1
|
Kitamura K, Saito K, Homma T, Fuyuki A, Onouchi S, Saito S. Prosaposin/Saposin Expression in the Developing Rat Olfactory and Vomeronasal Epithelia. J Dev Biol 2024; 12:29. [PMID: 39585030 PMCID: PMC11587001 DOI: 10.3390/jdb12040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Prosaposin is a glycoprotein widely conserved in vertebrates, and it acts as a precursor for saposins that accelerate hydrolysis in lysosomes or acts as a neurotrophic factor without being processed into saposins. Neurogenesis in the olfactory neuroepithelia, including the olfactory epithelium (OE) and the vomeronasal epithelium (VNE), is known to occur throughout an animal's life, and mature olfactory neurons (ORNs) and vomeronasal receptor neurons (VRNs) have recently been revealed to express prosaposin in the adult olfactory organ. In this study, the expression of prosaposin in the rat olfactory organ during postnatal development was examined. In the OE, prosaposin immunoreactivity was observed in mature ORNs labeled using olfactory marker protein (OMP) from postnatal day (P) 0. Immature ORNs showed no prosaposin immunoreactivity throughout the examined period. In the VNE, OMP-positive VRNs were mainly observed in the basal region of the VNE on P10 and showed an adult-like distribution from P20. On the other hand, prosaposin immunoreactivity was observed in VRNs from P0, suggesting that not only mature VRNs but also immature VRNs express prosaposin. This study raises the possibility that prosaposin is required for the normal development of the olfactory organ and has different roles in the OE and the VNE.
Collapse
Affiliation(s)
- Kai Kitamura
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (K.K.); (T.H.); (A.F.); (S.O.)
| | - Kyoko Saito
- Gifu Prefectural Chuo Livestock Hygiene Service Center, 1-1 Yanagido, Gifu 501-1112, Japan;
| | - Takeshi Homma
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (K.K.); (T.H.); (A.F.); (S.O.)
| | - Aimi Fuyuki
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (K.K.); (T.H.); (A.F.); (S.O.)
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (K.K.); (T.H.); (A.F.); (S.O.)
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (K.K.); (T.H.); (A.F.); (S.O.)
| |
Collapse
|
2
|
Philbrook A, O’Donnell MP, Grunenkovaite L, Sengupta P. Cilia structure and intraflagellar transport differentially regulate sensory response dynamics within and between C. elegans chemosensory neurons. PLoS Biol 2024; 22:e3002892. [PMID: 39591402 PMCID: PMC11593760 DOI: 10.1371/journal.pbio.3002892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024] Open
Abstract
Sensory neurons contain morphologically diverse primary cilia that are built by intraflagellar transport (IFT) and house sensory signaling molecules. Since both ciliary structural and signaling proteins are trafficked via IFT, it has been challenging to decouple the contributions of IFT and cilia structure to neuronal responses. By acutely inhibiting IFT without altering cilia structure and vice versa, here we describe the differential roles of ciliary trafficking and sensory ending morphology in shaping chemosensory responses in Caenorhabditis elegans. We show that a minimum cilium length but not continuous IFT is necessary for a subset of responses in the ASH nociceptive neurons. In contrast, neither cilia nor continuous IFT are necessary for odorant responses in the AWA olfactory neurons. Instead, continuous IFT differentially modulates response dynamics in AWA. Upon acute inhibition of IFT, cilia-destined odorant receptors are shunted to ectopic branches emanating from the AWA cilia base. Spatial segregation of receptors in these branches from a cilia-restricted regulatory kinase results in odorant desensitization defects, highlighting the importance of precise organization of signaling molecules at sensory endings in regulating response dynamics. We also find that adaptation of AWA responses upon repeated exposure to an odorant is mediated by IFT-driven removal of its cognate receptor, whereas adaptation to a second odorant is regulated via IFT-independent mechanisms. Our results reveal unexpected complexity in the contribution of IFT and cilia organization to the regulation of responses even within a single chemosensory neuron type and establish a critical role for these processes in the precise modulation of olfactory behaviors.
Collapse
Affiliation(s)
- Alison Philbrook
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular, and Developmental Biology, Yale University, Connecticut, United States of America
| | - Laura Grunenkovaite
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
3
|
Chiera F, Costa G, Alcaro S, Artese A. An overview on olfaction in the biological, analytical, computational, and machine learning fields. Arch Pharm (Weinheim) 2024:e2400414. [PMID: 39439128 DOI: 10.1002/ardp.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Recently, the comprehension of odor perception has advanced, unveiling the mysteries of the molecular receptors within the nasal passages and the intricate mechanisms governing signal transmission between these receptors, the olfactory bulb, and the brain. This review provides a comprehensive panorama of odors, encompassing various topics ranging from the structural and molecular underpinnings of odorous substances to the physiological intricacies of olfactory perception. It extends to elucidate the analytical methods used for their identification and explores the frontiers of computational methodologies.
Collapse
Affiliation(s)
- Federica Chiera
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Net4Science S.r.l., Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Net4Science S.r.l., Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Associazione CRISEA - Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Loc. Condoleo, Belcastro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Net4Science S.r.l., Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Takeuchi H. Olfactory cilia, regulation and control of olfaction. Physiol Rep 2024; 12:e70057. [PMID: 39358841 PMCID: PMC11446836 DOI: 10.14814/phy2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The sense of smell is still considered a fuzzy sensation. Softly wafting aromas can stimulate the appetite and trigger memories; however, there are many unexplored aspects of its underlying mechanisms, and not all of these have been elucidated. Although the final sense of smell takes place in the brain, it is greatly affected during the preliminary stage, when odorants are converted into electrical signals. After signal conversion through ion channels in olfactory cilia, action potentials are generated through other types of ion channels located in the cell body. Spike trains through axons transmit this information as digital signals to the brain, however, before odorants are converted into digital electric signals, such as an action potential, modification of the transduction signal has already occurred. This review focuses on the early stages of olfactory signaling. Modification of signal transduction mechanisms and their effect on the human sense of smell through three characteristics (signal amplification, olfactory adaptation, and olfactory masking) produced by olfactory cilia, which is the site of signal transduction are being addressed in this review.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Graduated School of Frontier BiosciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
5
|
Kumar A, Shukla R. Current strategic arsenal and advances in nose to brain nanotheranostics for therapeutic intervention of glioblastoma multiforme. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-35. [PMID: 39250527 DOI: 10.1080/09205063.2024.2396721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
The fight against Glioblastoma multiforme (GBM) is ongoing and the long-term outlook for GBM remains challenging due to low prognosis but every breakthrough brings us closer to improving patient outcomes. Significant hurdles in GBM are heterogeneity, fortified tumor location, and blood-brain barrier (BBB), hindering adequate drug concentrations within functioning brain regions, thus leading to low survival rates. The nasal passageway has become an appealing location to commence the course of cancer therapy. Utilization of the nose-to-brain (N2B) route for drug delivery takes a sidestep from the BBB to allow therapeutics to directly access the central nervous system (CNS) and enhance drug localization in the vicinity of the tumor. This comprehensive review provides insights into pertinent anatomy and cellular organization of the nasal cavity, present-day diagnostic tools, intracranial invasive therapies, and advancements in intranasal (IN) therapies in GBM models for better clinical outcomes. Also, this review highlights groundbreaking carriers and delivery techniques that could revolutionize GBM management such as biomimetics, image guiding-drug delivery, and photodynamic and photothermal therapies for GBM management.
