1
|
García-García L, Gómez-Oliver F, Fernández de la Rosa R, Pozo MÁ. Dantrolene paradoxically exacerbates short-term brain glucose hypometabolism, hippocampal damage and neuroinflammation induced by status epilepticus in the rat lithium-pilocarpine model. Eur J Pharmacol 2024; 985:177073. [PMID: 39481630 DOI: 10.1016/j.ejphar.2024.177073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Status epilepticus (SE) is a neurologic emergency characterized by prolonged or rapidly recurring seizures. Increased intracellular calcium concentration ([Ca2+]i) occurring after SE is a key mediator of excitotoxicity that contributes to the brain damage associated with the development of epilepsy. Accumulated evidence indicates that dantrolene, a ryanodine receptor (RyR) blocker may have protective effects against the SE-induced damage. We evaluated whether dantrolene (10 mg/kg, i.p.) administered twice, 5 min and 24 h after the lithium-pilocarpine-induced SE in rats, had neuroprotective effects. Dantrolene by itself had no effects on control rats. However, it exacerbated the signs of damage in rats that underwent SE, increasing brain glucose hypometabolism as measured by PET neuroimaging 3 days after SE. Likewise, the neurohistochemical studies revealed that dantrolene aggravated signs of hippocampal neurodegeneration, neuronal death and microglia-induced neuroinflammation. Besides, the damaging effects were reflected by severe body weight loss. Overall, our results point towards a deleterious effect of dantrolene in the lithium-pilocarpine-induced SE model. Nonetheless, our results are in opposition to the reported neuroprotective effects of dantrolene. Whether the mechanisms underlying [Ca2+]i increase might significantly differ depending on the particularities of the model of epilepsy used and general experimental conditions need further studies. Besides, it is yet to be determined which isoform of RyRs significantly contributes to Ca2+-induced excitotoxicity in the lithium-pilocarpine SE rat model.
Collapse
Affiliation(s)
- Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Francisca Gómez-Oliver
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rubén Fernández de la Rosa
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; ICTS Bioimagen Complutense (BIOIMAC), Complutense University of Madrid, Madrid, Spain
| | - Miguel Ángel Pozo
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
2
|
Stern MA, Cole ER, Gutekunst CA, Yang JJ, Berglund K, Gross RE. Organellular imaging in vivo reveals a depletion of endoplasmic reticular calcium during post-ictal cortical spreading depolarization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614252. [PMID: 39386598 PMCID: PMC11463492 DOI: 10.1101/2024.09.21.614252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
During cortical spreading depolarization (CSD), neurons exhibit a dramatic increase in cytosolic calcium, which may be integral to CSD-mediated seizure termination. This calcium increase greatly exceeds that during seizures, suggesting the calcium source may not be solely extracellular. Thus, we sought to determine if the endoplasmic reticulum (ER), the largest intracellular calcium store, is involved. We developed a two-photon calcium imaging paradigm to simultaneously record the cytosol and ER during seizures in awake mice. Paired with direct current recording, we reveal that CSD can manifest as a slow post-ictal cytosolic calcium wave with a concomitant depletion of ER calcium that is spatiotemporally consistent with a calcium-induced calcium release. Importantly, we observed both naturally occurring and electrically induced CSD suppressed post-ictal epileptiform activity. Collectively, this work links ER dynamics to CSD, which serves as an innate process for seizure suppression and a potential mechanism underlying therapeutic electrical stimulation for epilepsy.
Collapse
Affiliation(s)
- Matthew A. Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Eric R. Cole
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E. Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Viana R, Rubio T, Campos-Rodríguez Á, Sanz P. Glial alterations in the glutamatergic and GABAergic signaling pathways in a mouse model of Lafora disease, a severe form of progressive myoclonus epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612874. [PMID: 39314331 PMCID: PMC11419120 DOI: 10.1101/2024.09.13.612874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies (LBs), in the brain but also in peripheral tissues. It is assumed that the accumulation of LBs is related to the appearance of the characteristic pathological features of the disease. In mouse models of LD, we and others have reported an increase in the levels of reactive astrocytes and activated microglia, which triggers the expression of the different pro-inflammatory mediators. Recently, we have demonstrated that the TNF and IL-6 inflammatory signaling pathways are the main mediators of the neuroinflammatory phenotype associated with the disease. In this work, we present evidence that the activation of these pathways produces a dysregulation in the levels of different subunits of the excitatory ionotropic glutamatergic receptors (phopho-GluN2B, phospho-GluA2, GluK2) and also an increase in the levels of the GABA transporter GAT1 in the hippocampus of the Epm2b-/- mice. In addition, we present evidence of the presence of activated forms of the Src and Lyn protein kinases in this area. These effects may increase the excitatory glutamatergic signaling and decrease the inhibitory GABAergic tone, leading to hyper-excitability. More importantly, the enhanced production of these subunits occurs in non-neuronal cells such as activated microglia and reactive astrocytes, pointing out a key role of glia in the pathophysiology of LD.
Collapse
|
4
|
Stern MA, Dingledine R, Gross RE, Berglund K. Epilepsy insights revealed by intravital functional optical imaging. Front Neurol 2024; 15:1465232. [PMID: 39268067 PMCID: PMC11390408 DOI: 10.3389/fneur.2024.1465232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Despite an abundance of pharmacologic and surgical epilepsy treatments, there remain millions of patients suffering from poorly controlled seizures. One approach to closing this treatment gap may be found through a deeper mechanistic understanding of the network alterations that underly this aberrant activity. Functional optical imaging in vertebrate models provides powerful advantages to this end, enabling the spatiotemporal acquisition of individual neuron activity patterns across multiple seizures. This coupled with the advent of genetically encoded indicators, be them for specific ions, neurotransmitters or voltage, grants researchers unparalleled access to the intact nervous system. Here, we will review how in vivo functional optical imaging in various vertebrate seizure models has advanced our knowledge of seizure dynamics, principally seizure initiation, propagation and termination.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurological Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Araki S, Onishi I, Ikoma Y, Matsui K. Astrocyte switch to the hyperactive mode. Glia 2024; 72:1418-1434. [PMID: 38591259 DOI: 10.1002/glia.24537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
Increasing pieces of evidence have suggested that astrocyte function has a strong influence on neuronal activity and plasticity, both in physiological and pathophysiological situations. In epilepsy, astrocytes have been shown to respond to epileptic neuronal seizures; however, whether they can act as a trigger for seizures has not been determined. Here, using the copper implantation method, spontaneous neuronal hyperactivity episodes were reliably induced during the week following implantation. With near 24-h continuous recording for over 1 week of the local field potential with in vivo electrophysiology and astrocyte cytosolic Ca2+ with the fiber photometry method, spontaneous occurrences of seizure episodes were captured. Approximately 1 day after the implantation, isolated aberrant astrocyte Ca2+ events were often observed before they were accompanied by neuronal hyperactivity, suggesting the role of astrocytes in epileptogenesis. Within a single developed episode, astrocyte Ca2+ increase preceded the neuronal hyperactivity by ~20 s, suggesting that actions originating from astrocytes could be the trigger for the occurrence of epileptic seizures. Astrocyte-specific stimulation by channelrhodopsin-2 or deep-brain direct current stimulation was capable of inducing neuronal hyperactivity. Injection of an astrocyte-specific metabolic inhibitor, fluorocitrate, was able to significantly reduce the magnitude of spontaneously occurring neuronal hyperactivity. These results suggest that astrocytes have a role in triggering individual seizures and the reciprocal astrocyte-neuron interactions likely amplify and exacerbate seizures. Therefore, future epilepsy treatment could be targeted at astrocytes to achieve epilepsy control.
