1
|
Clancy KJ, Chen X, Song X, Song T, Zhou S, Akman E, Ostrand C, Ren B, Du F, Rosso IM. Multimodal associations between posterior hippocampus glutamate metabolism, visual cortex connectivity, and intrusive trauma reexperiencing symptoms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.27.25320595. [PMID: 39974121 PMCID: PMC11838930 DOI: 10.1101/2025.01.27.25320595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Objective Hippocampal dysfunction is implicated in posttraumatic stress disorder (PTSD), particularly intrusive reexperiencing symptoms, and may be mediated by glutamatergic excitotoxicity. Markers of glutamate dysfunction (higher glutamate to N-acetyl aspartate levels; Glu/NAA) in the hippocampus (HPC) have been linked to reexperiencing symptoms. However, the HPC demonstrates heterogeneity along its anterior-posterior axis, with different functional connectivity patterns and PTSD symptom associations, motivating investigations into glutamate metabolism in anterior and posterior HPC subregions (a/pHPC). Methods 121 symptomatic trauma-exposed adults (93 female) with current trauma reexperiencing symptoms completed magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to examine the regional specificity of HPC Glu/NAA associations with reexperiencing, and the link to a/pHPC functional connectivity. PTSD symptoms were assessed with the Clinician-Administered PTSD Scale for DSM-5. Results Reexperiencing symptom severity was associated with greater Glu/NAA in the pHPC, but not aHPC. pHPC Glu/NAA was further linked to stronger functional connectivity between the pHPC and visual cortex (VC), which in turn correlated with more severe reexperiencing symptoms. This strengthened pHPC-VC connectivity explained the shared variance between pHPC Glu/NAA and reexperiencing severity, suggesting dysregulated glutamate metabolism in the pHPC may contribute to reexperiencing symptoms through functional connectivity with the VC. Conclusions These findings replicate prior work linking HPC Glu/NAA to trauma reexperiencing symptoms and provide novel evidence this association may be specific to the pHPC and mediated by its functional connectivity with the VC. This multimodal investigation supports translational models of glutamatergic dysfunction in trauma-related disorders and highlights new targets for pharmacological and neuromodulatory interventions.
Collapse
|
2
|
Hong T, Zhou H, Xi W, Li X, Du Y, Liu J, Geng F, Hu Y. Acting with awareness is positively correlated with dorsal anterior cingulate cortex glutamate concentration but both are impaired in Internet gaming disorder. Neuroscience 2025; 564:226-235. [PMID: 39586421 DOI: 10.1016/j.neuroscience.2024.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Internet gaming disorder (IGD) is increasingly recognized as a public concern for its adverse impacts on cognition and mental health. In IGD, the transition from goal-directed actions to habitual and eventually compulsive behaviors is accompanied by altered neural response within the dorsal anterior cingulate cortex (dACC), a critical region involved in conscious actions. However, the neurochemical profile of the dACC in IGD and its relationship with behavioral awareness remain poorly understood. In this study, 1H-magnetic resonance spectroscopy was employed to quantify dACC glutamate concentration and examine its association with the capacity for 'acting with awareness' among 21 participants with IGD and 19 recreational game users. Results indicated that dACC glutamate levels and behavioral awareness were significantly lower in the IGD group compared to recreational game users. Moreover, a significant positive correlation between awareness and dACC glutamate concentration emerged in the recreational game users' group, a relationship attenuated in those with IGD. In an independent cohort of 107 participants, the positive association between awareness and dACC glutamate concentration was replicated. These findings suggest that reduced dACC glutamate in IGD may underlie diminished awareness of maladaptive habitual behaviors. Enhancing dACC neural excitability through neuromodulation or mindfulness training could represent a potential intervention to restore behavioral awareness.
Collapse
Affiliation(s)
- Tiantian Hong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China
| | - Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310007, China
| | - Wan Xi
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China
| | - Xiumei Li
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yusang Du
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China
| | - Jiaxin Liu
- College of Education, Zhejiang University, Hangzhou 310007, China
| | - Fengji Geng
- College of Education, Zhejiang University, Hangzhou 310007, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310007, China; MOE Frontiers Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310007, China.
| |
Collapse
|
3
|
Premi E, Cantoni V, Benussi A, Iraji A, Calhoun VD, Corbo D, Gasparotti R, Tinazzi M, Borroni B, Magoni M. Impaired spatial dynamic functional network connectivity and neurophysiological correlates in functional hemiparesis. Neuroimage Clin 2025; 45:103731. [PMID: 39764901 PMCID: PMC11762193 DOI: 10.1016/j.nicl.2025.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/01/2025] [Accepted: 01/01/2025] [Indexed: 01/29/2025]
Abstract
The present study investigated spatial dynamic functional network connectivity (dFNC) in patients with functional hemiparesis (i.e., functional stroke mimics, FSM). The aim of this work was to assess static functional connectivity (large-scale) networks and dynamic brain states, which represent distinct dFNC patterns that reoccur in time and across subjects. Resting-state fMRI data were collected from 15 patients with FSM (mean age = 42.3 ± 9.4, female = 80 %) and 52 age-matched healthy controls (HC, mean age = 42.1 ± 8.6, female = 73 %). Each patient underwent a resting-state functional MRI scan for spatial dFNC evaluation and transcranial magnetic stimulation protocols for indirect assessment of GABAergic and glutamatergic transmission. We considered three dynamic brain networks, i.e., the somatomotor network (SMN), the default mode network (DMN) and the salience network (SN), each summarized into four distinct recurring spatial configurations. Compared to HC, patients with FSM showed significant decreased dwell time, e.g. the time each individual spends in each spatial state of each network, in state 2 of the SMN (HC vs. FSM, 13.5 ± 27.1 vs. 1.9 ± 4.1, p = 0.044). Conversely, as compared to HC, FSM spent more time in state 1 of the DMN (10.8 ± 14.9 vs. 27.3 ± 38.9, p = 0.037) and in state 3 of the SN (23.1 ± 23.0 vs. 38.8 ± 38.2, p = 0.002). We found a significant correlation between the dwell time of impaired functional state of the SMN and measures of GABAergic neurotransmission (r = 0.581, p = 0.037). Specifically, longer impaired dwell time was associated with greater GABAergic inhibition. These findings demonstrate that FSM present altered functional brain network dynamics, which correlate with measures of GABAergic neurotransmission. Both dFNC and GABAergic neurotransmission may serve as potential targets for future intervention strategies.
Collapse
Affiliation(s)
- E Premi
- Stroke Unit, ASST Spedali Civili, «Spedali Civili» Hospital, Brescia, Italy.
