1
|
Aslam B, Asghar R, Muzammil S, Shafique M, Siddique AB, Khurshid M, Ijaz M, Rasool MH, Chaudhry TH, Aamir A, Baloch Z. AMR and Sustainable Development Goals: at a crossroads. Global Health 2024; 20:73. [PMID: 39415207 PMCID: PMC11484313 DOI: 10.1186/s12992-024-01046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 10/18/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, primarily stemming from its misuse and overuse in both veterinary and public healthcare systems. The consequences of AMR are severe, leading to more severe infections, increased health protection costs, prolonged hospital stays, unresponsive treatments, and elevated fatality rates. The impact of AMR is direct and far-reaching, particularly affecting the Sustainable Development Goals (SDGs), underscoring the urgency for concerted global actions to achieve these objectives. Disproportionately affecting underprivileged populations, AMR compounds their vulnerabilities, pushing them further into poverty. Moreover, AMR has ramifications for food production, jeopardizing sustainable agriculture and diminishing the livelihoods of farmers. The emergence of antibiotic-resistant bacteria in underprivileged areas heightens the risk of complications and mortality. Climate change further contributes to AMR, as evidenced by increased instances of foodborne salmonellosis and the development of antibiotic resistance, resulting in substantial healthcare costs. Effectively addressing AMR demands collaboration among governments, entrepreneurs, and the public sector to establish institutions and policies across all regulatory levels. Expanding SDG 17, which focuses on partnerships for sustainable development, would facilitate global antimicrobial stewardship initiatives, technology transfer, surveillance systems, and investment in vaccine and drug research. The World Bank's SDG database, tracking progress towards sustainable development, reveals a concerning picture with only a 15% success rate till 2023 and 48% showing deviation, underscoring a global gap exacerbated by the COVID-19 pandemic. Tackling AMR's global impact necessitates international cooperation, robust monitoring, and evaluation methods. The five priorities outlined guide SDG implementation, while impoverished countries must address specific challenges in their implementation efforts. Addressing AMR and its impact on the SDGs is a multifaceted challenge that demands comprehensive and collaborative solutions on a global scale.
Collapse
Affiliation(s)
- Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Rubab Asghar
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafique
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ijaz
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | | | | | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China.
| |
Collapse
|
2
|
Opalska A, Gardarsdottir H, Kwa M, Wójkowska-Mach J, Sabate M, Ballarin ME, de Groot M, Leufkens H. Use of antibiotics in the early COVID-19 pandemic in Poland, the Netherlands and Spain, from erraticism to (more) logic. Eur J Clin Pharmacol 2024; 80:1581-1589. [PMID: 39017693 PMCID: PMC11393094 DOI: 10.1007/s00228-024-03726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION In the Spring of 2020, the world was hit with unparalleled impact by the coronavirus pandemic. Antibiotics were widely used, even without good rationale. The aim of our study was to compare the use of antibiotics in patients with confirmed COVID-19 from three hospitals across Europe (Poland, the Netherlands and Spain) between two subsequent periods in the early days of the pandemic. METHOD We analysed data (antibiotics used and variation in the use of antibiotics, patients, admission and disease-related characteristics) from 300 patients admitted in three hospitals (University Hospital in Cracow, University Medical Center in Utrecht and Vall d'Hebron University Hospital in Barcelona) with confirmed infection of SARS-CoV-2 during Q1 2020 and Q4 2020. RESULTS There was ample variation in terms of patient mix and outcomes across the 3 hospitals. The majority of patients (225 out of 300) in all 3 hospitals received at least 1 antibiotic during the hospitalisation period. A minority of patients (68 out of 300) had their bacterial test results positive during their hospitalisation period. Throughout the 2 study periods, third-generation cephalosporins (ceftriaxone in 170 out of 300 patients) emerged as the most commonly used class of antibiotics. There was an apparent shift towards more rational utilisation of antibiotics, in all three hospitals. CONCLUSIONS Our study shows that during the early stage of COVID-19 pandemic in 2020, antibiotics were frequently used in three European teaching hospitals despite the relatively low incidence of microbiologically confirmed bacterial infections. While in the early days of the COVID-19 pandemic antibiotic prescribing was full of trial and error, we could also confirm a learning curve over time.