Collapse
Affiliation(s)
- Shun Araki
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ichinosuke Onishi
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Chen L, Yang W, Yang F, Xu T, Yu Y, Wu Q, Han Y. Astrocyte mitochondria: Potential therapeutic targets for epilepsy. Heliyon 2024; 10:e29950. [PMID: 38756598 PMCID: PMC11096718 DOI: 10.1016/j.heliyon.2024.e29950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Epilepsy is a chronic, relapsing neurological disorder, and current treatments focus primarily on neurons, yet one-third of patients still develop drug-resistant epilepsy. Therefore, there is an urgent need to explore new therapeutic targets. Interestingly, astrocytes can transfer their healthy mitochondria into neighboring neurons, thus preventing neuronal damage. Astrocyte mitochondria have been shown to have a therapeutic role in stroke and neurodegenerative diseases. However, their therapeutic effect in epilepsy and its related mechanisms have been less studied. In this review, we mainly summarize the regulatory role of astrocyte mitochondria in glutamate, calcium ion, and adenosine triphosphate (ATP) homeostasis and outline the protective role of astrocyte mitochondria in nervous system diseases, revealing a new target for epilepsy treatment.
Collapse
Affiliation(s)
| | | | - Fei Yang
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Tingwan Xu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanying Yu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Qian Wu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| |
Collapse
|
7
|
Enger R, Heuser K. Astrocytes as critical players of the fine balance between inhibition and excitation in the brain: spreading depolarization as a mechanism to curb epileptic activity. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1360297. [PMID: 38405021 PMCID: PMC10884165 DOI: 10.3389/fnetp.2024.1360297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Spreading depolarizations (SD) are slow waves of complete depolarization of brain tissue followed by neuronal silencing that may play a role in seizure termination. Even though SD was first discovered in the context of epilepsy research, the link between SD and epileptic activity remains understudied. Both seizures and SD share fundamental pathophysiological features, and recent evidence highlights the frequent occurrence of SD in experimental seizure models. Human data on co-occurring seizures and SD are limited but suggestive. This mini-review addresses possible roles of SD during epileptiform activity, shedding light on SD as a potential mechanism for terminating epileptiform activity. A common denominator for many forms of epilepsy is reactive astrogliosis, a process characterized by morphological and functional changes to astrocytes. Data suggest that SD mechanisms are potentially perturbed in reactive astrogliosis and we propose that this may affect seizure pathophysiology.
Collapse
Affiliation(s)
- Rune Enger
- Letten Centre and GliaLab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
8
|
Gao X, You Z, Huang C, Liu Z, Tan Z, Li J, Liu Y, Liu X, Wei F, Fan Z, Qi S, Sun J. NCBP1 Improves Cognitive Function in Mice by Reducing Oxidative Stress, Neuronal Loss, and Glial Activation After Status Epilepticus. Mol Neurobiol 2023; 60:6676-6688. [PMID: 37474884 DOI: 10.1007/s12035-023-03497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Status epilepticus (SE) is a severe manifestation of epilepsy which can cause neurologic injury and death. This study aimed to identify key proteins involved in the pathogenesis of epilepsy and find a potential drug target for SE treatment. Tandem mass tag (TMT)-based quantitative proteomic analysis was applied to screen differentially expressed proteins (DEPs) in epilepsy. The adeno-associated virus was employed to overexpress candidate DEP in mice, and kainic acid (KA) was used to generate a mouse model of epilepsy. Then histopathological examination of the hippocampal tissue was performed, and the inflammatory factors levels in serum and hippocampus were measured. The IP-MS analysis was carried out to identify the interacting protein of nuclear cap-binding protein 1 (NCBP1). The results were that NCBP1 was downregulated in the epileptic hippocampus. NCBP1 overexpression alleviated KA-induced cognitive impairment in mice and reduced the apoptosis and damage of hippocampal neurons. Additionally, overexpressed NCBP1 increased the expression of NeuN and reduced the expression of GFAP and IBA-1 in the hippocampus of the mice. Further study indicated that NCBP1 overexpression inhibited the expression of IL-6, IL-1β, and IFN-γ in serum and hippocampus as well as MDA and LDH in the hippocampus, whereas it increased the SOD levels, suggesting that overexpression of NCBP1 could diminish KA-induced inflammatory responses and oxidative stress. The IP-MS analysis identified that ELAVL4 was the NCBP1-interacting protein. In conclusion, this finding suggests that NCBP1 may potentially serve as a drug target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Xiaoying Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhipeng You
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Cong Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhixiong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zixiao Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jiran Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xingan Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Fan Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhijie Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Jiahang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
9
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
10
|
Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 2023; 19:395-409. [PMID: 37308616 DOI: 10.1038/s41582-023-00822-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of disease-defining markers in conditions such as Alzheimer disease (amyloid-β and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other 'omics' technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance.
Collapse
Affiliation(s)
- Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
12
|
Tewari BP, Harshad PA, Singh M, Joshi NB, Joshi PG. Pilocarpine-induced acute seizure causes rapid area-specific astrogliosis and alters purinergic signaling in rat hippocampus. Brain Res 2023:148444. [PMID: 37290610 DOI: 10.1016/j.brainres.2023.148444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The progressive nature of acquired epilepsy warrants a thorough examination of acute changes that occur immediately after an epileptogenic insult to better understand the cellular and molecular mechanisms that trigger epileptogenesis. Astrocytes are important regulators of neuronal functions and emerging evidence suggests an involvement of astrocytic purinergic signaling in the etiology of acquired epilepsies. However, how astrocytic purinergic signaling responds immediately after an acute seizure or an epileptogenic insult to impact epileptogenesis is not well studied. In the present study, we report area-specific rapid onset of astrocytic changes in morphology, as well as in expression and functional activity of the purinergic signaling in the hippocampus that occur immediately after pilocarpine-induced stage 5 seizure. After 3 hours of stage 5 acute seizure, hippocampal astrocytes show increased intrinsic calcium activity in stratum radiatum as well as reactive astrogliosis in the stratum lacunosum moleculare and hilus regions of the hippocampus. Hilar astrocytes also upregulated the expression of P2Y1 and P2Y2 metabotropic purinergic receptors. Subsequently, P2Y1 exhibited a functional upregulation by showing a significantly higher intracellular calcium rise in ex-vivo hippocampal slices on P2Y1 activation. Our results suggest that hippocampal astrocytes undergo rapid area-specific morphological and functional changes immediately after the commencement of the seizure activity and purinergic receptors upregulation is one of the earliest changes in response to seizure activity. These changes can be considered acute astrocytic responses to seizure activity which can potentially drive the epileptogenesis and can be explored further to identify astrocyte-specific targets for seizure therapy.
