1
|
Aghaali Z, Naghavi MR. Developing benzylisoquinoline alkaloid-enriched opium poppy via CRISPR-directed genome editing: A review. BMC PLANT BIOLOGY 2024; 24:700. [PMID: 39048937 PMCID: PMC11267691 DOI: 10.1186/s12870-024-05412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Among plant-derived secondary metabolites are benzylisoquinoline alkaloids (BIAs) that play a vital role in medicine. The most conspicuous BIAs frequently found in opium poppy are morphine, codeine, thebaine, papaverine, sanguinarine, and noscapine. BIAs have provided abundant clinically useful drugs used in the treatment of various diseases and ailments With an increasing demand for these herbal remedies, genetic improvement of poppy plants appears to be essential to live up to the expectations of the pharmaceutical industry. With the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9), the field of metabolic engineering has undergone a paradigm shift in its approach due to its appealing attributes, such as the transgene-free editing capability, precision, selectivity, robustness, and versatility. The potentiality of the CRISPR system for manipulating metabolic pathways in opium poppy was demonstrated, but further investigations regarding the use of CRISPR in BIA pathway engineering should be undertaken to develop opium poppy into a bioreactor synthesizing BIAs at the industrial-scale levels. In this regard, the recruitment of RNA-guided genome editing for knocking out miRNAs, flower responsible genes, genes involved in competitive pathways, and base editing are described. The approaches presented here have never been suggested or applied in opium poppy so far.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Naghavi
- Division of Plant Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
2
|
Lewandowska-Wosik A, Chudzińska EM, Wojnicka-Półtorak A. Genotoxic effects of sub-lethal doses of nicotine and acetamiprid in neuroblasts of Drosophila melanogaster and Drosophila suzukii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116585. [PMID: 38875821 DOI: 10.1016/j.ecoenv.2024.116585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Neonicotinoids form a class of insecticides that are chemically related to nicotine and are widely used in crop protection. They have adverse effects on the neuronal nicotinic acetylcholine receptors (nAChRs). One of the neonicotinoids approved for control of the invasive pest Drosophila suzukii is acetamiprid. Despite concerns regarding its genotoxicity and data indicating the presence of small amounts of this substance in fruits intended for consumption, effects of its low doses on nerve cells are yet to be investigated. To determine whether the neurotoxic effects are species-specific and vary depending on the insecticide present in diet, multigenerational cultures of Drosophila melanogaster and D. suzukii were prepared, in this study, in media supplemented with different concentrations (below the LC50) of acetamiprid and nicotine. Acetamiprid, analogous to nicotine, caused damage to the DNA of neuroblasts in both species, at sublethal concentrations, along with a decrease in mobility, which remained at a similar level over subsequent generations. D. suzukii was found to be more sensitive to nicotine and acetamiprid, due to which the genotoxic effects were stronger even at lower doses of toxins. The results collectively indicated that even low concentrations of acetamiprid affect the stem cells of developing fly brain, and that long-term response to the tested insecticides is species-specific.
Collapse
Affiliation(s)
- Anetta Lewandowska-Wosik
- Department of Genetic, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland.
| | - Ewa Małgorzata Chudzińska
- Department of Genetic, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland
| | - Aleksandra Wojnicka-Półtorak
- Department of Genetic, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland
| |
Collapse
|
3
|
Dey M, Brown E, Charlu S, Keene A, Dahanukar A. Evolution of fatty acid taste in drosophilids. Cell Rep 2023; 42:113297. [PMID: 37864792 PMCID: PMC10697176 DOI: 10.1016/j.celrep.2023.113297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023] Open
Abstract
Comparative studies of related but ecologically distinct species can reveal how the nervous system evolves to drive behaviors that are particularly suited to certain environments. Drosophila melanogaster is a generalist that feeds and oviposits on most overripe fruits. A sibling species, D. sechellia, is an obligate specialist of Morinda citrifolia (noni) fruit, which is rich in fatty acids (FAs). To understand evolution of noni taste preference, we characterized behavioral and cellular responses to noni-associated FAs in three related drosophilids. We find that mixtures of sugar and noni FAs evoke strong aversion in the generalist species but not in D. sechellia. Surveys of taste sensory responses reveal noni FA- and species-specific differences in at least two mechanisms-bitter neuron activation and sweet neuron inhibition-that correlate with shifts in noni preference. Chemoreceptor mutant analysis in D. melanogaster predicts that multiple genetic changes account for evolution of gustatory preference in D. sechellia.
Collapse
Affiliation(s)
- Manali Dey
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Elizabeth Brown
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Sandhya Charlu
- Biomedical Sciences Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Alex Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA; Biomedical Sciences Graduate Program, University of California, Riverside, Riverside, CA 92521, USA; Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
4
|
Babin A, Gatti JL, Poirié M. Bacillus thuringiensis bioinsecticide influences Drosophila oviposition decision. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230565. [PMID: 37650056 PMCID: PMC10465210 DOI: 10.1098/rsos.230565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Behavioural avoidance has obvious benefits for animals facing environmental stressors such as pathogen-contaminated foods. Most current bioinsecticides are based on the environmental and opportunistic bacterium Bacillus thuringiensis (Bt) that kills targeted insect pests upon ingestion. While food and oviposition avoidance of Bt bioinsecticide by targeted insect species was reported, this remained to be addressed in non-target organisms, especially those affected by chronic exposure to Bt bioinsecticide such as Drosophila species. Here, using a two-choice oviposition test, we showed that female flies of three Drosophila species (four strains of D. melanogaster, D. busckii and D. suzukii) avoided laying eggs in the presence of Bt var. kurstaki bioinsecticide, with potential benefits for the offspring and female's fitness. Avoidance occurred rapidly, regardless of the fraction of the bioinsecticide suspension (spores and toxin crystals versus soluble toxins/compounds) and independently of the female motivation for egg laying. Our results suggest that, in addition to recent findings of developmental and physiological alterations upon chronic exposure to non-target Drosophila, this bioinsecticide may modify the competitive interactions between Drosophila species in treated areas and the interactions with their associated natural enemies.
Collapse
Affiliation(s)
- Aurélie Babin
- Université Côte d'Azur, INRAE, CNRS, Sophia Agrobiotech Institute (ISA), 06903 Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Sophia Agrobiotech Institute (ISA), 06903 Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Sophia Agrobiotech Institute (ISA), 06903 Sophia Antipolis, France
| |
Collapse
|
5
|
Kennedy DO, Wightman EL. Mental Performance and Sport: Caffeine and Co-consumed Bioactive Ingredients. Sports Med 2022; 52:69-90. [PMID: 36447122 PMCID: PMC9734217 DOI: 10.1007/s40279-022-01796-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
The plant defence compound caffeine is widely consumed as a performance enhancer in a sporting context, with potential benefits expected in both physiological and psychological terms. However, although caffeine modestly but consistently improves alertness and fatigue, its effects on mental performance are largely restricted to improved attention or concentration. It has no consistent effect within other cognitive domains that are important to sporting performance, including working memory, executive function and long-term memory. Although caffeine's central nervous system effects are often attributed to blockade of the receptors for the inhibitory neuromodulator adenosine, it also inhibits a number of enzymes involved both in neurotransmission and in cellular homeostasis and signal propagation. Furthermore, it modulates the pharmacokinetics of other endogenous and exogenous bioactive molecules, in part via interactions with shared cytochrome P450 enzymes. Caffeine therefore enjoys interactive relationships with a wide range of bioactive medicinal and dietary compounds, potentially broadening, increasing, decreasing, or modulating the time course of their functional effects, or vice versa. This narrative review explores the mechanisms of action and efficacy of caffeine and the potential for combinations of caffeine and other dietary compounds to exert psychological effects in excess of those expected following caffeine alone. The review focusses on, and indeed restricted its untargeted search to, the most commonly consumed sources of caffeine: products derived from caffeine-synthesising plants that give us tea (Camellia sinensis), coffee (Coffea genus), cocoa (Theabroma cacao) and guaraná (Paullinia cupana), plus multi-component energy drinks and shots. This literature suggests relevant benefits to mental performance that exceed those associated with caffeine for multi-ingredient energy drinks/shots and several low-caffeine extracts, including high-flavanol cocoa and guarana. However, there is a general lack of research conducted in such a way as to disentangle the relative contributions of the component parts of these products.