Collapse
Affiliation(s)
- Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| |
Collapse
|
6
|
Liao W, Wang Y, Wang L, Li J, Huang D, Cheng W, Luan P. The current status and challenges of olfactory dysfunction study in Alzheimer's Disease. Ageing Res Rev 2024; 100:102453. [PMID: 39127444 DOI: 10.1016/j.arr.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Olfactory functioning involves multiple cognitive processes and the coordinated actions of various neural systems. Any disruption at any stage of this process may result in olfactory dysfunction, which is consequently widely used to predict the onset and progression of diseases, such as Alzheimer's Disease (AD). Although the underlying mechanisms have not yet been fully unraveled, apparent changes were observed in olfactory brain areas form patients who suffer from AD by means of medical imaging and electroencephalography (EEG). Olfactory dysfunction holds significant promise in detecting AD during the preclinical stage preceding mild cognitive impairment (MCI). Owing to the strong specificity, olfactory tests are prevalently applied for screening in community cohorts. And combining olfactory tests with other biomarkers may further establish an optimal model for AD prediction in studies of specific olfactory dysfunctions and improve the sensitivity and specificity of early AD diagnosis.
Collapse
Affiliation(s)
- Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lei Wang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Weibin Cheng
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
7
|
Kikuta H, Tanaka H, Ozaki T, Ito J, Ma J, Moribe S, Hirano M. Spontaneous differentiation of human induced pluripotent stem cells to odorant-responsive olfactory sensory neurons. Biochem Biophys Res Commun 2024; 719:150062. [PMID: 38740002 DOI: 10.1016/j.bbrc.2024.150062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells (iPSCs), can differentiate into almost all cell types and are anticipated to have significant applications in the field of regenerative medicine. However, there are no reports of successfully directing iPSCs to become functional olfactory sensory neurons (OSNs) capable of selectively receiving odorant compounds. In this study, we employed dual SMAD inhibition and fibroblast growth factor 8 (FGF-8, reported to dictate olfactory fates) along with N-2 and B-27 supplements in the culture medium to efficiently induce the differentiation of iPSCs into neuronal cells with olfactory function through olfactory placode. Temporal gene expression and expression of OSN-specific markers during differentiation indicated that the expression of olfactory marker proteins and various olfactory receptors (ORs), which are markers of mature OSNs, was observed after approximately one month of differentiation culture, irrespective of the differentiation cues, suggesting differentiation into OSNs. Cells that exhibited specific responses to odorant compounds were identified after administering odorant compounds to differentiated iPSC-derived OSNs. This suggests the spontaneous generation of functional OSNs expressing diverse ORs that respond to odorant compounds from iPSCs.
Collapse
Affiliation(s)
- Hirokazu Kikuta
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Hidenori Tanaka
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Takashi Ozaki
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Junji Ito
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Jiaju Ma
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Shinya Moribe
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Minoru Hirano
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| |
Collapse
|
8
|
Hart T, Lopes LE, Frank DD, Kronauer DJC. Pheromone representation in the ant antennal lobe changes with age. Curr Biol 2024; 34:3233-3240.e4. [PMID: 38876103 PMCID: PMC11265976 DOI: 10.1016/j.cub.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024]
Abstract
While the neural basis of age-related decline has been extensively studied,1,2,3 less is known about changes in neural function during the pre-senescent stages of adulthood. Adult neural plasticity is likely a key factor in social insect age polyethism, where individuals perform different tasks as they age and divide labor in an age-dependent manner.4,5,6,7,8,9 Primarily, workers transition from nursing to foraging tasks,5,10 become more aggressive, and more readily display alarm behavior11,12,13,14,15,16 as they get older. While it is unknown how these behavioral dynamics are neurally regulated, they could partially be generated by altered salience of behaviorally relevant stimuli.4,6,7 Here, we investigated how odor coding in the antennal lobe (AL) changes with age in the context of alarm pheromone communication in the clonal raider ant (Ooceraea biroi).17 Similar to other social insects,11,12,16 older ants responded more rapidly to alarm pheromones, the chemical signals for danger. Using whole-AL calcium imaging,18 we then mapped odor representations for five general odorants and two alarm pheromones in young and old ants. Alarm pheromones were represented sparsely at all ages. However, alarm pheromone responses within individual glomeruli changed with age, either increasing or decreasing. Only two glomeruli became sensitized to alarm pheromones with age, while at the same time becoming desensitized to general odorants. Our results suggest that the heightened response to alarm pheromones in older ants occurs via increased sensitivity in these two core glomeruli, illustrating the importance of sensory modulation in social insect division of labor and age-associated behavioral plasticity.
Collapse
Affiliation(s)
- Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Lindsey E Lopes
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
9
|
D’Gama PP, Jeong I, Nygård AM, Trinh AT, Yaksi E, Jurisch-Yaksi N. Ciliogenesis defects after neurulation impact brain development and neuronal activity in larval zebrafish. iScience 2024; 27:110078. [PMID: 38868197 PMCID: PMC11167523 DOI: 10.1016/j.isci.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Cilia are slender, hair-like structures extending from cell surfaces and playing essential roles in diverse physiological processes. Within the nervous system, primary cilia contribute to signaling and sensory perception, while motile cilia facilitate cerebrospinal fluid flow. Here, we investigated the impact of ciliary loss on neural circuit development using a zebrafish line displaying ciliogenesis defects. We found that cilia defects after neurulation affect neurogenesis and brain morphology, especially in the cerebellum, and lead to altered gene expression profiles. Using whole brain calcium imaging, we measured reduced light-evoked and spontaneous neuronal activity in all brain regions. By shedding light on the intricate role of cilia in neural circuit formation and function in the zebrafish, our work highlights their evolutionary conserved role in the brain and sets the stage for future analysis of ciliopathy models.