Collapse
Affiliation(s)
- Bhanu P Tewari
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| | - P A Harshad
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Mahendra Singh
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nanda B Joshi
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Preeti G Joshi
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
13
|
Kumar K, Dubey V, Zaidi SS, Tripathi M, Siraj F, Sharma MC, Chandra PS, Doddamani R, Dixit AB, Banerjee J. RNA Sequencing of Intraoperative Peritumoral Tissues Reveals Potential Pathways Involved in Glioma-Related Seizures. J Mol Neurosci 2023; 73:437-447. [PMID: 37268865 DOI: 10.1007/s12031-023-02125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Tumor-induced changes in the peritumoral neocortex play a crucial role in generation of seizures. This study aimed to investigate the molecular mechanisms potentially involved in peritumoral epilepsy in low-grade gliomas (LGGs). Intraoperative peritumoral brain tissues resected from LGG patients with seizures (pGRS) or without seizures (pGNS) were used for RNA sequencing (RNA-seq). Comparative transcriptomics was performed to identify differentially expressed genes (DEGs) in pGRS compared to pGNS using deseq2 and edgeR packages (R). Gene set enrichment analysis (GSEA) using Gene Ontology terms and Kyoto Encyclopedia of Genes & Genomes (KEGG) pathways was performed using the clusterProfiler package (R). The expression of key genes was validated at the transcript and protein levels in the peritumoral region using real-time PCR and immunohistochemistry, respectively. A total of 1073 DEGs were identified in pGRS compared to pGNS, of which 559 genes were upregulated and 514 genes were downregulated (log2 fold-change ≥ 2, padj < 0.001). The DEGs in pGRS were highly enriched in the "Glutamatergic Synapse" and "Spliceosome" pathways, with increased expression of GRIN2A (NR2A), GRIN2B (NR2B), GRIA1 (GLUR1), GRIA3 (GLUR3), GRM5, CACNA1C, CACNA1A, and ITPR2. Moreover, increased immunoreactivity was observed for NR2A, NR2B, and GLUR1 proteins in the peritumoral tissues of GRS. These findings suggest that altered glutamatergic signaling and perturbed Ca2+ homeostasis may be potential causes of peritumoral epilepsy in gliomas. This explorative study identifies important genes/pathways that merit further characterization for their potential involvement in glioma-related seizures.
Collapse
Affiliation(s)
| | - Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Syeda S Zaidi
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Fouzia Siraj
- ICMR-National Institute of Pathology, New Delhi, India
| | | | | | | | - Aparna Banerjee Dixit
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
14
|
Jiang J, Yu Y. Pharmacologically targeting transient receptor potential channels for seizures and epilepsy: Emerging preclinical evidence of druggability. Pharmacol Ther 2023; 244:108384. [PMID: 36933703 PMCID: PMC10124570 DOI: 10.1016/j.pharmthera.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
As one of the most prevalent and disabling brain disorders, epilepsy is characterized by spontaneous seizures that result from aberrant, excessive hyperactivity of a group of highly synchronized brain neurons. Remarkable progress in epilepsy research and treatment over the first two decades of this century led to a dramatical expansion in the third-generation antiseizure drugs (ASDs). However, there are still over 30% of patients suffering from seizures resistant to the current medications, and the broad unbearable adversative effects of ASDs significantly impair the quality of life in about 40% of individuals affected by the disease. Prevention of epilepsy in those who are at high risks is another major unmet medical need, given that up to 40% of epilepsy patients are believed to have acquired causes. Therefore, it is important to identify novel drug targets that can facilitate the discovery and development of new therapies engaging unprecedented mechanisms of action that might overcome these significant limitations. Also over the last two decades, calcium signaling has been increasingly recognized as a key contributory factor in epileptogenesis of many aspects. The intracellular calcium homeostasis involves a variety of calcium-permeable cation channels, the most important of which perhaps are the transient receptor potential (TRP) ion channels. This review focuses on recent exciting advances in understanding of TRP channels in preclinical models of seizure disorders. We also provide emerging insights into the molecular and cellular mechanisms of TRP channels-engaged epileptogenesis that might lead to new antiseizure therapies, epilepsy prevention and modification, and even a cure.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
15
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
16
|
Yang X, Lv W, Yang Y, Yang J, Zhang H, Xu Z. Progesterone receptor membrane component 2 regulates the neuronal activity and participates in epileptic seizures in experimental mice. IBRAIN 2023; 10:356-365. [PMID: 39346797 PMCID: PMC11427800 DOI: 10.1002/ibra.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 10/01/2024]
Abstract
It was found the expression of progesterone receptor membrane component 2 (PGRMC2) in the histone of epileptic mice was lower than that of normal mice. In this study, we found by the immunofluorescence technique, PGRMC2 was expressed in both astrocytes and neurons of the mouse hippocampus. In addition, the seizure latency and seizure grade of mice in each group were observed after stereotactic injection of the PGRMC2 knockdown virus, PGRMC2 overexpression lentivirus, and related null virus into the hippocampus of mice. It was found that the seizure latency of mice in the PTZ + siPGRMC2 group was prolonged compared with the null virus group. The seizure latency was shortened in the PTZ + PGRMC2 group. The number of grade IV and above seizures in the PTZ + siPGRMC2 group was significantly reduced, while the number of grade IV and above seizures in the PTZ + PGRMC2 group was significantly increased. It was found that the nerve cells in the PTZ + siPGRMC2 group were still intact. In the PTZ + PGRMC2 group, the neural cells were damaged, the intercellular space was widened, and the number of cells was reduced. These findings support that PGRMC2 may be involved in epileptic seizures.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Wenbo Lv
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Yong Yang
- Division of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba Japan
| | - Juan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Haiqing Zhang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Zucai Xu
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University Zunyi Guizhou China
| |
Collapse
|
17
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
18
|
Differential vulnerability of anterior cingulate cortex cell types to diseases and drugs. Mol Psychiatry 2022; 27:4023-4034. [PMID: 35754044 PMCID: PMC9875728 DOI: 10.1038/s41380-022-01657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
In psychiatric disorders, mismatches between disease states and therapeutic strategies are highly pronounced, largely because of unanswered questions regarding specific vulnerabilities of different cell types and therapeutic responses. Which cellular events (housekeeping or salient) are most affected? Which cell types succumb first to challenges, and which exhibit the strongest response to drugs? Are these events coordinated between cell types? How does disease and drug effect this coordination? To address these questions, we analyzed single-nucleus-RNAseq (sn-RNAseq) data from the human anterior cingulate cortex-a region involved in many psychiatric disorders. Density index, a metric for quantifying similarities and dissimilarities across functional profiles, was employed to identify common or salient functional themes across cell types. Cell-specific signatures were integrated with existing disease and drug-specific signatures to determine cell-type-specific vulnerabilities, druggabilities, and responsiveness. Clustering of functional profiles revealed cell types jointly participating in these events. SST and VIP interneurons were found to be most vulnerable, whereas pyramidal neurons were least. Overall, the disease state is superficial layer-centric, influences cell-specific salient themes, strongly impacts disinhibitory neurons, and influences astrocyte interaction with a subset of deep-layer pyramidal neurons. In absence of disease, drugs profiles largely recapitulate disease profiles, offering a possible explanation for drug side effects. However, in presence of disease, drug activities, are deep layer-centric and involve activating a distinct subset of deep-layer pyramidal neurons to circumvent the disease state's disinhibitory circuit malfunction. These findings demonstrate a novel application of sn-RNAseq data to explain drug and disease action at a systems level.
