts the glucocorticoid system, one of the biological abnormalities of PTSD. By employing isolation rearing (IR) with a subsequent single prolonged stress (SPS) paradigm, we examined the hypothesis that early-life social experience may change the outcome of traumatic stress in both behavioral and neurochemical profiles. Behaviorally, the performance of rats on a Pavlovian fear conditioning test was measured to evaluate their retrieval ability of fear memory extinction. Neurochemically, plasma corticosterone levels and glucocorticoid receptor (GR), FK506-binding proteins 4 and 5 (FKBP4 and FKBP5) and early growth response-1 (Egr-1) expression were measured in GR-abundant brain areas, including the hypothalamus, medial prefrontal cortex, and hippocampus. Our results demonstrated an area-dependent IR effect on the SPS outcomes. IR prevented the SPS-impaired fear extinction retrieval ability and averted the SPS-elevated expression of GR, FKBP4, and Egr-1 in the hippocampus, whereas it did not change the SPS-reduced plasma corticosterone levels and SPS-enhanced GR activity in the mPFC and hypothalamus. The present study provides some new insights to support the hypothesis that early-life experience may play a role in the occurrence of PTSD.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yia-Ping Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
10
|
León LA, Brandão ML, Cardenas FP, Parra D, Krahe TE, Cruz APM, Landeira-Fernandez J. Distinct patterns of brain Fos expression in Carioca High- and Low-conditioned Freezing Rats. PLoS One 2020; 15:e0236039. [PMID: 32702030 PMCID: PMC7377485 DOI: 10.1371/journal.pone.0236039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The bidirectional selection of high and low anxiety-like behavior is a valuable tool for understanding the neurocircuits that are responsible for anxiety disorders. Our group developed two breeding lines of rats, known as Carioca High- and Low-conditioned Freezing (CHF and CLF), based on defensive freezing in the contextual fear conditioning paradigm. A random selected line was employed as a control (CTL) comparison group for both CHF and CLF lines of animals. The present study performed Fos immunochemistry to investigate changes in neural activity in different brain structures among CHF and CLF rats when they were exposed to contextual cues that were previously associated with footshock. RESULTS The study indicated that CHF rats expressed high Fos expression in the locus coeruleus, periventricular nucleus of the hypothalamus (PVN), and lateral portion of the septal area and low Fos expression in the medial portion of the septal area, dentate gyrus, and prelimbic cortex (PL) compared to CTL animals. CLF rats exhibited a decrease in Fos expression in the PVN, PL, and basolateral nucleus of the amygdala and increase in the cingulate and perirhinal cortices compared to CTL animals. CONCLUSIONS Both CHF and CLF rats displayed Fos expression changes key regions of the anxiety brain circuitry. The two bidirectional lines exhibit different pattern of neural activation and inhibition with opposing influences on the PVN, the main structure involved in regulating the hypothalamic-pituitary-adrenal neuroendocrine responses observed in anxiety disorders.
Collapse
Affiliation(s)
- Laura A. León
- Laboratory of Neuropsychopharmacology, FFCLRP, Behavioral Neuroscience Institute (INeC), São Paulo University, Campus USP, Ribeirão Preto, São Paulo, Brazil
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Psicología, Universidad Sergio Arboleda, Bogotá, Colombia
| | - Marcus L. Brandão
- Laboratory of Neuropsychopharmacology, FFCLRP, Behavioral Neuroscience Institute (INeC), São Paulo University, Campus USP, Ribeirão Preto, São Paulo, Brazil
| | - Fernando P. Cardenas
- Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Bogotá, Colombia
| | - Diana Parra
- Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Bogotá, Colombia
| | - Thomas E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
11
|
Activation of mineralocorticoid receptors facilitate the acquisition of fear memory extinction and impair the generalization of fear memory in diabetic animals. Psychopharmacology (Berl) 2020; 237:529-542. [PMID: 31713655 DOI: 10.1007/s00213-019-05388-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
RATIONALE Studies point out a higher prevalence of posttraumatic stress disorder (PTSD) in individuals with diabetes mellitus. It is known that glucocorticoid (GR) and mineralocorticoid (MR) receptors are implicated in fear memory processes and PTSD. However, there is no preclinical studies addressing the involvement of these receptors on abnormal fear memories related to diabetic condition. OBJECTIVES By inducing a contextual conditioned fear memory, we generate a suitable condition to investigate the extinction and the generalization of the fear memory in streptozotocin-induced diabetic (DBT) rats alongside the expression of the cytosolic and nuclear GR and MR in the hippocampus (HIP) and prefrontal cortex (PFC). Moreover, we investigated the involvement of the MR or GR on the acquisition of fear memory extinction and on the generalization of this fear memory. When appropriate, anxiety-related behavior was evaluated. METHODS Male Wistar rats received one injection of steptozotocin (i.p.) to induce diabetes. After 4 weeks, the animals (DBTs and non-DBTs) were subjected to a conditioned contextual fear protocol. RESULTS The expression of MR and GR in the HIP and PFC was similar among all the groups. The single injection of MR agonist was able to facilitate the acquisition of the impaired fear memory extinction in DBTs animals together with the impairment of its generalization. However, the GR antagonism impaired only the generalization of this fear memory which was blocked by the previous injection of the MR antagonist. All treatments were able to exert anxiolytic-like effects. CONCLUSIONS The results indicate that MR activation in DBT animals disrupts the overconsolidation of aversive memory, without discarding the involvement of emotional behavior in these processes.