Collapse
Affiliation(s)
- David O. Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Emma L. Wightman
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| |
Collapse
|
6
|
Snell NJ, Fisher JD, Hartmann GG, Zolyomi B, Talay M, Barnea G. Complex representation of taste quality by second-order gustatory neurons in Drosophila. Curr Biol 2022; 32:3758-3772.e4. [PMID: 35973432 PMCID: PMC9474709 DOI: 10.1016/j.cub.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023]
Abstract
Sweet and bitter compounds excite different sensory cells and drive opposing behaviors. However, it remains unclear how sweet and bitter tastes are represented by the neural circuits linking sensation to behavior. To investigate this question in Drosophila, we devised trans-Tango(activity), a strategy for calcium imaging of second-order gustatory projection neurons based on trans-Tango, a genetic transsynaptic tracing technique. We found spatial overlap between the projection neuron populations activated by sweet and bitter tastants. The spatial representation of bitter tastants in the projection neurons was consistent, while that of sweet tastants was heterogeneous. Furthermore, we discovered that bitter tastants evoke responses in the gustatory receptor neurons and projection neurons upon both stimulus onset and offset and that bitter offset and sweet onset excite overlapping second-order projections. These findings demonstrate an unexpected complexity in the representation of sweet and bitter tastants by second-order neurons of the gustatory circuit.
Collapse
Affiliation(s)
- Nathaniel J Snell
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - John D Fisher
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Griffin G Hartmann
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Bence Zolyomi
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Mustafa Talay
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
7
|
Zhang J, Wang Z, Klett K, Qu Y, Tan K. Higher toxin tolerance to triptolide, a terpenoid foraged by a sympatric honeybee. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104358. [PMID: 35026301 DOI: 10.1016/j.jinsphys.2022.104358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The thunder god vine, Tripterygium hypoglaucum, is a toxic nectar plant distributed across China. A terpenoid, called triptolide (TRP), found in nectar can impair honeybees' foraging responses, dance communication, and olfactory learning. In the present study, we tested the tolerances of the native honeybee Apis cerana and the introduced honeybee A. mellifera to short-term and long-term exposure to TRP. The results showed that introduced A. mellifera is more vulnerable in fatality to high concentrations of TRP sucrose solution (5 and 10 µg TRP mL-1) than A. cerana. We also compared the short-term and long-term exposure effects of TRP on olfactory learning and memory between the two honeybee species, and the olfactory learning and memory of both honey bee species showed impaired performance after both 2 h or 7 days of being fed with TRP sucrose solution. However, A. cerana showed a higher tolerance and resistance to TRP toxin than A. mellifera. Our results support a coevolution hypothesis in that the native species A. cerana has higher toxin tolerance than the introduced species A. mellifera.
Collapse
Affiliation(s)
- Junjun Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; College of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China.
| | - Katrina Klett
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; College of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Yufeng Qu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China.
| |
Collapse
|
8
|
Sareen PF, McCurdy LY, Nitabach MN. A neuronal ensemble encoding adaptive choice during sensory conflict in Drosophila. Nat Commun 2021; 12:4131. [PMID: 34226544 PMCID: PMC8257655 DOI: 10.1038/s41467-021-24423-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/18/2021] [Indexed: 01/02/2023] Open
Abstract
Feeding decisions are fundamental to survival, and decision making is often disrupted in disease. Here, we show that neural activity in a small population of neurons projecting to the fan-shaped body higher-order central brain region of Drosophila represents food choice during sensory conflict. We found that food deprived flies made tradeoffs between appetitive and aversive values of food. We identified an upstream neuropeptidergic and dopaminergic network that relays internal state and other decision-relevant information to a specific subset of fan-shaped body neurons. These neurons were strongly inhibited by the taste of the rejected food choice, suggesting that they encode behavioral food choice. Our findings reveal that fan-shaped body taste responses to food choices are determined not only by taste quality, but also by previous experience (including choice outcome) and hunger state, which are integrated in the fan-shaped body to encode the decision before relay to downstream motor circuits for behavioral implementation.
Collapse
Affiliation(s)
- Preeti F Sareen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Li Yan McCurdy
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Bestea L, Réjaud A, Sandoz JC, Carcaud J, Giurfa M, de Brito Sanchez MG. Peripheral taste detection in honey bees: What do taste receptors respond to? Eur J Neurosci 2021; 54:4417-4444. [PMID: 33934411 DOI: 10.1111/ejn.15265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Understanding the neural principles governing taste perception in species that bear economic importance or serve as research models for other sensory modalities constitutes a strategic goal. Such is the case of the honey bee (Apis mellifera), which is environmentally and socioeconomically important, given its crucial role as pollinator agent in agricultural landscapes and which has served as a traditional model for visual and olfactory neurosciences and for research on communication, navigation, and learning and memory. Here we review the current knowledge on honey bee gustatory receptors to provide an integrative view of peripheral taste detection in this insect, highlighting specificities and commonalities with other insect species. We describe behavioral and electrophysiological responses to several tastant categories and relate these responses, whenever possible, to known molecular receptor mechanisms. Overall, we adopted an evolutionary and comparative perspective to understand the neural principles of honey bee taste and define key questions that should be answered in future gustatory research centered on this insect.
Collapse
Affiliation(s)
- Louise Bestea
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD (UMR 5174), University of Toulouse, Toulouse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.,College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Institut Universitaire de France (IUF), Paris, France
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| |
Collapse
|
10
|
Dweck HK, Talross GJ, Wang W, Carlson JR. Evolutionary shifts in taste coding in the fruit pest Drosophila suzukii. eLife 2021; 10:64317. [PMID: 33616529 PMCID: PMC7899650 DOI: 10.7554/elife.64317] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/23/2021] [Indexed: 01/17/2023] Open
Abstract
Although most Drosophila species lay eggs in overripe fruit, the agricultural pest Drosophila suzukii lays eggs in ripe fruit. We found that changes in bitter taste perception have accompanied this adaptation. We show that bitter-sensing mutants of Drosophila melanogaster undergo a shift in egg laying preference toward ripe fruit. D. suzukii has lost 20% of the bitter-sensing sensilla from the labellum, the major taste organ of the head. Physiological responses to various bitter compounds are lost. Responses to strawberry purées are lost from two classes of taste sensilla. Egg laying is not deterred by bitter compounds that deter other species. Profiling of labellar transcriptomes reveals reduced expression of several bitter Gr genes (gustatory receptors). These findings support a model in which bitter compounds in early ripening stages deter egg laying in most Drosophila species, but a loss of bitter response contributes to the adaptation of D. suzukii to ripe fruit. A new agricultural pest has recently emerged in the United States and Northern Europe. The invasive species is a type of fruit fly that normally lives in Southeast Asia called Drosophila suzukii (also known as the spotted wing Drosophila). This fly poses a threat to fruit crops – including strawberries, blueberries, cherries, peaches and grapes – because, while other fruit flies lay eggs in overripe fruit, D. suzukii lays eggs in ripe fruit, leading to agricultural losses. This shift in where fruit flies prefer to lay their eggs is related to changes in the senses of smell and touch, and taste could also play a role. Insects have evolved mechanisms that dissuade them from eating or laying eggs in plants with high levels of toxins, which taste bitter. If D. suzukii is less sensitive to bitter tastes than other flies, this could help explain why it lays eggs in just-ripe fruit, since the levels of certain bitter compounds are higher in the early stages of ripening than later on. To figure out if this is the case, Dweck et al. studied different species of fruit fly. Compared to Drosophila melanogaster (a fruit fly common in America and Europe that is regularly used in scientific studies), D. suzukii had fewer bitter taste receptor neurons on the major taste organ of the fly head. These receptor neurons were also less responsive to a variety of bitter compounds. Next, Dweck et al. tested whether D. melanogaster and D. suzukii showed different preferences for where to lay their eggs by offering them strawberry purées made from fruit at different ripening stages. In this experiment, D. suzukii preferred to lay its eggs on purées made from unripe or just-ripe strawberries, while D. melanogaster showed a preference for fermented (overripe) purée. Furthermore, when D. melanogaster flies were genetically modified so that they became less sensitive to bitter taste, they preferred to lay their eggs in ripe (rather than overripe) fruit, similar to D. suzukii. These results suggest that taste has a major role in the egg laying preferences of D. suzukii. Further research is needed to determine which bitter compounds influence egg-laying decisions in each species of fruit fly, and what receptors respond to these compounds. However, Dweck et al.’s results lay the groundwork for new approaches to reducing D. suzukii’s impact on agriculture.
