1
|
van Kerkoerle T, Pape L, Ekramnia M, Feng X, Tasserie J, Dupont M, Li X, Jarraya B, Vanduffel W, Dehaene S, Dehaene-Lambertz G. Brain areas for reversible symbolic reference, a potential singularity of the human brain. eLife 2025; 12:RP87380. [PMID: 39937096 DOI: 10.7554/elife.87380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The emergence of symbolic thinking has been proposed as a dominant cognitive criterion to distinguish humans from other primates during hominisation. Although the proper definition of a symbol has been the subject of much debate, one of its simplest features is bidirectional attachment: the content is accessible from the symbol, and vice versa. Behavioural observations scattered over the past four decades suggest that this criterion might not be met in non-human primates, as they fail to generalise an association learned in one temporal order (A to B) to the reverse order (B to A). Here, we designed an implicit fMRI test to investigate the neural mechanisms of arbitrary audio-visual and visual-visual pairing in monkeys and humans and probe their spontaneous reversibility. After learning a unidirectional association, humans showed surprise signals when this learned association was violated. Crucially, this effect occurred spontaneously in both learned and reversed directions, within an extended network of high-level brain areas, including, but also going beyond, the language network. In monkeys, by contrast, violations of association effects occurred solely in the learned direction and were largely confined to sensory areas. We propose that a human-specific brain network may have evolved the capacity for reversible symbolic reference.
Collapse
Affiliation(s)
- Timo van Kerkoerle
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France
- Department of Neurophysics, Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Louise Pape
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France
- Department of Psychiatry, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Milad Ekramnia
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France
| | - Xiaoxia Feng
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, United States
| | - Morgan Dupont
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France
| | - Xiaolian Li
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Béchir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France
- Université Paris-Saclay (UVSQ), Hôpital Foch, Suresnes, France
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
- Department of Radiology, Harvard Medical School, Boston, United States
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France
- Collège de France, Université Paris-Sciences-Lettres (PSL), Paris, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, Gif sur Yvette, France
| |
Collapse
|
2
|
Kubota E, Yan X, Tung S, Fascendini B, Tyagi C, Duhameau S, Ortiz D, Grotheer M, Natu VS, Keil B, Grill-Spector K. White matter connections of human ventral temporal cortex are organized by cytoarchitecture, eccentricity, and category-selectivity from birth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.29.605705. [PMID: 39131283 PMCID: PMC11312531 DOI: 10.1101/2024.07.29.605705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Category-selective regions in ventral temporal cortex (VTC) have a consistent anatomical organization, which is hypothesized to be scaffolded by white matter connections. However, it is unknown how white matter connections are organized from birth. Here, we scanned newborn to 6-month-old infants and adults to determine the organization of the white matter connections of VTC. We find that white matter connections are organized by cytoarchitecture, eccentricity, and category from birth. Connectivity profiles of functional regions in the same cytoarchitectonic area are similar from birth and develop in parallel, with decreases in endpoint connectivity to lateral occipital, and parietal, and somatosensory cortex, and increases to lateral prefrontal cortex. Additionally, connections between VTC and early visual cortex are organized topographically by eccentricity bands and predict eccentricity biases in VTC. These data show that there are both innate organizing principles of white matter connections of VTC, and the capacity for white matter connections to change over development.
Collapse
Affiliation(s)
- Emily Kubota
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Sarah Tung
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Bella Fascendini
- Department of Psychology, Princeton University, 40 Woodlands Way, Princeton, NJ 08544, USA
| | - Christina Tyagi
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sophie Duhameau
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Danya Ortiz
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Frankfurter Str. 35, Marburg 35037, Germany
- Center for Mind, Brain and Behavior – CMBB, Universities of Marburg, Giessen, and Darmstadt, Marburg 35039, Germany
| | - Vaidehi S. Natu
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Boris Keil
- Center for Mind, Brain and Behavior – CMBB, Universities of Marburg, Giessen, and Darmstadt, Marburg 35039, Germany
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen 35390, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Baldinger Str., Marburg 35043, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen 35390, Germany
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, 288 Campus Drive, Stanford, CA 94305 USA
| |
Collapse
|
3
|
Ouchi K, Yoshimaru D, Takemura A, Yamamoto S, Hayashi R, Higo N, Obara M, Sugase-Miyamoto Y, Tsurugizawa T. Multi-scale hierarchical brain regions detect individual and interspecies variations of structural connectivity in macaque monkeys and humans. Neuroimage 2024; 302:120901. [PMID: 39447715 DOI: 10.1016/j.neuroimage.2024.120901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Macaques are representative animal models in translational research. However, the distinct shape and location of the brain regions between macaques and humans prevents us from comparing the brain structure directly. Here, we calculated structural connectivity (SC) with multi-scale hierarchical regions of interest (ROIs) to parcel out human and macaque brain into 8 (level 1 ROIs), 28 (level 2 ROIs), or 46 (level 3 ROIs) regions, which consist of anatomically and functionally defined level 4 ROIs (around 100 parcellation of the brain). The SC with the level 1 ROIs showed lower individual and interspecies variation in macaques and humans. SC with level 2 and 3 ROIs shows that the several regions in frontal, temporal and parietal lobe show distinct connectivity between macaques and humans. Lateral frontal cortex, motor cortex and auditory cortex were shown to be important areas for interspecies differences. These results provide insights to use macaques as animal models for translational study.
Collapse
Affiliation(s)
- Kazuya Ouchi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan
| | - Daisuke Yoshimaru
- Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan; Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato City Tokyo 105-8461, Japan
| | - Aya Takemura
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| | - Shinya Yamamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryusuke Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| | - Makoto Obara
- Philips Japan, 2-13-37 Kohnan, Minato-ku 108-8507, Tokyo, Japan
| | - Yasuko Sugase-Miyamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan; Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato City Tokyo 105-8461, Japan.
| |
Collapse
|
4
|
Assimopoulos S, Warrington S, Bryant KL, Pszczolkowski S, Jbabdi S, Mars RB, Sotiropoulos SN. Generalising XTRACT tractography protocols across common macaque brain templates. Brain Struct Funct 2024; 229:1873-1888. [PMID: 38388696 PMCID: PMC11485040 DOI: 10.1007/s00429-024-02760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Non-human primates are extensively used in neuroscience research as models of the human brain, with the rhesus macaque being a prominent example. We have previously introduced a set of tractography protocols (XTRACT) for reconstructing 42 corresponding white matter (WM) bundles in the human and the macaque brain and have shown cross-species comparisons using such bundles as WM landmarks. Our original XTRACT protocols were developed using the F99 macaque brain template. However, additional macaque template brains are becoming increasingly common. Here, we generalise the XTRACT tractography protocol definitions across five macaque brain templates, including the F99, D99, INIA, Yerkes and NMT. We demonstrate equivalence of such protocols in two ways: (a) Firstly by comparing the bodies of the tracts derived using protocols defined across the different templates considered, (b) Secondly by comparing the projection patterns of the reconstructed tracts across the different templates in two cross-species (human-macaque) comparison tasks. The results confirm similarity of all predictions regardless of the macaque brain template used, providing direct evidence for the generalisability of these tractography protocols across the five considered templates.
Collapse
Affiliation(s)
- Stephania Assimopoulos
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Katherine L Bryant
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université, Marseille, France
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stefan Pszczolkowski
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Takemura H, Kaneko T, Sherwood CC, Johnson GA, Axer M, Hecht EE, Ye FQ, Leopold DA. A prominent vertical occipital white matter fasciculus unique to primate brains. Curr Biol 2024; 34:3632-3643.e4. [PMID: 38991613 PMCID: PMC11338705 DOI: 10.1016/j.cub.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Vision in humans and other primates enlists parallel processing streams in the dorsal and ventral visual cortex, known to support spatial and object processing, respectively. These streams are bridged, however, by a prominent white matter tract, the vertical occipital fasciculus (VOF), identified in both classical neuroanatomy and recent diffusion-weighted magnetic resonance imaging (dMRI) studies. Understanding the evolution of the VOF may shed light on its origin, function, and role in visually guided behaviors. To this end, we acquired high-resolution dMRI data from the brains of select mammalian species, including anthropoid and strepsirrhine primates, a tree shrew, rodents, and carnivores. In each species, we attempted to delineate the VOF after first locating the optic radiations in the occipital white matter. In all primate species examined, the optic radiation was flanked laterally by a prominent and coherent white matter fasciculus recognizable as the VOF. By contrast, the equivalent analysis applied to four non-primate species from the same superorder as primates (tree shrew, ground squirrel, paca, and rat) failed to reveal white matter tracts in the equivalent location. Clear evidence for a VOF was also absent in two larger carnivore species (ferret and fox). Although we cannot rule out the existence of minor or differently organized homologous fiber pathways in the non-primate species, the results suggest that the VOF has greatly expanded, or possibly emerged, in the primate lineage. This adaptation likely facilitated the evolution of unique visually guided behaviors in primates, with direct impacts on manual object manipulation, social interactions, and arboreal locomotion.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki-shi, Aichi 444-8585, Japan; The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama-cho, Kanagawa 240-0193, Japan; Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Takaaki Kaneko
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, 41-2 Kanrin, Inuyama-shi, Aichi 484-8506, Japan; Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki-shi, Aichi, Japan
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, 800 22nd St. NW, Washington, DC 20052, USA
| | - G Allan Johnson
- Department of Radiology, Duke Center for In Vivo Microscopy, Duke Medical Center, 311 Research Drive, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, 101 Science Dive., Durham, NC 27705, USA
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany; Department of Physics, School of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20 42119, Wuppertal, Germany
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA; Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
6
|
Takemura H, Kruper JA, Miyata T, Rokem A. Tractometry of Human Visual White Matter Pathways in Health and Disease. Magn Reson Med Sci 2024; 23:316-340. [PMID: 38866532 PMCID: PMC11234945 DOI: 10.2463/mrms.rev.2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Diffusion-weighted MRI (dMRI) provides a unique non-invasive view of human brain tissue properties. The present review article focuses on tractometry analysis methods that use dMRI to assess the properties of brain tissue within the long-range connections comprising brain networks. We focus specifically on the major white matter tracts that convey visual information. These connections are particularly important because vision provides rich information from the environment that supports a large range of daily life activities. Many of the diseases of the visual system are associated with advanced aging, and tractometry of the visual system is particularly important in the modern aging society. We provide an overview of the tractometry analysis pipeline, which includes a primer on dMRI data acquisition, voxelwise model fitting, tractography, recognition of white matter tracts, and calculation of tract tissue property profiles. We then review dMRI-based methods for analyzing visual white matter tracts: the optic nerve, optic tract, optic radiation, forceps major, and vertical occipital fasciculus. For each tract, we review background anatomical knowledge together with recent findings in tractometry studies on these tracts and their properties in relation to visual function and disease. Overall, we find that measurements of the brain's visual white matter are sensitive to a range of disorders and correlate with perceptual abilities. We highlight new and promising analysis methods, as well as some of the current barriers to progress toward integration of these methods into clinical practice. These barriers, such as variability in measurements between protocols and instruments, are targets for future development.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - John A Kruper
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| | - Toshikazu Miyata
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Uesaki M, Furlan M, Smith AT, Takemura H. White matter tracts adjacent to the human cingulate sulcus visual area (CSv). PLoS One 2024; 19:e0300575. [PMID: 38578743 PMCID: PMC10997140 DOI: 10.1371/journal.pone.0300575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/29/2024] [Indexed: 04/07/2024] Open
Abstract
Human cingulate sulcus visual area (CSv) was first identified as an area that responds selectively to visual stimulation indicative of self-motion. It was later shown that the area is also sensitive to vestibular stimulation as well as to bodily motion compatible with locomotion. Understanding the anatomical connections of CSv will shed light on how CSv interacts with other parts of the brain to perform information processing related to self-motion and navigation. A previous neuroimaging study (Smith et al. 2018, Cerebral Cortex, 28, 3685-3596) used diffusion-weighted magnetic resonance imaging (dMRI) to examine the structural connectivity of CSv, and demonstrated connections between CSv and the motor and sensorimotor areas in the anterior and posterior cingulate sulcus. The present study aimed to complement this work by investigating the relationship between CSv and adjacent major white matter tracts, and to map CSv's structural connectivity onto known white matter tracts. By re-analysing the dataset from Smith et al. (2018), we identified bundles of fibres (i.e. streamlines) from the whole-brain tractography that terminate near CSv. We then assessed to which white matter tracts those streamlines may belong based on previously established anatomical prescriptions. We found that a significant number of CSv streamlines can be categorised as part of the dorsalmost branch of the superior longitudinal fasciculus (SLF I) and the cingulum. Given current thinking about the functions of these white matter tracts, our results support the proposition that CSv provides an interface between sensory and motor systems in the context of self-motion.