| | - V Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - A Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Italy; Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - A Iraji
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - V D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - D Corbo
- Neuroradiology Unit, University of Brescia, Italy
| | - R Gasparotti
- Neuroradiology Unit, University of Brescia, Italy
| | - M Tinazzi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - B Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - M Magoni
- Stroke Unit, ASST Spedali Civili, «Spedali Civili» Hospital, Brescia, Italy
| |
Collapse
|
4
|
Liu X, Scherrer S, Egger S, Lim S, Lauber B, Jelescu I, Griffa A, Gambarota G, Taube W, Xin L. Rebalance the Inhibitory System in the Elderly Brain: Influence of Balance Learning on GABAergic Inhibition and Functional Connectivity. Hum Brain Mapp 2024; 45:e70057. [PMID: 39508513 PMCID: PMC11542107 DOI: 10.1002/hbm.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Aging involves complex processes that impact the structure, function, and metabolism of the human brain. Declines in both structural and functional integrity along with reduced local inhibitory tone in the motor areas, as indicated by reduced γ-aminobutyric acid (GABA) levels, are often associated with compromised motor performance in elderly adults. Using multimodal neuroimaging techniques including magnetic resonance spectroscopy (MRS), diffusion magnetic resonance imaging (MRI), functional MRI as well as transcranial magnetic stimulation to assess short-interval intracortical inhibition (SICI), this study explores whether these age-related changes can be mitigated by motor learning. The investigation focused on the effects of long-term balance learning (3 months) on intracortical inhibition, metabolism, structural, and functional connectivity in the cortical sensorimotor network among an elderly cohort. We found that after 3 months of balance learning, subjects significantly improved balance performance, upregulated sensorimotor cortical GABA levels and ventral sensorimotor network functional connectivity (VSN-FC) compared to a passive control group. Furthermore, correlation analysis suggested a positive association between baseline VSN-FC and balance performance, between baseline VSN-FC and SICI, and between improvements in balance performance and upregulation in SICI in the training group, though these correlations did not survive the false discovery rate correction. These findings demonstrate that balance learning has the potential to counteract aging-related decline in functional connectivity and cortical inhibition on the "tonic" (MRS) and "functional" (SICI) level and shed new light on the close interplay between the GABAergic system, functional connectivity, and behavior.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory for Functional and Metabolic Imaging (LIFMET)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Center for Biomedical Imaging (CIBM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Selin Scherrer
- Department of Neurosciences and Movement ScienceUniversity of FribourgFribourgSwitzerland
| | - Sven Egger
- Department of Neurosciences and Movement ScienceUniversity of FribourgFribourgSwitzerland
| | - Song‐I Lim
- Center for Biomedical Imaging (CIBM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Benedikt Lauber
- Department of Neurosciences and Movement ScienceUniversity of FribourgFribourgSwitzerland
| | - Ileana Jelescu
- Department of RadiologyLausanne University HospitalLausanneSwitzerland
| | - Alessandra Griffa
- Medical Image Processing LaboratoryNeuro‐X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL)GenevaSwitzerland
- Leenaards Memory CenterLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | - Wolfgang Taube
- Department of Neurosciences and Movement ScienceUniversity of FribourgFribourgSwitzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Institute of PhysicsÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
5
|
Luppi AI, Sanz Perl Y, Vohryzek J, Mediano PAM, Rosas FE, Milisav F, Suarez LE, Gini S, Gutierrez-Barragan D, Gozzi A, Misic B, Deco G, Kringelbach ML. Competitive interactions shape brain dynamics and computation across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619194. [PMID: 39484469 PMCID: PMC11526968 DOI: 10.1101/2024.10.19.619194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome. Across human, macaque, and mouse we show that the architecture of the models that most faithfully reproduce brain activity, consistently combines modular cooperative interactions with diffuse, long-range competitive interactions. The model with competitive interactions consistently outperforms the cooperative-only model, with excellent fit to both spatial and dynamical properties of the living brain, which were not explicitly optimised but rather emerge spontaneously. Competitive interactions in the effective connectivity produce greater levels of synergistic information and local-global hierarchy, and lead to superior computational capacity when used for neuromorphic computing. Altogether, this work provides a mechanistic link between network architecture, dynamical properties, and computation in the mammalian brain.
Collapse
Affiliation(s)
- Andrea I. Luppi
- University of Oxford, Oxford, UK
- St John’s College, Cambridge, UK
- Montreal Neurological Institute, Montreal, Canada
| | | | | | | | | | | | | | - Silvia Gini
- Italian Institute of Technology, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Zhou H, Hong T, Chen X, Su C, Teng B, Xi W, Cadet JL, Yang Y, Geng F, Hu Y. Glutamate concentration of medial prefrontal cortex is inversely associated with addictive behaviors: a translational study. Transl Psychiatry 2024; 14:433. [PMID: 39396023 PMCID: PMC11470925 DOI: 10.1038/s41398-024-03145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
In both preclinical and clinical settings, dysregulated frontostriatal circuits have been identified as the underlying neural substrates of compulsive seeking/taking behaviors manifested in substance use disorders and behavioral addictions including internet gaming disorder (IGD). However, the neurochemical substrates for these disorders remain elusive. The lack of comprehensive cognitive assessments in animal models has hampered our understanding of neural plasticity in addiction from these models. In this study, combining data from a rat model of compulsive taking/seeking and human participants with various levels of IGD severity, we investigated the relationship between regional glutamate (Glu) concentration and addictive behaviors. We found that Glu levels were significantly lower in the prelimbic cortex (PrL) of rats after 20-days of methamphetamine self-administration (SA), compared to controls. Glu concentration after a punishment phase negatively correlated with acute drug-seeking behavior. In addition, changes in Glu levels from a drug naïve state to compulsive drug taking patterns negatively correlated with drug-seeking during both acute and prolonged abstinence. The human data revealed a significant negative correlation between Glu concentration in the dorsal anterior cingulate cortex (dACC), the human PrL counterpart, and symptoms of IGD. Interestingly, there was a positive correlation between Glu levels in the dACC and self-control, as well as mindful awareness. Further analysis revealed that the dACC Glu concentration mediated the relationship between self-control/mindful awareness and IGD symptoms. These results provide convergent evidence for a protective role of dACC/PrL in addiction, suggesting interventions to enhance dACC glutamatergic functions as a potential strategy for addiction prevention and treatment.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 311100, China
| | - Tiantian Hong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
| | - Xi Chen
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Conghui Su
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
| | - Binyu Teng
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
| | - Wan Xi
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, 311100, China.
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 311100, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 311100, China.
- MOE Frontiers Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 311100, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
7
|
Gao Y, Cai YC, Liu DY, Yu J, Wang J, Li M, Xu B, Wang T, Chen G, Northoff G, Bai R, Song XM. GABAergic inhibition in human hMT+ predicts visuo-spatial intelligence mediated through the frontal cortex. eLife 2024; 13:RP97545. [PMID: 39352734 PMCID: PMC11444681 DOI: 10.7554/elife.97545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
The prevailing opinion emphasizes fronto-parietal network (FPN) is key in mediating general fluid intelligence (gF). Meanwhile, recent studies show that human MT complex (hMT+), located at the occipito-temporal border and involved in 3D perception processing, also plays a key role in gF. However, the underlying mechanism is not clear, yet. To investigate this issue, our study targets visuo-spatial intelligence, which is considered to have high loading on gF. We use ultra-high field magnetic resonance spectroscopy (MRS) to measure GABA/Glu concentrations in hMT+ combining resting-state fMRI functional connectivity (FC), behavioral examinations including hMT+ perception suppression test and gF subtest in visuo-spatial component. Our findings show that both GABA in hMT+ and frontal-hMT+ functional connectivity significantly correlate with the performance of visuo-spatial intelligence. Further, serial mediation model demonstrates that the effect of hMT+ GABA on visuo-spatial gF is fully mediated by the hMT+ frontal FC. Together our findings highlight the importance in integrating sensory and frontal cortices in mediating the visuo-spatial component of general fluid intelligence.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Yu Liu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Juan Yu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jue Wang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Bin Xu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tengfei Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Gang Chen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Hangzhou, China
| | - Ruiliang Bai
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Shi L, Fu X, Gui S, Wan T, Zhuo J, Lu J, Li P. Global spatiotemporal synchronizing structures of spontaneous neural activities in different cell types. Nat Commun 2024; 15:2884. [PMID: 38570488 PMCID: PMC10991327 DOI: 10.1038/s41467-024-46975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Increasing evidence has revealed the large-scale nonstationary synchronizations as traveling waves in spontaneous neural activity. However, the interplay of various cell types in fine-tuning these spatiotemporal patters remains unclear. Here, we performed comprehensive exploration of spatiotemporal synchronizing structures across different cell types, states (awake, anesthesia, motion) and developmental axis in male mice. We found traveling waves in glutamatergic neurons exhibited greater variety than those in GABAergic neurons. Moreover, the synchronizing structures of GABAergic neurons converged toward those of glutamatergic neurons during development, but the evolution of waves exhibited varying timelines for different sub-type interneurons. Functional connectivity arises from both standing and traveling waves, and negative connections can be elucidated by the spatial propagation of waves. In addition, some traveling waves were correlated with the spatial distribution of gene expression. Our findings offer further insights into the neural underpinnings of traveling waves, functional connectivity, and resting-state networks, with cell-type specificity and developmental perspectives.
Collapse
Affiliation(s)
- Liang Shi
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China
| | - Xiaoxi Fu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China
| | - Shen Gui
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China
| | - Tong Wan
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Junjie Zhuo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China.
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215100, China.