Collapse
Affiliation(s)
- Aleksandra Opalska
- Division Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Directorate-General for Health and Food Safety, European Commission, Brussels, Belgium
| | - Helga Gardarsdottir
- Division Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marcel Kwa
- Department of Pharmacovigilance, Medicines Evaluation Board, Utrecht, Netherlands
| | - Jadwiga Wójkowska-Mach
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Crakow, Poland
| | - Monica Sabate
- Department of Clinical Pharmacology, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Clinical Pharmacology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Elena Ballarin
- Department of Clinical Pharmacology, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Clinical Pharmacology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mark de Groot
- UPOD, Central Diagnostic Laboratory, Division Laboratories, Pharmacy and Biomedical Genetics, Utrecht, Netherlands
| | - Hubert Leufkens
- Division Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
3
|
Cocker D, Birgand G, Zhu N, Rodriguez-Manzano J, Ahmad R, Jambo K, Levin AS, Holmes A. Healthcare as a driver, reservoir and amplifier of antimicrobial resistance: opportunities for interventions. Nat Rev Microbiol 2024; 22:636-649. [PMID: 39048837 DOI: 10.1038/s41579-024-01076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial resistance (AMR) is a global health challenge that threatens humans, animals and the environment. Evidence is emerging for a role of healthcare infrastructure, environments and patient pathways in promoting and maintaining AMR via direct and indirect mechanisms. Advances in vaccination and monoclonal antibody therapies together with integrated surveillance, rapid diagnostics, targeted antimicrobial therapy and infection control measures offer opportunities to address healthcare-associated AMR risks more effectively. Additionally, innovations in artificial intelligence, data linkage and intelligent systems can be used to better predict and reduce AMR and improve healthcare resilience. In this Review, we examine the mechanisms by which healthcare functions as a driver, reservoir and amplifier of AMR, contextualized within a One Health framework. We also explore the opportunities and innovative solutions that can be used to combat AMR throughout the patient journey. We provide a perspective on the current evidence for the effectiveness of interventions designed to mitigate healthcare-associated AMR and promote healthcare resilience within high-income and resource-limited settings, as well as the challenges associated with their implementation.
Collapse
Affiliation(s)
- Derek Cocker
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Gabriel Birgand
- Centre d'appui pour la Prévention des Infections Associées aux Soins, Nantes, France
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Cibles et medicaments des infections et de l'immunitée, IICiMed, Nantes Universite, Nantes, France
| | - Nina Zhu
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jesus Rodriguez-Manzano
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Raheelah Ahmad
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Health Services Research & Management, City University of London, London, UK
- Dow University of Health Sciences, Karachi, Pakistan
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anna S Levin
- Department of Infectious Disease, School of Medicine & Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alison Holmes
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK.
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
4
|
Kopp-Derouet A, Diamantis S, Chevret S, Tazi A, Burlacu R, Kevorkian JP, Julla JB, Molina JM, Sellier P. Outcomes of patients hospitalized in ward settings for COVID-19 pneumonia with or without early empirical antibiotics. J Antimicrob Chemother 2024:dkae350. [PMID: 39327031 DOI: 10.1093/jac/dkae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND During the first pandemic of COVID-19, early empirical antibiotic use rates for pneumonia varied widely. The benefit remains hypothetical. METHODS We assessed the benefit of empirical antibiotic use at admission in patients hospitalized with COVID-19 pneumonia. We enrolled all adults admitted from 1 March to 30 April 2020 with symptoms for ≤14 days, a positive nasopharyngeal PCR or a highly suggestive CT scan. The primary outcome was mortality at Day 28. The secondary outcomes were transfer to the ICU, mechanical ventilation and length of hospital stay. To handle confounding-by-indication bias, we used a propensity score analysis, expressing the outcomes in the original and overlap weighted populations. RESULTS Among 616 analysed patients, 402 (65%) received antibiotics. At Day 28, 102 patients (17%) had died, 90 (15%) had been transferred to the ICU and 24 (4%) had required mechanical ventilation. Mortality in patients who received antibiotics was higher before but not after weighting (OR 2.7, 95% CI 1.5-5.0, P < 0.001 and OR 1.4, 95% CI 0.8-2.5, P = 0.28, respectively. Antibiotic use had no benefit on: transfer to ICU before and after weighting (OR 1.3, 95% CI 0.8-2.3, P = 0.30 and OR 1.1, 95% CI 0.6-1.9, P = 0.78, respectively); mechanical ventilation before and after weighting (OR 0.5, 95% CI 0.2-1.1, P = 0.079 and OR 0.75, 95% CI 0.3-2.0, P = 0.55, respectively); and length of hospital stay before and after weighting (mean difference -0.02 ± 0.5 days, P = 0.97 and mean difference 0.54 ± 0.75 days, P = 0.48, respectively). CONCLUSIONS We did not find any benefit of antibiotic use in patients hospitalized with COVID-19 pneumonia.