Collapse
|
12
|
Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019; 236:415-437. [PMID: 30255379 PMCID: PMC6373193 DOI: 10.1007/s00213-018-5024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse of conditioned responses associated with trauma or drug use. OBJECTIVES The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the expression of relapse. KEY FINDINGS After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse, hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory control over fear- and drug-associated conditional responding. CONCLUSIONS The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-seeking behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
13
|
The peripheral corticotropin-releasing factor (CRF)-induced analgesic effect on somatic pain sensitivity in conscious rats: involving CRF, opioid and glucocorticoid receptors. Inflammopharmacology 2018; 26:305-318. [DOI: 10.1007/s10787-018-0445-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
|
14
|
Abdulbasit A, Stephen Michael F, Shukurat Onaopemipo A, Abdulmusawwir AO, Aminu I, Nnaemeka Tobechukwu A, Wahab Imam A, Oluwaseun Aremu A, Folajimi O, Bilikis Aderonke A, Ridwan Babatunde I, Victor Bamidele O. Glucocorticoid receptor activation selectively influence performance of Wistar rats in Y-maze. ACTA ACUST UNITED AC 2017; 25:41-50. [PMID: 29274871 DOI: 10.1016/j.pathophys.2017.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
Abstract
Glucocorticoid receptors (GR) are ubiquitously expressed in metazoans. Different and contrasting phenotypes have been reported upon their activation. This study investigated the behavioral phenotypes characteristic of GR stimulation in male Wistar rats. Rats in each of the four groups of rats received one of the following treatments: distilled water (control) or one of three doses of dexamethasone (treatment) injected intraperitoneally for 7 days. The Rats were afterwards subjected to the Y maze, the elevated plus maze (EPM), the Morris water maze (MWM), and the novel object recognition (NOR) test. At the end of the study, the animals were anesthetized and neural activity from the prefrontal cortex recorded. Blood was collected via cardiac puncture to evaluate the levels of plasma insulin and glucose, and the prefrontal cortexes excised to determine the levels of insulin, markers of oxidative stress, and calcium in the homogenate. This study showed that treatment with dexamethasone significantly reduced the total and percentage alternation in the Y maze, but had no significant effect on object recognition in the NOR test, long-term and short-term spatial memory in the MWM, or anxiety-like behavior in the EPM. Plasma and brain insulin and calcium levels were elevated moderately following treatment with the lowest dose of dexamethasone. All doses of dexamethasone decreased brain superoxide dismutase and increased lactate dehydrogenase levels. No significant change in neural activity was observed. This study shows that activation of glucocorticoid receptors differentially affects different behavioral paradigms and provides evidence for a role for glucocorticoids in mediating insulin function in the brain.
