1
|
Hermansen M, Nygaard M, Tan Q, Jeune B, Semkovska M, Christensen K, Thinggaard M, Mengel-From J. Cognitively high-performing oldest old individuals are physically active and have strong motor skills-A study of the Danish 1905 and 1915 birth cohorts. Arch Gerontol Geriatr 2024; 122:105398. [PMID: 38460266 DOI: 10.1016/j.archger.2024.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Preserving cognitive function with age or super-aging greatly contributes to successful aging. Super-aging nonagenarians born in Denmark in either year 1905 or 1915 were classified as Cognitively High-Performing Oldest Old individuals with a five item cognitive composite score, equivalent to or better than mean middle-aged subjects. Cognitively high-performers were more physically active and had a better physical performance on e.g., Activity of Daily Living (p-value < 0.01), gait speed (p-value < 0.01) and grip strength (p-value < 0.05) compared with age-matched peers. Cognitive high-performing was also linked to lower depression symptomatology. When comparing super-agers with semi super-agers classified by Mini Mental State Examination > 27, super-agers were still more physically active and had a better physical performance (p-value < 0.05). Results suggests that physical activity is a lifestyle factor strongly associated with both semi and full cognitive super-aging.
Collapse
Affiliation(s)
- Maja Hermansen
- The Danish Twin Registry and Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Marianne Nygaard
- The Danish Twin Registry and Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Qihua Tan
- The Danish Twin Registry and Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark; Department of Biochemistry, Odense University Hospital, Denmark
| | - Bernard Jeune
- The Danish Twin Registry and Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Maria Semkovska
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | - Kaare Christensen
- The Danish Twin Registry and Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Biochemistry, Odense University Hospital, Denmark
| | - Mikael Thinggaard
- The Danish Twin Registry and Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jonas Mengel-From
- The Danish Twin Registry and Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
2
|
Pezzoli S, Giorgio J, Martersteck A, Dobyns L, Harrison TM, Jagust WJ. Successful cognitive aging is associated with thicker anterior cingulate cortex and lower tau deposition compared to typical aging. Alzheimers Dement 2024; 20:341-355. [PMID: 37614157 PMCID: PMC10916939 DOI: 10.1002/alz.13438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION There is no consensus on either the definition of successful cognitive aging (SA) or the underlying neural mechanisms. METHODS We examined the agreement between new and existing definitions using: (1) a novel measure, the cognitive age gap (SA-CAG, cognitive-predicted age minus chronological age), (2) composite scores for episodic memory (SA-EM), (3) non-memory cognition (SA-NM), and (4) the California Verbal Learning Test (SA-CVLT). RESULTS Fair to moderate strength of agreement was found between the four definitions. Most SA groups showed greater cortical thickness compared to typical aging (TA), especially in the anterior cingulate and midcingulate cortices and medial temporal lobes. Greater hippocampal volume was found in all SA groups except SA-NM. Lower entorhinal 18 F-Flortaucipir (FTP) uptake was found in all SA groups. DISCUSSION These findings suggest that a feature of SA, regardless of its exact definition, is resistance to tau pathology and preserved cortical integrity, especially in the anterior cingulate and midcingulate cortices. HIGHLIGHTS Different approaches have been used to define successful cognitive aging (SA). Regardless of definition, different SA groups have similar brain features. SA individuals have greater anterior cingulate thickness and hippocampal volume. Lower entorhinal tau deposition, but not amyloid beta is related to SA. A combination of cortical integrity and resistance to tau may be features of SA.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Joseph Giorgio
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- University of NewcastleNewcastleNSWAustralia
| | - Adam Martersteck
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Lindsey Dobyns
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Theresa M. Harrison
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - William J. Jagust
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
3
|
Garo-Pascual M, Gaser C, Zhang L, Tohka J, Medina M, Strange BA. Brain structure and phenotypic profile of superagers compared with age-matched older adults: a longitudinal analysis from the Vallecas Project. THE LANCET. HEALTHY LONGEVITY 2023; 4:e374-e385. [PMID: 37454673 PMCID: PMC10397152 DOI: 10.1016/s2666-7568(23)00079-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cognitive abilities, particularly memory, normally decline with age. However, some individuals, often designated as superagers, can reach late life with the memory function of individuals 30 years younger. We aimed to characterise the brain structure of superagers and identify demographic, lifestyle, and clinical factors associated with this phenotype. METHODS We selected cognitively healthy participants from the Vallecas Project longitudinal cohort recruited between Oct 10, 2011, and Jan 14, 2014, aged 79·5 years or older, on the basis of their delayed verbal episodic memory score. Participants were assessed with the Free and Cued Selective Reminding Test and with three non-memory tests (the 15-item version of the Boston Naming Test, the Digit Symbol Substitution Test, and the Animal Fluency Test). Participants were classified as superagers if they scored at or above the mean values for a 50-56-year-old in the Free and Cued Selective Reminding Test and within one standard deviation of the mean or above for their age and education level in the three non-memory tests, or as typical older adults if they scored within one standard deviation of the mean for their age and education level in the Free and Cued Selective Reminding Test. Data acquired as per protocol from up to six yearly follow-ups were used for longitudinal analyses. FINDINGS We included 64 superagers (mean age 81·9 years; 38 [59%] women and 26 [41%] men) and 55 typical older adults (82·4 years; 35 [64%] women and 20 [36%] men). The median number of follow-up visits was 5·0 (IQR 5·0-6·0) for superagers and 5·0 (4·5-6·0) for typical older adults. Superagers exhibited higher grey matter volume cross-sectionally in the medial temporal lobe, cholinergic forebrain, and motor thalamus. Longitudinally, superagers also showed slower total grey matter atrophy, particularly within the medial temporal lobe, than did typical older adults. A machine learning classification including 89 demographic, lifestyle, and clinical predictors showed that faster movement speed (despite no group differences in exercise frequency) and better mental health were the most differentiating factors for superagers. Similar concentrations of dementia blood biomarkers in superager and typical older adult groups suggest that group differences reflect inherent superager resistance to typical age-related memory loss. INTERPRETATION Factors associated with dementia prevention are also relevant for resistance to age-related memory decline and brain atrophy, and the association between superageing and movement speed could provide potential novel insights into how to preserve memory function into the ninth decade. FUNDING Queen Sofia Foundation, CIEN Foundation, Spanish Ministry of Science and Innovation, Alzheimer's Association, European Research Council, MAPFRE Foundation, Carl Zeiss Foundation, and the EU Comission for Horizon 2020. TRANSLATION For the Spanish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Marta Garo-Pascual
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain; Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid, Spain; PhD Program in Neuroscience, Autonomous University of Madrid-Cajal Institute, Madrid, Spain.