Collapse
Affiliation(s)
- A Kopp-Derouet
- Infectious Diseases Department, Hôpitaux Saint-Louis/Lariboisière, APHP, Hôpital Lariboisière, 2, rue Ambroise Paré, 75475, Paris Cedex 10, France
- Université de Paris Cité, Paris, France
- Infectious Diseases and Internal Medicine Department, GH SIF, Melun, France
- DYNAMIC Unit, UPEC, Créteil, France
| | - S Diamantis
- Infectious Diseases and Internal Medicine Department, GH SIF, Melun, France
- DYNAMIC Unit, UPEC, Créteil, France
| | - S Chevret
- Department of Biostatistics and Medical Informatics, Hôpitaux Saint-Louis/Lariboisière, APHP, Paris, France
- Université de Paris Cité, Paris, France
| | - A Tazi
- Department of Respiratory Diseases, Hôpitaux Saint-Louis/Lariboisière, APHP, Paris, France
- Université de Paris Cité, Paris, France
| | - R Burlacu
- Department of Internal Medicine, Hôpitaux Saint-Louis/Lariboisière, APHP, Paris, France
- Université de Paris Cité, Paris, France
| | - J P Kevorkian
- Department of Endocrinology, Hôpitaux Saint-Louis/Lariboisière, APHP, Paris, France
- Université de Paris Cité, Paris, France
| | - J B Julla
- Department of Endocrinology, Hôpitaux Saint-Louis/Lariboisière, APHP, Paris, France
- Université de Paris Cité, Paris, France
| | - J M Molina
- Infectious Diseases Department, Hôpitaux Saint-Louis/Lariboisière, APHP, Hôpital Lariboisière, 2, rue Ambroise Paré, 75475, Paris Cedex 10, France
- Université de Paris Cité, Paris, France
| | - P Sellier
- Infectious Diseases Department, Hôpitaux Saint-Louis/Lariboisière, APHP, Hôpital Lariboisière, 2, rue Ambroise Paré, 75475, Paris Cedex 10, France
- Université de Paris Cité, Paris, France
| |
Collapse
|
5
|
Elbaz M, Moshkovits I, Bar-On T, Goder N, Lichter Y, Ben-Ami R. Clinical prediction model for bacterial co-infection in hospitalized COVID-19 patients during four waves of the pandemic. Microbiol Spectr 2024:e0025124. [PMID: 39315820 DOI: 10.1128/spectrum.00251-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The reported estimates of bacterial co-infection in COVID-19 patients are highly variable. We aimed to determine the rates and risk factors of bacterial co-infection and develop a clinical prediction model to support early decision-making on antibiotic use. This is a retrospective cohort study conducted in a tertiary-level academic hospital in Israel between March 2020 and May 2022. All adult patients with severe COVID-19 who had a blood or lower respiratory specimen sent for microbiological analyses within 48 h of admission were included. The primary study endpoint was the prevalence of bacterial co-infection at the time of hospital admission. We created a prediction model using the R XGBoost package. The study cohort included 1,050 patients admitted with severe or critical COVID-19. Sixty-two patients (5.9%) had a microbiologically proven bacterial infection on admission. The variables with the greatest impact on the prediction model were age, comorbidities, functional capacity, and laboratory parameters. The model achieved perfect prediction on the training set (area under the curve = 1.0). When applied to the test dataset, the model achieved 56% and 78% specificity with the area under the receiver operating curve of 0.784. The negative and positive predictive values were 0.975 and 0.105, respectively. Applying the prediction model would have resulted in a 2.5-fold increase in appropriate antibiotic use and an 18% reduction in inappropriate use in patients with severe and critical COVID-19. The use of a clinical prediction model can support decisions to withhold empiric antimicrobial treatment at the time of hospital admission without adversely affecting patient outcomes. IMPORTANCE Estimates of bacterial coinfection in COVID-19 patients are highly variable and depend on many factors. Patients with severe or critical COVID-19 requiring intensive care unit admission have the highest risk of infection-related complications and death. Thus, the study of the incidence and risk factors for bacterial coinfection in this population is of special interest and may help guide empiric antibiotic therapy and avoid unnecessary antimicrobial treatment. The prediction model based on clinical criteria and simple laboratory tests may be a useful tool to predict bacterial co-infection in patients hospitalized with severe COVID-19.