Collapse
Affiliation(s)
- Percival P. D’Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Anh-Tuan Trinh
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı 34010, Istanbul, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| |
Collapse
|
10
|
Chen YT, Young TH, Wang YH, Huang CH, Gao YY, Huang TW. Orexin-A increases the differentiation of human olfactory sensory neurons through orexin receptor type 1. Regen Ther 2024; 26:1058-1068. [PMID: 39582799 PMCID: PMC11585478 DOI: 10.1016/j.reth.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Sensorineural olfactory dysfunction significantly impairs the life quality of patients but without effective treatments to date. Orexin is a neurotrophic factor activates neuronal network activity. However, it is still unknown whether orexin can promote differentiation in human olfactory sensory neurons (OSNs). This study seeks to explore the impact of orexin on the differentiation of human olfactory neuroepithelial cells (HONCs). Methods The primary olfactory epithelium cells were cultured with or without orexin-A. The neural maturation-related and functional proteins were analyzed through immunofluorescence staining and Western blot. The function of HONCs were evaluated through the synaptic vesicle recycling assay. Results The results showed that HONCs in the orexin-A group expressed higher levels of stage-specific markers, including achaete-scute homolog 1, βIII-tubulin, and olfactory marker protein. Additionally, more components of signaling transduction pathways compared to the control group. The orexin-A-mediated differentiation of OSN effect can be nullified with dual orexin receptor antagonist suvorexant and the selective orexin receptor type 1 antagonist SB674042, instead of selective orexin receptor type 2 antagonist TCS-OX2-29. Conclusions Orexin-A elevates the expression of protein markers in human olfactory neuronal progenitor cells to stimulate the differentiation of OSN and enhances the formation of components of the olfactory-specific signaling transduction pathway via orexin receptor type 1.
Collapse
Affiliation(s)
- Yin-Tzu Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsuan Huang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Yun Gao
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tsung-Wei Huang
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
- Department of Electrical Engineering, College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Philbrook A, O'Donnell MP, Grunenkovaite L, Sengupta P. Differential modulation of sensory response dynamics by cilia structure and intraflagellar transport within and across chemosensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594529. [PMID: 38798636 PMCID: PMC11118401 DOI: 10.1101/2024.05.16.594529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Sensory neurons contain morphologically diverse primary cilia that are built by intraflagellar transport (IFT) and house sensory signaling molecules. Since both ciliary structural and signaling proteins are trafficked via IFT, it has been challenging to decouple the contributions of IFT and cilia structure to neuronal responses. By acutely inhibiting IFT without altering cilia structure and vice versa , here we describe the differential roles of ciliary trafficking and sensory ending morphology in shaping chemosensory responses in C. elegans. We show that a minimum cilium length but not continuous IFT is necessary for a subset of responses in the ASH nociceptive neurons. In contrast, neither cilia nor continuous IFT are necessary for odorant responses in the AWA olfactory neurons. Instead, continuous IFT differentially modulates response dynamics in AWA. Upon acute inhibition of IFT, cilia-destined odorant receptors are shunted to ectopic branches emanating from the cilia base. Spatial segregation of receptors in these branches from a cilia-restricted regulatory kinase results in odorant desensitization defects, highlighting the importance of precise organization of signaling molecules at sensory endings in regulating response dynamics. We also find that adaptation of AWA responses upon repeated exposure to an odorant is mediated by IFT-driven removal of its cognate receptor, whereas adaptation to a second odorant is regulated via IFT-independent mechanisms. Our results reveal unexpected complexity in the contribution of IFT and cilia organization to the regulation of responses even within a single chemosensory neuron type, and establish a critical role for these processes in the precise modulation of olfactory behaviors.
Collapse
|
12
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
13
|
Jurisch-Yaksi N, Wachten D, Gopalakrishnan J. The neuronal cilium - a highly diverse and dynamic organelle involved in sensory detection and neuromodulation. Trends Neurosci 2024; 47:383-394. [PMID: 38580512 DOI: 10.1016/j.tins.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Cilia are fascinating organelles that act as cellular antennae, sensing the cellular environment. Cilia gained significant attention in the late 1990s after their dysfunction was linked to genetic diseases known as ciliopathies. Since then, several breakthrough discoveries have uncovered the mechanisms underlying cilia biogenesis and function. Like most cells in the animal kingdom, neurons also harbor cilia, which are enriched in neuromodulatory receptors. Yet, how neuronal cilia modulate neuronal physiology and animal behavior remains poorly understood. By comparing ciliary biology between the sensory and central nervous systems (CNS), we provide new perspectives on the functions of cilia in brain physiology.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7491 Trondheim, Norway.
| | - Dagmar Wachten
- Department of Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany; Institute for Human Genetics, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany
| |
Collapse
|
14
|
Hirota J. Molecular mechanisms of differentiation and class choice of olfactory sensory neurons. Genesis 2024; 62:e23587. [PMID: 38454646 DOI: 10.1002/dvg.23587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The sense of smell is intricately linked to essential animal behaviors necessary for individual survival and species preservation. During vertebrate evolution, odorant receptors (ORs), responsible for detecting odor molecules, have evolved to adapt to changing environments, transitioning from aquatic to terrestrial habitats and accommodating increasing complex chemical environments. These evolutionary pressures have given rise to the largest gene family in vertebrate genomes. Vertebrate ORs are phylogenetically divided into two major classes; class I and class II. Class I OR genes, initially identified in fish and frog, have persisted across vertebrate species. On the other hand, class II OR genes are unique to terrestrial animals, accounting for ~90% of mammalian OR genes. In mice, each olfactory sensory neuron (OSN) expresses a single functional allele of a single OR gene from either the class I or class II OR repertoire. This one neuron-one receptor rule is established through two sequential steps: specification of OR class and subsequent exclusive OR expression from the corresponding OR class. Consequently, OSNs acquire diverse neuronal identities during the process of OSN differentiation, enabling animals to detect a wide array of odor molecules. This review provides an overview of the OSN differentiation process through which OSN diversity is achieved, primarily using the mouse as a model animal.
Collapse
Affiliation(s)
- Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
15
|
Cain MD, Klein NR, Jiang X, Salimi H, Wu Q, Miller MJ, Klimstra WB, Klein RS. Post-exposure intranasal IFNα suppresses replication and neuroinvasion of Venezuelan Equine Encephalitis virus within olfactory sensory neurons. J Neuroinflammation 2024; 21:24. [PMID: 38233868 PMCID: PMC10792865 DOI: 10.1186/s12974-023-02960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. METHODS We utilized an established murine model of intranasal infection with VEEV and a repository of scRNAseq data from IFN-treated OSN to assess the cellular targets and IFN signaling responses after VEEV exposure. RESULTS We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 h during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. CONCLUSIONS Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.