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
| |
Collapse
|
9
|
Zhang C, Zhang K, Hu X, Cai X, Chen Y, Gao F, Wang G. Regional GABA levels modulate abnormal resting-state network functional connectivity and cognitive impairment in multiple sclerosis. Cereb Cortex 2024; 34:bhad535. [PMID: 38271282 DOI: 10.1093/cercor/bhad535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
More evidence shows that changes in functional connectivity with regard to brain networks and neurometabolite levels correlated to cognitive impairment in multiple sclerosis. However, the neurological basis underlying the relationship among neurometabolite levels, functional connectivity, and cognitive impairment remains unclear. For this purpose, we used a combination of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to study gamma-aminobutyric acid and glutamate concentrations in the posterior cingulate cortex, medial prefrontal cortex and left hippocampus, and inter-network functional connectivity in 29 relapsing-remitting multiple sclerosis patients and 34 matched healthy controls. Neuropsychological tests were used to evaluate the cognitive function. We found that relapsing-remitting multiple sclerosis patients demonstrated significantly reduced gamma-aminobutyric acid and glutamate concentrations and aberrant functional connectivity involving cognitive-related networks compared to healthy controls, and both alterations were associated with specific cognition decline. Moreover, mediation analyses indicated that decremented hippocampus gamma-aminobutyric acid levels in relapsing-remitting multiple sclerosis patients mediated the association between inter-network functional connectivity in various components of default mode network and verbal memory deficits. In summary, our findings shed new lights on the essential function of GABAergic system abnormalities in regulating network dysconnectivity and functional connectivity in relapsing-remitting multiple sclerosis patients, suggesting potential novel approach to treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xianyun Cai
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
10
|
Lin S, Qi R, Lin X, Chen S, Zhang L, Qiu Y. Association Between MRI-Assessed Patterns of Connectome Gradient and Gene-Expression Profiles in Two Independent Patient Cohorts With Hepatitis B Virus-Related Cirrhosis. J Magn Reson Imaging 2023; 58:1863-1874. [PMID: 37022091 DOI: 10.1002/jmri.28732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Patients with hepatitis B virus-related cirrhosis (HBV-RC) exhibit progressive neurologic dysfunction from primary sensorimotor to high-order cognition, as their disease advances. However, the exact neurobiologic mechanisms and the potential association with gene-expression profiles are not fully understood. PURPOSE To explore the hierarchical disorganization in the large-scale functional connectomes in HBV-RC patients and to investigate its potential underlying molecular basis. STUDY TYPE Prospective. POPULATION Fifty HBV-RC patients and 40 controls (Cohort 1) and 30 HBV-RC patients and 38 controls (Cohort 2). FIELD STRENGTH/SEQUENCE Gradient-echo echo-planar and fast field echo sequences at 3.0 T (Cohort 1) and 1.5 T (Cohort 2). ASSESSMENT Data were processed with Dpabi and the BrainSpace package. Gradient scores were evaluated from global to voxel level. Cognitive measurement and patients grouping were based on psychometric hepatic encephalopathy scores. The whole-brain microarray-based gene-expression data were obtained from the AIBS website. STATISTICAL TESTS One-way ANOVA, chi-square test, two-sample t-test, Kruskal-Wallis test, Spearman's correlation coefficient (r), the gaussian random field correction, false discovery rate (FDR) correction and the Bonferroni correction. Significance level: P < 0.05. RESULTS HBV-RC patients exhibited a robust and replicable connectome gradient dysfunction, which was significantly associated with the gene-expression profiles in both cohorts (r = 0.52 and r = 0.56, respectively). The most correlated genes were enriched in γ-aminobutyric acid (GABA) and GABA-related receptor genes (FDR q value <0.05). Moreover, the connectome gradient dysfunction at network level observed in HBV-RC patients correlated with their poor cognitive performance (Cohort 2: visual network, r = -0.56; subcortical network, r = 0.66; frontoparietal network, r = 0.51). DATA CONCLUSION HBV-RC patients had hierarchical disorganization in the large-scale functional connectomes, which may underly their cognitive impairment. In addition, we showed the potential molecular mechanism of the connectome gradient dysfunction, which suggested the importance of GABA and GABA-related receptor genes. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Rongfeng Qi
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Reuveni I, Dan R, Canetti L, Bick AS, Segman R, Azoulay M, Kalla C, Bonne O, Goelman G. Aberrant Intrinsic Brain Network Functional Connectivity During a Face-Matching Task in Women Diagnosed With Premenstrual Dysphoric Disorder. Biol Psychiatry 2023; 94:492-500. [PMID: 37031779 DOI: 10.1016/j.biopsych.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) is characterized by affective, cognitive, and physical symptoms, suggesting alterations at the brain network level. Women with PMDD demonstrate aberrant discrimination of facial emotions during the luteal phase of the menstrual cycle and altered reactivity to emotional stimuli. However, previous studies assessing emotional task-related brain reactivity using region-of-interest or whole-brain analysis have reported conflicting findings. Therefore, we utilized both region-of-interest task-reactivity and seed-voxel functional connectivity (FC) approaches to test for differences in the default mode network, salience network, and central executive network between women with PMDD and control participants during an emotional-processing task that yields an optimal setup for investigating brain network changes in PMDD. METHODS Twenty-four women with PMDD and 27 control participants were classified according to the Daily Record of Severity of Problems. Participants underwent functional magnetic resonance imaging scans while completing the emotional face-matching task during the midfollicular and late-luteal phases of their menstrual cycle. RESULTS No significant between-group differences in brain reactivity were found using region-of-interest analysis. In the FC analysis, a main effect of diagnosis was found showing decreased default mode network connectivity, increased salience network connectivity, and decreased central executive network connectivity in women with PMDD compared with control participants. A significant interaction between menstrual cycle phase and diagnosis was found in the central executive network for right posterior parietal cortex and left inferior lateral occipital cortex connectivity. A post hoc analysis revealed stronger FC during the midfollicular than the late-luteal phase of PMDD. CONCLUSIONS Aberrant FC in the 3 brain networks involved in PMDD may indicate vulnerability to experience affective and cognitive symptoms of the disorder.
Collapse
Affiliation(s)
- Inbal Reuveni
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Rotem Dan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Laura Canetti
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atira S Bick
- Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Segman
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Moria Azoulay
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carmel Kalla
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Omer Bonne
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Gadi Goelman
- Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
12
|
Cohen JE, Holsen LM, Ironside M, Moser AD, Duda JM, Null KE, Perlo S, Richards CE, Nascimento NF, Du F, Zuo C, Misra M, Pizzagalli DA, Goldstein JM. Neural response to stress differs by sex in young adulthood. Psychiatry Res Neuroimaging 2023; 332:111646. [PMID: 37146439 PMCID: PMC10247431 DOI: 10.1016/j.pscychresns.2023.111646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/26/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
Increase in stress-related disorders in women begins post-puberty and persists throughout the lifespan. To characterize sex differences in stress response in early adulthood, we used functional magnetic resonance imaging while participants underwent a stress task in conjunction with serum cortisol levels and questionnaires assessing anxiety and mood. Forty-two healthy subjects aged 18-25 years participated (21M, 21F). Interaction of stress and sex in brain activation and connectivity were examined. Results demonstrated significant sex differences in brain activity with women exhibiting increased activation in regions that inhibit arousal compared to men during the stress paradigm. Women had increased connectivity among stress circuitry regions and default mode network, whereas men had increased connectivity between stress and cognitive control regions. In a subset of subjects (13F, 17M), we obtained gamma-aminobutyric acid (GABA) magnetic resonance spectroscopy in rostral anterior cingulate cortex (rostral ACC) and dorsolateral prefrotal cortex (dlPFC) and conducted exploratory analyses to relate GABA measurements with sex differences in brain activation and connectivity. Prefrontal GABA levels were negatively associated with inferior temporal gyrus activation in men and women and with ventromedial prefrontal cortex activation in men. Despite sex differences in neural response, we found similar subjective ratings of anxiety and mood, cortisol levels, and GABA levels between sexes, suggesting sex differences in brain activity result in similar behavioral responses among the sexes. These results help establish sex differences in healthy brain activity from which we can better understand sex differences underlying stress-associated illnesses.
Collapse
Affiliation(s)
- Justine E Cohen
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, USA
| | - Laura M Holsen
- Divison of Women's Health, Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham & Women's Hospital, Boston, MA, USA
| | - Maria Ironside
- Harvard Medical School, Boston, MA, USA; Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Amelia D Moser
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Jessica M Duda
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Kaylee E Null
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Sarah Perlo
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Christine E Richards
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Nara F Nascimento
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Fei Du
- Harvard Medical School, Boston, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Chun Zuo
- Harvard Medical School, Boston, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Madhusmita Misra
- Harvard Medical School, Boston, MA, USA; Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA, USA
| | - Diego A Pizzagalli
- Harvard Medical School, Boston, MA, USA; Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, USA; Divison of Women's Health, Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
14
|
Paparella I, Vanderwalle G, Stagg CJ, Maquet P. An integrated measure of GABA to characterize post-stroke plasticity. Neuroimage Clin 2023; 39:103463. [PMID: 37406594 PMCID: PMC10339061 DOI: 10.1016/j.nicl.2023.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Stroke is a major cause of death and chronic neurological disability. Despite the improvements in stroke care, the number of patients affected by stroke keeps increasing and many stroke survivors are left permanently disabled. Current therapies are limited in efficacy. Understanding the neurobiological mechanisms underlying post-stroke recovery is therefore crucial to find new therapeutic options to address this medical burden. Long-lasting and widespread alterations of γ-aminobutyric acid (GABA) neurotransmission seem to play a key role in stroke recovery. In this review we first discuss a possible model of GABAergic modulation of post-stroke plasticity. We then overview the techniques currently available to non-invasively assess GABA in patients and the conclusions drawn from this limited body of work. Finally, we address the remaining open questions to clarify GABAergic changes underlying post-stroke recovery, we briefly review possible ways to modulate GABA post stroke and propose a novel approach to thoroughly quantify GABA in stroke patients, by integrating its concentration, the activity of its receptors and its link with microstructural changes.