Collapse
|
19
|
Yu Y, Li W, Jiang J. TRPC channels as emerging targets for seizure disorders. Trends Pharmacol Sci 2022; 43:787-798. [PMID: 35840362 PMCID: PMC9378536 DOI: 10.1016/j.tips.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is characterized by seizures of diverse types that affect about 1-2% of the population worldwide. Current antiseizure medications are unsatisfactory, as they merely provide symptomatic relief, are ineffective in about one-third of patients, and cause unbearable adverse effects. Transient receptor potential canonical (TRPC) channels are a group of nonselective cation channels involved in many physiological functions. In this review, we provide an overview of recent preclinical studies using both genetic and pharmacological strategies that reveal these receptor-operated calcium-permeable channels may also play fundamental roles in many aspects of epileptic seizures. We also propose that TRPC channels represent appealing targets for epilepsy treatment, with a goal of helping to advance the discovery and development of new antiseizure and/or antiepileptogenic therapies.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Ingiosi AM, Frank MG. Noradrenergic Signaling in Astrocytes Influences Mammalian Sleep Homeostasis. Clocks Sleep 2022; 4:332-345. [PMID: 35892990 PMCID: PMC9326550 DOI: 10.3390/clockssleep4030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Astrocytes influence sleep expression and regulation, but the cellular signaling pathways involved in these processes are poorly defined. We proposed that astrocytes detect and integrate a neuronal signal that accumulates during wakefulness, thereby leading to increased sleep drive. Noradrenaline (NA) satisfies several criteria for a waking signal integrated by astrocytes. We therefore investigated the role of NA signaling in astrocytes in mammalian sleep. We conditionally knocked out (cKO) β2-adrenergic receptors (β2-AR) selectively in astrocytes in mice and recorded electroencephalographic and electromyographic activity under baseline conditions and in response to sleep deprivation (SDep). cKO of astroglial β2-ARs increased active phase siesta duration under baseline conditions and reduced homeostatic compensatory changes in sleep consolidation and non-rapid eye movement slow-wave activity (SWA) after SDep. Overall, astroglial NA β2-ARs influence mammalian sleep homeostasis in a manner consistent with our proposed model of neuronal-astroglial interactions.
Collapse
Affiliation(s)
- Ashley M. Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Marcos G. Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
- Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
21
|
Abstract
Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in China and quickly spread across the globe. Despite tremendous economic and healthcare devastation, research on this virus has contributed to a better understanding of numerous molecular pathways, including those involving γ-aminobutyric acid (GABA), that will positively impact medical science, including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2). Among its many functions, this protein upregulates GABA, protecting not only the central nervous system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2 usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this perspective article, we take a closer look at the pathology emerging from the viral hijacking of non-neuronal GABA and summarize potential interventions for restoring these systems.
Collapse
|
22
|
Koizumi S, Shigetomi E, Sano F, Saito K, Kim SK, Nabekura J. Abnormal Ca 2+ Signals in Reactive Astrocytes as a Common Cause of Brain Diseases. Int J Mol Sci 2021; 23:149. [PMID: 35008573 PMCID: PMC8745111 DOI: 10.3390/ijms23010149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
In pathological brain conditions, glial cells become reactive and show a variety of responses. We examined Ca2+ signals in pathological brains and found that reactive astrocytes share abnormal Ca2+ signals, even in different types of diseases. In a neuropathic pain model, astrocytes in the primary sensory cortex became reactive and showed frequent Ca2+ signals, resulting in the production of synaptogenic molecules, which led to misconnections of tactile and pain networks in the sensory cortex, thus causing neuropathic pain. In an epileptogenic model, hippocampal astrocytes also became reactive and showed frequent Ca2+ signals. In an Alexander disease (AxD) model, hGFAP-R239H knock-in mice showed accumulation of Rosenthal fibers, a typical pathological marker of AxD, and excessively large Ca2+ signals. Because the abnormal astrocytic Ca2+ signals observed in the above three disease models are dependent on type II inositol 1,4,5-trisphosphate receptors (IP3RII), we reanalyzed these pathological events using IP3RII-deficient mice and found that all abnormal Ca2+ signals and pathologies were markedly reduced. These findings indicate that abnormal Ca2+ signaling is not only a consequence but may also be greatly involved in the cause of these diseases. Abnormal Ca2+ signals in reactive astrocytes may represent an underlying pathology common to multiple diseases.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan; (E.S.); (F.S.); (K.S.)
- GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan; (E.S.); (F.S.); (K.S.)
- GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan; (E.S.); (F.S.); (K.S.)
- GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan; (E.S.); (F.S.); (K.S.)
- GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan;
| |
Collapse
|
23
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
24
|
Schweigmann M, Caudal LC, Stopper G, Scheller A, Koch KP, Kirchhoff F. Versatile Surface Electrodes for Combined Electrophysiology and Two-Photon Imaging of the Mouse Central Nervous System. Front Cell Neurosci 2021; 15:720675. [PMID: 34447299 PMCID: PMC8383317 DOI: 10.3389/fncel.2021.720675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding and modulating CNS function in physiological as well as pathophysiological contexts remains a significant ambition in research and clinical applications. The investigation of the multifaceted CNS cell types including their interactions and contributions to neural function requires a combination of the state-of-the-art in vivo electrophysiology and imaging techniques. We developed a novel type of liquid crystal polymer (LCP) surface micro-electrode manufactured in three customized designs with up to 16 channels for recording and stimulation of brain activity. All designs include spare central spaces for simultaneous 2P-imaging. Nanoporous platinum-plated contact sites ensure a low impedance and high current transfer. The epidural implantation of the LCP micro-electrodes could be combined with standard cranial window surgery. The epidurally positioned electrodes did not only display long-term biocompatibility, but we also observed an additional stabilization of the underlying CNS tissue. We demonstrate the electrode’s versatility in combination with in vivo 2P-imaging by monitoring anesthesia-awake cycles of transgenic mice with GCaMP3 expression in neurons or astrocytes. Cortical stimulation and simultaneous 2P Ca2+ imaging in neurons or astrocytes highlighted the astrocytes’ integrative character in neuronal activity processing. Furthermore, we confirmed that spontaneous astroglial Ca2+ signals are dampened under anesthesia, while evoked signals in neurons and astrocytes showed stronger dependency on stimulation intensity rather than on various levels of anesthesia. Finally, we show that the electrodes provide recordings of the electrocorticogram (ECoG) with a high signal-to noise ratio and spatial signal differences which help to decipher brain activity states during experimental procedures. Summarizing, the novel LCP surface micro-electrode is a versatile, convenient, and reliable tool to investigate brain function in vivo.