Collapse
Affiliation(s)
- Matthew D Cain
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - N Rubin Klein
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hamid Salimi
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingping Wu
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark J Miller
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - William B Klimstra
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Rayamajhi D, Ege M, Ukhanov K, Ringers C, Zhang Y, Jung I, D’Gama PP, Li SS, Cosacak MI, Kizil C, Park HC, Yaksi E, Martens JR, Brody SL, Jurisch-Yaksi N, Roy S. The forkhead transcription factor Foxj1 controls vertebrate olfactory cilia biogenesis and sensory neuron differentiation. PLoS Biol 2024; 22:e3002468. [PMID: 38271330 PMCID: PMC10810531 DOI: 10.1371/journal.pbio.3002468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
In vertebrates, olfactory receptors localize on multiple cilia elaborated on dendritic knobs of olfactory sensory neurons (OSNs). Although olfactory cilia dysfunction can cause anosmia, how their differentiation is programmed at the transcriptional level has remained largely unexplored. We discovered in zebrafish and mice that Foxj1, a forkhead domain-containing transcription factor traditionally linked with motile cilia biogenesis, is expressed in OSNs and required for olfactory epithelium (OE) formation. In keeping with the immotile nature of olfactory cilia, we observed that ciliary motility genes are repressed in zebrafish, mouse, and human OSNs. Strikingly, we also found that besides ciliogenesis, Foxj1 controls the differentiation of the OSNs themselves by regulating their cell type-specific gene expression, such as that of olfactory marker protein (omp) involved in odor-evoked signal transduction. In line with this, response to bile acids, odors detected by OMP-positive OSNs, was significantly diminished in foxj1 mutant zebrafish. Taken together, our findings establish how the canonical Foxj1-mediated motile ciliogenic transcriptional program has been repurposed for the biogenesis of immotile olfactory cilia, as well as for the development of the OSNs.
Collapse
Affiliation(s)
- Dheeraj Rayamajhi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Mert Ege
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Christa Ringers
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yiliu Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Inyoung Jung
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Sciences, Korea University, Ansan, South Korea
| | - Percival P. D’Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Summer Shijia Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
| | - Caghan Kizil
- Department of Neurology and The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, South Korea
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
- Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Jeffrey R. Martens
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Steven L. Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Paediatrics, National University of Singapore, Singapore
| |
Collapse
|
17
|
Bhat S, Dietz A, Senf K, Nietzsche S, Hirabayashi Y, Westermann M, Neuhaus EM. GPRC5C regulates the composition of cilia in the olfactory system. BMC Biol 2023; 21:292. [PMID: 38110903 PMCID: PMC10729543 DOI: 10.1186/s12915-023-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Olfactory sensory neurons detect odourants via multiple long cilia that protrude from their dendritic endings. The G protein-coupled receptor GPRC5C was identified as part of the olfactory ciliary membrane proteome, but its function and localization is unknown. RESULTS High-resolution confocal and electron microscopy revealed that GPRC5C is located at the base of sensory cilia in olfactory neurons, but not in primary cilia of immature neurons or stem cells. Additionally, GPRC5C localization in sensory cilia parallels cilia formation and follows the formation of the basal body. In closer examination, GPRC5C was found in the ciliary transition zone. GPRC5C deficiency altered the structure of sensory cilia and increased ciliary layer thickness. However, primary cilia were unaffected. Olfactory sensory neurons from Gprc5c-deficient mice exhibited altered localization of olfactory signalling cascade proteins, and of ciliary phosphatidylinositol-4,5-bisphosphat. Sensory neurons also exhibited increased neuronal activity as well as altered mitochondrial morphology, and knockout mice had an improved ability to detect food pellets based on smell. CONCLUSIONS Our study shows that GPRC5C regulates olfactory cilia composition and length, thereby controlling odour perception.
Collapse
Affiliation(s)
- Sneha Bhat
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - André Dietz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Katja Senf
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Sandor Nietzsche
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Yoshio Hirabayashi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
- RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Martin Westermann
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Eva Maria Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| |
Collapse
|
18
|
Cain MD, Klein NR, Jiang X, Klein RS. Post-exposure intranasal IFNα suppresses replication and neuroinvasion of Venezuelan Equine Encephalitis virus within olfactory sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547169. [PMID: 37425867 PMCID: PMC10327097 DOI: 10.1101/2023.06.30.547169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. Here, we utilized an established murine model of intranasal infection with VEEV to assess the cellular targets and IFN signaling responses after VEEV exposure. We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 hours during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.
Collapse
Affiliation(s)
- Matthew D. Cain
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - N. Rubin Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Stone MC, Mauger AS, Rolls MM. Ciliated sensory neurons can regenerate axons after complete axon removal. J Exp Biol 2023; 226:jeb245717. [PMID: 37212026 PMCID: PMC10323231 DOI: 10.1242/jeb.245717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Axon regeneration helps maintain lifelong function of neurons in many animals. Depending on the site of injury, new axons can grow either from the axon stump (after distal injury) or from the tip of a dendrite (after proximal injury). However, some neuron types do not have dendrites to be converted to a regenerating axon after proximal injury. For example, many sensory neurons receive information from a specialized sensory cilium rather than a branched dendrite arbor. We hypothesized that the lack of traditional dendrites would limit the ability of ciliated sensory neurons to respond to proximal axon injury. We tested this hypothesis by performing laser microsurgery on ciliated lch1 neurons in Drosophila larvae and tracking cells over time. These cells survived proximal axon injury as well as distal axon injury, and, like many other neurons, initiated growth from the axon stump after distal injury. After proximal injury, neurites regrew in a surprisingly flexible manner. Most cells initiated outgrowth directly from the cell body, but neurite growth could also emerge from the short axon stump or base of the cilium. New neurites were often branched. Although outgrowth after proximal axotomy was variable, it depended on the core DLK axon injury signaling pathway. Moreover, each cell had at least one new neurite specified as an axon based on microtubule polarity and accumulation of the endoplasmic reticulum. We conclude that ciliated sensory neurons are not intrinsically limited in their ability to grow a new axon after proximal axon removal.
Collapse
Affiliation(s)
- Michelle C. Stone
- Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abigail S. Mauger
- Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M. Rolls
- Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
20
|
Shrewsbury SB. The Upper Nasal Space: Option for Systemic Drug Delivery, Mucosal Vaccines and "Nose-to-Brain". Pharmaceutics 2023; 15:1720. [PMID: 37376168 PMCID: PMC10303426 DOI: 10.3390/pharmaceutics15061720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Sino-nasal disease is appropriately treated with topical treatment, where the nasal mucosa acts as a barrier to systemic absorption. Non-invasive nasal delivery of drugs has produced some small molecule products with good bioavailability. With the recent COVID pandemic and the need for nasal mucosal immunity becoming more appreciated, more interest has become focused on the nasal cavity for vaccine delivery. In parallel, it has been recognized that drug delivery to different parts of the nose can have different results and for "nose-to-brain" delivery, deposition on the olfactory epithelium of the upper nasal space is desirable. Here the non-motile cilia and reduced mucociliary clearance lead to longer residence time that permits enhanced absorption, either into the systemic circulation or directly into the CNS. Many of the developments in nasal delivery have been to add bioadhesives and absorption/permeation enhancers, creating more complicated formulations and development pathways, but other projects have shown that the delivery device itself may allow more differential targeting of the upper nasal space without these additions and that could allow faster and more efficient programs to bring a wider range of drugs-and vaccines-to market.