Collapse
Affiliation(s)
- Ilenia Paparella
- GIGA-Research, Cyclotron Research Center-In Vivo Imaging Unit, 8 allée du Six Août, Batiment B30, University of Liège, 4000 Liège, Belgium.
| | - Gilles Vanderwalle
- GIGA-Research, Cyclotron Research Center-In Vivo Imaging Unit, 8 allée du Six Août, Batiment B30, University of Liège, 4000 Liège, Belgium
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Research Council Brain Network Dynamics Unit, Oxford, UK
| | - Pierre Maquet
- GIGA-Research, Cyclotron Research Center-In Vivo Imaging Unit, 8 allée du Six Août, Batiment B30, University of Liège, 4000 Liège, Belgium; Department of Neurology, Domaine Universitaire du Sart Tilman, Bâtiment B35, CHU de Liège, 4000 Liège, Belgium
| |
Collapse
|
15
|
Chen X, Song X, Öngür D, Du F. Association of default-mode network neurotransmitters and inter-network functional connectivity in first episode psychosis. Neuropsychopharmacology 2023; 48:781-788. [PMID: 36788375 PMCID: PMC10066209 DOI: 10.1038/s41386-023-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Multiple psychiatric disorders are characterized by a failure to suppress default-mode network (DMN) activity during tasks and by weaker anti-correlations between DMN and other brain networks at rest. However, the cellular and molecular mechanisms underlying this phenomenon are poorly understood. At the cellular level, neuronal activity is regulated by multiple neurochemical processes including cycling of glutamate and GABA, the major excitatory and inhibitory neurotransmitters in brain. By combining functional MRI and magnetic resonance spectroscopy techniques, it has been shown that the neurotransmitter concentrations in DMN modulate not only functional activity during cognitive tasks, but also the functional connectivity between DMN and other brain networks such as frontoparietal executive control network (CN) at rest in the healthy brain. In the current study, we extend previous research to first episode psychosis (FEP) patients and their relatives. We detected higher glutamate (Glu) levels in the medial prefrontal cortex (MPFC) in FEP compared to healthy controls without a significant difference in GABA. We also observed a significantly lower functional anti-correlated connectivity between critical nodes within the DMN (MPFC) and CN (DLPFC) in FEP. Furthermore, the relationship between MPFC Glu and GABA concentrations and the functional anti-correlation that is seen in healthy people was absent in FEP patients. These findings imply that both the DMN Glu level and the interaction between DMN and CN are affected by the illness, as is the association between neurochemistry and functional connectivity. A better understanding of this observation could provide opportunities for developing novel treatment strategies for psychosis.
Collapse
Affiliation(s)
- Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Wuhan Zhongke Industrial Research Institute of Medical Science, Wuhan, Hubei, 430075, China
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Zuo CS, Lukas SE. Chronic cannabis use alters dACC-striatal glutamatergic balance. Pharmacol Biochem Behav 2023; 225:173544. [PMID: 37004979 PMCID: PMC10192043 DOI: 10.1016/j.pbb.2023.173544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Prefrontal and striatal glutamate plays an important role in modulating striatal dopamine levels and an imbalance in regional glutamate has been identified in several psychiatric conditions. We hypothesized that this imbalance also exists in cannabis use disorder (CUD). We recently quantified the difference in glutamate of dorsal anterior cingulate (dACC) and striatum regions in the frontostriatal pathway using proton MRS at baseline and on verified abstinent days 7 and 21 in chronic users of cannabis (n = 20) in comparison with age- and sex- matched non-using controls (n = 10). In addition, the Barratt Impulsiveness Scale-11 (BIS) was collected as a measure of inhibitory impulse control of the participants. We found that the difference in glutamate concentrations between the dACC and striatum (ΔdACC-strGlu) of the controls was significantly higher than that of cannabis users across the study timeline (F(1,28) = 18.32, p < 0.0005). The group difference was not affected by age, sex, or alcohol/cigarette consumption. On abstinent day 7, ΔdACC-strGlu was significantly correlated with the corresponding ΔdACC-strGABA among the users (r = 0.837, p < 0.00001). On day 21, ΔdACC-strGlu was negatively associated with monthly cannabis use days (Spearman's rho = -0.444, p = 0.05). Self-reported BIS and its subscales were significantly altered among the users compared to the controls across the study timeline (total F(1,28) = 7.0, p = 0.013; non-planning F(1,28) = 16.1, p < 0.0005; motor F(1,28) = 5.9, p = 0.022; cognitive F(1,28) = 6.1, p = 0.019). These data provide preliminary evidence that chronic cannabis use may lead to a dACC-striatal glutamate imbalance in conjunction with poor impulse control.
Collapse
Affiliation(s)
- Chun S Zuo
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | - Scott E Lukas
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|
17
|
Bavato F, Esposito F, Dornbierer DA, Zölch N, Quednow BB, Staempfli P, Landolt HP, Seifritz E, Bosch OG. Subacute changes in brain functional network connectivity after nocturnal sodium oxybate intake are associated with anterior cingulate GABA. Cereb Cortex 2023:7086058. [DOI: 10.1093/cercor/bhad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractSodium oxybate (γ-hydroxybutyrate, GHB) is an endogenous GHB/GABAB receptor agonist, clinically used to promote slow-wave sleep and reduce next-day sleepiness in disorders such as narcolepsy and fibromyalgia. The neurobiological signature of these unique therapeutic effects remains elusive. Promising current neuropsychopharmacological approaches to understand the neural underpinnings of specific drug effects address cerebral resting-state functional connectivity (rsFC) patterns and neurometabolic alterations. Hence, we performed a placebo-controlled, double-blind, randomized, cross-over pharmacological magnetic resonance imaging study with a nocturnal administration of GHB, combined with magnetic resonance spectroscopy of GABA and glutamate in the anterior cingulate cortex (ACC). In sum, 16 healthy male volunteers received 50 mg/kg GHB p.o. or placebo at 02:30 a.m. to maximize deep sleep enhancement and multi-modal brain imaging was performed at 09:00 a.m. of the following morning. Independent component analysis of whole-brain rsFC revealed a significant increase of rsFC between the salience network (SN) and the right central executive network (rCEN) after GHB intake compared with placebo. This SN-rCEN coupling was significantly associated with changes in GABA levels in the ACC (pall < 0.05). The observed neural pattern is compatible with a functional switch to a more extrinsic brain state, which may serve as a neurobiological signature of the wake-promoting effects of GHB.