Collapse
Affiliation(s)
- Michael Schweigmann
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.,Department of Electrical Engineering, Trier University of Applied Sciences, Trier, Germany
| | - Laura C Caudal
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Gebhard Stopper
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Klaus P Koch
- Department of Electrical Engineering, Trier University of Applied Sciences, Trier, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
25
|
Heuser K, Enger R. Astrocytic Ca 2+ Signaling in Epilepsy. Front Cell Neurosci 2021; 15:695380. [PMID: 34335188 PMCID: PMC8320018 DOI: 10.3389/fncel.2021.695380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders – estimated to affect at least 65 million worldwide. Most of the epilepsy research has so far focused on how to dampen neuronal discharges and to explain how changes in intrinsic neuronal activity or network function cause seizures. As a result, pharmacological therapy has largely been limited to symptomatic treatment targeted at neurons. Given the expanding spectrum of functions ascribed to the non-neuronal constituents of the brain, in both physiological brain function and in brain disorders, it is natural to closely consider the roles of astrocytes in epilepsy. It is now widely accepted that astrocytes are key controllers of the composition of the extracellular fluids, and may directly interact with neurons by releasing gliotransmitters. A central tenet is that astrocytic intracellular Ca2+ signals promote release of such signaling substances, either through synaptic or non-synaptic mechanisms. Accruing evidence suggests that astrocytic Ca2+ signals play important roles in both seizures and epilepsy, and this review aims to highlight the current knowledge of the roles of this central astrocytic signaling mechanism in ictogenesis and epileptogenesis.
Collapse
Affiliation(s)
- Kjell Heuser
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rune Enger
- Letten Centre and GliaLab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Peterson AR, Garcia TA, Cullion K, Tiwari-Woodruff SK, Pedapati EV, Binder DK. Targeted overexpression of glutamate transporter-1 reduces seizures and attenuates pathological changes in a mouse model of epilepsy. Neurobiol Dis 2021; 157:105443. [PMID: 34246771 DOI: 10.1016/j.nbd.2021.105443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/06/2023] Open
Abstract
Astrocytic glutamate transporters are crucial for glutamate homeostasis in the brain, and dysregulation of these transporters can contribute to the development of epilepsy. Glutamate transporter-1 (GLT-1) is responsible for the majority of glutamate uptake in the dorsal forebrain and has been shown to be reduced at epileptic foci in patients and preclinical models of temporal lobe epilepsy (TLE). Current antiepileptic drugs (AEDs) work primarily by targeting neurons directly through suppression of excitatory neurotransmission or enhancement of inhibitory neurotransmission, which can lead to both behavioral and psychiatric side effects. This study investigates the therapeutic capacity of astrocyte-specific AAV-mediated GLT-1 expression in the intrahippocampal kainic acid (IHKA) model of TLE. In this study, we used Western blot analysis, immunohistochemistry, and long-term-video EEG monitoring to demonstrate that cell-type-specific upregulation of GLT-1 in astrocytes is neuroprotective at early time points during epileptogenesis, reduces seizure frequency and total time spent in seizures, and eliminates large behavioral seizures in the IHKA model of epilepsy. Our findings suggest that targeting glutamate uptake is a promising therapeutic strategy for the treatment of epilepsy.
Collapse
Affiliation(s)
- Allison R Peterson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, CA, USA
| | - Terese A Garcia
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, CA, USA
| | - Kyle Cullion
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, CA, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Devin K Binder
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
27
|
Zaitsev АV, Amakhin DV, Dyomina AV, Zakharova MV, Ergina JL, Postnikova TY, Diespirov GP, Magazanik LG. Synaptic Dysfunction in Epilepsy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302103008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
An inventory of basic research in temporal lobe epilepsy. Rev Neurol (Paris) 2021; 177:1069-1081. [PMID: 34176659 DOI: 10.1016/j.neurol.2021.02.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022]
Abstract
Temporal lobe epilepsy is a severe neurological disease, characterized by seizure occurrence and invalidating cognitive co-morbidities, which affects up to 1% of the adults. Roughly one third of the patients are resistant to any conventional pharmacological treatments. The last option in that case is the surgical removal of the epileptic focus, with no guarantee for clinical symptom alleviation. This state of affairs requests the identification of cellular or molecular targets for novel therapeutic approaches with limited side effects. Here we review some generalities about the disease as well as some of the most recent discoveries about the cellular and molecular mechanisms of TLE, and the latest perspectives for novel treatments.
Collapse
|
29
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
30
|
Neuron and astrocyte aggregation and sorting in three-dimensional neuronal constructs. Commun Biol 2021; 4:587. [PMID: 34002005 PMCID: PMC8129100 DOI: 10.1038/s42003-021-02104-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Aggregation and self-sorting of cells in three dimensional cultures have been described for non-neuronal cells. Despite increased interest in engineered neural tissues for treating brain injury or for modeling neurological disorders in vitro, little data is available on collective cell movements in neuronal aggregates. Migration and sorting of cells may alter these constructs' morphology and, therefore, the function of their neural circuitry. In this work, linear, adhered rat and human 3D neuronal-astrocyte cultures were developed to enable the study of aggregation and sorting of these cells. An in silico model of the contraction, clustering, and cell sorting in the 3D cultures was also developed. Experiments and computational modeling showed that aggregation was mainly a neuron mediated process, and formation of astrocyte-rich sheaths in 3D cultures depended on differential attraction between neurons and astrocytes. In silico model predicted formation of self-assembled neuronal layers in disk-shaped 3D cultures. Neuronal activity patterns were found to correlate with local morphological differences. This model of neuronal and astrocyte aggregation and sorting may benefit future design of neuronal constructs.
Collapse
|
31
|
Sano F, Shigetomi E, Shinozaki Y, Tsuzukiyama H, Saito K, Mikoshiba K, Horiuchi H, Cheung DL, Nabekura J, Sugita K, Aihara M, Koizumi S. Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus. JCI Insight 2021; 6:135391. [PMID: 33830944 PMCID: PMC8262323 DOI: 10.1172/jci.insight.135391] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Extensive activation of glial cells during a latent period has been well documented in various animal models of epilepsy. However, it remains unclear whether activated glial cells contribute to epileptogenesis, i.e., the chronically persistent process leading to epilepsy. Particularly, it is not clear whether interglial communication between different types of glial cells contributes to epileptogenesis, because past literature has mainly focused on one type of glial cell. Here, we show that temporally distinct activation profiles of microglia and astrocytes collaboratively contributed to epileptogenesis in a drug-induced status epilepticus model. We found that reactive microglia appeared first, followed by reactive astrocytes and increased susceptibility to seizures. Reactive astrocytes exhibited larger Ca2+ signals mediated by IP3R2, whereas deletion of this type of Ca2+ signaling reduced seizure susceptibility after status epilepticus. Immediate, but not late, pharmacological inhibition of microglial activation prevented subsequent reactive astrocytes, aberrant astrocyte Ca2+ signaling, and the enhanced seizure susceptibility. These findings indicate that the sequential activation of glial cells constituted a cause of epileptogenesis after status epilepticus. Thus, our findings suggest that the therapeutic target to prevent epilepsy after status epilepticus should be shifted from microglia (early phase) to astrocytes (late phase).