Collapse
Affiliation(s)
- Maiko Uesaki
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Open Innovation & Collaboration Research Organization, Ritsumeikan University, Ibaraki, Osaka, Japan
| | - Michele Furlan
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Trieste, Italy
| | - Andrew T. Smith
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
| |
Collapse
|
8
|
Ma G, Worthy KH, Liu C, Rosa MG, Atapour N. Parvalbumin as a neurochemical marker of the primate optic radiation. iScience 2023; 26:106608. [PMID: 37168578 PMCID: PMC10165026 DOI: 10.1016/j.isci.2023.106608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023] Open
Abstract
Parvalbumin (PV) is a calcium-binding protein that labels neuronal cell bodies in the magno and parvocellular layers of the primate lateral geniculate nucleus (LGN). Here we demonstrate that PV immunohistochemistry can also be used to trace the optic radiation (OR) of the marmoset monkey (Callithrix jacchus) from its LGN origin to its destinations in the primary visual cortex (V1), thus providing a high-resolution method for identification of the OR with single axon resolution. The emergence of fibers from LGN, their entire course and even the entry points to V1 were clearly defined in coronal, parasagittal, and horizontal sections of marmoset brain. In all cases, the trajectory revealed by PV staining paralleled that defined by high-resolution diffusion tensor imaging (DTI). We found that V1 was the exclusive target for the PV-containing fibers, with abrupt transitions in staining observed in the white matter at the border with area V2, and no evidence of PV-labeled axons feeding into other visual areas. Changes in the pattern of PV staining in the OR were detected following V1 lesions, demonstrating that this method can be used to assess the progress of retrograde degeneration of geniculocortical projections. These results suggest a technically simple approach to advance our understanding of a major white matter structure, which provides a cellular resolution suitable for the detection of microstructural variations during development, health and disease. Understanding the relationship between PV staining and DTI in non-human primates may also offer clues for improving the specificity and sensitivity of OR tractography for clinical purposes.
Collapse
Affiliation(s)
- Gaoyuan Ma
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Katrina H. Worthy
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Cirong Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Marcello G.P. Rosa
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Nafiseh Atapour
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
- Corresponding author
| |
Collapse
|
9
|
Takemura H, Liu W, Kuribayashi H, Miyata T, Kida I. Evaluation of simultaneous multi-slice readout-segmented diffusion-weighted MRI acquisition in human optic nerve measurements. Magn Reson Imaging 2023; 102:103-114. [PMID: 37149064 DOI: 10.1016/j.mri.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) is the only available method to measure the tissue properties of white matter tracts in living human brains and has opened avenues for neuroscientific and clinical studies on human white matter. However, dMRI using conventional simultaneous multi-slice (SMS) single-shot echo planar imaging (ssEPI) still presents challenges in the analyses of some specific white matter tracts, such as the optic nerve, which are heavily affected by susceptibility-induced artifacts. In this study, we evaluated dMRI data acquired by using SMS readout-segmented EPI (rsEPI), which aims to reduce susceptibility-induced artifacts by dividing the acquisition space into multiple segments along the readout direction to reduce echo spacing. To this end, we acquired dMRI data from 11 healthy volunteers by using SMS ssEPI and SMS rsEPI, and then compared the dMRI data of the human optic nerve between the SMS ssEPI and SMS rsEPI datasets by visual inspection of the datasets and statistical comparisons of fractional anisotropy (FA) values. In comparison with the SMS ssEPI data, the SMS rsEPI data showed smaller susceptibility-induced distortion and exhibited a significantly higher FA along the optic nerve. In summary, this study demonstrates that despite its prolonged acquisition time, SMS rsEPI is a promising approach for measuring the tissue properties of the optic nerve in living humans and will be useful for future neuroscientific and clinical investigations of this pathway.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan.
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | | | - Toshikazu Miyata
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Ikuhiro Kida
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Takeichi H, Taniguchi K, Shigemasu H. Visual and haptic cues in processing occlusion. Front Psychol 2023; 14:1082557. [PMID: 36968748 PMCID: PMC10036393 DOI: 10.3389/fpsyg.2023.1082557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionAlthough shape is effective in processing occlusion, ambiguities in segmentation can also be addressed using depth discontinuity given visually and haptically. This study elucidates the contribution of visual and haptic cues to depth discontinuity in processing occlusion.MethodsA virtual reality experiment was conducted with 15 students as participants. Word stimuli were presented on a head-mounted display for recognition. The central part of the words was masked with a virtual ribbon placed at different depths so that the ribbon appeared as an occlusion. The visual depth cue was either present with binocular stereopsis or absent with monocular presentation. The haptic cue was either missing, provided consecutively, or concurrently, by actively tracing a real off-screen bar edge that was positionally aligned with the ribbon in the virtual space. Recognition performance was compared between depth cue conditions.ResultsWe found that word recognition was better with the stereoscopic cue but not with the haptic cue, although both cues contributed to greater confidence in depth estimation. The performance was better when the ribbon was at the farther depth plane to appear as a hollow, rather than when it was at the nearer depth plane to cover the word.DiscussionThe results indicate that occlusion is processed in the human brain by visual input only despite the apparent effectiveness of haptic space perception, reflecting a complex set of natural constraints.
Collapse
Affiliation(s)
- Hiroshige Takeichi
- Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity (ISC), RIKEN, Wako, Saitama, Japan
- Open Systems Information Science Team, Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters (R-IH), RIKEN, Yokohama, Kanagawa, Japan
- *Correspondence: Hiroshige Takeichi,
| | - Keito Taniguchi
- School of Information, Kochi University of Technology, Kami, Kochi, Japan
| | - Hiroaki Shigemasu
- School of Information, Kochi University of Technology, Kami, Kochi, Japan
| |
Collapse
|
11
|
Chen G, Ma S, Gong Q, Xie X, Wu P, Guo W, Kang L, Li M, Zhang H, Zhou E, Zhang Y, Rong J, Duan H, Jin L, Xu S, Zhang N, Sun S, Li R, Yao L, Xiang D, Bu L, Liu Z. Assessment of brain imaging and cognitive function in a modified rhesus monkey model of depression. Behav Brain Res 2023; 445:114382. [PMID: 36871905 DOI: 10.1016/j.bbr.2023.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Depression incurs a huge personal and societal burden, impairing cognitive and social functioning and affecting millions of people worldwide. A better understanding of the biological basis of depression could facilitate the development of new and improved therapies. Rodent models have limitations and do not fully recapitulate human disease, hampering clinical translation. Primate models of depression help to bridge this translational gap and facilitate research into the pathophysiology of depression. Here we optimized a protocol for administering unpredictable chronic mild stress (UCMS) to non-human primates and evaluated the influence of UCMS on cognition using the classical Wisconsin General Test Apparatus (WGTA) method. We used resting-state functional MRI to explore changes in amplitude of low-frequency fluctuations and regional homogeneity in rhesus monkeys. Our work highlights that the UCMS paradigm effectively induces behavioral and neurophysiological (functional MRI) changes in monkeys but without significantly impacting cognition. The UCMS protocol requires further optimization in non-human primates to authentically simulate changes in cognition associated with depression.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peng Wu
- Hubei Topgene Xinsheng Technology Co., Ltd, Wuhan 430000, China
| | - Wenbi Guo
- Department of Rehabilitation Medicine, Central Theater General Hospital, Wuhan 430070, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET-CT/MRI Center and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
12
|
Hong TY, Yang CJ, Shih CH, Fan SF, Yeh TC, Yu HY, Chen LF, Hsieh JC. Enhanced intrinsic functional connectivity in the visual system of visual artist: Implications for creativity. Front Neurosci 2023; 17:1114771. [PMID: 36908805 PMCID: PMC9992720 DOI: 10.3389/fnins.2023.1114771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction This study sought to elucidate the cognitive traits of visual artists (VAs) from the perspective of visual creativity and the visual system (i.e., the most fundamental neural correlate). Methods We examined the local and long-distance intrinsic functional connectivity (FC) of the visual system to unravel changes in brain traits among VAs. Twenty-seven university students majoring in visual arts and 27 non-artist controls were enrolled. Results VAs presented enhanced local FC in the right superior parietal lobule, right precuneus, left inferior temporal gyrus (ITG), left superior parietal lobule, left angular gyrus, and left middle occipital gyrus. VAs also presented enhanced FC with the ITG that targeted the visual area (occipital gyrus and cuneus), which appears to be associated with visual creativity. Discussion The visual creativity of VAs was correlated with strength of intrinsic functional connectivity in the visual system. Learning-induced neuroplasticity as a trait change observed in VAs can be attributed to the macroscopic consolidation of consociated neural circuits that are engaged over long-term training in the visual arts and aesthetic experience. The consolidated network can be regarded as virtuoso-specific neural fingerprint.