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; German Centre for Mental Health, Jena, Germany
| | - Linda Zhang
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid, Spain
| | - Jussi Tohka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Miguel Medina
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid, Spain; Network Centre for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain; Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid, Spain
| |
Collapse
|
4
|
Ren P, Hou G, Ma M, Zhuang Y, Huang J, Tan M, Wu D, Luo G, Zhang Z, Rong H. Enhanced putamen functional connectivity underlies altered risky decision-making in age-related cognitive decline. Sci Rep 2023; 13:6619. [PMID: 37095127 PMCID: PMC10126002 DOI: 10.1038/s41598-023-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Risky decision-making is critical to survival and development, which has been compromised in elderly populations. However, the neural substrates of altered financial risk-taking behavior in aging are still under-investigated. Here we examined the intrinsic putamen network in modulating risk-taking behaviors of Balloon Analogue Risk Task in healthy young and older adults using resting-state fMRI. Compared with the young group, the elderly group showed significantly different task performance. Based on the task performance, older adults were further subdivided into two subgroups, showing young-like and over-conservative risk behaviors, regardless of cognitive decline. Compared with young adults, the intrinsic pattern of putamen connectivity was significantly different in over-conservative older adults, but not in young-like older adults. Notably, age-effects on risk behaviors were mediated via the putamen functional connectivity. In addition, the putamen gray matter volume showed significantly different relationships with risk behaviors and functional connectivity in over-conservative older adults. Our findings suggest that reward-based risky behaviors might be a sensitive indicator of brain aging, highlighting the critical role of the putamen network in maintaining optimal risky decision-making in age-related cognitive decline.
Collapse
Affiliation(s)
- Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Manxiu Ma
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Jiayin Huang
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Meiling Tan
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Donghui Wu
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Guozhi Luo
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Han Rong
- Department of Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
de Godoy LL, Studart-Neto A, de Paula DR, Green N, Halder A, Arantes P, Chaim KT, Moraes NC, Yassuda MS, Nitrini R, Dresler M, da Costa Leite C, Panovska-Griffiths J, Soddu A, Bisdas S. Phenotyping Superagers Using Resting-State fMRI. AJNR Am J Neuroradiol 2023; 44:424-433. [PMID: 36927760 PMCID: PMC10084893 DOI: 10.3174/ajnr.a7820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/19/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND AND PURPOSE Superagers are defined as older adults with episodic memory performance similar or superior to that in middle-aged adults. This study aimed to investigate the key differences in discriminative networks and their main nodes between superagers and cognitively average elderly controls. In addition, we sought to explore differences in sensitivity in detecting these functional activities across the networks at 3T and 7T MR imaging fields. MATERIALS AND METHODS Fifty-five subjects 80 years of age or older were screened using a detailed neuropsychological protocol, and 31 participants, comprising 14 superagers and 17 cognitively average elderly controls, were included for analysis. Participants underwent resting-state-fMRI at 3T and 7T MR imaging. A prediction classification algorithm using a penalized regression model on the measurements of the network was used to calculate the probabilities of a healthy older adult being a superager. Additionally, ORs quantified the influence of each node across preselected networks. RESULTS The key networks that differentiated superagers and elderly controls were the default mode, salience, and language networks. The most discriminative nodes (ORs > 1) in superagers encompassed areas in the precuneus posterior cingulate cortex, prefrontal cortex, temporoparietal junction, temporal pole, extrastriate superior cortex, and insula. The prediction classification model for being a superager showed better performance using the 7T compared with 3T resting-state-fMRI data set. CONCLUSIONS Our findings suggest that the functional connectivity in the default mode, salience, and language networks can provide potential imaging biomarkers for predicting superagers. The 7T field holds promise for the most appropriate study setting to accurately detect the functional connectivity patterns in superagers.
Collapse
Affiliation(s)
- L L de Godoy
- From the Departments of Radiology and Oncology (L.L.d.G., P.A., K.T.C., C.d.C.L.)
- Lysholm Department of Neuroradiology (L.L.d.G., S.B.), The National Hospital of Neurology and Neurosurgery
| | - A Studart-Neto
- Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - D R de Paula
- Donders Institute for Brain Cognition and Behavior (D.R.d.P., M.D.), Radboud University Medical Centre, Nijmegen, the Netherlands
| | - N Green
- Department of Statistics (N.G.), University College London, London, UK
| | - A Halder
- Departments of Medical Biophysics (A.H.)
| | - P Arantes
- From the Departments of Radiology and Oncology (L.L.d.G., P.A., K.T.C., C.d.C.L.)
| | - K T Chaim
- From the Departments of Radiology and Oncology (L.L.d.G., P.A., K.T.C., C.d.C.L.)
| | - N C Moraes
- Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - M S Yassuda
- Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - R Nitrini
- Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - M Dresler
- Donders Institute for Brain Cognition and Behavior (D.R.d.P., M.D.), Radboud University Medical Centre, Nijmegen, the Netherlands
| | - C da Costa Leite
- From the Departments of Radiology and Oncology (L.L.d.G., P.A., K.T.C., C.d.C.L.)
| | - J Panovska-Griffiths
- The Big Data Institute and the Pandemic Sciences Institute (J.P.-G.)