Collapse
Affiliation(s)
- Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Department of Pediatrics, Faculty of Medicine, and.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Haruka Tsuzukiyama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Dennis Lawrence Cheung
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kanji Sugita
- Department of Pediatrics, Faculty of Medicine, and
| | - Masao Aihara
- Department of Pediatrics, Faculty of Medicine, and
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
32
|
Moshkforoush A, Balachandar L, Moncion C, Montejo KA, Riera J. Unraveling ChR2-driven stochastic Ca2+ dynamics in astrocytes: A call for new interventional paradigms. PLoS Comput Biol 2021; 17:e1008648. [PMID: 33566841 PMCID: PMC7875401 DOI: 10.1371/journal.pcbi.1008648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023] Open
Abstract
Optogenetic targeting of astrocytes provides a robust experimental model to differentially induce Ca2+ signals in astrocytes in vivo. However, a systematic study quantifying the response of optogenetically modified astrocytes to light is yet to be performed. Here, we propose a novel stochastic model of Ca2+ dynamics in astrocytes that incorporates a light sensitive component-channelrhodopsin 2 (ChR2). Utilizing this model, we investigated the effect of different light stimulation paradigms on cells expressing select variants of ChR2 (wild type, ChETA, and ChRET/TC). Results predict that depending on paradigm specification, astrocytes might undergo drastic changes in their basal Ca2+ level and spiking probability. Furthermore, we performed a global sensitivity analysis to assess the effect of variation in parameters pertinent to the shape of the ChR2 photocurrent on astrocytic Ca2+ dynamics. Results suggest that directing variants towards the first open state of the ChR2 photocycle (o1) enhances spiking activity in astrocytes during optical stimulation. Evaluation of the effect of Ca2+ buffering and coupling coefficient in a network of ChR2-expressing astrocytes demonstrated basal level elevations in the stimulated region and propagation of calcium activity to unstimulated cells. Buffering reduced the diffusion range of Ca2+ within the network, thereby limiting propagation and influencing the activity of astrocytes. Collectively, the framework presented in this study provides valuable information for the selection of light stimulation paradigms that elicit desired astrocytic activity using existing ChR2 constructs, as well as aids in the engineering of future application-oriented optogenetic variants.
Collapse
Affiliation(s)
- Arash Moshkforoush
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
| | - Lakshmini Balachandar
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
| | - Carolina Moncion
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
| | - Karla A. Montejo
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jorge Riera
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
33
|
Dynamic Transitions in Neuronal Network Firing Sustained by Abnormal Astrocyte Feedback. Neural Plast 2020; 2020:8864246. [PMID: 33299401 PMCID: PMC7704208 DOI: 10.1155/2020/8864246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Astrocytes play a crucial role in neuronal firing activity. Their abnormal state may lead to the pathological transition of neuronal firing patterns and even induce seizures. However, there is still little evidence explaining how the astrocyte network modulates seizures caused by structural abnormalities, such as gliosis. To explore the role of gliosis of the astrocyte network in epileptic seizures, we first established a direct astrocyte feedback neuronal network model on the basis of the hippocampal CA3 neuron-astrocyte model to simulate the condition of gliosis when astrocyte processes swell and the feedback to neurons increases in an abnormal state. We analyzed the firing pattern transitions of the neuronal network when astrocyte feedback starts to change via increases in both astrocyte feedback intensity and the connection probability of astrocytes to neurons in the network. The results show that as the connection probability and astrocyte feedback intensity increase, neuronal firing transforms from a nonepileptic synchronous firing state to an asynchronous firing state, and when astrocyte feedback starts to become abnormal, seizure-like firing becomes more severe and synchronized; meanwhile, the synchronization area continues to expand and eventually transforms into long-term seizure-like synchronous firing. Therefore, our results prove that astrocyte feedback can regulate the firing of the neuronal network, and when the astrocyte network develops gliosis, there will be an increase in the induction rate of epileptic seizures.
Collapse
|
34
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
35
|
Caudal LC, Gobbo D, Scheller A, Kirchhoff F. The Paradox of Astroglial Ca 2 + Signals at the Interface of Excitation and Inhibition. Front Cell Neurosci 2020; 14:609947. [PMID: 33324169 PMCID: PMC7726216 DOI: 10.3389/fncel.2020.609947] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Astroglial networks constitute a non-neuronal communication system in the brain and are acknowledged modulators of synaptic plasticity. A sophisticated set of transmitter receptors in combination with distinct secretion mechanisms enables astrocytes to sense and modulate synaptic transmission. This integrative function evolved around intracellular Ca2+ signals, by and large considered as the main indicator of astrocyte activity. Regular brain physiology meticulously relies on the constant reciprocity of excitation and inhibition (E/I). Astrocytes are metabolically, physically, and functionally associated to the E/I convergence. Metabolically, astrocytes provide glutamine, the precursor of both major neurotransmitters governing E/I in the central nervous system (CNS): glutamate and γ-aminobutyric acid (GABA). Perisynaptic astroglial processes are structurally and functionally associated with the respective circuits throughout the CNS. Astonishingly, in astrocytes, glutamatergic as well as GABAergic inputs elicit similar rises in intracellular Ca2+ that in turn can trigger the release of glutamate and GABA as well. Paradoxically, as gliotransmitters, these two molecules can thus strengthen, weaken or even reverse the input signal. Therefore, the net impact on neuronal network function is often convoluted and cannot be simply predicted by the nature of the stimulus itself. In this review, we highlight the ambiguity of astrocytes on discriminating and affecting synaptic activity in physiological and pathological state. Indeed, aberrant astroglial Ca2+ signaling is a key aspect of pathological conditions exhibiting compromised network excitability, such as epilepsy. Here, we gather recent evidence on the complexity of astroglial Ca2+ signals in health and disease, challenging the traditional, neuro-centric concept of segregating E/I, in favor of a non-binary, mutually dependent perspective on glutamatergic and GABAergic transmission.
Collapse
Affiliation(s)
- Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
36
|
Ingiosi AM, Hayworth CR, Harvey DO, Singletary KG, Rempe MJ, Wisor JP, Frank MG. A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation. Curr Biol 2020; 30:4373-4383.e7. [PMID: 32976809 PMCID: PMC7919541 DOI: 10.1016/j.cub.2020.08.052] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
Mammalian sleep expression and regulation have historically been thought to reflect the activity of neurons. Changes in other brain cells (glia) across the sleep-wake cycle and their role in sleep regulation are comparatively unexplored. We show that sleep and wakefulness are accompanied by state-dependent changes in astroglial activity. Using a miniature microscope in freely behaving mice and a two-photon microscope in head-fixed, unanesthetized mice, we show that astroglial calcium signals are highest in wake and lowest in sleep and are most pronounced in astroglial processes. We also find that astroglial calcium signals during non-rapid eye movement sleep change in proportion to sleep need. In contrast to neurons, astrocytes become less synchronized during non-rapid eye movement sleep after sleep deprivation at the network and single-cell level. Finally, we show that conditionally reducing intracellular calcium in astrocytes impairs the homeostatic response to sleep deprivation. Thus, astroglial calcium activity changes dynamically across vigilance states, is proportional to sleep need, and is a component of the sleep homeostat.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Christopher R Hayworth
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Daniel O Harvey
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Kristan G Singletary
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Michael J Rempe
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA; Department of Mathematics and Computer Science, Whitworth University, West Hawthorne Road, Spokane, WA 99251, USA
| | - Jonathan P Wisor
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA.