Collapse
Affiliation(s)
- Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Fen Fan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chen Yeh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
13
|
Warrington S, Thompson E, Bastiani M, Dubois J, Baxter L, Slater R, Jbabdi S, Mars RB, Sotiropoulos SN. Concurrent mapping of brain ontogeny and phylogeny within a common space: Standardized tractography and applications. SCIENCE ADVANCES 2022; 8:eabq2022. [PMID: 36260675 PMCID: PMC9581484 DOI: 10.1126/sciadv.abq2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Developmental and evolutionary effects on brain organization are complex, yet linked, as evidenced by the correspondence in cortical area expansion across these vastly different time scales. However, it is still not possible to study concurrently the ontogeny and phylogeny of cortical areal connections, which is arguably more relevant to brain function than allometric measurements. Here, we propose a novel framework that allows the integration of structural connectivity maps from humans (adults and neonates) and nonhuman primates (macaques) onto a common space. We use white matter bundles to anchor the common space and use the uniqueness of cortical connection patterns to these bundles to probe area specialization. This enabled us to quantitatively study divergences and similarities in connectivity over evolutionary and developmental scales, to reveal brain maturation trajectories, including the effect of premature birth, and to translate cortical atlases between diverse brains. Our findings open new avenues for an integrative approach to imaging neuroanatomy.
Collapse
Affiliation(s)
- Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Elinor Thompson
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica Dubois
- Université Paris Cité, Inserm, NeuroDiderot Unit, Paris, France
- University Paris-Saclay, CEA, NeuroSpin, Gif-sur-Yvette, France
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Stamatios N. Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| |
Collapse
|
14
|
Forkel SJ, Labache L, Nachev P, Thiebaut de Schotten M, Hesling I. Stroke disconnectome decodes reading networks. Brain Struct Funct 2022; 227:2897-2908. [PMID: 36192557 DOI: 10.1007/s00429-022-02575-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/19/2022] [Indexed: 12/31/2022]
Abstract
Cognitive functional neuroimaging has been around for over 30 years and has shed light on the brain areas relevant for reading. However, new methodological developments enable mapping the interaction between functional imaging and the underlying white matter networks. In this study, we used such a novel method, called the disconnectome, to decode the reading circuitry in the brain. We used the resulting disconnection patterns to predict a typical lesion that would lead to reading deficits after brain damage. Our results suggest that white matter connections critical for reading include fronto-parietal U-shaped fibres and the vertical occipital fasciculus (VOF). The lesion most predictive of a reading deficit would impinge on the left temporal, occipital, and inferior parietal gyri. This novel framework can systematically be applied to bridge the gap between the neuropathology of language and cognitive neuroscience.
Collapse
Affiliation(s)
- Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France. .,Donders Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands. .,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,Department of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany.
| | - Loïc Labache
- Department of Psychology, Yale University, New Haven, CT, 06511, USA
| | - Parashkev Nachev
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3GB, UK
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Isabelle Hesling
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Yan M, Yu W, Lv Q, Lv Q, Bo T, Chen X, Liu Y, Zhan Y, Yan S, Shen X, Yang B, Hu Q, Yu J, Qiu Z, Feng Y, Zhang XY, Wang H, Xu F, Wang Z. Mapping brain-wide excitatory projectome of primate prefrontal cortex at submicron resolution and comparison with diffusion tractography. eLife 2022; 11:72534. [PMID: 35593765 PMCID: PMC9122499 DOI: 10.7554/elife.72534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Resolving trajectories of axonal pathways in the primate prefrontal cortex remains crucial to gain insights into higher-order processes of cognition and emotion, which requires a comprehensive map of axonal projections linking demarcated subdivisions of prefrontal cortex and the rest of brain. Here, we report a mesoscale excitatory projectome issued from the ventrolateral prefrontal cortex (vlPFC) to the entire macaque brain by using viral-based genetic axonal tracing in tandem with high-throughput serial two-photon tomography, which demonstrated prominent monosynaptic projections to other prefrontal areas, temporal, limbic, and subcortical areas, relatively weak projections to parietal and insular regions but no projections directly to the occipital lobe. In a common 3D space, we quantitatively validated an atlas of diffusion tractography-derived vlPFC connections with correlative green fluorescent protein-labeled axonal tracing, and observed generally good agreement except a major difference in the posterior projections of inferior fronto-occipital fasciculus. These findings raise an intriguing question as to how neural information passes along long-range association fiber bundles in macaque brains, and call for the caution of using diffusion tractography to map the wiring diagram of brain circuits. In the brain is a web of interconnected nerve cells that send messages to one another via spindly projections called axons. These axons join together at junctions called synapses to create circuits of nerve cells which connect neighboring or distant brain regions. Notably, long-range neural connections underpin higher-order cognitive skills (such as planning and emotion regulation) which make humans distinct from our primate relatives. Only by untangling these far-reaching networks can researchers begin to delineate what sets the human brain apart from other species. Researchers deploy a range of imaging techniques to map neural networks: scanning entire brains using MRI machines, or imaging thin slices of fluorescently labelled brain tissue using powerful microscopes. However, tracing long-range axons at a high resolution is challenging, and has stirred up debate about whether some neural tracts, such as the inferior fronto-occipital fasciculus, are present in all primates or only humans. To address these discrepancies, Yan, Yu et al. employed a two-pronged approach to map neural circuits in the brains of macaques. First, two techniques – called viral tracing and two-photon microscopy – were used to create a three-dimensional, fine-grain map showing how the ventrolateral prefrontal cortex (vlPFC), which regulates complex behaviors, connects to the rest of the brain. This revealed prominent axons from the vlPFC projecting via a single synapse to distant brain regions involved in higher-order functions, such as encoding memories and processing emotion. However, there were no direct, monosynaptic connections between the vlPFC and the occipital lobe, the brain’s visual processing center at the back of the head. Next, Yan, Yu et al. used a specialized MRI scanner to create an atlas of neural circuits connected to the vlPFC, and compared these results to a technique tracing axons stained with a fluorescent dye. In general, there was good agreement between the two methods, except for major differences in the rear-end projections that typically form the inferior fronto-occipital fasciculus. This suggests that this long-range neural pathway exists in monkeys, but it connects via multiple synapses instead of a single junction as was previously thought. The findings of Yan, Yu et al. provide new insights on the far-reaching neural pathways connecting distant parts of the macaque brain. It also suggests that atlases of neural circuits from whole brain scans should be taken with caution and validated using neural tracing experiments.
Collapse
Affiliation(s)
- Mingchao Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Yu
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Qian Lv
- School of Psychological and Cognitive Sciences; Beijing Key Laboratory of Behavior and Mental Health; IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qiming Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tingting Bo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yafeng Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shengyao Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Baofeng Yang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Qiming Hu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiangli Yu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanjing Feng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Fuqiang Xu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences; Beijing Key Laboratory of Behavior and Mental Health; IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Vinci-Booher S, Caron B, Bullock D, James K, Pestilli F. Development of white matter tracts between and within the dorsal and ventral streams. Brain Struct Funct 2022; 227:1457-1477. [PMID: 35267078 DOI: 10.1007/s00429-021-02414-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023]
Abstract
The degree of interaction between the ventral and dorsal visual streams has been discussed in multiple scientific domains for decades. Recently, several white matter tracts that directly connect cortical regions associated with the dorsal and ventral streams have become possible to study due to advancements in automated and reproducible methods. The developmental trajectory of this set of tracts, here referred to as the posterior vertical pathway (PVP), has yet to be described. We propose an input-driven model of white matter development and provide evidence for the model by focusing on the development of the PVP. We used reproducible, cloud-computing methods and diffusion imaging from adults and children (ages 5-8 years) to compare PVP development to that of tracts within the ventral and dorsal pathways. PVP microstructure was more adult-like than dorsal stream microstructure, but less adult-like than ventral stream microstructure. Additionally, PVP microstructure was more similar to the microstructure of the ventral than the dorsal stream and was predicted by performance on a perceptual task in children. Overall, results suggest a potential role for the PVP in the development of the dorsal visual stream that may be related to its ability to facilitate interactions between ventral and dorsal streams during learning. Our results are consistent with the proposed model, suggesting that the microstructural development of major white matter pathways is related, at least in part, to the propagation of sensory information within the visual system.
Collapse
Affiliation(s)
- S Vinci-Booher
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
| | - B Caron
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - D Bullock
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - K James
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - F Pestilli
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
- The University of Texas, 108 E Dean Keeton St, Austin, TX, 78712, USA.
| |
Collapse
|
17
|
The forgotten tract of vision in multiple sclerosis: vertical occipital fasciculus, its fiber properties, and visuospatial memory. Brain Struct Funct 2022; 227:1479-1490. [PMID: 35174417 DOI: 10.1007/s00429-022-02464-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Visual disturbances are a common disease manifestation in multiple sclerosis (MS) due to lesions damaging white matter tracts involved in vision. Vertical occipital fasciculus (VOF), a tract located vertically in the occipital lobe, was neglected for more than a century. We hypothesize that VOF is involved in integrating information between dorsal and ventral visual streams. Thus, its damage in MS, as well as its probable role in visual processing (by using MS as a VOF damage model) needs to be clarified. To study fiber characteristics of VOF in MS, and their clinical and visual learning associations, 57 relapsing-remitting MS (RRMS) and 25 healthy controls (HC) were recruited. We acquired MS Functional Composite, Expanded Disability Status Scale (EDSS), and Brief Visuospatial Memory Test-Revised (BVMT-R), and diffusion MRI scans. Tractography of VOF and optic radiation (OR) was done. VOF's metrics were statistically tested for between-group differences and clinical and visual tests associations. Along-tract analysis and laterality were also tested. RRMS patients had higher mean, axial, and radial diffusivity (nearly in all fiber points), and lower fractional anisotropy in bilateral VOFs compared to HC. No laterality was noted. These were associated with poor clinical outcomes, poor visual scores in EDSS, and lower total immediate and delayed recall in BVMT-R in RRMS, after adjusting for age, gender, and fiber metrics of OR. VOF damage is present in RRMS and is associated with visual symptoms and visuospatial learning impairments. It seems VOF is involved in integrating information between visual streams.