- The Queen's College (J.P.-G.), University of Oxford, Oxford, UK
| | - A Soddu
- Physics and Astronomy (A.S.), University of Western Ontario, London, Ontario, Canada
| | - S Bisdas
- Lysholm Department of Neuroradiology (L.L.d.G., S.B.), The National Hospital of Neurology and Neurosurgery
| |
Collapse
|
6
|
Sun J, Zhao X, Zhou J, Dang X, Zhu S, Liu L, Zhou Z. Preliminary Analysis of Volume-Based Resting-State Functional MRI Characteristics of Successful Aging in China. J Alzheimers Dis 2023; 91:767-778. [PMID: 36502325 DOI: 10.3233/jad-220780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Resting-state function MRI (rs-fMRI) research on successful aging can provide insight into the mechanism of aging with a different perspective from aging-related disease. OBJECTIVE rs-fMRI research was used to analyze the brain function characteristics of successful aging. METHODS A total of 47 usual aging individuals and 26 successful aging (SA) individuals underwent rs-fMRI scans and neuropsychological tests. Volume-based rs-fMRI data analysis was performed with DPASF to obtain ALFF, ReHo, DC, and VMHC. RESULTS The SA group showed increased ALFF in right opercular part of inferior frontal gyrus (Frontal_Inf_Oper_R) and right supramarginal gyrus; increased ReHo in right middle temporal pole gyrus and decreased ReHo in left superior frontal gyrus and middle occipital gyrus; increased DC in right medial orbitofrontal gyrus and pulvinar part of thalamus; decreased DC in left fusiform gyrus and right medial frontal gyrus; increased VMHC in right medial orbitofrontal gyrus; and decreased VMHC in the right superior temporal gyrus, right and left middle temporal gyrus, right and left triangular part of inferior frontal gyrus. ALFF in Frontal_Inf_Oper_R were found to be significantly correlated with MMSE scores (r = 0.301, p = 0.014) and ages (r = -0.264, p = 0.032) in all subjects, which could be used to distinguish the SA (AUC = 0.733, 95% CI: 0.604-0.863) by ROC analysis. CONCLUSION The brain regions with altered fMRI characteristics in SA group were concentrated in frontal (6 brain regions) and temporal (4 brain regions) lobes. ALFF in Frontal_Inf_Oper_R was significantly correlated to cognitive function and ages, which might be used to distinguish the SA.
Collapse
Affiliation(s)
- Jiaojiao Sun
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China.,Department of General Psychiatry, Yangzhou Wutaishan Hospital, Yangzhou, Jiangsu, China
| | - Xingfu Zhao
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jianbang Zhou
- Department of Psychiatry, Haidong First People's Hospital, Haidong, Qinghai, China
| | - Xinghong Dang
- Department of Psychiatry, Haidong First People's Hospital, Haidong, Qinghai, China
| | - Shenglong Zhu
- Department of Psychiatry, Haidong First People's Hospital, Haidong, Qinghai, China
| | - Liang Liu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhenhe Zhou
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Baran TM, Lin FV, Geha P. Functional brain mapping in patients with chronic back pain shows age-related differences. Pain 2022; 163:e917-e926. [PMID: 34799532 DOI: 10.1097/j.pain.0000000000002534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Low back pain is the most common pain condition and cause for disability in older adults. Older adults suffering from low back pain are more disabled than their healthy peers, are more predisposed to frailty, and tend to be undertreated. The cause of increased prevalence and severity of this chronic pain condition in older adults is unknown. Here, we draw on accumulating data demonstrating a critical role for brain limbic and sensory circuitries in the emergence and experience of chronic low back pain (CLBP) and the availability of resting-state brain activity data collected at different sites to study how brain activity patterns predictive of CLBP differ between age groups. We apply a data-driven multivariate searchlight analysis to amplitude of low-frequency fluctuation brain maps to classify patients with CLBP with >70% accuracy. We observe that the brain activity pattern including the paracingulate gyrus, insula/secondary somatosensory area, inferior frontal, temporal, and fusiform gyrus predicted CLBP. When separated by age groups, brain patterns predictive of older patients with CLBP showed extensive involvement of limbic brain areas including the ventromedial prefrontal cortex, the nucleus accumbens, and hippocampus, whereas only anterior insula paracingulate and fusiform gyrus predicted CLBP in the younger patients. In addition, we validated the relationships between back pain intensity ratings and CLBP brain activity patterns in an independent data set not included in our initial patterns' identification. Our results are the first to directly address how aging affects the neural signature of CLBP and point to an increased role of limbic brain areas in older patients with CLBP.
Collapse
Affiliation(s)
- Timothy M Baran
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Feng V Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Paul Geha
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
8
|
Cognitive decline is associated with frequency-specific resting state functional changes in normal aging. Brain Imaging Behav 2022; 16:2120-2132. [PMID: 35864341 DOI: 10.1007/s11682-022-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Resting state low-frequency brain activity may aid in our understanding of the mechanisms of aging-related cognitive decline. Our purpose was to explore the characteristics of the amplitude of low-frequency fluctuations (ALFF) in different frequency bands of fMRI to better understand cognitive aging. Thirty-seven cognitively normal older individuals underwent a battery of neuropsychological tests and MRI scans at baseline and four years later. ALFF from five different frequency bands (typical band, slow-5, slow-4, slow-3, and slow-2) were calculated and analyzed. A two-way ANOVA was used to explore the interaction effects in voxel-wise whole brain ALFF of the time and frequency bands. Paired-sample t-test was used to explore within-group changes over four years. Partial correlation analysis was performed to assess associations between the altered ALFF and cognitive function. Significant interaction effects of time × frequency were distributed over inferior frontal gyrus, superior frontal gyrus, right rolandic operculum, left thalamus, and right putamen. Significant ALFF reductions in all five frequency bands were mainly found in the right hemisphere and the posterior cerebellum; whereas localization of the significantly increased ALFF were mainly found in the cerebellum at typical band, slow-5 and slow-4 bands, and left hemisphere and the cerebellum at slow-3, slow-2 bands. In addition, ALFF changes showed frequency-specific correlations with changes in cognition. These results suggest that changes of local brain activity in cognitively normal aging should be investigated in multiple frequency bands. The association between ALFF changes and cognitive function can potentially aid better understanding of the mechanisms underlying normal cognitive aging.