Collapse
|
21
|
Causeret F, Fayon M, Moreau MX, Ne E, Oleari R, Parras C, Cariboni A, Pierani A. Diversity within olfactory sensory derivatives revealed by the contribution of Dbx1 lineages. J Comp Neurol 2023. [PMID: 37125418 DOI: 10.1002/cne.25492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
In vertebrates, the embryonic olfactory epithelium contains progenitors that will give rise to distinct classes of neurons, including olfactory sensory neurons (OSNs; involved in odor detection), vomeronasal sensory neurons (VSNs; responsible for pheromone sensing), and gonadotropin-releasing hormone (GnRH) neurons that control the hypothalamic-pituitary-gonadal axis. Currently, these three neuronal lineages are usually believed to emerge from uniform pools of progenitors. Here, we found that the homeodomain transcription factor Dbx1 is expressed by neurogenic progenitors in the developing and adult mouse olfactory epithelium. We demonstrate that Dbx1 itself is dispensable for neuronal fate specification and global organization of the olfactory sensory system. Using lineage tracing, we characterize the contribution of Dbx1 lineages to OSN, VSN, and GnRH neuron populations and reveal an unexpected degree of diversity. Furthermore, we demonstrate that Dbx1-expressing progenitors remain neurogenic in the absence of the proneural gene Ascl1. Our work therefore points to the existence of distinct neurogenic programs in Dbx1-derived and other olfactory lineages.
Collapse
Affiliation(s)
- Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Maxime Fayon
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Matthieu X Moreau
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Enrico Ne
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Carlos Parras
- Sorbonne Université, UPMC University Paris 06, Inserm U1127, CNRS UMR 7225, GH Pitié-Salpêtrière, Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| |
Collapse
|
22
|
Fukuda N, Fukuda T, Percipalle P, Oda K, Takei N, Czaplinski K, Touhara K, Yoshihara Y, Sasaoka T. Axonal mRNA binding of hnRNP A/B is crucial for axon targeting and maturation of olfactory sensory neurons. Cell Rep 2023; 42:112398. [PMID: 37083330 DOI: 10.1016/j.celrep.2023.112398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Tomoyuki Fukuda
- Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, UAE; Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kanako Oda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Nobuyuki Takei
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Kazushige Touhara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Toshikuni Sasaoka
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
23
|
Kitamura K, Homma T, Sohel MSH, Fuyuki A, Miyawaki S, Onouchi S, Saito S. Expression patterns of prosaposin and its receptors, G protein-coupled receptor (GPR) 37 and GPR37L1, in the mouse olfactory organ. Tissue Cell 2023; 82:102093. [PMID: 37075680 DOI: 10.1016/j.tice.2023.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Prosaposin is a glycoprotein conserved widely in vertebrates, because it is a precursor for saposins that are required for normal lysosomal function and thus for autophagy, and acts as a neurotrophic factor. Most tetrapods possess two kinds of olfactory neuroepithelia, namely, the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). This study examined the expression patterns of prosaposin and its candidate receptors, G protein-coupled receptor (GPR) 37 and GPR37L1, in mouse OE and VNE by immunofluorescence and in situ hybridization. Prosaposin immunoreactivity was observed in the olfactory receptor neurons, vomeronasal receptor neurons, Bowman's gland (BG), and Jacobson's gland (JG). Prosaposin expression was mainly observed in mature neurons. Prosaposin mRNA expression was observed not only in these cells but also in the apical region of the VNE. GPR37 and GPR37L1 immunoreactivities were found only in the BG and/or the JG. Prosaposin was suggested to secrete and facilitate the autophagic activities of the neurons and modulate the mucus secretion in mouse olfactory organ.
Collapse
Affiliation(s)
- Kai Kitamura
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Takeshi Homma
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Md Shahriar Hasan Sohel
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Aimi Fuyuki
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shingo Miyawaki
- Laboratory of Veterinary Surgery, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan.
| |
Collapse
|
24
|
Zheng NX, Miao YT, Zhang X, Huang MZ, Jahangir M, Luo S, Lang B. Primary cilia-associated protein IFT172 in ciliopathies. Front Cell Dev Biol 2023; 11:1074880. [PMID: 36733456 PMCID: PMC9887189 DOI: 10.3389/fcell.2023.1074880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Cilium is a highly conserved antenna-like structure protruding from the surface of the cell membrane, which is widely distributed on most mammalian cells. Two types of cilia have been described so far which include motile cilia and immotile cilia and the latter are also known as primary cilia. Dysfunctional primary cilia are commonly associated with a variety of congenital diseases called ciliopathies with multifaceted presentations such as retinopathy, congenital kidney disease, intellectual disability, cancer, polycystic kidney, obesity, Bardet Biedl syndrome (BBS), etc. Intraflagellar transport (IFT) is a bi-directional transportation process that helps maintain a balanced flow of proteins or signaling molecules essential for the communication between cilia and cytoplasm. Disrupted IFT contributes to the abnormal structure or function of cilia and frequently promotes the occurrence of ciliopathies. Intraflagellar transport 172 (IFT172) is a newly identified member of IFT proteins closely involved in some rare ciliopathies such as Mainzer-Saldino syndrome (MZSDS) and BBS, though the underpinning causal mechanisms remain largely elusive. In this review, we summarize the key findings on the genetic and protein characteristic of IFT172, as well as its function in intraflagellar transport, to provide comprehensive insights to understand IFT172-related ciliopathies.
Collapse
Affiliation(s)
- Nan-Xi Zheng
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ting Miao
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mu-Zhi Huang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| |
Collapse
|
25
|
Habif JC, Xie C, de Celis C, Ukhanov K, Green WW, Moretta JC, Zhang L, Campbell RJ, Martens JR. The role of a ciliary GTPase in the regulation of neuronal maturation of olfactory sensory neurons. Development 2023; 150:286702. [PMID: 36661357 PMCID: PMC10110495 DOI: 10.1242/dev.201116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Olfactory sensory neurons (OSNs) form embryonically and mature perinatally, innervating glomeruli and extending dendrites with multiple cilia. This process and its timing are crucial for odor detection and perception and continues throughout life. In the olfactory epithelium (OE), differentiated OSNs proceed from an immature (iOSN) to a mature (mOSN) state through well-defined sequential morphological and molecular transitions, but the precise mechanisms controlling OSN maturation remain largely unknown. We have identified that a GTPase, ARL13B, has a transient and maturation state-dependent expression in OSNs marking the emergence of a primary cilium. Utilizing an iOSN-specific Arl13b-null murine model, we examined the role of ARL13B in the maturation of OSNs. The loss of Arl13b in iOSNs caused a profound dysregulation of the cellular homeostasis and development of the OE. Importantly, Arl13b null OSNs demonstrated a delay in the timing of their maturation. Finally, the loss of Arl13b resulted in severe deformation in the structure and innervation of glomeruli. Our findings demonstrate a previously unknown role of ARL13B in the maturation of OSNs and development of the OE.