Collapse
|
18
|
Mahdy Ali K, Avesani P. The vertical superior longitudinal fascicle and the vertical occipital fascicle. J Neurosurg Sci 2022; 65:581-589. [PMID: 35128919 DOI: 10.23736/s0390-5616.21.05368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Association fibers of the human brain have long been considered to exclusively follow an anterior-posterior direction. Using magnetic resonance imaging techniques that allow in-vivo fiber dissection, vertically oriented association fibers have been rediscovered or newly described. Aside from the frontal aslant tract (FAT) in the frontal lobe, the vertical occipital fascicle (VOF) and the vertical portion of the superior longitudinal fascicle system (vSLF) have been studied in recent years. The aim of this review was to give an overview on the current knowledge regarding these two fiber tracts. A review of the available literature in the Medline database was conducted to gather all available publications dealing with either the VOF or the vSLF. One thousand two hundred seventy-three articles were obtained from the literature search of which a total of 71 articles met the final inclusion criteria of this review. We describe the history of the discovery of the respective fiber tract, its anatomical course and its boundaries integrating blunt fiber dissection studies and functional MRI/tractography studies. We discuss the functional properties of the respective fiber tract and its relevance in neurosurgery. The VOF is a fiber tract that has been discovered in the late XIX century and long been forgotten before being rediscovered in the 1970's. It lies lateral to the fibers of the sagittal stratum and mainly connects the superior and inferior occipital lobe. It plays a major role in reading and visual word and language comprehension and is said to be the main link between dorsal and ventral visual streams. The vSLF has many synonyms and is part of the superior longitudinal fascicle system. Recent studies were able to provide more insight into this set of fiber tracts showing distinct connections running from the superior and inferior parietal lobule to the posterior part of the temporal lobe. Its functional role is still not completely cleared. It is said to play a role in visual and auditory semantic language comprehension. It lies directly lateral to the arcuate fascicle. The VOF and the vSLF are vertically oriented fiber tracts connecting the temporo-parieto-occipital region and play a major role in the communication of dorsal and ventral visual streams (VOF), reading (VOF, vSLF) and visual and auditory semantic language comprehension (vSLF). They can consistently be identified using ex vivo blunt dissection techniques and in-vivo fiber tractography. Because of their localization and orientation these two fiber tracts can be combined to a fiber bundle system called posterior transverse system (PTS).
Collapse
Affiliation(s)
- Kariem Mahdy Ali
- Department of Neurosurgery, Medical University of Graz, Graz, Austria -
| | - Paolo Avesani
- Center for Information Technology, Fondazione Bruno Kessler (FBK), Trento, Italy
| |
Collapse
|
19
|
Blazquez Freches G, Haak KV, Beckmann CF, Mars RB. Connectivity gradients on tractography data: Pipeline and example applications. Hum Brain Mapp 2021; 42:5827-5845. [PMID: 34559432 PMCID: PMC8596970 DOI: 10.1002/hbm.25623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Gray matter connectivity can be described in terms of its topographical organization, but the differential role of white matter connections underlying that organization is often unknown. In this study, we propose a method for unveiling principles of organization of both gray and white matter based on white matter connectivity as assessed using diffusion magnetic ressonance imaging (MRI) tractography with spectral embedding gradient mapping. A key feature of the proposed approach is its capacity to project the individual connectivity gradients it reveals back onto its input data in the form of projection images, allowing one to assess the contributions of specific white matter tracts to the observed gradients. We demonstrate the ability of our proposed pipeline to identify connectivity gradients in prefrontal and occipital gray matter. Finally, leveraging the use of tractography, we demonstrate that it is possible to observe gradients within the white matter bundles themselves. Together, the proposed framework presents a generalized way to assess both the topographical organization of structural brain connectivity and the anatomical features driving it.
Collapse
Affiliation(s)
- Guilherme Blazquez Freches
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| | - Koen V. Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nufeld Department of Clinical NeurosciencesJohn Radclife Hospital, University of OxfordOxfordUK
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| |
Collapse
|
20
|
White matter variability, cognition, and disorders: a systematic review. Brain Struct Funct 2021; 227:529-544. [PMID: 34731328 PMCID: PMC8844174 DOI: 10.1007/s00429-021-02382-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Inter-individual differences can inform treatment procedures and—if accounted for—have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract–function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.
Collapse
|
21
|
Bryant KL, Ardesch DJ, Roumazeilles L, Scholtens LH, Khrapitchev AA, Tendler BC, Wu W, Miller KL, Sallet J, van den Heuvel MP, Mars RB. Diffusion MRI data, sulcal anatomy, and tractography for eight species from the Primate Brain Bank. Brain Struct Funct 2021; 226:2497-2509. [PMID: 34264391 PMCID: PMC8608778 DOI: 10.1007/s00429-021-02268-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Large-scale comparative neuroscience requires data from many species and, ideally, at multiple levels of description. Here, we contribute to this endeavor by presenting diffusion and structural MRI data from eight primate species that have not or rarely been described in the literature. The selected samples from the Primate Brain Bank cover a prosimian, New and Old World monkeys, and a great ape. We present preliminary labelling of the cortical sulci and tractography of the optic radiation, dorsal part of the cingulum bundle, and dorsal parietal-frontal and ventral temporal-frontal longitudinal white matter tracts. Both dorsal and ventral association fiber systems could be observed in all samples, with the dorsal tracts occupying much less relative volume in the prosimian than in other species. We discuss the results in the context of known primate specializations and present hypotheses for further research. All data and results presented here are available online as a resource for the scientific community.
Collapse
Affiliation(s)
- Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Dirk Jan Ardesch
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lianne H Scholtens
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alexandre A Khrapitchev
- Department of Oncology, University of Oxford, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Werth R. Is Developmental Dyslexia Due to a Visual and Not a Phonological Impairment? Brain Sci 2021; 11:1313. [PMID: 34679378 PMCID: PMC8534212 DOI: 10.3390/brainsci11101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
It is a widely held belief that developmental dyslexia (DD) is a phonological disorder in which readers have difficulty associating graphemes with their corresponding phonemes. In contrast, the magnocellular theory of dyslexia assumes that DD is a visual disorder caused by dysfunctional magnocellular neural pathways. The review explores arguments for and against these theories. Recent results have shown that DD is caused by (1) a reduced ability to simultaneously recognize sequences of letters that make up words, (2) longer fixation times required to simultaneously recognize strings of letters, and (3) amplitudes of saccades that do not match the number of simultaneously recognized letters. It was shown that pseudowords that could not be recognized simultaneously were recognized almost without errors when the fixation time was extended. However, there is an individual maximum number of letters that each reader with DD can recognize simultaneously. Findings on the neurobiological basis of temporal summation have shown that a necessary prolongation of fixation times is due to impaired processing mechanisms of the visual system, presumably involving magnocells and parvocells. An area in the mid-fusiform gyrus also appears to play a significant role in the ability to simultaneously recognize words and pseudowords. The results also contradict the assumption that DD is due to a lack of eye movement control. The present research does not support the assumption that DD is caused by a phonological disorder but shows that DD is due to a visual processing dysfunction.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, University of Munich, Haydnstrasse 5, D-80336 Munich, Germany
| |
Collapse
|
23
|
Braunsdorf M, Blazquez Freches G, Roumazeilles L, Eichert N, Schurz M, Uithol S, Bryant KL, Mars RB. Does the temporal cortex make us human? A review of structural and functional diversity of the primate temporal lobe. Neurosci Biobehav Rev 2021; 131:400-410. [PMID: 34480913 DOI: 10.1016/j.neubiorev.2021.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Temporal cortex is a primate specialization that shows considerable variation in size, morphology, and connectivity across species. Human temporal cortex is involved in many behaviors that are considered especially well developed in humans, including semantic processing, language, and theory of mind. Here, we ask whether the involvement of temporal cortex in these behaviors can be explained in the context of the 'general' primate organization of the temporal lobe or whether the human temporal lobe contains unique specializations indicative of a 'step change' in the lineage leading to modern humans. We propose that many human behaviors can be explained as elaborations of temporal cortex functions observed in other primates. However, changes in temporal lobe white matter suggest increased integration of information within temporal cortex and between posterior temporal cortex and other association areas, which likely enable behaviors not possible in other species.
Collapse
Affiliation(s)
- Marius Braunsdorf
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Guilherme Blazquez Freches
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Matthias Schurz
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Sebo Uithol
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Merhar SL, Kline JE, Braimah A, Kline-Fath BM, Tkach JA, Altaye M, He L, Parikh NA. Prenatal opioid exposure is associated with smaller brain volumes in multiple regions. Pediatr Res 2021; 90:397-402. [PMID: 33177677 PMCID: PMC8110593 DOI: 10.1038/s41390-020-01265-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND The impact of prenatal opioid exposure on brain development remains poorly understood. METHODS We conducted a prospective study of term-born infants with and without prenatal opioid exposure. Structural brain MRI was performed between 40 and 48 weeks postmenstrual age. T2-weighted images were processed using the Developing Human Connectome Project structural pipeline. We compared 63 relative regional brain volumes between groups. RESULTS Twenty-nine infants with prenatal opioid exposure and 42 unexposed controls were included. The groups had similar demographics, except exposed infants had lower birth weights, more maternal smoking and maternal Hepatitis C, fewer mothers with a college degree, and were more likely non-Hispanic White. After controlling for sex, postmenstrual age at scan, birth weight, and maternal education, exposed infants had significantly smaller relative volumes of the deep gray matter, bilateral thalamic ventrolateral nuclei, bilateral insular white matter, bilateral subthalamic nuclei, brainstem, and cerebrospinal fluid. Exposed infants had larger relative volumes of the right cingulate gyrus white matter and left occipital lobe white matter. CONCLUSIONS Infants with prenatal opioid exposure had smaller brain volumes in multiple regions compared to controls, with two regions larger in the opioid-exposed group. Further research should focus on the relative contributions of maternal opioids and other exposures. IMPACT Prenatal opioid exposure is associated with developmental and behavioral consequences, but the direct effects of opioids on the developing human brain are poorly understood. Prior small studies using MRI have shown smaller regional brain volumes in opioid-exposed infants and children. After controlling for covariates, infants with prenatal opioid exposure scanned at 40-48 weeks postmenstrual age had smaller brain volumes in multiple regions compared to controls, with two regions larger in the opioid-exposed group. This adds to the literature showing potential impact of prenatal opioid exposure on the developing brain.