Collapse
|
18
|
Koush Y, Rothman DL, Behar KL, de Graaf RA, Hyder F. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab 2022; 42:911-934. [PMID: 35078383 PMCID: PMC9125492 DOI: 10.1177/0271678x221076570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023]
Abstract
While functional MRI (fMRI) localizes brain activation and deactivation, functional MRS (fMRS) provides insights into the underlying metabolic conditions. There is much interest in measuring task-induced and resting levels of metabolites implicated in neuroenergetics (e.g., lactate, glucose, or β-hydroxybutyrate (BHB)) and neurotransmission (e.g., γ-aminobutyric acid (GABA) or pooled glutamate and glutamine (Glx)). Ultra-high magnetic field (e.g., 7T) has boosted the fMRS quantification precision, reliability, and stability of spectroscopic observations using short echo-time (TE) 1H-MRS techniques. While short TE 1H-MRS lacks sensitivity and specificity for fMRS at lower magnetic fields (e.g., 3T or 4T), most of these metabolites can also be detected by J-difference editing (JDE) 1H-MRS with longer TE to filter overlapping resonances. The 1H-MRS studies show that JDE can detect GABA, Glx, lactate, and BHB at 3T, 4T and 7T. Most recently, it has also been demonstrated that JDE 1H-MRS is capable of reliable detection of metabolic changes in different brain areas at various magnetic fields. Combining fMRS measurements with fMRI is important for understanding normal brain function, but also clinically relevant for mechanisms and/or biomarkers of neurological and neuropsychiatric disorders. We provide an up-to-date overview of fMRS research in the last three decades, both in terms of applications and technological advances. Overall the emerging fMRS techniques can be expected to contribute substantially to our understanding of metabolism for brain function and dysfunction.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Busler JN, Coello E, Liao H, Taylor J, Zhao W, Holsen LM, Lin AP, Mahon PB. Perceived Stress, Cortical GABA, and Functional Connectivity Correlates: A Hypothesis-Generating Preliminary Study. Front Psychiatry 2022; 13:802449. [PMID: 35350427 PMCID: PMC8957825 DOI: 10.3389/fpsyt.2022.802449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Stress exposures and dysregulated responses to stress are implicated in psychiatric disorders of mood, anxiety, and cognition. Perceived stress, an individual's appraisal of experienced stress and ability for coping, relates to dysregulated functioning in resting state brain networks. Alterations in GABAergic function may underlie perceived stress-related functional dysregulation in resting state networks but this has not yet been explored. Therefore, the current study examined the association of perceived stress, via the Perceived Stress Scale (PSS), with prefrontal GABA levels and corresponding resting state functional connectivity (RSFC) alterations. Twelve women and five men, ages 35-61, participated. MR spectroscopy was used to measure brain GABA levels in the anterior cingulate cortex (ACC), left dorsolateral prefrontal cortex (DLPFC), and ventromedial prefrontal cortex (VMPFC). Resting state functional scans acquired at 3 Tesla were used to measure RSFC within and between the default mode (DMN), salience (SN), and central executive networks (CEN), hippocampus and amygdala. We observed significant negative correlations between total PSS scores and left DLPFC GABA levels (r = -0.62, p = 0.023). However, PSS scores were not significantly correlated with RSFC measures (all p > 0.148). These preliminary results support a relationship between perceived stress and GABAergic functioning in DLPFC, a core node of the CEN, an intrinsic network thought to underlie goal-directed attentional processes. Our findings extend previous work suggesting that functioning in the CEN is related to perceived stress and may inform treatment strategies to improve outcomes in stress-related conditions.
Collapse
Affiliation(s)
- Jessica N. Busler
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Eduardo Coello
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Huijun Liao
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Jacob Taylor
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Wufan Zhao
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Laura M. Holsen
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Alexander P. Lin
- Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Pamela B. Mahon
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Alderson Myers AB, Arienzo D, Molnar SM, Marinkovic K. Local and network-level dysregulation of error processing is associated with binge drinking. NEUROIMAGE-CLINICAL 2021; 32:102879. [PMID: 34768146 PMCID: PMC8591397 DOI: 10.1016/j.nicl.2021.102879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/22/2023]
Abstract
Go/NoGo performance does not differ between binge (BDs) and light drinkers. BDs show greater BOLD activity to inhibition errors primarily in prefrontal areas. Greater functional connectivity in the frontal cortex correlates with drinking. Observed increase in error-related activity may serve a compensatory role. This is consistent with allostatic hyperexcitability reflecting neuroadaptation.
Binge drinking refers to the pattern of alcohol consumption that brings blood alcohol levels to or above legal intoxication levels. Commonly practiced by young adults, it is associated with neurofunctional alterations, raising health-related concerns. Executive deficits may contribute to the inability to refrain from excessive alcohol intake. As a facet of cognitive control, error processing allows for flexible modification of behavior to optimize future outcomes. It is highly relevant to addiction research, as a failure to inhibit excessive drinking results in relapses, which is a hallmark of alcohol use disorder. However, research on local and system-level neural underpinnings of inhibition failures as a function of binge drinking is limited. To address these gaps, functional magnetic resonance imaging (fMRI) was used to examine local changes and interregional functional connectivity during response inhibition errors on a Go/NoGo task. Young adult binge drinkers (BDs) performed equally well as light drinkers (LDs), a group of demographically matched individuals who drink regularly but in low-risk patterns. In contrast, BDs exhibited greater fMRI activity to inhibition errors contrasted with correct NoGo trials in the rostral anterior (rACC) and posterior cingulate cortices (PCC), as well as right middle frontal gyrus (R-MFG). Furthermore, BDs showed increased connectivity between the rACC and right lateral prefrontal cortex, in addition to greater connectivity between the R-MFG and the left ventrolateral and superior frontal cortices. Imaging indices were positively correlated only with alcohol-related measures, but not with those related to moods, disposition, or cognitive capacity. Taken together, greater error-related activity and expanded functional connectivity among prefrontal regions may serve a compensatory role to maintain efficiency of inhibitory control. Aligned with prominent models of addiction, these findings accentuate the importance of top-down control in maintaining low-risk drinking levels. They provide insight into potentially early signs of deteriorating cognitive control functions in BDs and may help guide intervention strategies aimed at preventing excessive drinking habits.
Collapse
Affiliation(s)
- Austin B Alderson Myers
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | - Donatello Arienzo
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | - Sean M Molnar
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | - Ksenija Marinkovic
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA; Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Ironside M, Moser AD, Holsen LM, Zuo CS, Du F, Perlo S, Richards CE, Duda JM, Chen X, Nickerson LD, Null KE, Nascimento N, Crowley DJ, Misra M, Goldstein JM, Pizzagalli DA. Reductions in rostral anterior cingulate GABA are associated with stress circuitry in females with major depression: a multimodal imaging investigation. Neuropsychopharmacology 2021; 46:2188-2196. [PMID: 34363015 PMCID: PMC8505659 DOI: 10.1038/s41386-021-01127-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
The interplay between cortical and limbic regions in stress circuitry calls for a neural systems approach to investigations of acute stress responses in major depressive disorder (MDD). Advances in multimodal imaging allow inferences between regional neurotransmitter function and activation in circuits linked to MDD, which could inform treatment development. The current study investigated the role of the inhibitory neurotransmitter GABA in stress circuitry in females with current and remitted MDD. Multimodal imaging data were analyzed from 49 young female adults across three groups (current MDD, remitted MDD (rMDD), and healthy controls). GABA was assessed at baseline using magnetic resonance spectroscopy, and functional MRI data were collected before, during, and after an acute stressor and analyzed using a network modeling approach. The MDD group showed an overall lower cortisol response than the rMDD group and lower rostral anterior cingulate cortex (ACC) GABA than healthy controls. Across groups, stress decreased activation in the frontoparietal network (FPN) but increased activation in the default mode network (DMN) and a network encompassing the ventromedial prefrontal cortex-striatum-anterior cingulate cortex (vmPFC-Str-ACC). Relative to controls, the MDD and rMDD groups were characterized by decreased FPN and salience network (SN) activation overall. Rostral ACC GABA was positively associated with connectivity between an overlapping limbic network (Temporal-Insula-Amygdala) and two other circuits (FPN and DMN). Collectively, these findings indicate that reduced GABA in females with MDD was associated with connectivity differences within and across key networks implicated in depression. GABAergic treatments for MDD might alleviate stress circuitry abnormalities in females.
Collapse
Affiliation(s)
- Maria Ironside
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Amelia D Moser
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- University of Colorado Boulder, Boulder, CO, USA
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, USA
- Divison of Women's Health, Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham & Women's Hospital, Boston, MA, USA
| | - Chun S Zuo
- Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Fei Du
- Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Research Program, McLean Hospital, Belmont, MA, USA
| | - Sarah Perlo
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Christine E Richards
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Jessica M Duda
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Xi Chen
- Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Research Program, McLean Hospital, Belmont, MA, USA
| | - Lisa D Nickerson
- Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Kaylee E Null
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Nara Nascimento
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - David J Crowley
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Madhusmita Misra
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill M Goldstein
- Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
22
|
Liu DY, Ju X, Gao Y, Han JF, Li Z, Hu XW, Tan ZL, Northoff G, Song XM. From Molecular to Behavior: Higher Order Occipital Cortex in Major Depressive Disorder. Cereb Cortex 2021; 32:2129-2139. [PMID: 34613359 DOI: 10.1093/cercor/bhab343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Medial prefrontal cortex (MPFC) and other regions like the occipital cortex (OC) exhibit abnormal neural activity in major depressive disorder (MDD). Their relationship to specific biochemical, psychophysical, and psychopathological changes remains unclear, though. For that purpose, we focus on a particular subregion in OC, namely middle temporal (MT) visual area that is known to mediate the perception of visual motion. Using high-field 7 T magnetic resonance imaging (MRI), including resting state functional MRI and proton magnetic resonance spectroscopy, the amplitude of low-frequency fluctuations (ALFF) of the blood oxygen level-dependent signal in MT, MT-seeded functional connectivity (FC), and gamma-aminobutyric acid (GABA) in MT were investigated. Applying the vision motion psychophysical task, the motion suppression index of subjects was also examined. We demonstrate significantly elevated neural variability (as measured by ALFF) in MT together with decreases in both MT GABA and motion suppression in our MDD sample. Unlike in healthy subjects, MT neural variability no longer modulates the relationship of MT GABA and motion suppression in MDD. MT also exhibits reduction in global inter-regional FC to MPFC in MDD. Finally, elevated MT ALFF relates to specifically retardation in behavior as measured by the Hamilton subscore. Together, MT provides a strong candidate for biomarker in MDD.
