1
|
Mikami A, Huang H, Hyodo A, Horie K, Yasumatsu K, Ninomiya Y, Mitoh Y, Iida S, Yoshida R. The role of GABA in modulation of taste signaling within the taste bud. Pflugers Arch 2024; 476:1761-1775. [PMID: 39210062 PMCID: PMC11461785 DOI: 10.1007/s00424-024-03007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Taste buds contain 2 types of GABA-producing cells: sour-responsive Type III cells and glial-like Type I cells. The physiological role of GABA, released by Type III cells is not fully understood. Here, we investigated the role of GABA released from Type III cells using transgenic mice lacking the expression of GAD67 in taste bud cells (Gad67-cKO mice). Immunohistochemical experiments confirmed the absence of GAD67 in Type III cells of Gad67-cKO mice. Furthermore, no difference was observed in the expression and localization of cell type markers, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), gustducin, and carbonic anhydrase 4 (CA4) in taste buds between wild-type (WT) and Gad67-cKO mice. Short-term lick tests demonstrated that both WT and Gad67-cKO mice exhibited normal licking behaviors to each of the five basic tastants. Gustatory nerve recordings from the chorda tympani nerve demonstrated that both WT and Gad67-cKO mice similarly responded to five basic tastants when they were applied individually. However, gustatory nerve responses to sweet-sour mixtures were significantly smaller than the sum of responses to each tastant in WT mice but not in Gad67-cKO mice. In summary, elimination of GABA signalling by sour-responsive Type III taste cells eliminates the inhibitory cell-cell interactions seen with application of sour-sweet mixtures.
Collapse
Affiliation(s)
- Ayaka Mikami
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hai Huang
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aiko Hyodo
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kengo Horie
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | | | - Yuzo Ninomiya
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Yoshihiro Mitoh
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan.
| |
Collapse
|
2
|
Yu H, Song L, Duan X, Zhu D, Li N, Pan R, Xu R, Yu X, Ye F, Jiang X, Ye H, Pan Z, Wei S, Jiang Z. Optogenetics in taste research: A decade of enlightenment. Oral Dis 2024; 30:903-913. [PMID: 36620868 DOI: 10.1111/odi.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/03/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
The electrophysiological function of the tongue involves complicated activities in taste sense, producing the perceptions of salty, sweet, bitter, and sour. However, therapies and prevention of taste loss arising from dysfunction in electrophysiological activity require further fundamental research. Optogenetics has revolutionized neuroscience and brought the study of sensory system to a higher level in taste. The year 2022 marks a decade of developments of optogenetics in taste since this technology was adopted from neuroscience and applied to the taste research. This review summarizes a decade of advances that define near-term translation with optogenetic tools, and newly-discovered mechanisms with the applications of these tools. The main limitations and opportunities for optogenetics in taste research are also discussed.
Collapse
Affiliation(s)
- Hanshu Yu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Luyao Song
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangyao Duan
- Zhejiang University School of Medicine, Hangzhou, China
| | - Danji Zhu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Cancer Centre of Zhejiang University, Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Li
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Cancer Centre of Zhejiang University, Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runxin Pan
- Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinying Yu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Fengkai Ye
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinrui Jiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Han Ye
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zikang Pan
- Zhejiang University School of Medicine, Hangzhou, China
| | - Sixing Wei
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Jiang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Cancer Centre of Zhejiang University, Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Ferrulli A, Senesi P, Terruzzi I, Luzi L. Eating Habits and Body Weight Changes Induced by Variation in Smell and Taste in Patients with Previous SARS-CoV-2 Infection. Nutrients 2022; 14:nu14235068. [PMID: 36501098 PMCID: PMC9738767 DOI: 10.3390/nu14235068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Olfactory and gustatory dysfunction are recognized as common symptoms in patients with COVID-19, with a prevalence ranging, respectively, between 41-61% and 38.2-49%. This review focused on relating the variations in dietary habits with the reduction/loss of smell and/or taste in patients who contracted the COVID-19 infection. Primarily, we reviewed the main pathological mechanisms involved in COVID 19-induced anosmia/dysosmia and ageusia/dysgeusia. Then, we explored and summarized the behavioural changes in food intake and body weight during the COVID-19 pandemic in relation to sensory impairment and the underlying mechanisms. Most studies on this topic argue that the altered chemosensory perception (taste and smell) mainly induces reduced appetite, leading to a faster fullness sensation during the consumption of a meal and, therefore, to a decrease in body weight. On the other hand, a reduced perception of the food's sensory properties may trigger compensatory responses that lead some individuals to increase food intake with a different effect on body weight. Regarding body weight, most studies evaluated malnutrition in patients hospitalized for COVID-19; more studies are warranted to investigate nutritional status specifically in non-hospitalized patients with olfactory and gustatory dysfunctions caused by COVID-19 infection.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Correspondence: or ; Tel.: +39-02-8599-4572
| | - Pamela Senesi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
4
|
Abstract
This review summarizes our understanding of ATP signaling in taste and describes new directions for research. ATP meets all requisite criteria to be considered a neurotransmitter: (1) presence in taste cells, as in all cells; (2) release upon appropriate taste stimulation; (3) binding to cognate purinergic receptors P2X2 and P2X3 on gustatory afferent neurons, and (4) after release, enzymatic degradation to adenosine and other nucleotides by the ectonucleotidase, NTPDase2, expressed on the Type I, glial-like cells in the taste bud. Importantly, double knockout of P2X2 and P2X3 or pharmacological inhibition of P2X3 abolishes transmission of all taste qualities. In Type II taste cells (those that respond to sweet, bitter, or umami stimuli), ATP is released non-vesicularly by a large conductance ion channel composed of CALHM1 and CALHM3, which form a so-called channel synapse at areas of contact with afferent taste nerve fibers. Although ATP release has been detected only from Type II cells, it is also required for the transmission of salty and sour stimuli, which are mediated primarily by the Type III taste cells. The source of the ATP required for Type III cell signaling to afferent fibers is still unclear and is a focus for future experiments. The ionotropic purinergic receptor, P2X3, is widely expressed on many sensory afferents and has been a therapeutic target for treating chronic cough and pain. However, its requirement for taste signaling has complicated efforts at treatment since patients given P2X3 antagonists report substantial disturbances of taste and become non-compliant.