Collapse
Affiliation(s)
- Hany Km Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Gaëlle Js Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Wanyue Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
11
|
Ferreira EA, Lambert S, Verrier T, Marion-Poll F, Yassin A. Soft Selective Sweep on Chemosensory Genes Correlates with Ancestral Preference for Toxic Noni in a Specialist Drosophila Population. Genes (Basel) 2020; 12:genes12010032. [PMID: 33383708 PMCID: PMC7824377 DOI: 10.3390/genes12010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how organisms adapt to environmental changes is a major question in evolution and ecology. In particular, the role of ancestral variation in rapid adaptation remains unclear because its trace on genetic variation, known as soft selective sweep, is often hardly recognizable from genome-wide selection scans. Here, we investigate the evolution of chemosensory genes in Drosophila yakuba mayottensis, a specialist subspecies on toxic noni (Morinda citrifolia) fruits on the island of Mayotte. We combine population genomics analyses and behavioral assays to evaluate the level of divergence in chemosensory genes and perception of noni chemicals between specialist and generalist subspecies of D. yakuba. We identify a signal of soft selective sweep on a handful of genes, with the most diverging ones involving a cluster of gustatory receptors expressed in bitter-sensing neurons. Our results highlight the potential role of ancestral genetic variation in promoting host plant specialization in herbivorous insects and identify a number of candidate genes underlying behavioral adaptation.
Collapse
Affiliation(s)
- Erina A. Ferreira
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.A.F.); (F.M.-P.)
- Institut Systématique Evolution Biodiversité (ISYEB) Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE 57 rue Cuvier, CP 50, 75005 Paris, France; (S.L.); (T.V.)
| | - Sophia Lambert
- Institut Systématique Evolution Biodiversité (ISYEB) Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE 57 rue Cuvier, CP 50, 75005 Paris, France; (S.L.); (T.V.)
| | - Thibault Verrier
- Institut Systématique Evolution Biodiversité (ISYEB) Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE 57 rue Cuvier, CP 50, 75005 Paris, France; (S.L.); (T.V.)
| | - Frédéric Marion-Poll
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.A.F.); (F.M.-P.)
- AgroParisTech, Université Paris-Saclay, 75231 Paris, France
| | - Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.A.F.); (F.M.-P.)
- Institut Systématique Evolution Biodiversité (ISYEB) Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE 57 rue Cuvier, CP 50, 75005 Paris, France; (S.L.); (T.V.)
- Correspondence:
| |
Collapse
|
12
|
Chen YCD, Park SJ, Joseph RM, Ja WW, Dahanukar AA. Combinatorial Pharyngeal Taste Coding for Feeding Avoidance in Adult Drosophila. Cell Rep 2020; 29:961-973.e4. [PMID: 31644916 PMCID: PMC6860367 DOI: 10.1016/j.celrep.2019.09.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/18/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Taste drives appropriate food preference and intake. In Drosophila, taste neurons are housed in both external and internal organs, but the latter have been relatively underexplored. Here, we report that Poxn mutants with a minimal taste system of pharyngeal neurons can avoid many aversive tastants, including bitter compounds, acid, and salt, suggesting that pharyngeal taste is sufficient for rejecting intake of aversive compounds. Optogenetic activation of selected pharyngeal bitter neurons during feeding events elicits changes in feeding parameters that can suppress intake. Functional dissection experiments indicate that multiple classes of pharyngeal neurons are involved in achieving behavioral avoidance, by virtue of being inhibited or activated by aversive tastants. Tracing second-order pharyngeal circuits reveals two main relay centers for processing pharyngeal taste inputs. Together, our results suggest that the pharynx can control the ingestion of harmful compounds by integrating taste input from different classes of pharyngeal neurons. Chen et al. perform functional and behavioral experiments to study the roles of different subsets of pharyngeal neurons in governing food avoidance in flies. They find evidence that rejection of different categories of aversive compounds is dependent on distinct combinations of pharyngeal taste neurons.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA
| | - Scarlet Jinhong Park
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ryan Matthew Joseph
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Anupama Arun Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
Muñoz IJ, Schilman PE, Barrozo RB. Impact of alkaloids in food consumption, metabolism and survival in a blood-sucking insect. Sci Rep 2020; 10:9443. [PMID: 32523008 PMCID: PMC7287067 DOI: 10.1038/s41598-020-65932-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
The sense of taste provides information about the “good” or “bad” quality of a food source, which may be potentially nutritious or toxic. Most alkaloids taste bitter to humans, and because bitter taste is synonymous of noxious food, they are generally rejected. This response may be due to an innate low palatability or due to a malaise that occurs after food ingestion, which could even lead to death. We investigated in the kissing bug Rhodnius prolixus, whether alkaloids such as quinine, caffeine and theophylline, are merely distasteful, or if anti-appetitive responses are caused by a post-ingestion physiological effect, or both of these options. Although anti-appetitive responses were observed for the three alkaloids, only caffeine and theophylline affect metabolic and respiratory parameters that reflected an underlying physiological stress following their ingestion. Furthermore, caffeine caused the highest mortality. In contrast, quinine appears to be a merely unpalatable compound. The sense of taste helps insects to avoid making wrong feeding decisions, such as the intake of bitter/toxic foods, and thus avoid potentially harmful effects on health, a mechanism preserved in obligate hematophagous insects.