Collapse
|
9
|
Chen X, Rundle MM, Kennedy KM, Moore W, Park DC. Functional activation features of memory in successful agers across the adult lifespan. Neuroimage 2022; 257:119276. [PMID: 35523368 PMCID: PMC9364925 DOI: 10.1016/j.neuroimage.2022.119276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/23/2022] [Accepted: 05/01/2022] [Indexed: 11/01/2022] Open
Abstract
Much neuroimaging research has explored the neural mechanisms underlying successful cognitive aging. Two different patterns of functional activation, maintenance of youth-like activity and compensatory novel recruitment, have been proposed to represent different brain functional features underlying individual differences in cognitive aging. In this study, we investigated the functional features in individuals across the adult lifespan who appeared to resist age-related cognitive decline, in comparison to those with typical age-related declines, over the course of four years. We first implemented latent mixture modeling, a data-driven approach, to classify participants as successful and average agers in middle-aged, young-old, and very old groups, based on their baseline and longitudinal cognitive performance. Then, using fMRI with a subsequent memory paradigm at the follow-up visit, brain activation specifically related to successful encoding (i.e., subsequent memory effect: subsequently remembered with high confidence > subsequently forgotten) was compared between people who established successful cognitive aging versus average aging in the three age groups. Several differences in the subsequent memory effect were revealed. First, across core task-related regions commonly used during successful encoding, successful agers exhibited high subsequent memory effect, at a level comparable to the young control group, until very old age; in contrast, average agers showed reduced subsequent memory effect, compared to successful agers, beginning in young-old age when memory performance also reduced in average agers, compared to successful agers. Second, additional recruitment in prefrontal clusters, distant from the core task-related regions, were identified in the left superior frontal and right orbitofrontal cortices in successful agers of young-old age, possibly reflecting functional compensation in successful aging. In summary, successful agers demonstrate a pattern of youth-like activation spanning from middle age to young-old age, as well as novel frontal recruitment in young-old age. Overall, our study demonstrated evidence of two neural patterns related to successful cognitive aging, offering an integrated view of functional features underlying successful aging, and suggests the importance of studying individuals across the lifespan to understand brain changes occurring in mid and early-late life.
Collapse
Affiliation(s)
- Xi Chen
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Unit 800, Dallas, TX, 75235, USA.
| | - Melissa M Rundle
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Unit 800, Dallas, TX, 75235, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Unit 800, Dallas, TX, 75235, USA
| | - William Moore
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Denise C Park
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Unit 800, Dallas, TX, 75235, USA
| |
Collapse
|
10
|
Dominguez EN, Stark SM, Ren Y, Corrada MM, Kawas CH, Stark CEL. Regional Cortical Thickness Predicts Top Cognitive Performance in the Elderly. Front Aging Neurosci 2021; 13:751375. [PMID: 34803657 PMCID: PMC8601448 DOI: 10.3389/fnagi.2021.751375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
While aging is typically associated with cognitive decline, some individuals are able to diverge from the characteristic downward slope and maintain very high levels of cognitive performance. Prior studies have found that cortical thickness in the cingulate cortex, a region involved in information processing, memory, and attention, distinguish those with exceptional cognitive abilities when compared to their cognitively more typical elderly peers. Others major areas outside of the cingulate, such as the prefrontal cortex and insula, are also key in successful aging well into late age, suggesting that structural properties across a wide range of areas may better explain differences in cognitive abilities. Here, we aim to assess the role of regional cortical thickness, both in the cingulate and the whole brain, in modeling Top Cognitive Performance (TCP), measured by performance in the top 50th percentile of memory and executive function. Using data from National Alzheimer’s Coordinating Center and The 90 + Study, we examined healthy subjects aged 70–100 years old. We found that, while thickness in cingulate regions can model TCP status with some degree of accuracy, a whole-brain, network-level approach out-performed the localist, cingulate models. These findings suggests a need for more network-style approaches and furthers our understanding of neurobiological factors contributing to preserved cognition.