Collapse
Affiliation(s)
- Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Carlos de Celis
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Jordan C Moretta
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Robert J Campbell
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Kim BR, Rha MS, Cho HJ, Yoon JH, Kim CH. Spatiotemporal dynamics of the development of mouse olfactory system from prenatal to postnatal period. Front Neuroanat 2023; 17:1157224. [PMID: 37113675 PMCID: PMC10126376 DOI: 10.3389/fnana.2023.1157224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction The olfactory epithelium (OE) and olfactory bulb (OB) are the major components of the olfactory system and play critical roles in olfactory perception. However, the embryonic development of OE and OB by using the olfactory specific genes has not been comprehensively investigated yet. Most previous studies were limited to a specific embryonic stage, and very little is known, till date, about the development of OE. Methods The current study aimed to explore the development of mouse olfactory system by spatiotemporal analysis of the histological features by using the olfactory specific genes of olfactory system from the prenatal to postnatal period. Results We found that OE is divided into endo-turbinate, ecto-turbinate, and vomeronasal organs, and that putative OB with putative main and accessory OB is formed in the early developmental stage. The OE and OB became multilayered in the later developmental stages, accompanied by the differentiation of olfactory neurons. Remarkably, we found the development of layers of olfactory cilia and differentiation of OE to progress dramatically after birth, suggesting that the exposure to air may facilitate the final development of OE. Discussion Overall, the present study laid the groundwork for a better understanding of the spatial and temporal developmental events of the olfactory system.
Collapse
Affiliation(s)
- Bo-Ra Kim
- Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
- Taste Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Chang-Hoon Kim,
| |
Collapse
|
27
|
Butowt R, Bilinska K, von Bartheld CS. Olfactory dysfunction in COVID-19: new insights into the underlying mechanisms. Trends Neurosci 2023; 46:75-90. [PMID: 36470705 PMCID: PMC9666374 DOI: 10.1016/j.tins.2022.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
The mechanisms of olfactory dysfunction in COVID-19 are still unclear. In this review, we examine potential mechanisms that may explain why the sense of smell is lost or altered. Among the current hypotheses, the most plausible is that death of infected support cells in the olfactory epithelium causes, besides altered composition of the mucus, retraction of the cilia on olfactory receptor neurons, possibly because of the lack of support cell-derived glucose in the mucus, which powers olfactory signal transduction within the cilia. This mechanism is consistent with the rapid loss of smell with COVID-19, and its rapid recovery after the regeneration of support cells. Host immune responses that cause downregulation of genes involved in olfactory signal transduction occur too late to trigger anosmia, but may contribute to the duration of the olfactory dysfunction.
Collapse
Affiliation(s)
- Rafal Butowt
- Global Consortium of Chemosensory Research - Poland, Przybory Str 3/2, 85-791 Bydgoszcz, Poland
| | - Katarzyna Bilinska
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, uI. Curie Sklodowskiej 9, 85-94, Bydgoszcz, Poland.
| | - Christopher S von Bartheld
- Center of Biomedical Research Excellence in Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA; Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA.
| |
Collapse
|
28
|
Browne LP, Crespo A, Grubb MS. Rapid presynaptic maturation in naturally regenerating axons of the adult mouse olfactory nerve. Cell Rep 2022; 41:111750. [PMID: 36476871 DOI: 10.1016/j.celrep.2022.111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Successful neuronal regeneration requires the reestablishment of synaptic connectivity. This process requires the reconstitution of presynaptic neurotransmitter release, which we investigate here in a model of entirely natural regeneration. After toxin-induced injury, olfactory sensory neurons in the adult mouse olfactory epithelium can regenerate fully, sending axons via the olfactory nerve to reestablish synaptic contact with postsynaptic partners in the olfactory bulb. Using electrophysiological recordings in acute slices, we find that, after initial recontact, functional connectivity in this system is rapidly established. Reconnecting presynaptic terminals have almost mature functional properties, including high release probability and strong capacity for presynaptic inhibition. Release probability then matures quickly, rendering reestablished terminals functionally indistinguishable from controls just 1 week after initial contact. These data show that successful synaptic regeneration in the adult mammalian brain is almost a "plug-and-play" process, with presynaptic terminals undergoing a rapid phase of functional maturation as they reintegrate into target networks.
Collapse
Affiliation(s)
- Lorcan P Browne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
29
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|
30
|
Jang S, Kim B, Lee J, Kang S, Kim JS, Kim JC, Kim SH, Shin T, Moon C. Lectin histochemistry of the olfactory mucosa of Korean native cattle, Bos taurus coreanae. J Vet Sci 2022; 23:e88. [PMID: 36448434 PMCID: PMC9715387 DOI: 10.4142/jvs.22184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The olfactory mucosa (OM) is crucial for odorant perception in the main olfactory system. The terminal carbohydrates of glycoconjugates influence chemoreception in the olfactory epithelium (OE). OBJECTIVES The histological characteristics and glycoconjugate composition of the OM of Korean native cattle (Hanwoo, Bos taurus coreae) were examined to characterize their morphology and possible functions during postnatal development. METHODS The OM of neonate and adult Korean native cattle was evaluated using histological, immunohistochemical, and lectin histochemical methods. RESULTS Histologically, the OM in both neonates and adults consists of the olfactory epithelium and the lamina propria. Additionally, using periodic acid Schiff and Alcian blue (pH 2.5), the mucus specificity of the Bowman's gland duct and acini in the lamina propria was determined. Immunohistochemistry demonstrated that mature and immature olfactory sensory neurons of OEs express the olfactory marker protein and growth associated protein-43, respectively. Lectin histochemistry indicated that numerous glycoconjugates, including as N-acetylglucosamine, mannose, galactose, N-acetylgalactosamine, complex type N-glycan, and fucose groups, were expressed at varied levels in the different cell types in the OMs of neonates and adults at varying levels. According to our observations, the cattle possessed a well-developed olfactory system, and the expression patterns of glycoconjugates in neonatal and adult OMs varied considerably. CONCLUSIONS This is the first study to describe the morphological assessment of the OM of Korean native cattle with a focus on lectin histochemistry. The findings suggest that glycoconjugates may play a role in olfactory chemoreception, and that their labeling properties may be closely related to OM development and maturity.