Collapse
Affiliation(s)
- Dong-Yu Liu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Jin-Fang Han
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhe Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xi-Wen Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhong-Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Georg Northoff
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,University of Ottawa Institute of Mental Health Research, University of Ottawa; Ottawa, ON, K1Z 7K4, Canada
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
24
|
Mawla I, Ichesco E, Zöllner HJ, Edden RAE, Chenevert T, Buchtel H, Bretz MD, Sloan H, Kaplan CM, Harte SE, Mashour GA, Clauw DJ, Napadow V, Harris RE. Greater Somatosensory Afference With Acupuncture Increases Primary Somatosensory Connectivity and Alleviates Fibromyalgia Pain via Insular γ-Aminobutyric Acid: A Randomized Neuroimaging Trial. Arthritis Rheumatol 2021; 73:1318-1328. [PMID: 33314799 DOI: 10.1002/art.41620] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Acupuncture is a complex multicomponent treatment that has shown promise in the treatment of fibromyalgia (FM). However, clinical trials have shown mixed results, possibly due to heterogeneous methodology and lack of understanding of the underlying mechanism of action. The present study was undertaken to understand the specific contribution of somatosensory afference to improvements in clinical pain, and the specific brain circuits involved. METHODS Seventy-six patients with FM were randomized to receive either electroacupuncture (EA), with somatosensory afference, or mock laser acupuncture (ML), with no somatosensory afference, twice a week over 8 treatments. Patients with FM in each treatment group were assessed for pain severity levels, measured using Brief Pain Inventory (BPI) scores, and for levels of functional brain network connectivity, assessed using resting state functional magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy in the right anterior insula, before and after treatment. RESULTS Fibromyalgia patients who received EA therapy experienced a greater reduction in pain severity, as measured by the BPI, compared to patients who received ML therapy (mean difference in BPI from pre- to posttreatment was -1.14 in the EA group versus -0.46 in the ML group; P for group × time interaction = 0.036). Participants receiving EA treatment, as compared to ML treatment, also exhibited resting functional connectivity between the primary somatosensory cortical representation of the leg (S1leg ; i.e. primary somatosensory subregion activated by EA) and the anterior insula. Increased S1leg -anterior insula connectivity was associated with both reduced levels of pain severity as measured by the BPI (r = -0.44, P = 0.01) and increased levels of γ-aminobutyric acid (GABA+) in the anterior insula (r = 0.48, P = 0.046) following EA therapy. Moreover, increased levels of GABA+ in the anterior insula were associated with reduced levels of pain severity as measured by the BPI (r = -0.59, P = 0.01). Finally, post-EA treatment changes in levels of GABA+ in the anterior insula mediated the relationship between changes in S1leg -anterior insula connectivity and pain severity on the BPI (bootstrap confidence interval -0.533, -0.037). CONCLUSION The somatosensory component of acupuncture modulates primary somatosensory functional connectivity associated with insular neurochemistry to reduce pain severity in FM.
Collapse
Affiliation(s)
| | | | - Helge J Zöllner
- Johns Hopkins University School of Medicine and Kennedy Krieger Institute, Baltimore, Maryland
| | - Richard A E Edden
- Johns Hopkins University School of Medicine and Kennedy Krieger Institute, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | - Vitaly Napadow
- Massachusetts General Hospital, Harvard Medical School, and Brigham and Women's Hospital, Boston, Massachusetts
| | | |
Collapse
|
25
|
Basu SK, Pradhan S, du Plessis AJ, Ben-Ari Y, Limperopoulos C. GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy. Neuroimage 2021; 238:118215. [PMID: 34058332 PMCID: PMC8404144 DOI: 10.1016/j.neuroimage.2021.118215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive and behavioral disabilities in preterm infants, even without obvious brain injury on conventional neuroimaging, underscores a critical need to identify the subtle underlying microstructural and biochemical derangements. The gamma-aminobutyric acid (GABA) and glutamatergic neurotransmitter systems undergo rapid maturation during the crucial late gestation and early postnatal life, and are at-risk of disruption after preterm birth. Animal and human autopsy studies provide the bulk of current understanding since non-invasive specialized proton magnetic resonance spectroscopy (1H-MRS) to measure GABA and glutamate are not routinely available for this vulnerable population due to logistical and technical challenges. We review the specialized 1H-MRS techniques including MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS), special challenges and considerations needed for interpretation of acquired data from the developing brain of preterm infants. We summarize the limited in-vivo preterm data, highlight the gaps in knowledge, and discuss future directions for optimal integration of available in-vivo approaches to understand the influence of GABA and glutamate on neurodevelopmental outcomes after preterm birth.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C., United States; Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Subechhya Pradhan
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Adre J du Plessis
- Fetal Medicine institute, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Yehezkel Ben-Ari
- Division of Neurology, Children's National Hospital, Washington, D.C., United States; Neurochlore, Marseille, France
| | - Catherine Limperopoulos
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States.
| |
Collapse
|
26
|
Posse S, Sa De La Rocque Guimaraes B, Hutchins-Delgado T, Vakamudi K, Fotso Tagne K, Moeller S, Dager SR. On the acquisition of the water signal during water suppression: High-speed MR spectroscopic imaging with water referencing and concurrent functional MRI. NMR IN BIOMEDICINE 2021; 34:e4261. [PMID: 31999397 PMCID: PMC7390701 DOI: 10.1002/nbm.4261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
This study evaluated the utility of concurrent water signal acquisition as part of the water suppression in MR spectroscopic imaging (MRSI), to allow simultaneous water referencing for metabolite quantification, and to concurrently acquire functional MRI (fMRI) data. We integrated a spatial-spectral binomial water excitation RF pulse and a short spatial-spectral echo-planar readout into the water suppression module of 2D and 3D proton-echo-planar-spectroscopic-imaging (PEPSI) with a voxel size as small as 4 x 4 x 6 mm3 . Metabolite quantification in reference to tissue water was validated in healthy controls for different prelocalization methods (spin-echo, PRESS and semi-LASER) and the clinical feasibility of a 3-minute 3D semi-Laser PEPSI scan (TR/TE: 1250/32 ms) with water referencing in patients with brain tumors was demonstrated. Spectral quality, SNR, Cramer-Rao-lower-bounds and water suppression efficiency were comparable with conventional PEPSI. Metabolite concentration values in reference to tissue water, using custom LCModel-based spectral fitting with relaxation correction, were in the range of previous studies and independent of the prelocalization method used. Next, we added a phase-encoding undersampled echo-volumar imaging (EVI) module during water suppression to concurrently acquire metabolite maps with water referencing and fMRI data during task execution and resting state in healthy controls. Integration of multimodal signal acquisition prolongated minimum TR by less than 50 ms on average. Visual and motor activation in concurrent fMRI/MRSI (TR: 1250-1500 ms, voxel size: 4 x 4 x 6 mm3 ) was readily detectable in single-task blocks with percent signal change comparable with conventional fMRI. Resting-state connectivity in sensory and motor networks was detectable in 4 minutes. This hybrid water suppression approach for multimodal imaging has the potential to significantly reduce scan time and extend neuroscience research and clinical applications through concurrent quantitative MRSI and fMRI acquisitions.