Collapse
Affiliation(s)
- Elena Nicole Dominguez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Shauna M Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Yueqi Ren
- Mathematical, Computational and Systems Biology Graduate Program, University of California, Irvine, Irvine, CA, United States
| | - Maria M Corrada
- Department of Neurology, University of California, Irvine, Irvine, CA, United States.,Department of Epidemiology, University of California, Irvine, Irvine, CA, United States
| | - Claudia H Kawas
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.,Mathematical, Computational and Systems Biology Graduate Program, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
de Godoy LL, Studart-Neto A, Wylezinska-Arridge M, Tsunemi MH, Moraes NC, Yassuda MS, Coutinho AM, Buchpiguel CA, Nitrini R, Bisdas S, da Costa Leite C. The Brain Metabolic Signature in Superagers Using In Vivo 1H-MRS: A Pilot Study. AJNR Am J Neuroradiol 2021; 42:1790-1797. [PMID: 34446458 DOI: 10.3174/ajnr.a7262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/28/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Youthful memory performance in older adults may reflect an underlying resilience to the conventional pathways of aging. Subjects having this unusual characteristic have been recently termed "superagers." This study aimed to explore the significance of imaging biomarkers acquired by 1H-MRS to characterize superagers and to differentiate them from their normal-aging peers. MATERIALS AND METHODS Fifty-five patients older than 80 years of age were screened using a detailed neuropsychological protocol, and 25 participants, comprising 12 superagers and 13 age-matched controls, were statistically analyzed. We used state-of-the-art 3T 1H-MR spectroscopy to quantify 18 neurochemicals in the posterior cingulate cortex of our subjects. All 1H-MR spectroscopy data were analyzed using LCModel. Results were further processed using 2 approaches to investigate the technique accuracy: 1) comparison of the average concentration of metabolites estimated with Cramer-Rao lower bounds <20%; and 2) calculation and comparison of the weighted means of metabolites' concentrations. RESULTS The main finding observed was a higher total N-acetyl aspartate concentration in superagers than in age-matched controls using both approaches (P = .02 and P = .03 for the weighted means), reflecting a positive association of total N-acetyl aspartate with higher cognitive performance. CONCLUSIONS 1H-MR spectroscopy emerges as a promising technique to unravel neurochemical mechanisms related to cognitive aging in vivo and providing a brain metabolic signature in superagers. This may contribute to monitoring future interventional therapies to avoid or postpone the pathologic processes of aging.
Collapse
Affiliation(s)
- L L de Godoy
- From the Department of Radiology and Oncology (L.L.d.G., C.d.C.L.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- The National Hospital of Neurology and Neurosurgery (M.W.-A., S.B.), University College London, London, UK
| | - A Studart-Neto
- Department of Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - M Wylezinska-Arridge
- The National Hospital of Neurology and Neurosurgery (M.W.-A., S.B.), University College London, London, UK
| | - M H Tsunemi
- Department of Biostatistics, Institute of Biosciences (M.H.T.), Universidade Estadual Paulista, Botucatu, Sao Paulo, SP, Brazil
| | - N C Moraes
- Department of Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - M S Yassuda
- Department of Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - A M Coutinho
- Division and Laboratory of Nuclear Medicine (A.M.C., C.A.B.), Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - C A Buchpiguel
- Division and Laboratory of Nuclear Medicine (A.M.C., C.A.B.), Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - R Nitrini
- Department of Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - S Bisdas
- The National Hospital of Neurology and Neurosurgery (M.W.-A., S.B.), University College London, London, UK
| | - C da Costa Leite
- From the Department of Radiology and Oncology (L.L.d.G., C.d.C.L.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
12
|
Wang S, Chen H, Zhan Y. Novel Causal Relations between Neuronal Networks due to Synchronization. Cereb Cortex 2021; 32:429-438. [PMID: 34274974 DOI: 10.1093/cercor/bhab219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 11/14/2022] Open
Abstract
In the process of information transmission, information is thought to be transmitted from the networks that are activated by the input to the networks that are silent or nonactivated. Here, via numerical simulation of a 3-network motif, we show that the silent neuronal network when interconnected with other 2 networks can exert much stronger causal influences on the other networks. Such an unexpected causal relationship results from high degree of synchronization in this network. The predominant party is consistently the network whose noise is smaller when the noise level in each network is considered. Our results can shed lights on how the internal network dynamics can affect the information flow of interconnected neuronal networks.
Collapse
Affiliation(s)
- Sentao Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Hongbiao Chen
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yang Zhan
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|
13
|
de Godoy LL, Alves CAPF, Saavedra JSM, Studart-Neto A, Nitrini R, da Costa Leite C, Bisdas S. Understanding brain resilience in superagers: a systematic review. Neuroradiology 2020; 63:663-683. [PMID: 32995945 DOI: 10.1007/s00234-020-02562-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Superagers are older adults presenting excellent memory performance that may reflect resilience to the conventional pathways of aging. Our contribution aims to shape the evidence body of the known distinctive biomarkers of superagers and their connections with the Brain and Cognitive Reserve and Brain Maintenance concepts. METHODS We performed a systematic literature search in PubMed and ScienceDirect with no limit on publication date for studies that evaluated potential biomarkers in superagers classified by validated neuropsychological tests. Methodological quality was assessed using the QUADAS-2 tool. RESULTS Twenty-one studies were included, the majority in neuroimaging, followed by histological, genetic, cognition, and a single one on blood plasma analysis. Superagers exhibited specific regions of cortical preservation, rather than global cortical maintenance, standing out the anterior cingulate and hippocampus regions. Both superagers and controls showed similar levels of amyloid deposition. Moreover, the functional oscillation patterns in superagers resembled those described in young adults. Most of the quality assessment for the included studies showed medium risks of bias. CONCLUSION This systematic review supports selective cortical preservation in superagers, comprehending regions of the default mode, and salience networks, overlapped by stronger functional connectivity. In this context, the anterior cingulate cortex is highlighted as an imaging and histologic signature of these subjects. Besides, the biomarkers included pointed out that the Brain and Cognitive Reserve and Brain Maintenance concepts are independent and complementary in the superagers' setting.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- The National Hospital of Neurology and Neurosurgery, University College London, London, UK. .,Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil.