Collapse
Affiliation(s)
- Sue Kinnamon
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Thomas Finger
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
5
|
Zhang J, Lee H, Macpherson LJ. Mechanisms for the Sour Taste. Handb Exp Pharmacol 2021; 275:229-245. [PMID: 34117536 DOI: 10.1007/164_2021_476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sour, the taste of acids, provides important sensory information to prevent the ingestion of unripe, spoiled, or fermented foods. In mammals, acids elicit disgust and pain by simultaneously activating taste and somatosensory neurons innervating the oral cavity. Early researchers detected electrical activity in taste nerves upon presenting acids to the tongue, establishing this as the bona fide sour taste. Recent studies have made significant contributions to our understanding of the mechanisms underlying acid sensing in the taste receptor cells at the periphery and the neural circuitry that convey this information to the brain. In this chapter, we discuss the characterization of sour taste receptor cells, the twists and turns eventually leading to the identification of Otopetrin1 (OTOP1) as the sour taste receptor, the pathway of sour taste signaling from the tongue to the brainstem, and other roles sour taste receptor cells play in the taste bud.
Collapse
Affiliation(s)
- Jin Zhang
- Mortimer B. Zukerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA.
| | - Hojoon Lee
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Lindsey J Macpherson
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Abstract
In the peripheral neurons and circuits for hearing, balance, touch and pain, GABA plays diverse and important roles. In some cases, GABA is an essential player in the maintenance of sensory receptors and afferent neurons. In other instances, GABA modulates the sensory signal before it reaches CNS neurons. And in yet other instances, tonic GABA-mediated signals set the resting tone and excitability of afferent neurons. GABAA receptors are present on gustatory afferent neurons that carry taste signals from taste buds to central circuits in the brainstem. Yet, the functional significance of these receptors is unexplored. Here, I outline some of the roles of GABA in other peripheral sensory systems. I then consider whether similar functions may be ascribed to GABA signaling in the taste periphery.
Collapse
Affiliation(s)
- Nirupa Chaudhari
- Dept. of Physiology & Biophysics, Dept of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
7
|
Roper SD. Chemical and electrical synaptic interactions among taste bud cells. CURRENT OPINION IN PHYSIOLOGY 2021; 20:118-125. [PMID: 33521414 DOI: 10.1016/j.cophys.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chemical synapses between taste cells were first proposed based on electron microscopy of fish taste buds. Subsequently, researchers found considerable evidence for electrical coupling in fish, amphibian, and possibly mammalian taste buds. The development lingual slice and isolated cell preparations allowed detailed investigations of cell-cell interactions, both chemical and electrical, in taste buds. The identification of serotonin and ATP as taste neurotransmitters focused attention onto chemical synaptic interactions between taste cells and research on electrical coupling faded. Findings from Ca2+ imaging, electrophysiology, and molecular biology indicate that several neurotransmitters, including ATP, serotonin, GABA, acetylcholine, and norepinephrine, are secreted by taste cells and exert paracrine interactions in taste buds. Most work has been done on interactions between Type II and Type III taste cells. This brief review follows the trail of studies on cell-cell interactions in taste buds, from the initial ultrastructural observations to the most recent optogenetic manipulations.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology & Biophysics and Department of Otolaryngology, Miller School of Medicine, University of Miami, FL 33136
| |
Collapse
|
8
|
Larson ED, Vandenbeuch A, Anderson CB, Kinnamon SC. GAD65Cre Drives Reporter Expression in Multiple Taste Cell Types. Chem Senses 2021; 46:bjab033. [PMID: 34160573 PMCID: PMC8276891 DOI: 10.1093/chemse/bjab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In taste buds, Type I cells represent the majority of cells (50-60%) and primarily have a glial-like function in taste buds. However, recent studies suggest that they have additional sensory and signaling functions including amiloride-sensitive salt transduction, oxytocin modulation of taste, and substance P mediated GABA release. Nonetheless, the overall function of Type I cells in transduction and signaling remains unclear, primarily because of the lack of a reliable reporter for this cell type. GAD65 expression is specific to Type I taste cells and GAD65 has been used as a Cre driver to study Type I cells in salt taste transduction. To test the specificity of transgene-driven expression, we crossed GAD65Cre mice with floxed tdTomato and Channelrhodopsin (ChR2) lines and examined the progeny with immunochemistry, chorda tympani recording, and calcium imaging. We report that while many tdTomato+ taste cells express NTPDase2, a specific marker of Type I cells, we see some expression of tdTomato in both Gustducin and SNAP25-positive taste cells. We also see ChR2 in cells just outside the fungiform taste buds. Chorda tympani recordings in the GAD65Cre/ChR2 mice show large responses to blue light. Furthermore, several isolated tdTomato-positive taste cells responded to KCl depolarization with increases in intracellular calcium, indicating the presence of voltage-gated calcium channels. Taken together, these data suggest that GAD65Cre mice drive expression in multiple taste cell types and thus cannot be considered a reliable reporter of Type I cell function.
Collapse
Affiliation(s)
- Eric D Larson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Aurelie Vandenbeuch
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Catherine B Anderson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Sue C Kinnamon
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| |
Collapse
|