Collapse
Affiliation(s)
- Stefan Posse
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
| | - Bruno Sa De La Rocque Guimaraes
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
| | | | - Kishore Vakamudi
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Kevin Fotso Tagne
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Stephen R Dager
- Departments of Radiology and Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Muller AM, Pennington DL, Meyerhoff DJ. Substance-Specific and Shared Gray Matter Signatures in Alcohol, Opioid, and Polysubstance Use Disorder. Front Psychiatry 2021; 12:795299. [PMID: 35115969 PMCID: PMC8803650 DOI: 10.3389/fpsyt.2021.795299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders (SUD) have been shown to be associated with gray matter (GM) loss, particularly in the frontal cortex. However, unclear is to what degree these regional GM alterations are substance-specific or shared across different substances, and if these regional GM alterations are independent of each other or the result of system-level processes at the intrinsic connectivity network level. The T1 weighted MRI data of 65 treated patients with alcohol use disorder (AUD), 27 patients with opioid use disorder (OUD) on maintenance therapy, 21 treated patients with stimulant use disorder comorbid with alcohol use disorder (polysubstance use disorder patients, PSU), and 21 healthy controls were examined via data-driven vertex-wise and voxel-wise GM analyses. Then, structural covariance analyses and open-access fMRI database analyses were used to map the cortical thinning patterns found in the three SUD groups onto intrinsic functional systems. Among AUD and OUD, we identified both common cortical thinning in right anterior brain regions as well as SUD-specific regional GM alterations that were not present in the PSU group. Furthermore, AUD patients had not only the most extended regional thinning but also significantly smaller subcortical structures and cerebellum relative to controls, OUD and PSU individuals. The system-level analyses revealed that AUD and OUD showed cortical thinning in several functional systems. In the AUD group the default mode network was clearly most affected, followed by the salience and executive control networks, whereas the salience and somatomotor network were highlighted as critical for understanding OUD. Structural brain alterations in groups with different SUDs are largely unique in their spatial extent and functional network correlates.
Collapse
Affiliation(s)
- Angela M Muller
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.,VA Advanced Imaging Research Center (VAARC), San Francisco VA Medical Center, San Francisco, CA, United States
| | - David L Pennington
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States.,San Francisco Veterans Affairs Health Care System (SFVAHCS), San Francisco, CA, United States
| | - Dieter J Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.,VA Advanced Imaging Research Center (VAARC), San Francisco VA Medical Center, San Francisco, CA, United States
| |
Collapse
|
28
|
Kiemes A, Davies C, Kempton MJ, Lukow PB, Bennallick C, Stone JM, Modinos G. GABA, Glutamate and Neural Activity: A Systematic Review With Meta-Analysis of Multimodal 1H-MRS-fMRI Studies. Front Psychiatry 2021; 12:644315. [PMID: 33762983 PMCID: PMC7982484 DOI: 10.3389/fpsyt.2021.644315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Multimodal neuroimaging studies combining proton magnetic resonance spectroscopy (1H-MRS) to quantify GABA and/or glutamate concentrations and functional magnetic resonance imaging (fMRI) to measure brain activity non-invasively have advanced understanding of how neurochemistry and neurophysiology may be related at a macroscopic level. The present study aimed to perform a systematic review and meta-analysis of available studies examining the relationship between 1H-MRS glutamate and/or GABA levels and task-related fMRI signal in the healthy brain. Ovid (Medline, Embase, and PsycINFO) and Pubmed databases were systematically searched to identify articles published until December 2019. The primary outcome of interest was the association between resting levels of glutamate or GABA and task-related fMRI. Fifty-five papers were identified for inclusion in the systematic review. A further 22 studies were entered into four separate meta-analyses. These meta-analyses found evidence of significant negative associations between local GABA levels and (a) fMRI activation to visual tasks in the occipital lobe, and (b) activation to emotion processing in the medial prefrontal cortex (mPFC)/anterior cingulate cortex (ACC). However, there was no significant association between mPFC/ACC glutamate levels and fMRI activation to cognitive control tasks or to emotional processing, with the relationship to emotion processing related neural activity narrowly missing significance. Moreover, our systematic review also found converging evidence of negative associations between GABA levels and local brain activity, and positive associations between glutamate levels and distal brain activity, outside of the 1H-MRS sampling region. Albeit less consistently, additional relationships between GABA levels and distal brain activity and between glutamate levels and local brain activity were found. It remains unclear if the absence of effects for other brain regions and other cognitive-emotional domains reflects study heterogeneity or potential confounding effects of age, sex, or other unknown factors. Advances in 1H-MRS methodology as well as in the integration of 1H-MRS readouts with other imaging modalities for indexing neural activity hold great potential to reveal key aspects of the pathophysiology of mental health disorders involving aberrant interactions between neurochemistry and neurophysiology such as schizophrenia.
Collapse
Affiliation(s)
- Amanda Kiemes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Cathy Davies
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew J Kempton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paulina B Lukow
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carly Bennallick
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex & University of Brighton, Brighton, United Kingdom
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Medical Research Centre Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder. Mol Psychiatry 2021; 26:6747-6755. [PMID: 33863994 PMCID: PMC8760062 DOI: 10.1038/s41380-021-01090-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 11/08/2022]
Abstract
Major depressive disorder (MDD) is a complex state-dependent psychiatric illness for which biomarkers linking psychophysical, biochemical, and psychopathological changes remain yet elusive, though. Earlier studies demonstrate reduced GABA in lower-order occipital cortex in acute MDD leaving open its validity and significance for higher-order visual perception, though. The goal of our study is to fill that gap by combining psychophysical investigation of visual perception with measurement of GABA concentration in middle temporal visual area (hMT+) in acute depressed MDD. Psychophysically, we observe a highly specific deficit in visual surround motion suppression in a large sample of acute MDD subjects which, importantly, correlates with symptom severity. Both visual deficit and its relation to symptom severity are replicated in the smaller MDD sample that received MRS. Using high-field 7T proton Magnetic resonance spectroscopy (1H-MRS), acute MDD subjects exhibit decreased GABA concentration in visual MT+ which, unlike in healthy subjects, no longer correlates with their visual motion performance, i.e., impaired SI. In sum, our combined psychophysical-biochemical study demonstrates an important role of reduced occipital GABA for altered visual perception and psychopathological symptoms in acute MDD. Bridging the gap from the biochemical level of occipital GABA over visual-perceptual changes to psychopathological symptoms, our findings point to the importance of the occipital cortex in acute depressed MDD including its role as candidate biomarker.
Collapse
|
30
|
DeLisi LE. What a Clinician Should Know About the Neurobiology of Schizophrenia: A Historical Perspective to Current Understanding. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2020; 18:368-374. [PMID: 33343248 PMCID: PMC7725146 DOI: 10.1176/appi.focus.20200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The brain is no doubt the "organ" of psychiatry; yet, over the years, few evidence-based classifications of psychiatric disorders have been based on brain mechanisms. The National Institute of Mental Health notably proposed one such system, known as Research Domain Criteria, although it has not yet influenced any changes in the DSM. Of all the major psychiatric disorders, the brain has been studied most extensively in schizophrenia, with its speculative pathology first documented by Emil Kraepelin as early as the beginning of the 20th century. Subsequently, the revolution in technology over the past 50 years has changed how investigators are able to view the brain before death without performing biopsies. Schizophrenia is thus found to have both structural and functional widespread brain anomalies that likely lead to its clinical deterioration. At the onset of illness, acquiring an MRI scan could be part of the routine evaluation to determine how progressive the disease has so far been. However, this practice is not yet recognized by the American Psychiatric Association in any of its guidelines on the treatment of schizophrenia.
Collapse
Affiliation(s)
- Lynn E DeLisi
- Department of Psychiatry, Harvard Medical School, Boston, and Cambridge Health Alliance, Cambridge Hospital, Cambridge, Massachusetts
| |
Collapse
|
31
|
Cen H, Xu J, Yang Z, Mei L, Chen T, Zhuo K, Xiang Q, Song Z, Wang Y, Guo X, Wang J, Jiang K, Xu Y, Li Y, Liu D. Neurochemical and brain functional changes in the ventromedial prefrontal cortex of first-episode psychosis patients: A combined functional magnetic resonance imaging-proton magnetic resonance spectroscopy study. Aust N Z J Psychiatry 2020; 54:519-527. [PMID: 31958975 DOI: 10.1177/0004867419898520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Previous studies showed alterations of brain function in the ventromedial prefrontal cortex of schizophrenia patients. Also, neurochemical changes, especially GABA level alteration, have been found in the medial prefrontal cortex of schizophrenia patients. However, the relationship between GABA level in the ventromedial prefrontal cortex and brain functional activity in schizophrenia patients remains unexplored. METHODS In total, 23 drug-naïve, first-episode psychosis patients and 26 matched healthy controls completed the study. The single voxel proton magnetic resonance spectroscopy data were acquired in ventromedial prefrontal cortex region, which was used as the seed region for resting-state functional connectivity analysis. The proton magnetic resonance spectroscopy data were processed to quantify the concentrations of GABA+, glutamine and glutamate, and N-acetylaspartate in ventromedial prefrontal cortex. Spearman correlation analysis was used to examine the relationship between metabolite concentration, functional connectivity and clinical variables. Pearson correlation analysis was used to examine the relationship between GABA+ concentration and functional connectivity value. RESULTS In first-episode psychosis patients, GABA+ level in ventromedial prefrontal cortex was higher and was positively correlated with ventromedial prefrontal cortex-left middle orbital frontal cortex functional connectivity. N-acetylaspartate level was positively correlated with positive symptoms, and the functional connectivity between ventromedial prefrontal cortex and left precuneus was negatively associated with negative symptoms of first-episode psychosis patients. CONCLUSION Our results indicated that ventromedial prefrontal cortex functional connectivity changes were positively correlated with higher local GABA+ level in first-episode psychosis patients. The altered neurochemical concentration and functional connectivity provide insights into the pathology of schizophrenia.