| |
Collapse
|
37
|
Okubo Y. Astrocytic Ca2+ signaling mediated by the endoplasmic reticulum in health and disease. J Pharmacol Sci 2020; 144:83-88. [DOI: 10.1016/j.jphs.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
|
38
|
Peterson AR, Binder DK. Astrocyte Glutamate Uptake and Signaling as Novel Targets for Antiepileptogenic Therapy. Front Neurol 2020; 11:1006. [PMID: 33013665 PMCID: PMC7505989 DOI: 10.3389/fneur.2020.01006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes regulate and respond to extracellular glutamate levels in the central nervous system (CNS) via the Na+-dependent glutamate transporters glutamate transporter-1 (GLT-1) and glutamate aspartate transporter (GLAST) and the metabotropic glutamate receptors (mGluR) 3 and mGluR5. Both impaired astrocytic glutamate clearance and changes in metabotropic glutamate signaling could contribute to the development of epilepsy. Dysregulation of astrocytic glutamate transporters, GLT-1 and GLAST, is a common finding across patients and preclinical seizure models. Astrocytic metabotropic glutamate receptors, particularly mGluR5, have been shown to be dysregulated in both humans and animal models of temporal lobe epilepsy (TLE). In this review, we synthesize the available evidence regarding astrocytic glutamate homeostasis and astrocytic mGluRs in the development of epilepsy. Modulation of astrocyte glutamate uptake and/or mGluR activation could lead to novel glial therapeutics for epilepsy.
Collapse
Affiliation(s)
- Allison R Peterson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
39
|
Deciphering the star codings: astrocyte manipulation alters mouse behavior. Exp Mol Med 2020; 52:1028-1038. [PMID: 32665584 PMCID: PMC8080576 DOI: 10.1038/s12276-020-0468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 01/11/2023] Open
Abstract
Astrocytes occupy a vast area within the central nervous system (CNS). Despite their abundance, the functional role of astrocytes in vivo has only begun to be uncovered. Astrocytes were typically thought to be involved in pathophysiological states. However, recent studies have shown that astrocytes are actively involved in cell signaling in normal physiological states; manipulating various aspects of astrocytic cell signaling in vivo has revealed that astrocytes are key players in controlling healthy behavior in the absence of pathophysiology. Unfortunately, the study of astrocyte function is often limited by the number of approaches available due to our lack of understanding of cell physiology. This review summarizes recent studies in which altered astrocyte signaling capacity resulted in dramatic changes in behavior. We not only discuss the methodologies available to manipulate astrocytes but also provide insights into the behavioral roles of astrocytes in the CNS. Genetic studies provide increased evidence that astrocytes, star-shaped cells in the central nervous system, play important roles affecting behavior in mammals. Although they are just as abundant as neurons, astrocytes are not excited by electrical signals. For this reason they have traditionally been regarded simply as ‘support cells’ for neurons, but recent evidence suggests that they can significantly modulate neuron signals. A review paper by Keebum Park and Sung Joong Lee at Seoul National University in South Korea highlights improved methods for monitoring the signaling processes related to astrocytes, which manifest most notably through sharp changes in calcium levels. Several studies have used genetic knockout mice, designer drugs and light-sensitive proteins to change astrocyte activity, affecting a diverse range of behaviors including sleeping and feeding patterns, memory formation, depression and obsessive compulsive disorder.
Collapse
|
40
|
Riquelme J, Wellmann M, Sotomayor-Zárate R, Bonansco C. Gliotransmission: A Novel Target for the Development of Antiseizure Drugs. Neuroscientist 2020; 26:293-309. [PMID: 31976817 DOI: 10.1177/1073858420901474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For more than a century, epilepsy has remained an incapacitating neurological disorder with a high incidence worldwide. Mesial temporal lobe epilepsy (TLE) is a common type of epilepsy without an effective pharmacological treatment. An increase in excitability and hypersynchrony of electrical neuronal activity during development are typically associated with an excitatory/inhibitory imbalance in the neuronal network. Astrocytes release gliotransmitters, which can regulate neuronal excitability and synaptic transmission; therefore, the classical neurocentric vision of the cellular basis of epileptogenesis has begun to change. Growing evidence suggests that the key contribution of astrocyte-to-neuron signaling in the mechanisms underlies the initiation, propagation, and recurrence of seizure activity. The aim of this review was to summarize current evidence obtained from experimental models that suggest how alterations in astroglial modulation of synaptic transmission and neuronal activity contribute to the development of this brain disease. In this article, we will summarize the main pharmacological, Ca2+-imaging, and electrophysiological findings in the gliotransmitter-mediated modulation of neuronal activity and their possible regulation as a novel cellular target for the development of pharmacological strategies for treating refractory epilepsies.
Collapse
Affiliation(s)
- Julio Riquelme
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Servicio de Neurología, Hospital Carlos Van Buren, Valparaíso, Chile
| | - Mario Wellmann
- Escuela de Fonoaudiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Neurobiología y Fisiología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian Bonansco
- Centro de Neurobiología y Fisiología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
41
|
NCX activity generates spontaneous Ca 2+ oscillations in the astrocytic leaflet microdomain. Cell Calcium 2019; 86:102137. [PMID: 31838438 DOI: 10.1016/j.ceca.2019.102137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
The synergy between synaptic Glu release and astrocytic Glu-Na+ symport is essential to the signalling function of the tripartite synapse. Here we used kinetic data of astrocytic Glu transporters (EAAT) and the Na+/Ca2+ exchanger (NCX) to simulate Glu release, Glu uptake and subsequent Na+ and Ca2+ dynamics in the astrocytic leaflet microdomain following single release event. Model simulations show that Glu-Na+ symport differently affect intracellular [Na+] in synapses with different extent of astrocytic coverage. Surprisingly, NCX activity alone has been shown to generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic leaflet. These on-going oscillations appear when NCX operates either in the forward or reverse direction. We conjecture that intrinsic NCX activity may play a prominent role in the generation of astrocytic Ca2+ oscillations.
Collapse
|
42
|
Chen X, Sobczak F, Chen Y, Jiang Y, Qian C, Lu Z, Ayata C, Logothetis NK, Yu X. Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus. Nat Commun 2019; 10:5239. [PMID: 31748553 PMCID: PMC6868210 DOI: 10.1038/s41467-019-12850-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023] Open
Abstract
Extensive in vivo imaging studies investigate the hippocampal neural network function, mainly focusing on the dorsal CA1 region given its optical accessibility. Multi-modality fMRI with simultaneous hippocampal electrophysiological recording reveal broad cortical correlation patterns, but the detailed spatial hippocampal functional map remains lacking given the limited fMRI resolution. In particular, hemodynamic responses linked to specific neural activity are unclear at the single-vessel level across hippocampal vasculature, which hinders the deciphering of the hippocampal malfunction in animal models and the translation to critical neurovascular coupling (NVC) patterns for human fMRI. We simultaneously acquired optogenetically-driven neuronal Ca2+ signals with single-vessel blood-oxygen-level-dependent (BOLD) and cerebral-blood-volume (CBV)-fMRI from individual venules and arterioles. Distinct spatiotemporal patterns of hippocampal hemodynamic responses were correlated to optogenetically evoked and spreading depression-like calcium events. The calcium event-related single-vessel hemodynamic modeling revealed significantly reduced NVC efficiency upon spreading depression-like (SDL) events, providing a direct measure of the NVC function at various hippocampal states.