| | | | | | - Adalberto Studart-Neto
- Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Ricardo Nitrini
- Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Claudia da Costa Leite
- Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Sotirios Bisdas
- The National Hospital of Neurology and Neurosurgery, University College London, London, UK
| |
Collapse
|
14
|
Zhang J, Andreano JM, Dickerson BC, Touroutoglou A, Barrett LF. Stronger Functional Connectivity in the Default Mode and Salience Networks Is Associated With Youthful Memory in Superaging. Cereb Cortex 2020; 30:72-84. [PMID: 31058917 PMCID: PMC7029690 DOI: 10.1093/cercor/bhz071] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022] Open
Abstract
"Superagers" are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is greater in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 older adults (66.9 ± 5.5 years old). Superaging was defined as youthful performance on a memory recall task, the California Verbal Learning Test (CVLT). Participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and performed a separate visual-verbal recognition memory task. As predicted, within both DMN and SN, superagers had stronger connectivity compared with typical older adults and similar connectivity compared with young adults. Superagers also performed similarly to young adults and better than typical older adults on the recognition task, demonstrating youthful episodic memory that generalized across memory tasks. Stronger connectivity within each network independently predicted better performance on both the CVLT and recognition task in older adults. Variation in intrinsic connectivity explained unique variance in memory performance, above and beyond youthful neuroanatomy. These results extend our understanding of the neural basis of superaging as a model of successful aging.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Joseph M Andreano
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Alexandra Touroutoglou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
15
|
Dang C, Yassi N, Harrington KD, Xia Y, Lim YY, Ames D, Laws SM, Hickey M, Rainey-Smith S, Sohrabi HR, Doecke JD, Fripp J, Salvado O, Snyder PJ, Weinborn M, Villemagne VL, Rowe CC, Masters CL, Maruff P. Rates of age- and amyloid β-associated cortical atrophy in older adults with superior memory performance. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:566-575. [PMID: 31909172 PMCID: PMC6939054 DOI: 10.1016/j.dadm.2019.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Superior cognitive performance in older adults may reflect underlying resistance to age-associated neurodegeneration. While elevated amyloid β (Aβ) deposition (Aβ+) has been associated with increased cortical atrophy, it remains unknown whether "SuperAgers" may be protected from Aβ-associated neurodegeneration. METHODS Neuropsychologically defined SuperAgers (n = 172) and cognitively normal for age (n = 172) older adults from the Australian Imaging, Biomarkers and Lifestyle study were case matched. Rates of cortical atrophy over 8 years were examined by SuperAger classification and Aβ status. RESULTS Of the case-matched SuperAgers and cognitively normal for age older adults, 40.7% and 40.1%, respectively, were Aβ+. Rates of age- and Aβ-associated atrophy did not differ between the groups on any measure. Aβ- individuals displayed the slowest rates of atrophy. DISCUSSION Maintenance of superior memory in late life does not reflect resistance to age- or Aβ-associated atrophy. However, those individuals who reached old age without cognitive impairment nor elevated Aβ deposition (i.e. Aβ-) displayed reduced rates of cortical atrophy.
Collapse
Affiliation(s)
- Christa Dang
- Department of Obstetrics and Gynaecology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nawaf Yassi
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine and Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karra D. Harrington
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia
| | - Ying Xia
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Yen Ying Lim
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- National Ageing Research Institute, Parkville, Victoria, Australia
| | - Simon M. Laws
- Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Australian Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - James D. Doecke
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Peter J. Snyder
- George & Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, USA
| | - Michael Weinborn
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Australian Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Victor L. Villemagne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher C. Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- CogState Ltd., Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Baran TM, Lin FV. Amyloid and FDG PET of Successful Cognitive Aging: Global and Cingulate-Specific Differences. J Alzheimers Dis 2019; 66:307-318. [PMID: 30282358 DOI: 10.3233/jad-180360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Some individuals, called Supernormals (SN), maintain excellent memory in old age. While brain structural and functional integrity in SN seem to be aging-resistant, their amyloidosis and neural injury status has not been well studied. OBJECTIVE The goal of this study was to compare cortical amyloid deposition and glucose metabolism between SN and older adults with normal cognition (NC), amnestic mild cognitive impairment (MCI), and Alzheimer's disease (AD). METHODS Subjects from the ADNI database were included if they received T1-weighted MRI, amyloid PET, FDG-PET, and cognitive testing within a 6-month period, yielding 27 AD, 69 MCI, 172 NC, and 122 SN. PET standardized uptake value ratios (SUVrs) were calculated for the whole cortex and 68 regions of interest, with whole cerebellum serving as reference. RESULTS SN had lower whole cortex amyloid than MCI, and higher glucose metabolism than all others. Regional analysis revealed that amyloid burden and glucose metabolism in the right isthmus cingulate cortex differed in SN compared to others, while SN glucose metabolism also differed from others in several frontal and temporal regions. CONCLUSION Preserved cortical glucose metabolism, and lower levels of amyloidosis and glucose hypometabolism in the right isthmus cingulate cortex, contributes to the Supernormal phenomenon. These findings may be informative for development of early screening biomarkers and therapeutic targets for modification of cognitive trajectories.