Collapse
Affiliation(s)
- Stephanie L Merhar
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - Julia E Kline
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Adebayo Braimah
- Imaging Research Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Beth M Kline-Fath
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Lili He
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Nehal A Parikh
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
25
|
Babo-Rebelo M, Puce A, Bullock D, Hugueville L, Pestilli F, Adam C, Lehongre K, Lambrecq V, Dinkelacker V, George N. Visual Information Routes in the Posterior Dorsal and Ventral Face Network Studied with Intracranial Neurophysiology and White Matter Tract Endpoints. Cereb Cortex 2021; 32:342-366. [PMID: 34339495 PMCID: PMC8754371 DOI: 10.1093/cercor/bhab212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Occipitotemporal regions within the face network process perceptual and socioemotional information, but the dynamics and information flow between different nodes of this network are still debated. Here, we analyzed intracerebral EEG from 11 epileptic patients viewing a stimulus sequence beginning with a neutral face with direct gaze. The gaze could avert or remain direct, while the emotion changed to fearful or happy. N200 field potential peak latencies indicated that face processing begins in inferior occipital cortex and proceeds anteroventrally to fusiform and inferior temporal cortices, in parallel. The superior temporal sulcus responded preferentially to gaze changes with augmented field potential amplitudes for averted versus direct gaze, and large effect sizes relative to other network regions. An overlap analysis of posterior white matter tractography endpoints (from 1066 healthy brains) relative to active intracerebral electrodes in the 11 patients showed likely involvement of both dorsal and ventral posterior white matter pathways. Overall, our data provide new insight into the timing of face and social cue processing in the occipitotemporal brain and anchor the superior temporal cortex in dynamic gaze processing.
Collapse
Affiliation(s)
- M Babo-Rebelo
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France.,Sorbonne Université, Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Experimental Neurosurgery Team, Paris F-75013, France.,Institute of Cognitive Neuroscience, University College London, WC1N 3AZ, London, UK
| | - A Puce
- Department of Psychological and Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN 47401, USA
| | - D Bullock
- Department of Psychological and Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN 47401, USA
| | - L Hugueville
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France
| | - F Pestilli
- Department of Psychological and Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN 47401, USA
| | - C Adam
- Neurophysiology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris F-75013, France
| | - K Lehongre
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France
| | - V Lambrecq
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France.,Neurophysiology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris F-75013, France
| | - V Dinkelacker
- Department of Neurology, Rothschild Foundation, Paris F-75019, France
| | - N George
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France.,Sorbonne Université, Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Experimental Neurosurgery Team, Paris F-75013, France
| |
Collapse
|
26
|
Benke T, Dazinger F, Pechlaner R, Willeit K, Clausen J, Knoflach M. Lesion topography of posterior cerebral artery infarcts. J Neurol Sci 2021; 428:117585. [PMID: 34371243 DOI: 10.1016/j.jns.2021.117585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
This study analyzed the topography of acute ischemic stroke in the posterior cerebral artery (PCA) territory. We studied 84 patients with unilateral ischemic PCA stroke. Patients were classified according to lesion levels as cortico-subcortical (superficial), combined (cortical and mesodiencephalic) or isolated thalamic. To receive a lesion map, data from acute MR and CT imaging were normalized and labelled automatically by mapping to stereotaxic anatomical atlases. Cortical lesions accounted for 41.7%, combined for 36.9%, and isolated thalamic lesions for 21.4%. The maximum overlay of ischemia and, thus, highest occurrence of PCA ischemic stroke was found in the ventral and medial occipito-temporal cortex and adjacent white matter association tracts. Dorsal and peripheral segments of the occipito-temporo-parietal region were only rarely lesioned. This configuration was similar in both hemispheres. Consistent with this lesion pattern, visual field defects (VFD) were the most frequent signs, followed by sensorimotor signs, dizziness and sopor, cognitive and oculomotor deficits, and ataxia. The three vascular subgroups differed not only by their anatomical lesion profile and lesion load, but also by their clinical manifestation; although patients with combined and thalamic lesions were sigificantly younger, they were more disabled than participants with cortical lesions. VFD were only found in cortical and combined, and oculomotor deficits only in mesodiencephalic lesions. White matter lesions were common in the cortico-subcortical and the combined group. Basal occipito-temporal and calcarine regions, and neighbouring white matter tracts have the highest risk of ischemia in acute PCA stroke.
Collapse
Affiliation(s)
- T Benke
- Clinic of Neurology, Medical University Innsbruck, Austria.
| | - F Dazinger
- Clinic of Neuroradiology, Medical University Innsbruck, Austria
| | - R Pechlaner
- Clinic of Neurology, Medical University Innsbruck, Austria
| | - K Willeit
- Clinic of Neurology, Medical University Innsbruck, Austria
| | - J Clausen
- Centre of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - M Knoflach
- Clinic of Neurology, Medical University Innsbruck, Austria
| |
Collapse
|
27
|
Sims SA, Demirayak P, Cedotal S, Visscher KM. Frontal cortical regions associated with attention connect more strongly to central than peripheral V1. Neuroimage 2021; 238:118246. [PMID: 34111516 PMCID: PMC8415014 DOI: 10.1016/j.neuroimage.2021.118246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/22/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
The functionality of central vision is different from peripheral vision. Central vision is used for fixation and has higher acuity, making it useful for everyday activities such as reading and object identification. The central and peripheral representations in primary visual cortex (V1) also differ in how higher-order processing areas modulate their responses. For example, attention and expectation are top-down processes (i.e., high-order cognitive functions) that influence visual information processing during behavioral tasks. This top-down control is different for central vs. peripheral vision. Since functional networks can influence visual information processing in different ways, networks (such as the Fronto-Parietal (FPN), Default Mode (DMN), and Cingulo-Opercular (CON)) likely differ in how they connect to representations of the visual field across V1. Prior work indicated the central representing portion of V1 was more functionally connected to regions belonging to the FPN, and the far-peripheral representing portion of V1 was more functionally connected to regions belonging to the DMN. Our goals were (1) Assess the reproducibility and generalizability of retinotopic effects on functional connections between V1 and functional networks. (2) Extend this work to understand structural connections of central vs. peripheral representations in V1. (3) Examine the overlapping eccentricity differences in functional and structural connections of V1. (4) Examine the major white matter tracks connecting central V1 to frontal regions. We used resting-state BOLD fMRI and DWI to examine whether portions of V1 that represent different visual eccentricities differ in their functional and structural connectivity to functional networks. All data were acquired and minimally preprocessed by the Human Connectome Project. We identified central and far-peripheral representing regions from a retinotopic template. Functional connectivity was measured by correlated activity between V1 and functional networks, and structural connectivity was measured by probabilistic tractography and converted to track probability. In both modalities, differences between V1 eccentricity segment connections were compared by paired, two-tailed t-test. A spatial permutation approach was used to determine the statistical significance of the spatial overlap between modalities. The identified spatial overlap was then used in a deterministic tractography approach to identify the white matter pathways connecting the overlap to central V1. We found (1) Centrally representing portions of V1 are more strongly functionally connected to frontal regions than are peripherally representing portions of V1, (2) Structural connections also show stronger connections between central V1 and frontal regions, (3) Patterns of structural and functional connections overlaps in the lateral frontal cortex, (4) This lateral frontal overlap is connected to central V1 via the IFOF. In summary, the work’s main contribution is a greater understanding of higher-order functional networks’ connectivity to V1. There are stronger structural connections to central representations in V1, particularly for lateral frontal regions, implying that the functional relationship between central V1 and frontal regions is built upon direct, long-distance connections via the IFOF. Overlapping structural and functional connections reflect differences in V1 eccentricities, with central V1 preferentially connected to attention-associated regions. Understanding how V1 is functionally and structurally connected to higher-order brain areas contributes to our understanding of how the human brain processes visual information and forms a baseline for understanding any modifications in processing that might occur with training or experience.
Collapse
Affiliation(s)
- Sara A Sims
- Department of Psychology, University of Alabama at Birmingham, United States.
| | - Pinar Demirayak
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Simone Cedotal
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Kristina M Visscher
- Department of Neurobiology, University of Alabama at Birmingham, United States
| |
Collapse
|
28
|
Legarreta JH, Petit L, Rheault F, Theaud G, Lemaire C, Descoteaux M, Jodoin PM. Filtering in tractography using autoencoders (FINTA). Med Image Anal 2021; 72:102126. [PMID: 34161915 DOI: 10.1016/j.media.2021.102126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Current brain white matter fiber tracking techniques show a number of problems, including: generating large proportions of streamlines that do not accurately describe the underlying anatomy; extracting streamlines that are not supported by the underlying diffusion signal; and under-representing some fiber populations, among others. In this paper, we describe a novel autoencoder-based learning method to filter streamlines from diffusion MRI tractography, and hence, to obtain more reliable tractograms. Our method, dubbed FINTA (Filtering in Tractography using Autoencoders) uses raw, unlabeled tractograms to train the autoencoder, and to learn a robust representation of brain streamlines. Such an embedding is then used to filter undesired streamline samples using a nearest neighbor algorithm. Our experiments on both synthetic and in vivo human brain diffusion MRI tractography data obtain accuracy scores exceeding the 90% threshold on the test set. Results reveal that FINTA has a superior filtering performance compared to conventional, anatomy-based methods, and the RecoBundles state-of-the-art method. Additionally, we demonstrate that FINTA can be applied to partial tractograms without requiring changes to the framework. We also show that the proposed method generalizes well across different tracking methods and datasets, and shortens significantly the computation time for large (>1 M streamlines) tractograms. Together, this work brings forward a new deep learning framework in tractography based on autoencoders, which offers a flexible and powerful method for white matter filtering and bundling that could enhance tractometry and connectivity analyses.