Collapse
Affiliation(s)
- Ignacio J Muñoz
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto Biodiversidad Biología Experimental Aplicada, CONICET; Departamento Biodiversidad Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, UBA, Buenos Aires, Argentina.,Laboratorio de Ecofisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, UBA, Buenos Aires, Argentina
| | - Pablo E Schilman
- Laboratorio de Ecofisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, UBA, Buenos Aires, Argentina.
| | - Romina B Barrozo
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto Biodiversidad Biología Experimental Aplicada, CONICET; Departamento Biodiversidad Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, UBA, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Mahishi D, Huetteroth W. The prandial process in flies. CURRENT OPINION IN INSECT SCIENCE 2019; 36:157-166. [PMID: 31765996 DOI: 10.1016/j.cois.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Feeding is fundamental to any heterotroph organism; in its role to quell hunger it overrides most other motivational states. But feeding also literally opens the door to harmful risks, especially for a saprophagous animal like Drosophila; ingestion of poisonous substrate can lead to irreversible damage. Thus feeding incorporates a series of steps with several checkpoints to guarantee that the ingestion remains beneficial and provides a balanced diet, or the feeding process is interrupted. Subsequently, we will summarize and describe the feeding process in Drosophila in a comprehensive manner. We propose eleven distinct steps for feeding, grouped into four categories, to address our current knowledge of prandial regulatory mechanisms in Drosophila.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Biology, University of Leipzig, Leipzig, Germany
| | - Wolf Huetteroth
- Department of Biology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Geographically separated orange and blue populations of the Amazonian poison frog Adelphobates galactonotus (Anura, Dendrobatidae) do not differ in alkaloid composition or palatability. CHEMOECOLOGY 2019. [DOI: 10.1007/s00049-019-00291-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Monitoring food preference in Drosophila by oligonucleotide tagging. Proc Natl Acad Sci U S A 2018; 115:9020-9025. [PMID: 30127010 DOI: 10.1073/pnas.1716880115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster is a powerful model organism for dissecting the neurogenetic basis of appetitive and aversive behaviors. However, some methods used to assay food preference require or cause starvation. This can be problematic for fly ethanol research because it can be difficult to dissociate caloric preference for ethanol from pharmacological preference for the drug. We designed BARCODE, a starvation-independent assay that uses trace levels of oligonucleotide tags to differentially mark food types. In BARCODE, flies feed ad libitum, and relative food preference is monitored by qPCR of the oligonucleotides. Persistence of the ingested oligomers within the fly records the feeding history of the fly over several days. Using BARCODE, we identified a sexually dimorphic preference for ethanol. Females are attracted to ethanol-laden foods, whereas males avoid consuming it. Furthermore, genetically feminizing male mushroom body lobes induces preference for ethanol. In addition, we demonstrate that BARCODE can be used for multiplex diet measurements when animals are presented with more than two food choices.
Collapse
|
17
|
Keebaugh ES, Park JH, Su C, Yamada R, Ja WW. Nutrition Influences Caffeine-Mediated Sleep Loss in Drosophila. Sleep 2017; 40:4209550. [PMID: 29029291 PMCID: PMC5804985 DOI: 10.1093/sleep/zsx146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Study objectives Plant-derived caffeine is regarded as a defensive compound produced to prevent herbivory. Caffeine is generally repellent to insects and often used to study the neurological basis for aversive responses in the model insect, Drosophila melanogaster. Caffeine is also studied for its stimulatory properties where sleep or drowsiness is suppressed across a range of species. Since limiting access to food also inhibits fly sleep-an effect known as starvation-induced sleep suppression-we tested whether aversion to caffeinated food results in reduced nutrient intake and assessed how this might influence fly studies on the stimulatory effects of caffeine. Methods We measured sleep and total consumption during the first 24 hours of exposure to caffeinated diets containing a range of sucrose concentrations to determine the relative influence of caffeine and nutrient ingestion on sleep. Experiments were replicated using three fly strains. Results Caffeine reduced total consumption and nighttime sleep, but only at intermediate sucrose concentrations. Although sleep can be modeled by an exponential dose response to nutrient intake, caffeine-mediated sleep loss cannot be explained by absolute caffeine or sucrose ingestion alone. Instead, reduced sleep strongly correlates with changes in total consumption due to caffeine. Other bitter compounds phenocopy the effect of caffeine on sleep and food intake. Conclusions Our results suggest that a major effect of dietary caffeine is on fly feeding behavior. Changes in feeding behavior may drive caffeine-mediated sleep loss. Future studies using psychoactive compounds should consider the potential impact of nutrition when investigating effects on sleep.
Collapse
Affiliation(s)
- Erin S Keebaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL
- Center on Aging, The Scripps Research Institute, Jupiter, FL
| | - Jin Hong Park
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL
- Center on Aging, The Scripps Research Institute, Jupiter, FL
- Scripps Graduate Program, The Scripps Research Institute, Jupiter, FL
| | - Chenchen Su
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL
- Center on Aging, The Scripps Research Institute, Jupiter, FL
| | - Ryuichi Yamada
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL
- Center on Aging, The Scripps Research Institute, Jupiter, FL
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL
- Center on Aging, The Scripps Research Institute, Jupiter, FL
| |
Collapse
|
18
|
Joseph RM, Sun JS, Tam E, Carlson JR. A receptor and neuron that activate a circuit limiting sucrose consumption. eLife 2017; 6. [PMID: 28332980 PMCID: PMC5388533 DOI: 10.7554/elife.24992] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/19/2017] [Indexed: 11/23/2022] Open
Abstract
The neural control of sugar consumption is critical for normal metabolism. In contrast to sugar-sensing taste neurons that promote consumption, we identify a taste neuron that limits sucrose consumption in Drosophila. Silencing of the neuron increases sucrose feeding; optogenetic activation decreases it. The feeding inhibition depends on the IR60b receptor, as shown by behavioral analysis and Ca2+ imaging of an IR60b mutant. The IR60b phenotype shows a high degree of chemical specificity when tested with a broad panel of tastants. An automated analysis of feeding behavior in freely moving flies shows that IR60b limits the duration of individual feeding bouts. This receptor and neuron provide the molecular and cellular underpinnings of a new element in the circuit logic of feeding regulation. We propose a dynamic model in which sucrose acts via IR60b to activate a circuit that inhibits feeding and prevents overconsumption. DOI:http://dx.doi.org/10.7554/eLife.24992.001 All animals – from the fruit fly to mammals like humans – must control their dietary intake of nutrients to survive and stay healthy. Taste receptors that sense high-calorie sugars are essential to this process. Typically, when food tastes sweet, it signals that the food contains nutrients and promotes consumption. However, eating too much sugar can be detrimental because the animal wastes time and energy eating food that it does not need, and could eventually lead to obesity and other metabolic diseases. This raised the question: are there any taste receptors that, once they detect sugars, cause animals to eat less? Joseph et al. worked with the fruit fly Drosophila melanogaster and identified one such taste receptor called IR60b. The experiments showed that this taste receptor responds selectively to sucrose (a high-calorie sugar), and that it activates nerve cells that cause fruit flies to eat less food, rather than more. When the receptor was experimentally inactivated, the fruit flies ate for longer and ate too much sucrose. This indicates that the flies need this receptor to control their sugar intake. A next step will be to see if mammals similarly use sweet-sensing taste receptors to limit the amount of food they eat. A better insight into how mammals can control what they eat could provide a deeper understanding of how to tackle major health issues, such as obesity, in humans. DOI:http://dx.doi.org/10.7554/eLife.24992.002
Collapse
Affiliation(s)
- Ryan M Joseph
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Edric Tam
- Department of Biomedical Engineering, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
19
|
Bolton SK, Dickerson K, Saporito RA. Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods. J Chem Ecol 2017; 43:273-289. [PMID: 28289966 DOI: 10.1007/s10886-017-0827-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/15/2017] [Indexed: 01/27/2023]
Abstract
Conspicuously colored dendrobatid frogs sequester alkaloid defenses from dietary arthropods, resulting in considerable alkaloid variation among populations; however, little is known about how variation is perceived as a defense against predators. Previous studies have found variable alkaloids in the dendrobatid Oophaga pumilio to be associated with differences in toxicity to laboratory mice, suggesting variable defenses are important. Arthropods are natural predators that use chemoreception to detect prey, including frogs, and may therefore perceive variation in alkaloid profiles as differences in palatability. The goal of the present study is to determine how arthropods respond to variable alkaloid defenses in O. pumilio. Frog alkaloids were sampled from individual O. pumilio from ten geographic locations throughout the Bocas del Toro region of Panama and the Caribbean coast of Costa Rica. Alkaloid extracts were used in feeding bioassays with the vinegar fly Drosophila melanogaster and the ant Ectatomma ruidum. Both species of arthropods fed significantly less on frog alkaloid extracts when compared to controls, and differences in alkaloid palatability were observed among frog populations, as well as between sexes and life stages within a population. Differences in alkaloid quantity, richness, and type were the main predictors of arthropod palatability. Our findings also represent the first direct evidence of a palatability spectrum in a vertebrate that sequesters chemical defenses from dietary sources. Further, the presence of a palatability spectrum suggests that variable alkaloid defenses in O. pumilio are ecologically relevant and play an important role in natural predator-prey interactions, particularly with respect to arthropod predators.