Collapse
Affiliation(s)
- Timothy M Baran
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Feng Vankee Lin
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
17
|
Neurocognitive SuperAging in Older Adults Living With HIV: Demographic, Neuromedical and Everyday Functioning Correlates. J Int Neuropsychol Soc 2019; 25:507-519. [PMID: 30890191 PMCID: PMC6705613 DOI: 10.1017/s1355617719000018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Studies of neurocognitively elite older adults, termed SuperAgers, have identified clinical predictors and neurobiological indicators of resilience against age-related neurocognitive decline. Despite rising rates of older persons living with HIV (PLWH), SuperAging (SA) in PLWH remains undefined. We aimed to establish neuropsychological criteria for SA in PLWH and examined clinically relevant correlates of SA. METHODS 734 PLWH and 123 HIV-uninfected participants between 50 and 64 years of age underwent neuropsychological and neuromedical evaluations. SA was defined as demographically corrected (i.e., sex, race/ethnicity, education) global neurocognitive performance within normal range for 25-year-olds. Remaining participants were labeled cognitively normal (CN) or impaired (CI) based on actual age. Chi-square and analysis of variance tests examined HIV group differences on neurocognitive status and demographics. Within PLWH, neurocognitive status differences were tested on HIV disease characteristics, medical comorbidities, and everyday functioning. Multinomial logistic regression explored independent predictors of neurocognitive status. RESULTS Neurocognitive status rates and demographic characteristics differed between PLWH (SA=17%; CN=38%; CI=45%) and HIV-uninfected participants (SA=35%; CN=55%; CI=11%). In PLWH, neurocognitive groups were comparable on demographic and HIV disease characteristics. Younger age, higher verbal IQ, absence of diabetes, fewer depressive symptoms, and lifetime cannabis use disorder increased likelihood of SA. SA reported increased independence in everyday functioning, employment, and health-related quality of life than non-SA. CONCLUSIONS Despite combined neurological risk of aging and HIV, youthful neurocognitive performance is possible for older PLWH. SA relates to improved real-world functioning and may be better explained by cognitive reserve and maintenance of cardiometabolic and mental health than HIV disease severity. Future research investigating biomarker and lifestyle (e.g., physical activity) correlates of SA may help identify modifiable neuroprotective factors against HIV-related neurobiological aging. (JINS, 2019, 25, 507-519).
Collapse
|
18
|
Arenaza-Urquijo EM, Przybelski SA, Lesnick TL, Graff-Radford J, Machulda MM, Knopman DS, Schwarz CG, Lowe VJ, Mielke MM, Petersen RC, Jack CR, Vemuri P. The metabolic brain signature of cognitive resilience in the 80+: beyond Alzheimer pathologies. Brain 2019; 142:1134-1147. [PMID: 30851100 PMCID: PMC6439329 DOI: 10.1093/brain/awz037] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 11/14/2022] Open
Abstract
Research into cognitive resilience imaging markers may help determine the clinical significance of Alzheimer's disease pathology among older adults over 80 years (80+). In this study, we aimed to identify a fluorodeoxyglucose (FDG)-PET based imaging marker of cognitive resilience. We identified 457 participants ≥ 80 years old (357 cognitively unimpaired, 118 cognitively impaired at baseline, mean age of 83.5 ± 3.2 years) from the population-based Mayo Clinic Study of Aging (MCSA) with baseline MRI, Pittsburgh compound B-PET and FDG-PET scans and neuropsychological evaluation. We identified a subset of 'resilient' participants (cognitively stable 80+, n = 192) who maintained normal cognition for an average of 5 years (2-10 years). Global PIB ratio, FDG-PET ratio and cortical thickness from Alzheimer's disease signature regions were used as Alzheimer's disease imaging biomarker outcomes and global cognitive z-score was used as a cognitive outcome. First, using voxel-wise multiple regression analysis, we identified the metabolic areas underlying cognitive resilience in cognitively stable 80+ participants, which we call the 'resilience signature'. Second, using multivariate linear regression models, we evaluated the association of risk and protective factors with the resilience signature and its added value for predicting global cognition beyond established Alzheimer's disease imaging biomarkers in the full 80+ sample. Third, we evaluated the utility of the resilience signature in conjunction with amyloidosis in predicting longitudinal cognition using linear mixed effect models. Lastly, we assessed the utility of the resilience signature in an independent cohort using ADNI (n = 358, baseline mean age of 80 ± 3.8). Our main findings were: (i) FDG-PET uptake in the bilateral anterior cingulate cortex and anterior temporal pole was associated with baseline global cognition in cognitively stable 80+ (the resilience signature); (ii) established Alzheimer's disease imaging biomarkers did not predict baseline global cognition in this subset of participants; (iii) in the full MCSA 80+ and ADNI cohorts, amyloid burden and FDG-PET in the resilience signature were the stronger predictors of baseline global cognition; (iv) sex and systemic vascular health predicted FDG-PET in the resilience signature, suggesting vascular health maintenance as a potential pathway to preserve the metabolism of these areas; and (v) the resilience signature provided significant information about global longitudinal cognitive change even when considering amyloid status in both the MCSA and ADNI cohorts. The FDG-PET resilience signature may be able to provide important information in conjunction with other Alzheimer's disease biomarkers for the determination of clinical prognosis. It may also facilitate identification of disease targeting modifiable risk factors such as vascular health maintenance.
Collapse
Affiliation(s)
| | | | | | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle M Mielke
- Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
19
|
Mazzuca C, Lugli L, Benassi M, Nicoletti R, Borghi AM. Abstract, emotional and concrete concepts and the activation of mouth-hand effectors. PeerJ 2018; 6:e5987. [PMID: 30568852 PMCID: PMC6287580 DOI: 10.7717/peerj.5987] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/23/2018] [Indexed: 01/26/2023] Open
Abstract
According to embodied and grounded theories, concepts are grounded in sensorimotor systems. The majority of evidence supporting these views concerns concepts referring to objects or actions, while evidence on abstract concepts is more scarce. Explaining how abstract concepts such as “freedom” are represented would thus be pivotal for grounded theories. According to some recent proposals, abstract concepts are grounded in both sensorimotor and linguistic experience, thus they activate the mouth motor system more than concrete concepts. Two experiments are reported, aimed at verifying whether abstract, concrete and emotional words activate the mouth and the hand effectors. In both experiments participants performed first a lexical decision, then a recognition task. In Experiment 1 participants responded by pressing a button either with the mouth or with the hand, in Experiment 2 responses were given with the foot, while a button held either in the mouth or in the hand was used to respond to catch-trials. Abstract words were slower to process in both tasks (concreteness effect). Across the tasks and experiments, emotional concepts had instead a fluctuating pattern, different from those of both concrete and abstract concepts, suggesting that they cannot be considered as a subset of abstract concepts. The interaction between type of concept (abstract, concrete and emotional) and effector (mouth, hand) was not significant in the lexical decision task, likely because it emerged only with tasks implying a deeper processing level. It reached significance, instead, in the recognition tasks. In both experiments abstract concepts were facilitated in the mouth condition compared to the hand condition, supporting our main prediction. Emotional concepts instead had a more variable pattern. Overall, our findings indicate that various kinds of concepts differently activate the mouth and hand effectors, but they also suggest that concepts activate effectors in a flexible and task-dependent way.