Collapse
Affiliation(s)
- Xuming Chen
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- University of Tuebingen, 72074, Tuebingen, Germany
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, 430060, China
| | - Filip Sobczak
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074, Tuebingen, Germany
| | - Yi Chen
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074, Tuebingen, Germany
| | - Yuanyuan Jiang
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, 02129, MA, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, 48824, MI, USA
| | - Zuneng Lu
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, 430060, China
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 02129, Boston, USA
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
- Department of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, M13 9PT, UK
| | - Xin Yu
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, 02129, MA, USA.
| |
Collapse
|
43
|
Nikolic L, Nobili P, Shen W, Audinat E. Role of astrocyte purinergic signaling in epilepsy. Glia 2019; 68:1677-1691. [DOI: 10.1002/glia.23747] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ljiljana Nikolic
- Institute for Biological Research Siniša Stanković, University of Belgrade Serbia
| | | | - Weida Shen
- Zhejiang University City College Zhejiang Hangzhou China
| | - Etienne Audinat
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM Montpellier France
| |
Collapse
|
44
|
Gzielo K, Soltys Z, Rajfur Z, Setkowicz ZK. The Impact of the Ketogenic Diet on Glial Cells Morphology. A Quantitative Morphological Analysis. Neuroscience 2019; 413:239-251. [PMID: 31220541 DOI: 10.1016/j.neuroscience.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
Ketogenic diet is reported to protect against cognitive decline, drug-resistant epilepsy, Alzheimer's Disease, damaging effect of ischemic stroke and many neurological diseases. Despite mounting evidence that this dietary treatment works, the exact mechanism of its protective activity is largely unknown. Ketogenic diet acts systemically, not only changing GABA signaling in neurons, but also influencing the reliance on mitochondrial respiration, known to be disrupted in many neurological diseases. Normally, human body is driven by glucose while ketogenic diet mimics starvation and energy required for proper functioning comes from fatty acids oxidation. In the brain astrocytes are believed to be the sole neural cells capable of fatty oxidation. Here we try to explain that not exclusively neurons, but also morphological changes of astroglia and/or microglia due to different metabolic state are important for the mechanism underlying the protective role of ketogenic diet. By quantifying different parameters describing cellular morphology like ramification index or fractal dimension and using Principal Component Analysis to discover the regularities between them, we demonstrate that in normal adult rat brain, ketogenic diet itself is able to change glial morphology, indicating an important role of these underappreciated cells in the brain metabolism.
Collapse
Affiliation(s)
- K Gzielo
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Z Soltys
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Z Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Z K Setkowicz
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
45
|
Abstract
Conditional Knockout of mGluR5 From Astrocytes During Epilepsy Development Impairs High-Frequency Glutamate Uptake Umpierre AD, West PJ, White JA, et al. J Neurosci. 2019;39(4):727-742. doi:10.1523/JNEUROSCI.1148-18.2018 Astrocyte expression of metabotropic glutamate receptor 5 (mGluR5) is consistently observed in resected tissue from patients with epilepsy and is equally prevalent in animal models of epilepsy. However, little is known about the functional signaling properties or downstream consequences of astrocyte mGluR5 activation during epilepsy development. In the rodent brain, astrocyte mGluR5 expression is developmentally regulated and confined in expression/function to the first weeks of life, with similar observations made in human control tissue. Herein, we demonstrate that mGluR5 expression and function dramatically increase in a mouse model of temporal lobe epilepsy. Interestingly, in both male and female mice, mGluR5 function persists in the astrocyte throughout the process of epileptogenesis following status epilepticus. However, mGluR5 expression and function are transient in animals that do not develop epilepsy over an equivalent time period, suggesting that patterns of mGluR5expression may signify continuing epilepsy development or its resolution. We demonstrate that, during epileptogenesis, astrocytes reacquire mGluR5-dependent calcium transients following agonist application or synaptic glutamate release, a feature of astrocyte-neuron communication absent since early development. Finally, we find that the selective and conditional knockout of mGluR5 signaling from astrocytes during epilepsy development slows the rate of glutamate clearance through astrocyte glutamate transporters under high-frequency stimulation conditions, a feature that suggests astrocyte mGluR5 expression during epileptogenesis may recapitulate earlier developmental roles in regulating glutamate transporter function.
Collapse
|
46
|
Stereotypical patterns of epileptiform calcium signal in hippocampal CA1, CA3, dentate gyrus and entorhinal cortex in freely moving mice. Sci Rep 2019; 9:4518. [PMID: 30872744 PMCID: PMC6418290 DOI: 10.1038/s41598-019-41241-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/04/2019] [Indexed: 11/08/2022] Open
Abstract
Epilepsy is a multi-etiological brain dysfunction syndrome. Hippocampal neuronal damage induced by seizures may be one of the causes leading to cognitive impairment, but the underlying mechanism remains to be further elucidated. The kainic acid (KA) model of temporal lobe epilepsy is widely used in understanding of the epileptogenesis. Fiber photometry is a signal detection technology suitable for recording calcium activity of neurons in the deep brain of freely moving animal. Here, we used the optical fiber-based method to monitor the real-time neuronal population activities of freely moving mice after subcutaneous injection of KA. We observed that KA administration led to one to three kinds of stereotypical patterns of epileptiform calcium activity in CA1, CA3, and dentate gyrus (DG) of the hippocampus, as well as the entorhinal cortex (EC). There were three kinds of waves in the hippocampal CA1, which we named wave 1, wave 2 and slow flash. Wave 1 and wave 2 appeared in both the CA3 and DG regions, but the EC only showed wave 1. In these epileptiform calcium signals, we observed a high amplitude and long duration calcium wave as a part of wave 2, which resembled cortical spreading depression (CSD) and always appeared at or after the end of seizure. Because the same characteristic of epileptiform calcium signal appeared in different brain regions, calcium signal may not exist with region specificity, but may exhibit a cell type specific manner. Thus, our work provides a support for the pathogenesis of epilepsy and epileptiform signal transmission research.
Collapse
|
47
|
Aberrant Calcium Signals in Reactive Astrocytes: A Key Process in Neurological Disorders. Int J Mol Sci 2019; 20:ijms20040996. [PMID: 30823575 PMCID: PMC6413203 DOI: 10.3390/ijms20040996] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are abundant cells in the brain that regulate multiple aspects of neural tissue homeostasis by providing structural and metabolic support to neurons, maintaining synaptic environments and regulating blood flow. Recent evidence indicates that astrocytes also actively participate in brain functions and play a key role in brain disease by responding to neuronal activities and brain insults. Astrocytes become reactive in response to injury and inflammation, which is typically described as hypertrophy with increased expression of glial fibrillary acidic protein (GFAP). Reactive astrocytes are frequently found in many neurological disorders and are a hallmark of brain disease. Furthermore, reactive astrocytes may drive the initiation and progression of disease processes. Recent improvements in the methods to visualize the activity of reactive astrocytes in situ and in vivo have helped elucidate their functions. Ca2+ signals in reactive astrocytes are closely related to multiple aspects of disease and can be a good indicator of disease severity/state. In this review, we summarize recent findings concerning reactive astrocyte Ca2+ signals. We discuss the molecular mechanisms underlying aberrant Ca2+ signals in reactive astrocytes and the functional significance of aberrant Ca2+ signals in neurological disorders.
Collapse
|