Collapse
Affiliation(s)
- Sarah K Bolton
- Department of Biology, John Carroll University, 1 John Carroll Boulevard, University Heights, OH, 44118, USA
| | - Kelsie Dickerson
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Ralph A Saporito
- Department of Biology, John Carroll University, 1 John Carroll Boulevard, University Heights, OH, 44118, USA.
| |
Collapse
|
20
|
McGinnis JP, Jiang H, Agha MA, Sanchez CP, Lange J, Yu Z, Marion-Poll F, Si K. Immediate perception of a reward is distinct from the reward's long-term salience. eLife 2016; 5. [PMID: 28005005 PMCID: PMC5243026 DOI: 10.7554/elife.22283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/16/2016] [Indexed: 01/30/2023] Open
Abstract
Reward perception guides all aspects of animal behavior. However, the relationship between the perceived value of a reward, the latent value of a reward, and the behavioral response remains unclear. Here we report that, given a choice between two sweet and chemically similar sugars—L- and D-arabinose—Drosophila melanogaster prefers D- over L- arabinose, but forms long-term memories of L-arabinose more reliably. Behavioral assays indicate that L-arabinose-generated memories require sugar receptor Gr43a, and calcium imaging and electrophysiological recordings indicate that L- and D-arabinose differentially activate Gr43a-expressing neurons. We posit that the immediate valence of a reward is not always predictive of the long-term reinforcement value of that reward, and that a subset of sugar-sensing neurons may generate distinct representations of similar sugars, allowing for rapid assessment of the salient features of various sugar rewards and generation of reward-specific behaviors. However, how sensory neurons communicate information about L-arabinose quality and concentration—features relevant for long-term memory—remains unknown. DOI:http://dx.doi.org/10.7554/eLife.22283.001 We often remember experiences that are rewarding in some way. However, not every rewarding experience is stored in memory, and the particular experiences we remember are not always those we would expect to remember. Why is it that some experiences generate long-term memories whereas others do not? Fruit flies feed on a variety of different sugars present in rotting fruits. Although the flies find all of these sugars attractive, they form memories of some sugars more readily than others. This distinction is particularly striking in the case of two sugars with similar structures: D-arabinose and L-arabinose. Flies typically prefer D-arabinose over L-arabinose, but are more likely to remember an encounter with L-arabinose than D-arabinose. McGinnis et al. have used fruit flies to explore how the rewarding properties of an experience affect how likely it is to be stored in memory. The experiments show that D-arabinose and L-arabinose generate different patterns of activity in the fly brain, and identify a subset of taste neurons that support the formation of memories specifically about L-arabinose. These neurons enable flies to associate features of their environment – such as odors – with the presence of this one particular sugar. Such memories may help the flies to find a similar food source again in the future. Artificially activating these neurons is also sufficient to trigger the formation of a memory, even in the absence of L-arabinose itself. Taken as a whole, this work demonstrates that the immediate appeal of a reward can be separated from its ability to generate a long-term memory. The fact that activation of taste neurons can trigger memory formation explains how flies can quickly form long-term memories about desirable food sources. Looking ahead, further work will be required to understand the mechanisms that determine what animals like at any given moment, and what they remember over time. DOI:http://dx.doi.org/10.7554/eLife.22283.002
Collapse
Affiliation(s)
- John P McGinnis
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, United States
| | - Huoqing Jiang
- Stowers Institute for Medical Research, Kansas City, United States
| | - Moutaz Ali Agha
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Paris, France.,AgroParisTech, Paris, France
| | | | - Jeff Lange
- Stowers Institute for Medical Research, Kansas City, United States
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Frederic Marion-Poll
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Paris, France.,AgroParisTech, Paris, France
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Integrative and Molecular Physiology, University of Kansas School of Medicine, Kansas City, United States
| |
Collapse
|
21
|
Delventhal R, Carlson JR. Bitter taste receptors confer diverse functions to neurons. eLife 2016; 5. [PMID: 26880560 PMCID: PMC4764594 DOI: 10.7554/elife.11181] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/13/2015] [Indexed: 11/17/2022] Open
Abstract
Bitter compounds elicit an aversive response. In Drosophila, bitter-sensitive taste neurons coexpress many members of the Gr family of taste receptors. However, the molecular logic of bitter signaling is unknown. We used an in vivo expression approach to analyze the logic of bitter taste signaling. Ectopic or overexpression of bitter Grs increased endogenous responses or conferred novel responses. Surprisingly, expression of Grs also suppressed many endogenous bitter responses. Conversely, deletion of an endogenous Gr led to novel responses. Expression of individual Grs conferred strikingly different effects in different neurons. The results support a model in which bitter Grs interact, exhibiting competition, inhibition, or activation. The results have broad implications for the problem of how taste systems evolve to detect new environmental dangers. DOI:http://dx.doi.org/10.7554/eLife.11181.001 Insects and other animals use their sense of taste to tell if their food is safe to eat. Plant toxins, for example, often have a bitter flavor that animals can detect and avoid. Fruit flies have many bitter-sensitive nerve cells, but it is not known how the receptors on these nerve cells signal the detection of bitter-flavored compounds. Delventhal and Carlson have now used fruit flies to investigate how taste receptors of the so-called Gustatory receptor family detect bitter flavors. The experimental approach involved genetically modifying four different types of nerve cells that sense bitter compounds so that they produced higher levels of particular taste receptors than normal. Then, the flies were exposed to a range of bitter compounds while the electrical activity of each cell was measured. The analysis involved about 600 combinations of receptors, nerve cells and compounds. In some bitter-sensing nerve cells, increasing the number of taste receptors increased the cell’s responsiveness to bitter compounds. However, in other nerve cells, similar modifications suppressed an existing response or resulted in a new response. Delventhal and Carlson propose that these results suggest the specific response of a bitter-sensing nerve cell depends on the interactions between its different taste receptors. Furthermore, the ability of receptors to compete, inhibit or activate each other in different ways could have implications for evolution. For example, such flexible interactions might allow a taste system to evolve new, enhanced or diminished responses to new food sources and tastes in a changing environment. It now remains to be investigated how such receptor interactions take place at a molecular level. DOI:http://dx.doi.org/10.7554/eLife.11181.002
Collapse
Affiliation(s)
- Rebecca Delventhal
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
22
|
Vendrell-Llopis N, Yaksi E. Evolutionary conserved brainstem circuits encode category, concentration and mixtures of taste. Sci Rep 2015; 5:17825. [PMID: 26639368 PMCID: PMC4671064 DOI: 10.1038/srep17825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022] Open
Abstract
Evolutionary conserved brainstem circuits are the first relay for gustatory information in the vertebrate brain. While the brainstem circuits act as our life support system and they mediate vital taste related behaviors, the principles of gustatory computations in these circuits are poorly understood. By a combination of two-photon calcium imaging and quantitative animal behavior in juvenile zebrafish, we showed that taste categories are represented by dissimilar brainstem responses and generate different behaviors. We also showed that the concentration of sour and bitter tastes are encoded by different principles and with different levels of sensitivity. Moreover, we observed that the taste mixtures lead to synergistic and suppressive interactions. Our results suggest that these interactions in early brainstem circuits can result in non-linear computations, such as dynamic gain modulation and discrete representation of taste mixtures, which can be utilized for detecting food items at broad range of concentrations of tastes and rejecting inedible substances.