Collapse
Affiliation(s)
- Claudia Mazzuca
- Department of Philosophy and Communication, University of Bologna, Bologna, Italy
| | - Luisa Lugli
- Department of Philosophy and Communication, University of Bologna, Bologna, Italy
| | | | - Roberto Nicoletti
- Department of Philosophy and Communication, University of Bologna, Bologna, Italy
| | - Anna M Borghi
- Department of Dynamic and Clinical Psychology, University of Roma "La Sapienza", Rome, Italy.,Institute of Cognitive Sciences and Technologies, Italian National Research Council, Rome, Italy
| |
Collapse
|
20
|
Abstract
It is widely agreed that patients with bilateral hippocampal damage are impaired at binding pairs of words together. Consequently, the verbal paired associates (VPA) task has become emblematic of hippocampal function. This VPA deficit is not well understood and is particularly difficult for hippocampal theories with a visuospatial bias to explain (e.g., cognitive map and scene construction theories). Resolving the tension among hippocampal theories concerning the VPA could be important for leveraging a fuller understanding of hippocampal function. Notably, VPA tasks typically use high imagery concrete words and so conflate imagery and binding. To determine why VPA engages the hippocampus, we devised an fMRI encoding task involving closely matched pairs of scene words, pairs of object words, and pairs of very low imagery abstract words. We found that the anterior hippocampus was engaged during processing of both scene and object word pairs in comparison to abstract word pairs, despite binding occurring in all conditions. This was also the case when just subsequently remembered stimuli were considered. Moreover, for object word pairs, fMRI activity patterns in anterior hippocampus were more similar to those for scene imagery than object imagery. This was especially evident in participants who were high imagery users and not in mid and low imagery users. Overall, our results show that hippocampal engagement during VPA, even when object word pairs are involved, seems to be evoked by scene imagery rather than binding. This may help to resolve the issue that visuospatial hippocampal theories have in accounting for verbal memory.
Collapse
|
21
|
Borghi AM, Barca L, Binkofski F, Tummolini L. Abstract concepts, language and sociality: from acquisition to inner speech. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170134. [PMID: 29915002 PMCID: PMC6015830 DOI: 10.1098/rstb.2017.0134] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 11/12/2022] Open
Abstract
The problem of representation of abstract concepts, such as 'freedom' and 'justice', has become particularly crucial in recent years, owing to the increased success of embodied and grounded views of cognition. We will present a novel view on abstract concepts and abstract words. Since abstract concepts do not have single objects as referents, children and adults might rely more on input from others to learn them; we, therefore, suggest that linguistic and social experience play an important role for abstract concepts. We will discuss evidence obtained in our and other laboratories showing that processing of abstract concepts evokes linguistic interaction and social experiences, leading to the activation of the mouth motor system. We will discuss the possible mechanisms that underlie this activation. Mouth motor system activation can be due to re-enactment of the experience of conceptual acquisition, which occurred through the mediation of language. Alternatively, it could be due to the re-explanation of the word meaning, possibly through inner speech. Finally, it can be due to a metacognitive process revealing low confidence in the meaning of our concepts. This process induces in us the need to rely on others to ask/negotiate conceptual meaning. We conclude that with abstract concepts language works as a social tool: it extends our thinking abilities and pushes us to rely on others to integrate our knowledge.This article is part of the theme issue 'Varieties of abstract concepts: development, use, and representation in the brain'.
Collapse
Affiliation(s)
- Anna M Borghi
- Department of Dynamical and Clinical Psychology, Sapienza University of Rome, Via dei Marsi 78, Rome 00185, Italy
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, Via San Martino della Battaglia 44, Rome 00185, Italy
| | - Laura Barca
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, Via San Martino della Battaglia 44, Rome 00185, Italy
| | - Ferdinand Binkofski
- Division for Clinical Cognitive Sciences, University Hospital Aachen, Pauwelsstrasse 17, 52074 Aachen, Germany
| | - Luca Tummolini
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, Via San Martino della Battaglia 44, Rome 00185, Italy
| |
Collapse
|
22
|
Monday HR, Younts TJ, Castillo PE. Long-Term Plasticity of Neurotransmitter Release: Emerging Mechanisms and Contributions to Brain Function and Disease. Annu Rev Neurosci 2018; 41:299-322. [PMID: 29709205 DOI: 10.1146/annurev-neuro-080317-062155] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Long-lasting changes of brain function in response to experience rely on diverse forms of activity-dependent synaptic plasticity. Chief among them are long-term potentiation and long-term depression of neurotransmitter release, which are widely expressed by excitatory and inhibitory synapses throughout the central nervous system and can dynamically regulate information flow in neural circuits. This review article explores recent advances in presynaptic long-term plasticity mechanisms and contributions to circuit function. Growing evidence indicates that presynaptic plasticity may involve structural changes, presynaptic protein synthesis, and transsynaptic signaling. Presynaptic long-term plasticity can alter the short-term dynamics of neurotransmitter release, thereby contributing to circuit computations such as novelty detection, modifications of the excitatory/inhibitory balance, and sensory adaptation. In addition, presynaptic long-term plasticity underlies forms of learning and its dysregulation participates in several neuropsychiatric conditions, including schizophrenia, autism, intellectual disabilities, neurodegenerative diseases, and drug abuse.
Collapse
Affiliation(s)
- Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| | - Thomas J Younts
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| |
Collapse
|