Collapse
Affiliation(s)
- Sungwoong Jang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Jong-Choon Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
31
|
Omura M, Takabatake Y, Lempert E, Benjamin-Hong S, D'Hulst C, Feinstein P. A genetic platform for functionally profiling odorant receptors in olfactory cilia ex vivo. Sci Signal 2022; 15:eabm6112. [PMID: 35944068 DOI: 10.1126/scisignal.abm6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The molecular basis for odor perception in humans remains enigmatic because of the difficulty in studying odorant receptors (ORs) outside their native environment. Efforts toward OR expression and functional profiling have been met with limited success because of the poor efficiency of their cell surface expression in vitro. Structures protruding from the surface of olfactory sensory neurons called cilia contain all of the components of the olfactory signal transduction machinery and can be placed in an ex vivo plate assay to rapidly measure odor-specific responses. Here, we describe an approach using cilia isolated from the olfactory sensory neurons of mice expressing two human ORs, OR1A1 and OR5AN1, that showed 10- to 100-fold more sensitivity to ligands as compared to previous assays. A single mouse can produce enough olfactory cilia for up to 4000 384-well assay wells, and isolated cilia can be stored frozen and thus preserved. This pipeline offers a sensitive and highly scalable ex vivo odor-screening platform that has the potential to decode human olfaction.
Collapse
Affiliation(s)
- Masayo Omura
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA
| | - Yukie Takabatake
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA
| | - Eugene Lempert
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | | | - Charlotte D'Hulst
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA.,Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
32
|
Avaro V, Hummel T, Calegari F. Scent of stem cells: How can neurogenesis make us smell better? Front Neurosci 2022; 16:964395. [PMID: 35992908 PMCID: PMC9381839 DOI: 10.3389/fnins.2022.964395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Throughout the animal kingdom, olfaction underlies the ability to perceive chemicals in the environment as a fundamental adaptation with a plethora of functions. Unique among senses, olfaction is characterized by the integration of adult born neurons at the level of both the peripheral and central nervous systems. In fact, over the course of life, Neural Stem Cells (NSCs) reside within the peripheral Olfactory Epithelium (OE) and the brain’s subventricular zone that generate Olfactory Sensory Neurons (OSNs) and interneurons of the Olfactory Bulb (OB), respectively. Despite this unique hallmark, the role(s) of adult neurogenesis in olfactory function remains elusive. Notably, while the molecular signature and lineage of both peripheral and central NSC are being described with increasing detail and resolution, conflicting evidence about the role of adult born neurons in olfactory sensitivity, discrimination and memory remains. With a currently increasing prevalence in olfactory dysfunctions due to aging populations and infections such as COVID-19, these limited and partly controversial reports highlight the need of a better understanding and more systematic study of this fascinating sensory system. Specifically, here we will address three fundamental questions: What is the role of peripheral adult neurogenesis in sustaining olfactory sensitivity? How can newborn neurons in the brain promote olfactory discrimination and/or memory? And what can we learn from fundamental studies on the biology of olfaction that can be used in the clinical treatment of olfactory dysfunctions?
Collapse
Affiliation(s)
- Vittoria Avaro
- Centre for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
| | - Federico Calegari
- Centre for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Federico Calegari,
| |
Collapse
|
33
|
Xie C, Habif JC, Ukhanov K, Uytingco CR, Zhang L, Campbell RJ, Martens JR. Reversal of ciliary mechanisms of disassembly rescues olfactory dysfunction in ciliopathies. JCI Insight 2022; 7:158736. [PMID: 35771640 PMCID: PMC9462494 DOI: 10.1172/jci.insight.158736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ciliopathies are a class of genetic diseases resulting in cilia dysfunction in multiple organ systems, including the olfactory system. Currently, there are no available curative treatments for olfactory dysfunction and other symptoms in ciliopathies. The loss or shortening of olfactory cilia, as seen in multiple mouse models of the ciliopathy Bardet–Biedl syndrome (BBS), results in olfactory dysfunction. However, the underlying mechanism of the olfactory cilia reduction is unknown, thus limiting the development of therapeutic approaches for BBS and other ciliopathies. Here, we demonstrated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a phosphoinositide typically excluded from olfactory cilia, aberrantly redistributed into the residual cilia of BBS mouse models, which caused F-actin ciliary infiltration. Importantly, PI(4,5)P2 and F-actin were necessary for olfactory cilia shortening. Using a gene therapeutic approach, the hydrolyzation of PI(4,5)P2 by overexpression of inositol polyphosphate-5-phosphatase E (INPP5E) restored cilia length and rescued odor detection and odor perception in BBS. Together, our data indicate that PI(4,5)P2/F-actin–dependent cilia disassembly is a common mechanism contributing to the loss of olfactory cilia in BBS and provide valuable pan-therapeutic intervention targets for the treatment of ciliopathies.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Robert J Campbell
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| |
Collapse
|
34
|
Bigdai EV, Samoilov VO. Role of Neurotransmitters in the Functioning of Olfactory Sensory Neurons. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Ching K, Wang JT, Stearns T. Long-range migration of centrioles to the apical surface of the olfactory epithelium. eLife 2022; 11:e74399. [PMID: 35420544 PMCID: PMC9064291 DOI: 10.7554/elife.74399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in vertebrates detect odorants using multiple cilia, which protrude from the end of the dendrite and require centrioles for their formation. In mouse olfactory epithelium, the centrioles originate in progenitor cells near the basal lamina, often 50-100 μm from the apical surface. It is unknown how centrioles traverse this distance or mature to form cilia. Using high-resolution expansion microscopy, we found that centrioles migrate together, with multiple centrioles per group and multiple groups per OSN, during dendrite outgrowth. Centrioles were found by live imaging to migrate slowly, with a maximum rate of 0.18 µm/minute. Centrioles in migrating groups were associated with microtubule nucleation factors, but acquired rootletin and appendages only in mature OSNs. The parental centriole had preexisting appendages, formed a single cilium before other centrioles, and retained its unique appendage configuration in the mature OSN. We developed an air-liquid interface explant culture system for OSNs and used it to show that centriole migration can be perturbed ex vivo by stabilizing microtubules. We consider these results in the context of a comprehensive model for centriole formation, migration, and maturation in this important sensory cell type.
Collapse
Affiliation(s)
- Kaitlin Ching
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Jennifer T Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Tim Stearns
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
36
|
Xiang L, Zhang J, Rao FQ, Yang QL, Zeng HY, Huang SH, Xie ZX, Lv JN, Lin D, Chen XJ, Wu KC, Lu F, Huang XF, Chen Q. Depletion of miR-96 Delays, But Does Not Arrest, Photoreceptor Development in Mice. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35481839 PMCID: PMC9055555 DOI: 10.1167/iovs.63.4.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Abundant retinal microRNA-183 cluster (miR-183C) has been reported to be a key player in photoreceptor development and functionality in mice. However, whether there is a protagonist in this cluster remains unclear. Here, we used a mutant mouse model to study the role of miR-96, a member of miR-183C, in photoreceptor development and functionality. Methods The mature miR-96 sequence was removed using the CRISPR/Cas9 genome-editing system. Electroretinogram (ERG) and optical coherence tomography (OCT) investigated the changes in structure and function in mouse retinas. Immunostaining determined the localization and morphology of the retinal cells. RNA sequencing was conducted to observe retinal transcription alterations. Results The miR-96 mutant mice exhibited cone developmental delay, as occurs in miR-183/96 double knockout mice. Immunostaining of cone-specific marker genes revealed cone nucleus mislocalization and exiguous Opn1mw/Opn1sw in the mutant (MT) mouse outer segments at postnatal day 10. Interestingly, this phenomenon could be relieved in the adult stages. Transcriptome analysis revealed activation of microtubule-, actin filament–, and cilia-related pathways, further supporting the findings. Based on ERG and OCT results at different ages, the MT mice displayed developmental delay not only in cones but also in rods. In addition, a group of miR-96 potential direct and indirect target genes was summarized for interpretation and further studies of miR-96–related retinal developmental defects. Conclusions Depletion of miR-96 delayed but did not arrest photoreceptor development in mice. This miRNA is indispensable for mouse photoreceptor maturation, especially for cones.