Collapse
Affiliation(s)
| | - Emre Yaksi
- NERF, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian Brain Centre, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
23
|
French A, Ali Agha M, Mitra A, Yanagawa A, Sellier MJ, Marion-Poll F. Drosophila Bitter Taste(s). Front Integr Neurosci 2015; 9:58. [PMID: 26635553 PMCID: PMC4658422 DOI: 10.3389/fnint.2015.00058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of “bitter” tasting.
Collapse
Affiliation(s)
- Alice French
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Moutaz Ali Agha
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aniruddha Mitra
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aya Yanagawa
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; Research Institute for Sustainable Humanosphere, Kyoto University Uji City, Japan
| | - Marie-Jeanne Sellier
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; AgroParisTech Paris, France
| |
Collapse
|
24
|
Kim H, Choi MS, Kang K, Kwon JY. Behavioral Analysis of Bitter Taste Perception in Drosophila Larvae. Chem Senses 2015; 41:85-94. [PMID: 26512069 DOI: 10.1093/chemse/bjv061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Insect larvae, which recognize food sources through chemosensory cues, are a major source of global agricultural loss. Gustation is an important factor that determines feeding behavior, and the gustatory receptors (Grs) act as molecular receptors that recognize diverse chemicals in gustatory receptor neurons (GRNs). The behavior of Drosophila larvae is relatively simpler than the adult fly, and a gustatory receptor-to-neuron map was established in a previous study of the major external larval head sensory organs. Here, we extensively study the bitter taste responses of larvae using 2-choice behavioral assays. First, we tested a panel of 23 candidate bitter compounds to compare the behavioral responses of larvae and adults. We define 9 bitter compounds which elicit aversive behavior in a dose-dependent manner. A functional map of the larval GRNs was constructed with the use of Gr-GAL4 lines that drive expression of UAS-tetanus toxin and UAS-VR1 in specific gustatory neurons to identify bitter tastants-GRN combinations by suppressing and activating discrete subsets of taste neurons, respectively. Our results suggest that many gustatory neurons act cooperatively in larval bitter sensing, and that these neurons have different degrees of responsiveness to different bitter compounds.
Collapse
Affiliation(s)
- Haein Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea and
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea and
| | - KyeongJin Kang
- Samsung Biomedical Research Institute, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea and
| |
Collapse
|
25
|
Abstract
In flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with L-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect L-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures.
Collapse
|
26
|
Coelho A, Fraichard S, Le Goff G, Faure P, Artur Y, Ferveur JF, Heydel JM. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster. PLoS One 2015; 10:e0117328. [PMID: 25671424 PMCID: PMC4324904 DOI: 10.1371/journal.pone.0117328] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/21/2014] [Indexed: 11/18/2022] Open
Abstract
Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.
Collapse
Affiliation(s)
- Alexandra Coelho
- CNRS 6265, INRA 1324, Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, F-21000, Dijon, France
| | - Stephane Fraichard
- CNRS 6265, INRA 1324, Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, F-21000, Dijon, France
| | - Gaëlle Le Goff
- INRA, CNRS, UNSA, UMR 1355, Institut Sophia Agrobiotech, F-06903, Sophia Antipolis, France
| | - Philippe Faure
- CNRS 6265, INRA 1324, Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, F-21000, Dijon, France
| | - Yves Artur
- CNRS 6265, INRA 1324, Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, F-21000, Dijon, France
| | - Jean-François Ferveur
- CNRS 6265, INRA 1324, Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, F-21000, Dijon, France
- * E-mail: (JMH); (JFF)
| | - Jean-Marie Heydel
- CNRS 6265, INRA 1324, Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, F-21000, Dijon, France
- * E-mail: (JMH); (JFF)
| |
Collapse
|
27
|
Presynaptic Gain Control Drives Sweet and Bitter Taste Integration in Drosophila. Curr Biol 2014; 24:1978-84. [DOI: 10.1016/j.cub.2014.07.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/16/2014] [Accepted: 07/09/2014] [Indexed: 11/22/2022]
|
28
|
Masala C, Loy F, Solari P, Sollai G, Muroni P, Crnjar R. Taste response profiles of the labellar chemosensilla of the medflyCeratitis capitata(Diptera: Tephritidae). ACTA ACUST UNITED AC 2014. [DOI: 10.1080/11250003.2014.900578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Deshpande SA, Carvalho GB, Amador A, Phillips AM, Hoxha S, Lizotte KJ, Ja WW. Quantifying Drosophila food intake: comparative analysis of current methodology. Nat Methods 2014; 11:535-40. [PMID: 24681694 PMCID: PMC4008671 DOI: 10.1038/nmeth.2899] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022]
Abstract
Food intake is a fundamental parameter in animal studies. Despite the prevalent use of Drosophila in laboratory research, precise measurements of food intake remain challenging in this model organism. Here, we compare several common Drosophila feeding assays: the Capillary Feeder (CAFE), food-labeling with a radioactive tracer or a colorimetric dye, and observations of proboscis extension (PE). We show that the CAFE and radioisotope-labeling provide the most consistent results, have the highest sensitivity, and can resolve differences in feeding that dye-labeling and PE fail to distinguish. We conclude that performing the radiolabeling and CAFE assays in parallel is currently the best approach for quantifying Drosophila food intake. Understanding the strengths and limitations of food intake methodology will greatly advance Drosophila studies of nutrition, behavior, and disease.
Collapse
Affiliation(s)
- Sonali A Deshpande
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2]
| | - Gil B Carvalho
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2] [3]
| | - Ariadna Amador
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2] Scripps Graduate Program, The Scripps Research Institute, Jupiter, Florida, USA. [3]
| | - Angela M Phillips
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2]
| | - Sany Hoxha
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2] Scripps Graduate Program, The Scripps Research Institute, Jupiter, Florida, USA
| | - Keith J Lizotte
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - William W Ja
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2] Scripps Graduate Program, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
30
|
Tiedeken EJ, Stout JC, Stevenson PC, Wright GA. Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins. ACTA ACUST UNITED AC 2014; 217:1620-5. [PMID: 24526720 DOI: 10.1242/jeb.097543] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bees visit flowers to collect nectar and pollen that contain nutrients and simultaneously facilitate plant sexual reproduction. Paradoxically, nectar produced to attract pollinators often contains deterrent or toxic plant compounds associated with herbivore defence. The functional significance of these nectar toxins is not fully understood, but they may have a negative impact on pollinator behaviour and health, and, ultimately, plant pollination. This study investigates whether a generalist bumblebee, Bombus terrestris, can detect naturally occurring concentrations of nectar toxins. Using paired-choice experiments, we identified deterrence thresholds for five compounds found in the nectar of bee-pollinated plants: quinine, caffeine, nicotine, amygdalin and grayanotoxin. The deterrence threshold was determined when bumblebees significantly preferred a sucrose solution over a sucrose solution containing the compound. Bumblebees had the lowest deterrence threshold for the alkaloid quinine (0.01 mmol l(-1)); all other compounds had higher deterrence thresholds, above the natural concentration range in floral nectar. Our data, combined with previous work using honeybees, suggest that generalist bee species have poor acuity for the detection of nectar toxins. The fact that bees do not avoid nectar-relevant concentrations of these compounds likely indicates that it is difficult for them to learn to associate floral traits with the presence of toxins, thus maintaining this trait in plant populations.