Collapse
Affiliation(s)
- Jon Haitz Legarreta
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Videos & Images Theory and Analytics Laboratory (VITAL), Department of Computer Science, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle (GIN), Univ. Bordeaux, CNRS, CEA, IMN, UMR 5293, Bordeaux F-33000, France
| | - François Rheault
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Carl Lemaire
- Centre de Calcul Scientifique, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre-Marc Jodoin
- Videos & Images Theory and Analytics Laboratory (VITAL), Department of Computer Science, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
29
|
Bugain M, Dimech Y, Torzhenskaya N, Thiebaut de Schotten M, Caspers S, Muscat R, Bajada CJ. Occipital Intralobar fasciculi: a description, through tractography, of three forgotten tracts. Commun Biol 2021; 4:433. [PMID: 33785859 PMCID: PMC8010026 DOI: 10.1038/s42003-021-01935-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Diffusion MRI paired with tractography has facilitated a non-invasive exploration of many association, projection, and commissural fiber tracts. However, there is still a scarcity of research studies related to intralobar association fibers. The Dejerines' (two of the most notable neurologists of 19th century France) gave an in-depth description of the intralobar fibers of the occipital lobe. Unfortunately, their exquisite work has since been sparsely cited in the modern literature. This work gives a modern description of many of the occipital intralobar lobe fibers described by the Dejerines. We perform a virtual dissection and reconstruct the tracts using diffusion MRI tractography. The dissection is guided by the Dejerines' treatise, Anatomie des Centres Nerveux. As an accompaniment to this article, we provided a French-to-English translation of the treatise portion concerning five intra-occipital tracts, namely: the stratum calcarinum, the stratum proprium cunei, the vertical occipital fasciculus of Wernicke, the transverse fasciculus of the cuneus and the transverse fasciculus of the lingual lobule of Vialet. It was possible to reconstruct all but one of these tracts. For completeness, the recently described sledge runner fasciculus, although not one of the Dejerines' tracts, was identified and successfully reconstructed.
Collapse
Affiliation(s)
- Maeva Bugain
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
| | - Yana Dimech
- Department of Cognitive Sciences, Faculty of Media and Knowledge Sciences, The University of Malta, Msida, Malta
| | - Natalia Torzhenskaya
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives -UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Richard Muscat
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
| | - Claude J Bajada
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.
| |
Collapse
|
30
|
Hanekamp S, Ćurčić-Blake B, Caron B, McPherson B, Timmer A, Prins D, Boucard CC, Yoshida M, Ida M, Hunt D, Jansonius NM, Pestilli F, Cornelissen FW. White matter alterations in glaucoma and monocular blindness differ outside the visual system. Sci Rep 2021; 11:6866. [PMID: 33767217 PMCID: PMC7994383 DOI: 10.1038/s41598-021-85602-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 01/23/2023] Open
Abstract
The degree to which glaucoma has effects in the brain beyond the eye and the visual pathways is unclear. To clarify this, we investigated white matter microstructure (WMM) in 37 tracts of patients with glaucoma, monocular blindness, and controls. We used brainlife.io for reproducibility. White matter tracts were subdivided into seven categories ranging from those primarily involved in vision (the visual white matter) to those primarily involved in cognition and motor control. In the vision tracts, WMM was decreased as measured by fractional anisotropy in both glaucoma and monocular blind subjects compared to controls, suggesting neurodegeneration due to reduced sensory inputs. A test-retest approach was used to validate these results. The pattern of results was different in monocular blind subjects, where WMM properties increased outside the visual white matter as compared to controls. This pattern of results suggests that whereas in the monocular blind loss of visual input might promote white matter reorganization outside of the early visual system, such reorganization might be reduced or absent in glaucoma. The results provide indirect evidence that in glaucoma unknown factors might limit the reorganization as seen in other patient groups following visual loss.
Collapse
Affiliation(s)
- Sandra Hanekamp
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
- Department of Intelligent Systems Engineering, Luddy School of Informatics and Engineering, Indiana University, Bloomington, IN, USA.
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bradley Caron
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Program in Vision Science, School of Optometry, Indiana University, Bloomington, IN, USA
| | - Brent McPherson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Anneleen Timmer
- Laboratory for Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Doety Prins
- Laboratory for Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christine C Boucard
- Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan
| | - Masaki Yoshida
- Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Ida
- Department of Radiology, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - David Hunt
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Nomdo M Jansonius
- Laboratory for Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
- Department of Intelligent Systems Engineering, Luddy School of Informatics and Engineering, Indiana University, Bloomington, IN, USA.
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, USA.
- Program in Vision Science, School of Optometry, Indiana University, Bloomington, IN, USA.
| | - Frans W Cornelissen
- Laboratory for Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Bryant KL, Li L, Eichert N, Mars RB. A comprehensive atlas of white matter tracts in the chimpanzee. PLoS Biol 2020; 18:e3000971. [PMID: 33383575 PMCID: PMC7806129 DOI: 10.1371/journal.pbio.3000971] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/13/2021] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Chimpanzees (Pan troglodytes) are, along with bonobos, humans’ closest living relatives. The advent of diffusion MRI tractography in recent years has allowed a resurgence of comparative neuroanatomical studies in humans and other primate species. Here we offer, in comparative perspective, the first chimpanzee white matter atlas, constructed from in vivo chimpanzee diffusion-weighted scans. Comparative white matter atlases provide a useful tool for identifying neuroanatomical differences and similarities between humans and other primate species. Until now, comprehensive fascicular atlases have been created for humans (Homo sapiens), rhesus macaques (Macaca mulatta), and several other nonhuman primate species, but never in a nonhuman ape. Information on chimpanzee neuroanatomy is essential for understanding the anatomical specializations of white matter organization that are unique to the human lineage. Diffusion MRI tractography reveals the first complete atlas of white matter of the chimpanzee, with the potential to help understand differences between the organization of human and chimpanzee brains.
Collapse
Affiliation(s)
- Katherine L. Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Longchuan Li
- Marcus Autism Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, United States of America
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Anurova I, Carlson S, Rauschecker JP. Overlapping Anatomical Networks Convey Cross-Modal Suppression in the Sighted and Coactivation of "Visual" and Auditory Cortex in the Blind. Cereb Cortex 2020; 29:4863-4876. [PMID: 30843062 DOI: 10.1093/cercor/bhz021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/09/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
In the present combined DTI/fMRI study we investigated adaptive plasticity of neural networks involved in controlling spatial and nonspatial auditory working memory in the early blind (EB). In both EB and sighted controls (SC), fractional anisotropy (FA) within the right inferior longitudinal fasciculus correlated positively with accuracy in a one-back sound localization but not sound identification task. The neural tracts passing through the cluster of significant correlation connected auditory and "visual" areas in the right hemisphere. Activity in these areas during both sound localization and identification correlated with FA within the anterior corpus callosum, anterior thalamic radiation, and inferior fronto-occipital fasciculus. In EB, FA in these structures correlated positively with activity in both auditory and "visual" areas, whereas FA in SC correlated positively with activity in auditory and negatively with activity in visual areas. The results indicate that frontal white matter conveys cross-modal suppression of occipital areas in SC, while it mediates coactivation of auditory and reorganized "visual" cortex in EB.
Collapse
Affiliation(s)
- Irina Anurova
- Helsinki Institute of Life Science, Neuroscience Center, University of Helsinki, Helsinki 00014, Finland.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo 02150, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.,Institute for Advanced Study, Technical University of Munich, Munich 85748, Germany
| |
Collapse
|
33
|
Takemura H, Palomero-Gallagher N, Axer M, Gräßel D, Jorgensen MJ, Woods R, Zilles K. Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. eLife 2020; 9:e55444. [PMID: 32844747 PMCID: PMC7532002 DOI: 10.7554/elife.55444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Although the primate visual system has been extensively studied, detailed spatial organization of white matter fiber tracts carrying visual information between areas has not been fully established. This is mainly due to the large gap between tracer studies and diffusion-weighted MRI studies, which focus on specific axonal connections and macroscale organization of fiber tracts, respectively. Here we used 3D polarization light imaging (3D-PLI), which enables direct visualization of fiber tracts at micrometer resolution, to identify and visualize fiber tracts of the visual system, such as stratum sagittale, inferior longitudinal fascicle, vertical occipital fascicle, tapetum and dorsal occipital bundle in vervet monkey brains. Moreover, 3D-PLI data provide detailed information on cortical projections of these tracts, distinction between neighboring tracts, and novel short-range pathways. This work provides essential information for interpretation of functional and diffusion-weighted MRI data, as well as revision of wiring diagrams based upon observations in the vervet visual system.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka UniversityOsakaJapan
- Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH AachenAachenGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Markus Axer
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - David Gräßel
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Roger Woods
- Ahmanson-Lovelace Brain Mapping Center, Departments of Neurology and of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- JARA - Translational Brain MedicineAachenGermany
| |
Collapse
|
34
|
Warrington S, Bryant KL, Khrapitchev AA, Sallet J, Charquero-Ballester M, Douaud G, Jbabdi S, Mars RB, Sotiropoulos SN. XTRACT - Standardised protocols for automated tractography in the human and macaque brain. Neuroimage 2020; 217:116923. [PMID: 32407993 PMCID: PMC7260058 DOI: 10.1016/j.neuroimage.2020.116923] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/27/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023] Open
Abstract
We present a new software package with a library of standardised tractography protocols devised for the robust automated extraction of white matter tracts both in the human and the macaque brain. Using in vivo data from the Human Connectome Project (HCP) and the UK Biobank and ex vivo data for the macaque brain datasets, we obtain white matter atlases, as well as atlases for tract endpoints on the white-grey matter boundary, for both species. We illustrate that our protocols are robust against data quality, generalisable across two species and reflect the known anatomy. We further demonstrate that they capture inter-subject variability by preserving tract lateralisation in humans and tract similarities stemming from twinship in the HCP cohort. Our results demonstrate that the presented toolbox will be useful for generating imaging-derived features in large cohorts, and in facilitating comparative neuroanatomy studies. The software, tractography protocols, and atlases are publicly released through FSL, allowing users to define their own tractography protocols in a standardised manner, further contributing to open science.