Collapse
Affiliation(s)
- Lue Xiang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Juan Zhang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng-Qin Rao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Qiao-Li Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui-Yi Zeng
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Sheng-Hai Huang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhen-Xiang Xie
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ji-Neng Lv
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Dan Lin
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xue-Jiao Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Kun-Chao Wu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Xiu-Feng Huang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| |
Collapse
|
37
|
Khan N, Alimova Y, Clark SJ, Vekaria H, Walsh AE, Williams HC, Hawk GS, Sullivan P, Johnson LA, McClintock TS. Human APOE ɛ3 and APOE ɛ4 Alleles Have Differential Effects on Mouse Olfactory Epithelium. J Alzheimers Dis 2021; 85:1481-1494. [PMID: 34958025 DOI: 10.3233/jad-215152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive age-dependent disorder whose risk is affected by genetic factors. Better models for investigating early effects of risk factors such as apolipoprotein E (APOE) genotype are needed. OBJECTIVE To determine whether APOE genotype produces neuropathologies in an AD-susceptible neural system, we compared effects of human APOE ɛ3 (E3) and APOE ɛ4 (E4) alleles on the mouse olfactory epithelium. METHODS RNA-Seq using the STAR aligner and DESeq2, immunohistochemistry for activated caspase-3 and phosphorylated histone H3, glucose uptake after oral gavage of 2-[1,2-3H (N)]-deoxy-D-glucose, and Seahorse Mito Stress tests on dissociated olfactory mucosal cells. RESULTS E3 and E4 olfactory mucosae show 121 differentially abundant mRNAs at age 6 months. These do not indicate differences in cell type proportions, but effects on 17 odorant receptor mRNAs suggest small differences in tissue development. Ten oxidoreductases mRNAs important for cellular metabolism and mitochondria are less abundant in E4 olfactory mucosae but this does not translate into differences in cellular respiration. E4 olfactory mucosae show lower glucose uptake, characteristic of AD susceptibility and consistent with greater expression of the glucose-sensitive gene, Asns. Olfactory sensory neuron apoptosis is unaffected at age 6 months but is greater in E4 mice at 10 months. CONCLUSION Effects of human APOE alleles on mouse olfactory epithelium phenotype are apparent in early adulthood, and neuronal loss begins to increase by middle age (10 months). The olfactory epithelium is an appropriate model for the ability of human APOE alleles to modulate age-dependent effects associated with the progression of AD.
Collapse
Affiliation(s)
- Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Yelena Alimova
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Sophie J Clark
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Holden C Williams
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory S Hawk
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Patrick Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Lexington Veterans' Affairs Healthcare System, Lexington, KY, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
38
|
Xie C, Habif JC, Uytingco CR, Ukhanov K, Zhang L, de Celis C, Sheffield VC, Martens JR. Gene therapy rescues olfactory perception in a clinically relevant ciliopathy model of Bardet-Biedl syndrome. FASEB J 2021; 35:e21766. [PMID: 34383976 DOI: 10.1096/fj.202100627r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a hereditary genetic disorder that results in numerous clinical manifestations including olfactory dysfunction. Of at least 21 BBS-related genes that can carry multiple mutations, a pathogenic mutation, BBS1M390R, is the single most common mutation of clinically diagnosed BBS outcomes. While the deletion of BBS-related genes in mice can cause variable penetrance in different organ systems, the impact of the Bbs1M390R mutation in the olfactory system remains unclear. Using a clinically relevant knock-in mouse model homozygous for Bbs1M390R, we investigated the impact of the mutation on the olfactory system and tested the potential of viral-mediated, wildtype gene replacement therapy to rescue smell loss. The cilia of olfactory sensory neurons (OSNs) in Bbs1M390R/M390R mice were significantly shorter and fewer than those of wild-type mice. Also, both peripheral cellular odor detection and synaptic-dependent activity in the olfactory bulb were significantly decreased in the mutant mice. Furthermore, to gain insight into the degree to which perceptual features are impaired in the mutant mice, we used whole-body plethysmography to quantitatively measure odor-evoked sniffing. The Bbs1M390R/M390R mice showed significantly higher odor detection thresholds (reduced odor sensitivity) compared to wild-type mice; however, their odor discrimination acuity was still well maintained. Importantly, adenoviral expression of Bbs1 in OSNs restored cilia length and re-established both peripheral odorant detection and odor perception. Together, our findings further expand our understanding for the development of gene therapeutic treatment for congenital ciliopathies in the olfactory system.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Carlos de Celis
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Val C Sheffield
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Vision Research, University of Iowa, Iowa City, IA, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
39
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
40
|
Xie C, Martens JR. Potential Therapeutic Targets for Olfactory Dysfunction in Ciliopathies Beyond Single-Gene Replacement. Chem Senses 2021; 46:6159785. [PMID: 33690843 DOI: 10.1093/chemse/bjab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory dysfunction is a common disorder in the general population. There are multiple causes, one of which being ciliopathies, an emerging class of human hereditary genetic disorders characterized by multiple symptoms due to defects in ciliary biogenesis, maintenance, and/or function. Mutations/deletions in a wide spectrum of ciliary genes have been identified to cause ciliopathies. Currently, besides symptomatic therapy, there is no available therapeutic treatment option for olfactory dysfunction caused by ciliopathies. Multiple studies have demonstrated that targeted gene replacement can restore the morphology and function of olfactory cilia in olfactory sensory neurons and further re-establish the odor-guided behaviors in animals. Therefore, targeted gene replacement could be potentially used to treat olfactory dysfunction in ciliopathies. However, due to the potential limitations of single-gene therapy for polygenic mutation-induced diseases, alternative therapeutic targets for broader curative measures need to be developed for olfactory dysfunction, and also for other symptoms in ciliopathies. Here we review the current understanding of ciliogenesis and maintenance of olfactory cilia. Furthermore, we emphasize signaling mechanisms that may be involved in the regulation of olfactory ciliary length and highlight potential alternative therapeutic targets for the treatment of ciliopathy-induced dysfunction in the olfactory system and even in other ciliated organ systems.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|