Collapse
Affiliation(s)
- Erin Jo Tiedeken
- Botany Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
31
|
Abed-Vieillard D, Cortot J, Everaerts C, Ferveur JF. Choice alters Drosophila oviposition site preference on menthol. Biol Open 2014; 3:22-8. [PMID: 24326184 PMCID: PMC3892157 DOI: 10.1242/bio.20136973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/13/2013] [Indexed: 11/28/2022] Open
Abstract
Food choice and preference relies on multiple sensory systems that are under the control of genes and sensory experience. Exposure to specific nutrients and nutrient-related molecules can change food preference in vertebrates and invertebrates. For example, larval exposure of several holometabolous insects to menthol can change their adult response to this molecule. However, studies involving Drosophila melanogaster exposure to menthol produced controversial results due maybe to methodological differences. Here, we compared the oviposition-site preference of wild-type D. melanogaster lines freely or forcibly exposed to menthol-rich food. After 12 generations, oviposition-site preference diverged between the two lines. Counterintuitively, menthol 'forced' lines showed a persistent aversion to menthol whereas 'free choice' lines exhibited a decreased aversion to menthol-rich food. This effect was specific to menthol since the 'free choice' lines showed unaltered responses to caffeine and sucrose. This suggests that the genetic factors underlying Drosophila oviposition site preference are more rapidly influenced when flies have a choice between alternative sources compared to flies permanently exposed to the same aversive substance.
Collapse
Affiliation(s)
- Dehbia Abed-Vieillard
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, 6, Bd Gabriel, F-21000 Dijon, France
| | | | | | | |
Collapse
|
32
|
Mustard JA. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms. Cell Mol Life Sci 2013; 71:1375-82. [PMID: 24162934 DOI: 10.1007/s00018-013-1497-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/12/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion and sleep in both invertebrates and mammals. Furthermore, as in mammals, caffeine appears to have complex effects on learning and memory. However, the underlying mechanisms for these effects may differ between invertebrates and vertebrates. While caffeine's ability to cause release of intracellular calcium stores via ryanodine receptors and its actions as a phosphodiesterase inhibitor have been clearly established in invertebrates, its ability to interact with invertebrate adenosine receptors remains an important open question. Initial studies in insects and mollusks suggest an interaction between caffeine and the dopamine signaling pathway; more work needs to be done to understand the mechanisms by which caffeine influences signaling via biogenic amines. As of yet, little is known about whether other actions of caffeine in vertebrates, such as its effects on GABAA and glycine receptors, are conserved. Furthermore, the pharmacokinetics of caffeine remains to be elucidated. Overall behavioral responses to caffeine appear to be conserved amongst organisms; however, we are just beginning to understand the mechanisms underlying its effects across animal phyla.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA,
| |
Collapse
|
33
|
Hagel JM, Facchini PJ. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. PLANT & CELL PHYSIOLOGY 2013; 54:647-72. [PMID: 23385146 DOI: 10.1093/pcp/pct020] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant specialized metabolites with a long history of investigation. Although the ecophysiological functions of most BIAs are unknown, the medicinal properties of many compounds have been exploited for centuries. These include the narcotic analgesics codeine and morphine, the antimicrobial agents sanguinarine and berberine, and the antitussive and anticancer drug noscapine. BIA biosynthesis involves a restricted number of enzyme types that catalyze landmark coupling reactions and subsequent functional group modifications. A pathogenesis-related (PR)10/Bet v1 'Pictet-Spenglerase', several O-methyl-, N-methyl- and O-acetyltransferases, cytochromes P450, FAD-dependent oxidases, non-heme dioxygenases and NADPH-dependent reductases have been implicated in the multistep pathways leading to structurally diverse alkaloids. A small number of plant species, including opium poppy (Papaver somniferum) and other members of the Ranunculales, have emerged as model systems to study BIA metabolism. The expansion of resources to include a wider range of plant species is creating an opportunity to investigate previously uncharacterized BIA pathways. Contemporary knowledge of BIA metabolism reflects over a century of research coupled with the development of key innovations such as radioactive tracing, enzyme isolation and molecular cloning, and functional genomics approaches such as virus-induced gene silencing. Recently, the emergence of transcriptomics, proteomics and metabolomics has expedited the discovery of new BIA biosynthetic genes. The growing repository of BIA biosynthetic genes is providing the parts required to apply emerging synthetic biology platforms to the development of production systems in microbes as an alternative to plants as a commecial source of valuable BIAs.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
34
|
Itskov PM, Ribeiro C. The dilemmas of the gourmet fly: the molecular and neuronal mechanisms of feeding and nutrient decision making in Drosophila. Front Neurosci 2013; 7:12. [PMID: 23407678 PMCID: PMC3569668 DOI: 10.3389/fnins.2013.00012] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 01/21/2013] [Indexed: 11/13/2022] Open
Abstract
To survive and successfully reproduce animals need to maintain a balanced intake of nutrients and energy. The nervous system of insects has evolved multiple mechanisms to regulate feeding behavior. When animals are faced with the choice to feed, several decisions must be made: whether or not to eat, how much to eat, what to eat, and when to eat. Using Drosophila melanogaster substantial progress has been achieved in understanding the neuronal and molecular mechanisms controlling feeding decisions. These feeding decisions are implemented in the nervous system on multiple levels, from alterations in the sensitivity of peripheral sensory organs to the modulation of memory systems. This review discusses methodologies developed in order to study insect feeding, the effects of neuropeptides and neuromodulators on feeding behavior, behavioral evidence supporting the existence of internal energy sensors, neuronal and molecular mechanisms controlling protein intake, and finally the regulation of feeding by circadian rhythms and sleep. From the discussed data a conceptual framework starts to emerge which aims to explain the molecular and neuronal processes maintaining the stability of the internal milieu.
Collapse
Affiliation(s)
- Pavel M Itskov
- Behaviour and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal
| | | |
Collapse
|
35
|
Abstract
Animals use gustatory information to assess the suitability of potential food sources and make critical decisions on what to consume. For example, the taste of sugar generally signals a potent dietary source of carbohydrates. However, the intensity of the sensory response to a particular sugar, or "sweetness," is not always a faithful reporter of its nutritional value, and recent evidence suggests that animals can sense the caloric content of food independently of taste. Here, we demonstrate that the vinegar fly Drosophila melanogaster uses both taste and calorie sensing to determine feeding choices, and that the relative contribution of each changes over time. Using the capillary feeder assay, we allowed flies to choose between sources of sugars that varied in their ratio of sweetness to caloric value. We found that flies initially consume sugars according to taste. However, over several hours their preference shifts toward the food source with higher caloric content. This behavioral shift occurs more rapidly following food deprivation and is modulated by cAMP and insulin signaling within neurons. Our results are consistent with the existence of a taste-independent calorie sensor in flies, and suggest that calorie-based reward modifies long-term feeding preferences.