Collapse
Affiliation(s)
- Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK.
| | - Katherine L Bryant
- Donders Institute for Brain, Cognition, & Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alexandr A Khrapitchev
- CRUK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging - Department of Experimental Psychology, University of Oxford, UK; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Marina Charquero-Ballester
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, UK
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Donders Institute for Brain, Cognition, & Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK.
| |
Collapse
|
35
|
Roumazeilles L, Eichert N, Bryant KL, Folloni D, Sallet J, Vijayakumar S, Foxley S, Tendler BC, Jbabdi S, Reveley C, Verhagen L, Dershowitz LB, Guthrie M, Flach E, Miller KL, Mars RB. Longitudinal connections and the organization of the temporal cortex in macaques, great apes, and humans. PLoS Biol 2020; 18:e3000810. [PMID: 32735557 PMCID: PMC7423156 DOI: 10.1371/journal.pbio.3000810] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/12/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
The temporal association cortex is considered a primate specialization and is involved in complex behaviors, with some, such as language, particularly characteristic of humans. The emergence of these behaviors has been linked to major differences in temporal lobe white matter in humans compared with monkeys. It is unknown, however, how the organization of the temporal lobe differs across several anthropoid primates. Therefore, we systematically compared the organization of the major temporal lobe white matter tracts in the human, gorilla, and chimpanzee great apes and in the macaque monkey. We show that humans and great apes, in particular the chimpanzee, exhibit an expanded and more complex occipital-temporal white matter system; additionally, in humans, the invasion of dorsal tracts into the temporal lobe provides a further specialization. We demonstrate the reorganization of different tracts along the primate evolutionary tree, including distinctive connectivity of human temporal gray matter.
Collapse
Affiliation(s)
- Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Katherine L. Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Suhas Vijayakumar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sean Foxley
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Benjamin C. Tendler
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Colin Reveley
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Lori B. Dershowitz
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Martin Guthrie
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Edmund Flach
- Zoological Society of London, London, United Kingdom
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
36
|
Kurzawski JW, Mikellidou K, Morrone MC, Pestilli F. The visual white matter connecting human area prostriata and the thalamus is retinotopically organized. Brain Struct Funct 2020; 225:1839-1853. [PMID: 32535840 PMCID: PMC7321903 DOI: 10.1007/s00429-020-02096-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
The human visual system is capable of processing visual information from fovea to the far peripheral visual field. Recent fMRI studies have shown a full and detailed retinotopic map in area prostriata, located ventro-dorsally and anterior to the calcarine sulcus along the parieto-occipital sulcus with strong preference for peripheral and wide-field stimulation. Here, we report the anatomical pattern of white matter connections between area prostriata and the thalamus encompassing the lateral geniculate nucleus (LGN). To this end, we developed and utilized an automated pipeline comprising a series of Apps that run openly on the cloud computing platform brainlife.io to analyse 139 subjects of the Human Connectome Project (HCP). We observe a continuous and extended bundle of white matter fibers from which two subcomponents can be extracted: one passing ventrally parallel to the optic radiations (OR) and another passing dorsally circumventing the lateral ventricle. Interestingly, the loop travelling dorsally connects the thalamus with the central visual field representation of prostriata located anteriorly, while the other loop travelling more ventrally connects the LGN with the more peripheral visual field representation located posteriorly. We then analyse an additional cohort of 10 HCP subjects using a manual plane extraction method outside brainlife.io to study the relationship between the two extracted white matter subcomponents and eccentricity, myelin and cortical thickness gradients within prostriata. Our results are consistent with a retinotopic segregation recently demonstrated in the OR, connecting the LGN and V1 in humans and reveal for the first time a retinotopic segregation regarding the trajectory of a fiber bundle between the thalamus and an associative visual area.
Collapse
Affiliation(s)
| | - Kyriaki Mikellidou
- Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Maria Concetta Morrone
- IRCCS Stella Maris, Viale del Tirreno, 331, Pisa, Italy.,Department of Translational Research On New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Program in Neuroscience and Program in Cognitive Science, Indiana University, 1101 E 10th Street, Bloomington, IN, 47401, USA.
| |
Collapse
|
37
|
Kaneko T, Takemura H, Pestilli F, Silva AC, Ye FQ, Leopold DA. Spatial organization of occipital white matter tracts in the common marmoset. Brain Struct Funct 2020; 225:1313-1326. [PMID: 32253509 PMCID: PMC7577349 DOI: 10.1007/s00429-020-02060-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/18/2020] [Indexed: 11/30/2022]
Abstract
The primate brain contains a large number of interconnected visual areas, whose spatial organization and intracortical projections show a high level of conservation across species. One fiber pathway of recent interest is the vertical occipital fasciculus (VOF), which is thought to support communication between dorsal and ventral visual areas in the occipital lobe. A recent comparative diffusion MRI (dMRI) study reported that the VOF in the macaque brain bears a similar topology to that of the human, running superficial and roughly perpendicular to the optic radiation. The present study reports a comparative investigation of the VOF in the common marmoset, a small New World monkey whose lissencephalic brain is approximately tenfold smaller than the macaque and 150-fold smaller than the human. High-resolution ex vivo dMRI of two marmoset brains revealed an occipital white matter structure that closely resembles that of the larger primate species, with one notable difference. Namely, unlike in the macaque and the human, the VOF in the marmoset is spatially fused with other, more anterior vertical tracts, extending anteriorly between the parietal and temporal cortices. We compare several aspects of this continuous structure, which we term the VOF complex (VOF +), and neighboring fasciculi to those of macaques and humans. We hypothesize that the essential topology of the VOF+ is a conserved feature of the posterior cortex in anthropoid primates, with a clearer fragmentation into multiple named fasciculi in larger, more gyrified brains.
Collapse
Affiliation(s)
- Takaaki Kaneko
- RIKEN Center for Brain Science (CBS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, 41 Kanrin, Inuyamas-shi, Aichi, 484-8506, Japan.
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, 1-4 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN, 47405, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Inter-individual Differences in Occipital Alpha Oscillations Correlate with White Matter Tissue Properties of the Optic Radiation. eNeuro 2020; 7:ENEURO.0224-19.2020. [PMID: 32156741 PMCID: PMC7189484 DOI: 10.1523/eneuro.0224-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
Neural oscillations at ∼10 Hz, called alpha oscillations, are one of the most prominent components of neural oscillations in the human brain. In recent years, characteristics (power/frequency/phase) of occipital alpha oscillations have been correlated with various perceptual phenomena. However, the relationship between inter-individual differences in alpha oscillatory characteristics and the properties of the underlying brain structures, such as white matter pathways, is unclear. A possibility is that intrinsic occipital alpha oscillations are mediated by thalamocortical interaction; we hypothesized that the most promising candidate for characterizing the intrinsic alpha oscillation is optic radiation (OR), which is the geniculo-cortical pathway carrying signals between the lateral geniculate nucleus (LGN) and primary visual cortex (V1). We used resting-state magnetoencephalography (MEG) and diffusion-weighted/quantitative magnetic resonance imaging (MRI) (dMRI/qMRI) to correlate the frequency and power of occipital alpha oscillations with the tissue properties of the OR by focusing on the different characteristics across individuals. We found that the peak alpha frequency (PAF) negatively correlated with intracellular volume fraction (ICVF), reflecting diffusion properties in intracellular (axonal) space, whereas the peak alpha power was not correlated with any tissue properties measurements. No significant correlation was found between OR and beta frequency/amplitude or between other white matter tract connecting parietal and inferotemporal cortex and alpha frequency/amplitude. These results support the hypothesis that an interaction between thalamic nuclei and early visual areas is essential for the occipital alpha oscillatory rhythm.
Collapse
|
39
|
Eichert N, Robinson EC, Bryant KL, Jbabdi S, Jenkinson M, Li L, Krug K, Watkins KE, Mars RB. Cross-species cortical alignment identifies different types of anatomical reorganization in the primate temporal lobe. eLife 2020; 9:e53232. [PMID: 32202497 PMCID: PMC7180052 DOI: 10.7554/elife.53232] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/19/2020] [Indexed: 01/03/2023] Open
Abstract
Evolutionary adaptations of temporo-parietal cortex are considered to be a critical specialization of the human brain. Cortical adaptations, however, can affect different aspects of brain architecture, including local expansion of the cortical sheet or changes in connectivity between cortical areas. We distinguish different types of changes in brain architecture using a computational neuroanatomy approach. We investigate the extent to which between-species alignment, based on cortical myelin, can predict changes in connectivity patterns across macaque, chimpanzee, and human. We show that expansion and relocation of brain areas can predict terminations of several white matter tracts in temporo-parietal cortex, including the middle and superior longitudinal fasciculus, but not the arcuate fasciculus. This demonstrates that the arcuate fasciculus underwent additional evolutionary modifications affecting the temporal lobe connectivity pattern. This approach can flexibly be extended to include other features of cortical organization and other species, allowing direct tests of comparative hypotheses of brain organization.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Emma C Robinson
- Biomedical Engineering Department, King’s College LondonLondonUnited Kingdom
| | - Katherine L Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory UniversityAtlantaUnited States
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Institute of Biology, Otto-von-Guericke-Universität MagdeburgMagdeburgGermany
- Leibniz-Insitute for NeurobiologyMagdeburgGermany
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
40
|
Liu C, Ye FQ, Newman JD, Szczupak D, Tian X, Yen CCC, Majka P, Glen D, Rosa MGP, Leopold DA, Silva AC. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat Neurosci 2020; 23:271-280. [PMID: 31932765 PMCID: PMC7007400 DOI: 10.1038/s41593-019-0575-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
While the fundamental importance of the white matter in supporting neuronal communication is well known, existing publications of primate brains do not feature a detailed description of its complex anatomy. The main barrier to achieving this is that existing primate neuroimaging data have insufficient spatial resolution to resolve white matter pathways fully. Here we present a resource that allows detailed descriptions of white matter structures and trajectories of fiber pathways in the marmoset brain. The resource includes: (1) the highest-resolution diffusion-weighted MRI data available to date, which reveal white matter features not previously described; (2) a comprehensive three-dimensional white matter atlas depicting fiber pathways that were either omitted or misidentified in previous atlases; and (3) comprehensive fiber pathway maps of cortical connections combining diffusion-weighted MRI tractography and neuronal tracing data. The resource, which can be downloaded from marmosetbrainmapping.org, will facilitate studies of brain connectivity and the development of tractography algorithms in the primate brain.