Collapse
Affiliation(s)
- Haixin Cen
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiale Xu
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilei Yang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Mental Disorders, Shanghai Jiading Mental Health Center, Shanghai, China
| | - Li Mei
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Chen
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Outpatient Department, Shanghai Hongkou Mental Health Center, Shanghai, China
| | - Kaiming Zhuo
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Xiang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghua Song
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchan Wang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Guo
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaida Jiang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Xu
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Mental Health, Fudan University, Shanghai, China
| | - Yao Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dengtang Liu
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Mental Health, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Monteiro TS, Zivari Adab H, Chalavi S, Gooijers J, King BBR, Cuypers K, Mantini D, Swinnen SP. Reduced Modulation of Task-Related Connectivity Mediates Age-Related Declines in Bimanual Performance. Cereb Cortex 2020; 30:4346-4360. [PMID: 32133505 DOI: 10.1093/cercor/bhaa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aging is accompanied by marked changes in motor behavior and its neural correlates. At the behavioral level, age-related declines in motor performance manifest, for example, as a reduced capacity to inhibit interference between hands during bimanual movements, particularly when task complexity increases. At the neural level, aging is associated with reduced differentiation between distinct functional systems. Functional connectivity (FC) dedifferentiation is characterized by more homogeneous connectivity patterns across various tasks or task conditions, reflecting a reduced ability of the aging adult to modulate brain activity according to changing task demands. It is currently unknown, however, how whole-brain dedifferentiation interacts with increasing task complexity. In the present study, we investigated age- and task-related FC in a group of 96 human adults across a wide age range (19.9-74.5 years of age) during the performance of a bimanual coordination task of varying complexity. Our findings indicated stronger task complexity-related differentiation between visuomotor- and nonvisuomotor-related networks, though modulation capability decreased with increasing age. Decreased FC modulation mediated larger complexity-related increases in between-hand interference, reflective of worse bimanual coordination. Thus, the ability to maintain high motor performance levels in older adults is related to the capability to properly segregate and modulate functional networks.
Collapse
Affiliation(s)
- Thiago Santos Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Brad Bradley Ross King
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,REVAL Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dante Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan Patrick Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Muller AM, Meyerhoff DJ. Does an Over-Connected Visual Cortex Undermine Efforts to Stay Sober After Treatment for Alcohol Use Disorder? Front Psychiatry 2020; 11:536706. [PMID: 33362591 PMCID: PMC7758478 DOI: 10.3389/fpsyt.2020.536706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
A fine-tuned interplay of highly synchronized activity within and between the brain's communities is a crucial feature of the brain's functional organization. We wanted to investigate in individuals with alcohol use disorder (AUD) the degree to which the interplay of the brain's community-architecture and the extended brain reward system (eBRS) is affected by drinking status (relapse or abstinence). We used Graph Theory Analysis of resting-state fMRI data from treatment seekers at 1 month of abstinence to model the brain's intrinsic community configuration and their follow-up data as abstainers or relapsers 3 months later to quantify the degree of global across-community interaction between the eBRS and the intrinsic communities at both timepoints. After 1 month of abstinence, the ventromedial PFC in particular showed a significantly higher global across-community interaction in the 22 future relapsers when compared to 30 light/non-drinking controls. These differences were no longer present 3 months later when the relapsers had resumed drinking. We found no significant differences between abstainers and controls at either timepoint. Post hoc tests revealed that one eBRS region, the ventromedial PFC, showed a significant global across-community interaction with a community comprising the visual cortex in relapsers at baseline. In contrast, abstainers showed a significant negative association of the ventromedial PFC with the visual cortex. The increased across-community interaction of the ventromedial PFC and the visual cortex in relapsers at timepoint 1 may be an early indicator for treatment failure in a subgroup of AUD patients.
Collapse
Affiliation(s)
- Angela M Muller
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Dieter J Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
34
|
Najm R, Jones EA, Huang Y. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease. Mol Neurodegener 2019; 14:24. [PMID: 31186040 PMCID: PMC6558779 DOI: 10.1186/s13024-019-0324-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD), increasing risk and decreasing age of disease onset. Many studies have demonstrated the detrimental effects of apoE4 in varying cellular contexts. However, the underlying mechanisms explaining how apoE4 leads to cognitive decline are not fully understood. Recently, the combination of human induced pluripotent stem cell (hiPSC) modeling of neurological diseases in vitro and electrophysiological studies in vivo have begun to unravel the intersection between apoE4, neuronal subtype dysfunction or loss, subsequent network deficits, and eventual cognitive decline. In this review, we provide an overview of the literature describing apoE4's detrimental effects in the central nervous system (CNS), specifically focusing on its contribution to neuronal subtype dysfunction or loss. We focus on γ-aminobutyric acid (GABA)-expressing interneurons in the hippocampus, which are selectively vulnerable to apoE4-mediated neurotoxicity. Additionally, we discuss the importance of the GABAergic inhibitory network to proper cognitive function and how dysfunction of this network manifests in AD. Finally, we examine how apoE4-mediated GABAergic interneuron loss can lead to inhibitory network deficits and how this deficit results in cognitive decline. We propose the following working model: Aging and/or stress induces neuronal expression of apoE. GABAergic interneurons are selectively vulnerable to intracellularly produced apoE4, through a tau dependent mechanism, which leads to their dysfunction and eventual death. In turn, GABAergic interneuron loss causes hyperexcitability and dysregulation of neural networks in the hippocampus and cortex. This dysfunction results in learning, memory, and other cognitive deficits that are the central features of AD.
Collapse
Affiliation(s)
- Ramsey Najm
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94143, USA
| | - Emily A Jones
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, 94143, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94143, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, 94143, USA.
- Department of Neurology, University of California, San Francisco, CA, 94143, USA.
- Department of Pathology, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
35
|
A Resting-State Functional MR Imaging and Spectroscopy Study of the Dorsal Hippocampus in the Chronic Unpredictable Stress Rat Model. J Neurosci 2019; 39:3640-3650. [PMID: 30804096 DOI: 10.1523/jneurosci.2192-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/28/2023] Open
Abstract
Exposure to chronic stress leads to an array of anatomical, functional, and metabolic changes in the brain that play a key role in triggering psychiatric disorders such as depression. The hippocampus is particularly well known as a target of maladaptive responses to stress. To capture stress-induced changes in metabolic and functional connectivity in the hippocampus, stress-resistant (low-responders) or -susceptible (high-responders) rats exposed to a chronic unpredictable stress paradigm (categorized according to their hormonal and behavioral responses) were assessed by multimodal neuroimaging; the latter was achieved by using localized 1H MR spectroscopy and resting-state functional MRI (fMRI) at 11,7T data from stressed (n = 25) but also control (n = 15) male Wistar rats.Susceptible animals displayed increased GABA-glutamine (+19%) and glutamate-glutamine (+17%) ratios and decreased levels of macromolecules (-11%); these changes were positively correlated with plasma corticosterone levels. In addition, the neurotransmitter levels showed differential associations with functional connectivity between the hippocampus and the amygdala, the piriform cortex and thalamus between stress-resistant and -susceptible animals. Our observations are consistent with previously reported stress-induced metabolomic changes that suggest overall neurotransmitter dysfunction in the hippocampus. Their association with the fMRI data in this study reveals how local adjustments in neurochemistry relate to changes in the neurocircuitry of the hippocampus, with implications for its stress-associated dysfunctions.SIGNIFICANCE STATEMENT Chronic stress disrupts brain homeostasis, which may increase the vulnerability of susceptible individuals to neuropsychiatric disorders such as depression. Characterization of the differences between stress-resistant and -susceptible individuals on the basis of noninvasive imaging tools, such as magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI), contributes to improved understanding of the mechanisms underpinning individual differences in vulnerability and can facilitate the design of new diagnostic and intervention strategies. Using a combined functional MRI/MRS approach, our results demonstrate that susceptible- and non-susceptible subjects show differential alterations in hippocampal GABA and glutamate metabolism that, in turn, associate with changes in functional connectivity.
Collapse
|