Collapse
Affiliation(s)
- Amin Abdulbasit
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria.
| | - Fii Stephen Michael
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | | | | | - Imam Aminu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | | | - Abdulmajeed Wahab Imam
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Adeyanju Oluwaseun Aremu
- Department of Physiology, College of Medicine, Afe-Babalola University Ado-Ekiti, Ekiti, Nigeria
| | - Olaseinde Folajimi
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | | | | | | |
Collapse
|
15
|
Abstract
Progress in clinical and affective neuroscience is redefining psychiatric illness as symptomatic expression of cellular/molecular dysfunctions in specific brain circuits. Post-traumatic stress disorder (PTSD) has been an exemplar of this progress, with improved understanding of neurobiological systems subserving fear learning, salience detection, and emotion regulation explaining much of its phenomenology and neurobiology. However, many features remain unexplained and a parsimonious model that more fully accounts for symptoms and the core neurobiology remains elusive. Contextual processing is a key modulatory function of hippocampal-prefrontal-thalamic circuitry, allowing organisms to disambiguate cues and derive situation-specific meaning from the world. We propose that dysregulation within this context-processing circuit is at the core of PTSD pathophysiology, accounting for much of its phenomenology and most of its biological findings. Understanding core mechanisms like this, and their underlying neural circuits, will sharpen diagnostic precision and understanding of risk factors, enhancing our ability to develop preventive and "personalized" interventions.
Collapse
Affiliation(s)
- Israel Liberzon
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-2700, USA; Mental Health Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, MI 48105, USA.
| | - James L Abelson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-2700, USA
| |
Collapse
|
16
|
Nguyen ET, Streicher J, Berman S, Caldwell JL, Ghisays V, Estrada CM, Wulsin AC, Solomon MB. A mixed glucocorticoid/mineralocorticoid receptor modulator dampens endocrine and hippocampal stress responsivity in male rats. Physiol Behav 2017; 178:82-92. [PMID: 28093219 PMCID: PMC5511095 DOI: 10.1016/j.physbeh.2017.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Aberrant glucocorticoid secretion is implicated in the pathophysiology of stress-related disorders (i.e., depression, anxiety). Glucocorticoids exert biological effects via mineralocorticoid (MR) and glucocorticoid (GR) receptors. Previous data from our laboratory indicate that GR antagonism/modulation (i.e., mifepristone, CORT 108297) regulate endocrine, behavioral, and central stress responses. Because of the dynamic interplay between MR and GR on HPA axis regulation and emotionality, compounds targeting both receptors are of interest for stress-related pathology. We investigated the effects of CORT 118335 (a dual selective GR modulator/MR antagonist) on endocrine, behavioral, and central (c-Fos) stress responses in male rats. Rats were treated for five days with CORT 118335, imipramine (positive control), or vehicle and exposed to restraint or forced swim stress (FST). CORT 118335 dampened corticosterone responses to both stressors, without a concomitant antidepressant-like effect in the FST. Imipramine decreased corticosterone responses to restraint stress; however, the antidepressant-like effect of imipramine in the FST was independent of circulating glucocorticoids. These findings indicate dissociation between endocrine and behavioral stress responses in the FST. CORT 118335 decreased c-Fos expression only in the CA1 division of the hippocampus. Imipramine decreased c-Fos expression in the basolateral amygdala and CA1 and CA3 divisions of the hippocampus. Overall, the data indicate differential effects of CORT 118335 and imipramine on stress-induced neuronal activity in various brain regions. The data also highlight a complex relationship between neuronal activation in stress and mood regulatory brain regions and the ensuing impact on endocrine and behavioral stress responses.
Collapse
Affiliation(s)
- Elizabeth T Nguyen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States.
| | - Joshua Streicher
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States
| | - Sarah Berman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States
| | - Jody L Caldwell
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States
| | - Valentina Ghisays
- Experimental Psychology Graduate Program, University of Cincinnati, United States
| | - Christina M Estrada
- Experimental Psychology Graduate Program, University of Cincinnati, United States
| | - Aynara C Wulsin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States
| |
Collapse
|
17
|
de Oliveira AR, Reimer AE, Reis FMCV, Brandão ML. Dopamine D 2-like receptors modulate freezing response, but not the activation of HPA axis, during the expression of conditioned fear. Exp Brain Res 2016; 235:429-436. [PMID: 27766352 DOI: 10.1007/s00221-016-4805-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
Considering the complexity of aversive information processing and defensive response expression, a combined action of stress modulators may be required for an optimal performance during threatening situations. Dopamine is now recognized as one of the most active modulators underlying states of fear and anxiety. On the other hand, activation of hypothalamic-pituitary-adrenocortical (HPA) axis, which leads to the release of corticosterone in rodents, has been considered a key part of the stress response. The current study is an extension of prior work investigating modulatory effects of dopamine and corticosterone on conditioned fear expression. We have showed that corticosterone, acting through mineralocorticoid receptors in the ventral tegmental area (VTA), upregulates dopaminergic system in the basolateral amygdala (BLA), enabling the expression of conditioned freezing response. The novel question addressed here is whether VTA-BLA dopaminergic signaling is necessary for increases in corticosterone during conditioned fear expression. Using site-specific treatment with D2-like agonist quinpirole (VTA) and D2-like antagonist sulpiride (BLA), we evaluated freezing and plasma corticosterone in rats exposed to a light used as aversive conditioned stimulus (CS). Intra-VTA quinpirole and intra-BLA sulpiride significantly decreased freezing expression in the conditioned fear test, but this anxiolytic-like effect of the dopaminergic drugs was not associated with changes in plasma corticosterone concentrations. Altogether, data suggest that interferences with the ability of the CS to activate the dopaminergic VTA-BLA pathway reduce the expression of freezing, but activation of the HPA axis seems to occur upstream of the recruitment of dopaminergic mechanisms in conditioned fear states.