Collapse
Affiliation(s)
- Cirong Liu
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - John D Newman
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Diego Szczupak
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Xiaoguang Tian
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Cecil Chern-Chyi Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- ARC Centre of Excellence for Integrative Brain Function, Clayton, Melbourne, Victoria, Australia
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD, USA
| | - Marcello G P Rosa
- ARC Centre of Excellence for Integrative Brain Function, Clayton, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Clayton, Melbourne, Victoria, Australia
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
White matter dissection and structural connectivity of the human vertical occipital fasciculus to link vision-associated brain cortex. Sci Rep 2020; 10:820. [PMID: 31965011 PMCID: PMC6972933 DOI: 10.1038/s41598-020-57837-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/08/2020] [Indexed: 01/10/2023] Open
Abstract
The vertical occipital fasciculus (VOF) is an association fiber tract coursing vertically at the posterolateral corner of the brain. It is re-evaluated as a major fiber tract to link the dorsal and ventral visual stream. Although previous tractography studies showed the VOF’s cortical projections fall in the dorsal and ventral visual areas, the post-mortem dissection study for the validation remains limited. First, to validate the previous tractography data, we here performed the white matter dissection in post-mortem brains and demonstrated the VOF’s fiber bundles coursing between the V3A/B areas and the posterior fusiform gyrus. Secondly, we analyzed the VOF’s structural connectivity with diffusion tractography to link vision-associated cortical areas of the HCP MMP1.0 atlas, an updated map of the human cerebral cortex. Based on the criteria the VOF courses laterally to the inferior longitudinal fasciculus (ILF) and craniocaudally at the posterolateral corner of the brain, we reconstructed the VOF’s fiber tracts and found the widespread projections to the visual cortex. These findings could suggest a crucial role of VOF in integrating visual information to link the broad visual cortex as well as in connecting the dual visual stream.
Collapse
|
42
|
|
43
|
Schurr R, Filo S, Mezer AA. Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping. Neuroimage 2019; 202:116121. [DOI: 10.1016/j.neuroimage.2019.116121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/12/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
|
44
|
Briggs RG, Conner AK, Sali G, Rahimi M, Baker CM, Burks JD, Glenn CA, Battiste JD, Sughrue ME. A Connectomic Atlas of the Human Cerebrum-Chapter 16: Tractographic Description of the Vertical Occipital Fasciculus. Oper Neurosurg (Hagerstown) 2019; 15:S456-S461. [PMID: 30260427 DOI: 10.1093/ons/opy270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
In this supplement, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In this chapter, we specifically address regions integrating to form the vertical occipital fasciculus.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Goksel Sali
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Meherzad Rahimi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Joshua D Burks
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
45
|
Eichert N, Verhagen L, Folloni D, Jbabdi S, Khrapitchev AA, Sibson NR, Mantini D, Sallet J, Mars RB. What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex 2019; 118:107-115. [PMID: 29937266 PMCID: PMC6699597 DOI: 10.1016/j.cortex.2018.05.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 11/27/2022]
Abstract
Evolutionary adaptations of the human brain are the basis for our unique abilities such as language. An expansion of the arcuate fasciculus (AF), the dorsal language tract, in the human lineage involving left lateralization is considered canonical, but this hypothesis has not been tested in relation to other architectural adaptations in the human brain. Using diffusion-weighted MRI, we examined AF in the human and macaque and quantified species differences in white matter architecture and surface representations. To compare surface results in the two species, we transformed macaque representations to human space using a landmark-based monkey-to-human cortical expansion model. We found that the human dorsal AF, but not the ventral inferior fronto-occipital fasciculus (IFO), is left-lateralized. In the monkey AF is not lateralized. Moreover, compared to the macaque, human AF is relatively increased with respect to IFO. A comparison of human and transformed macaque surface representations suggests that cortical expansion alone cannot account for the species differences in the surface representation of AF. Our results show that the human AF has undergone critical anatomical modifications in comparison with the macaque AF. More generally, this work demonstrates that studies on the human brain specializations underlying the language connectome can benefit from current methodological advances in comparative neuroanatomy.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Dante Mantini
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Research Centre for Motor Control and Neuroplasticity, KU Leuven, Heverlee, Belgium
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
46
|
Takemura H, Pestilli F, Weiner KS. Comparative neuroanatomy: Integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci Res 2019; 146:1-12. [PMID: 30389574 PMCID: PMC6491271 DOI: 10.1016/j.neures.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Comparative neuroanatomy studies improve understanding of brain structure and function and provide insight regarding brain development, evolution, and also what features of the brain are uniquely human. With modern methods such as diffusion MRI (dMRI) and quantitative MRI (qMRI), we are able to measure structural features of the brain with the same methods across human and non-human primates. In this review article, we discuss how recent dMRI measurements of vertical occipital connections in humans and macaques can be compared with previous findings from invasive anatomical studies that examined connectivity, including relatively forgotten classic strychnine neuronography studies. We then review recent progress in understanding the neuroanatomy of vertical connections within the occipitotemporal cortex by combining modern quantitative MRI and classical histological measurements in human and macaque. Finally, we a) discuss current limitations of dMRI and tractography and b) consider potential paths for future investigations using dMRI and tractography for comparative neuroanatomical studies of white matter tracts between species. While we focus on vertical association connections in visual cortex in the present paper, this same approach can be applied to other white matter tracts. Similar efforts are likely to continue to advance our understanding of the neuroanatomical features of the brain that are shared across species, as well as to distinguish the features that are uniquely human.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Franco Pestilli
- Departments of Psychological and Brain Sciences, Computer Science and Intelligent Systems Engineering, Programs in Neuroscience and Cognitive Science, School of Optometry, Indiana University, Bloomington, IN, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
47
|
Thiebaut de Schotten M, Croxson PL, Mars RB. Large-scale comparative neuroimaging: Where are we and what do we need? Cortex 2019; 118:188-202. [PMID: 30661736 PMCID: PMC6699599 DOI: 10.1016/j.cortex.2018.11.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/26/2023]
Abstract
Neuroimaging has a lot to offer comparative neuroscience. Although invasive "gold standard" techniques have a better spatial resolution, neuroimaging allows fast, whole-brain, repeatable, and multi-modal measurements of structure and function in living animals and post-mortem tissue. In the past years, comparative neuroimaging has increased in popularity. However, we argue that its most significant potential lies in its ability to collect large-scale datasets of many species to investigate principles of variability in brain organisation across whole orders of species-an ambition that is presently unfulfilled but achievable. We briefly review the current state of the field and explore what the current obstacles to such an approach are. We propose some calls to action.
Collapse
Affiliation(s)
- Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France; Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| | - Paula L Croxson
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands.
| |
Collapse
|
48
|
Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct Funct 2019; 224:2631-2660. [DOI: 10.1007/s00429-019-01907-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
|
49
|
Mancini M, Vos SB, Vakharia VN, O'Keeffe AG, Trimmel K, Barkhof F, Dorfer C, Soman S, Winston GP, Wu C, Duncan JS, Sparks R, Ourselin S. Automated fiber tract reconstruction for surgery planning: Extensive validation in language-related white matter tracts. Neuroimage Clin 2019; 23:101883. [PMID: 31163386 PMCID: PMC6545442 DOI: 10.1016/j.nicl.2019.101883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022]
Abstract
Diffusion MRI and tractography hold great potential for surgery planning, especially to preserve eloquent white matter during resections. However, fiber tract reconstruction requires an expert with detailed understanding of neuroanatomy. Several automated approaches have been proposed, using different strategies to reconstruct the white matter tracts in a supervised fashion. However, validation is often limited to comparison with manual delineation by overlap-based measures, which is limited in characterizing morphological and topological differences. In this work, we set up a fully automated pipeline based on anatomical criteria that does not require manual intervention, taking advantage of atlas-based criteria and advanced acquisition protocols available on clinical-grade MRI scanners. Then, we extensively validated it on epilepsy patients with specific focus on language-related bundles. The validation procedure encompasses different approaches, including simple overlap with manual segmentations from two experts, feasibility ratings from external multiple clinical raters and relation with task-based functional MRI. Overall, our results demonstrate good quantitative agreement between automated and manual segmentation, in most cases better performances of the proposed method in qualitative terms, and meaningful relationships with task-based fMRI. In addition, we observed significant differences between experts in terms of both manual segmentation and external ratings. These results offer important insights on how different levels of validation complement each other, supporting the idea that overlap-based measures, although quantitative, do not offer a full perspective on the similarities and differences between automated and manual methods.
Collapse
Affiliation(s)
- Matteo Mancini
- Centre for Medical Image Computing, University College London, London, United Kingdom.
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Vejay N Vakharia
- Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Aidan G O'Keeffe
- Department of Statistical Science, University College London, London, UK
| | - Karin Trimmel
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Frederik Barkhof
- Centre for Medical Image Computing, University College London, London, United Kingdom; Brain Repair and Rehabilitation, University College London, London, UK; Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, Netherlands
| | - Christian Dorfer
- Department of Neurosurgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Salil Soman
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Radiology, Boston, MA 00215, United States
| | - Gavin P Winston
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Rachel Sparks
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
50
|
Takemura H, Ogawa S, Mezer AA, Horiguchi H, Miyazaki A, Matsumoto K, Shikishima K, Nakano T, Masuda Y. Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage. NEUROIMAGE-CLINICAL 2019; 23:101826. [PMID: 31026624 PMCID: PMC6482365 DOI: 10.1016/j.nicl.2019.101826] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/27/2019] [Accepted: 04/13/2019] [Indexed: 02/04/2023]
Abstract
In patients with retinal ganglion cell diseases, recent diffusion tensor imaging (DTI) studies have revealed structural abnormalities in visual white matter tracts such as the optic tract, and optic radiation. However, the microstructural origin of these diffusivity changes is unknown as DTI metrics involve multiple biological factors and do not correlate directly with specific microstructural properties. In contrast, recent quantitative T1 (qT1) mapping methods provide tissue property measurements relatively specific to myelin volume fractions in white matter. This study aims to improve our understanding of microstructural changes in visual white matter tracts following retinal ganglion cell damage in Leber's hereditary optic neuropathy (LHON) patients by combining DTI and qT1 measurements. We collected these measurements from seven LHON patients and twenty age-matched control subjects. For all individuals, we identified the optic tract and the optic radiation using probabilistic tractography, and evaluated diffusivity and qT1 profiles along them. Both diffusivity and qT1 measurements in the optic tract differed significantly between LHON patients and controls. In the optic radiation, these changes were observed in diffusivity but were not evident in qT1 measurements. This suggests that myelin loss may not explain trans-synaptic diffusivity changes in the optic radiation as a consequence of retinal ganglion cell disease. Retinal ganglion cell damage affects diffusivity and T1 along visual pathways. DTI metric identified white matter change in both optic tract and optic radiation. T1 measurement in optic radiation did not exhibit abnormality, unlike DTI metric. Myelin loss may not be a major cause of diffusivity change along optic radiation.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Shumpei Ogawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Atsugi city hospital, Atsugi, Japan.
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Israel
| | - Hiroshi Horiguchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kenji Matsumoto
- Brain Science Institute, Tamagawa University, Machida, Japan
| | - Keigo Shikishima
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|