Collapse
|
36
|
Lee EJ, Hagel JM, Facchini PJ. Role of the phloem in the biochemistry and ecophysiology of benzylisoquinoline alkaloid metabolism. FRONTIERS IN PLANT SCIENCE 2013; 4:182. [PMID: 23781223 PMCID: PMC3678098 DOI: 10.3389/fpls.2013.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/20/2013] [Indexed: 05/03/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a diverse group of biologically active specialized metabolites produced mainly in four plant families. BIA metabolism is likely of monophyletic origin and involves multiple enzymes yielding structurally diverse compounds. Several BIAs possess defensive properties against pathogenic microorganisms and herbivores. Opium poppy (Papaver somniferum: Papaveraceae) has emerged as a model system to investigate the cellular localization of BIA biosynthesis. Although alkaloids accumulate in the laticifer cytoplasm (latex) of opium poppy, corresponding biosynthetic enzymes and gene transcripts are localized to proximal sieve elements and companion cells, respectively. In contrast, BIA metabolism in the non-laticiferous meadow rue (Thalictrum flavum; Ranunculaceae) occurs independent of the phloem. Evidence points toward the adoption of diverse strategies for the biosynthesis and accumulation of alkaloids as defensive compounds. Recruitment of cell types involved in BIA metabolism, both within and external to the phloem, was likely driven by selection pressures unique to different taxa. The biochemistry, cell biology, ecophysiology, and evolution of BIA metabolism are considered in this context.
Collapse
Affiliation(s)
| | | | - Peter J. Facchini
- *Correspondence: Peter J. Facchini, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N1N4, Canada e-mail:
| |
Collapse
|
37
|
Ren J, Sun J, Zhang Y, Liu T, Ren Q, Li Y, Guo A. Down-regulation of Decapping Protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila. PLoS One 2012; 7:e52521. [PMID: 23300696 PMCID: PMC3530533 DOI: 10.1371/journal.pone.0052521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/14/2012] [Indexed: 12/05/2022] Open
Abstract
Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence.
Collapse
Affiliation(s)
- Jing Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinghan Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunpeng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tong Liu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingzhong Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (AG); (YL)
| | - Aike Guo
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (AG); (YL)
| |
Collapse
|
38
|
Tissue-specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila. Genetics 2012; 192:521-32. [PMID: 22798487 PMCID: PMC3454881 DOI: 10.1534/genetics.112.142455] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding sensory systems that perceive environmental inputs and neural circuits that select appropriate motor outputs is essential for studying how organisms modulate behavior and make decisions necessary for survival. Drosophila melanogaster oviposition is one such important behavior, in which females evaluate their environment and choose to lay eggs on substrates they may find aversive in other contexts. We employed neurogenetic techniques to characterize neurons that influence the choice between repulsive positional and attractive egg-laying responses toward the bitter-tasting compound lobeline. Surprisingly, we found that neurons expressing Gr66a, a gustatory receptor normally involved in avoidance behaviors, receive input for both attractive and aversive preferences. We hypothesized that these opposing responses may result from activation of distinct Gr66a-expressing neurons. Using tissue-specific rescue experiments, we found that Gr66a-expressing neurons on the legs mediate positional aversion. In contrast, pharyngeal taste cells mediate the egg-laying attraction to lobeline, as determined by analysis of mosaic flies in which subsets of Gr66a neurons were silenced. Finally, inactivating mushroom body neurons disrupted both aversive and attractive responses, suggesting that this brain structure is a candidate integration center for decision-making during Drosophila oviposition. We thus define sensory and central neurons critical to the process by which flies decide where to lay an egg. Furthermore, our findings provide insights into the complex nature of gustatory perception in Drosophila. We show that tissue-specific activation of bitter-sensing Gr66a neurons provides one mechanism by which the gustatory system differentially encodes aversive and attractive responses, allowing the female fly to modulate her behavior in a context-dependent manner.
Collapse
|
39
|
Mustard JA, Dews L, Brugato A, Dey K, Wright GA. Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee. Behav Brain Res 2012; 232:217-24. [PMID: 22521838 DOI: 10.1016/j.bbr.2012.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/28/2012] [Accepted: 04/08/2012] [Indexed: 11/30/2022]
Abstract
Caffeine affects several molecules that are also involved in the processes underlying learning and memory such as cAMP and calcium. However, studies of caffeine's influence on learning and memory in mammals are often contradictory. Invertebrate model systems have provided valuable insight into the actions of many neuroactive compounds including ethanol and cocaine. We use the honey bee (Apis mellifera) to investigate how the ingestion of acute doses of caffeine before, during, and after conditioning influences performance in an appetitive olfactory learning and memory task. Consumption of caffeine doses of 0.01 M or greater during or prior to conditioning causes a significant reduction in response levels during acquisition. Although bees find the taste of caffeine to be aversive at high concentrations, the bitter taste does not explain the reduction in acquisition observed for bees fed caffeine before conditioning. While high doses of caffeine reduced performance during acquisition, the response levels of bees given caffeine were the same as those of the sucrose only control group in a recall test 24h after conditioning. In addition, caffeine administered after conditioning had no affect on recall. These results suggest that caffeine specifically affects performance during acquisition and not the processes involved in the formation of early long term memory.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85281, USA.
| | | | | | | | | |
Collapse
|
40
|
Kessler S, Vlimant M, Guerin PM. The sugar meal of the African malaria mosquito Anopheles gambiae (Giles) and how deterrent compounds interfere with it: a behavioural and neurophysiological study. J Exp Biol 2012; 216:1292-306. [DOI: 10.1242/jeb.076588] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In this study, we show that female African malaria mosquitoes Anopheles gambiae (Giles) starved for 3-5 hours start to engorge on sucrose at concentrations between 50 to 75 mM. Half of the feeding response (ED50) is reached at 111 mM and the maximum response (0.4 mg) occurs from 146 mM (5% m/v). Two receptor cells in a trichoid sensillum of the labellum, called the 'sucrose' and the 'water' neurones, are activated by sucrose and water, respectively. The electrophysiological response of the sucrose receptor cell starts well below the level of sugar necessary to induce feeding. An. gambiae is most sensitive to small increments in sucrose concentration up to 10 mM with a response plateau at a maximum frequency of 53 spikes per 2 s from 50 mM, the concentration at which female An. gambiae start to engorge on sucrose. Fructose has a mild phagostimulatory effect on An. gambiae, whereas no significant differences in meal sizes between water and glucose were found. However, when 146 mM fructose plus glucose are mixed, the same engorgement as on 146 mM sucrose is observed. Likewise, even though the sucrose receptor cell is not activated by either fructose or glucose alone, equimolar solutions of fructose plus glucose activate the neurone. We conclude that there is a behavioural and a neurophysiological synergism between fructose and glucose, the two hexose sugars of sucrose. We show that bitter tasting products for humans have a deterrent effect on feeding in An. gambiae. When 1 mM quinidine, quinine or denatonium benzoate is added to 146 mM sucrose, feeding is almost totally inhibited. The effect of berberine is lower and no significant inhibition on engorgement occurs for caffeine. The deterrent effect depends on concentration for both quinine and quinidine. Capillary feeding experiments show that contact chemosensilla on the mouthparts are sufficient for the detection of sucrose and bitter products. The feeding assay findings with deterrents correlate with the neurophysiological responses of the sucrose and the water labellar neurones which are both inhibited by the bitter compounds denatonium benzoate, quinine and berberine between 0.01 and 1 mM, but not by the same concentrations of caffeine which has no effect on feeding. In conclusion, sucrose which stimulates feeding activates the labellar sucrose neurone whereas feeding deterrents inhibit both the sucrose and the water neurones. This study provides an initial understanding of the physiological mechanisms involved in sugar feeding in An. gambiae and shows how some bitter products interfere with it.
Collapse
|