Collapse
Affiliation(s)
- Amanda R de Oliveira
- Grupo de Psicobiologia, Departamento de Psicologia, Centro de Educação e Ciências Humanas - CECH, Universidade Federal de São Carlos - UFSCar, São Carlos, SP, Brazil. .,Instituto de Neurociências e Comportamento - INeC, Ribeirão Preto, SP, Brazil. .,Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil.
| | - Adriano E Reimer
- Instituto de Neurociências e Comportamento - INeC, Ribeirão Preto, SP, Brazil.,Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Fernando M C V Reis
- Instituto de Neurociências e Comportamento - INeC, Ribeirão Preto, SP, Brazil.,Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Marcus L Brandão
- Instituto de Neurociências e Comportamento - INeC, Ribeirão Preto, SP, Brazil.,Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Childhood adversity and epigenetic regulation of glucocorticoid signaling genes: Associations in children and adults. Dev Psychopathol 2016; 28:1319-1331. [PMID: 27691985 DOI: 10.1017/s0954579416000870] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Early childhood experiences have lasting effects on development, including the risk for psychiatric disorders. Research examining the biologic underpinnings of these associations has revealed the impact of childhood maltreatment on the physiologic stress response and activity of the hypothalamus-pituitary-adrenal axis. A growing body of literature supports the hypothesis that environmental exposures mediate their biological effects via epigenetic mechanisms. Methylation, which is thought to be the most stable form of epigenetic change, is a likely mechanism by which early life exposures have lasting effects. We present recent evidence related to epigenetic regulation of genes involved in hypothalamus-pituitary-adrenal axis regulation, namely, the glucocorticoid receptor gene (nuclear receptor subfamily 3, group C, member 1 [NR3C1]) and FK506 binding protein 51 gene (FKBP5), after childhood adversity and associations with risk for psychiatric disorders. Implications for the development of interventions and future research are discussed.
Collapse
|
19
|
Michopoulos V, Vester A, Neigh G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp Neurol 2016; 284:220-229. [PMID: 27246996 PMCID: PMC5056806 DOI: 10.1016/j.expneurol.2016.05.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a heterogeneous psychiatric disorder that affects individuals exposed to trauma and is highly co-morbid with other adverse health outcomes, including cardiovascular disease and obesity. The unique pathophysiological feature of PTSD is the inability to inhibit fear responses, such that individuals suffering from PTSD re-experience traumatic memories and are unable to control psychophysiological responses to trauma-associated stimuli. However, underlying alterations in sympathetic nervous system activity, neuroendocrine systems, and metabolism associated with PTSD are similar to those present in traditional metabolic disorders, such as obesity and diabetes. The current review highlights existing clinical, translational, and preclinical data that support the notion that underneath the primary indication of impaired fear inhibition, PTSD is itself also a metabolic disorder and proposes altered function of inflammatory responses as a common underlying mechanism. The therapeutic implications of treating PTSD as a whole-body condition are significant, as targeting any underlying biological system whose activity is altered in both PTSD and metabolic disorders, (i.e. HPA axis, sympathetic nervous systems, inflammation) may elicit symptomatic relief in individuals suffering from these whole-body adverse outcomes.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Aimee Vester
- Department of Environmental Health Sciences, Rollins School of Public Health, Atlanta, GA, United States
| | - Gretchen Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|