Collapse
Affiliation(s)
- Meital Elbaz
- Infectious Disease Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Itay Moshkovits
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Division of Anesthesia, Pain Management and Intensive Care, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Internal Medicine Department, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Tali Bar-On
- Internal Medicine Department, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Noam Goder
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Division of Anesthesia, Pain Management and Intensive Care, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Yael Lichter
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Division of Anesthesia, Pain Management and Intensive Care, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ronen Ben-Ami
- Infectious Disease Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Liu S, Yu C, Tu Q, Zhang Q, Fu Z, Huang Y, He C, Yao L. Bacterial co-infection in COVID-19: a call to stay vigilant. PeerJ 2024; 12:e18041. [PMID: 39308818 PMCID: PMC11416760 DOI: 10.7717/peerj.18041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Co-infection with diverse bacteria is commonly seen in patients infected with the novel coronavirus, SARS-CoV-2. This type of co-infection significantly impacts the occurrence and development of novel coronavirus infection. Bacterial co-pathogens are typically identified in the respiratory system and blood culture, which complicates the diagnosis, treatment, and prognosis of COVID-19, and even exacerbates the severity of disease symptoms and increases mortality rates. However, the status and impact of bacterial co-infections during the COVID-19 pandemic have not been properly studied. Recently, the amount of literature on the co-infection of SARS-CoV-2 and bacteria has gradually increased, enabling a comprehensive discussion on this type of co-infection. In this study, we focus on bacterial infections in the respiratory system and blood of patients with COVID-19 because these infection types significantly affect the severity and mortality of COVID-19. Furthermore, the progression of COVID-19 has markedly elevated the antimicrobial resistance among specific bacteria, such as Klebsiella pneumoniae, in clinical settings including intensive care units (ICUs). Grasping these resistance patterns is pivotal for the optimal utilization and stewardship of antibiotics, including fluoroquinolones. Our study offers insights into these aspects and serves as a fundamental basis for devising effective therapeutic strategies. We primarily sourced our articles from PubMed, ScienceDirect, Scopus, and Google Scholar. We queried these databases using specific search terms related to COVID-19 and its co-infections with bacteria or fungi, and selectively chose relevant articles for inclusion in our review.
Collapse
Affiliation(s)
- Shengbi Liu
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Chao Yu
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Qin Tu
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Qianming Zhang
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Zuowei Fu
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Yifeng Huang
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Chuan He
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Lei Yao
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| |
Collapse
|
7
|
Kasse GE, Cosh SM, Humphries J, Islam MS. Antimicrobial prescription pattern and appropriateness for respiratory tract infection in outpatients: a systematic review and meta-analysis. Syst Rev 2024; 13:229. [PMID: 39243046 PMCID: PMC11378372 DOI: 10.1186/s13643-024-02649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Millions of people die every year as a result of antimicrobial resistance worldwide. An inappropriate prescription of antimicrobials (e.g., overuse, inadequate use, or a choice that diverges from established guidelines) can lead to a heightened risk of antimicrobial resistance. This study aimed to determine the rate and appropriateness of antimicrobial prescriptions for respiratory tract infections. METHODS This review was conducted in accordance with the PRISMA guidelines. Web of Science, PubMed, ProQuest Health and Medicine, and Scopus were searched between October 1, 2023, and December 15, 2023, with no time constraints. Studies were independently screened by the first author and the co-authors. We included original studies reporting antimicrobial prescription patterns and appropriateness for respiratory tract infections. The quality of included studies' was assessed via the Joanna Briggs Institute's Critical Appraisal Checklists for Cross-Sectional Studies. The assessment of publication bias was conducted using a funnel plot and Egger's regression test. A random effect model was employed to estimate the pooled antibiotic prescribing and inappropriate rates. Subgroup analysis was conducted by country, study period, data source, and age group. RESULTS Of the total 1220 identified studies, 36 studies were included in the review. The antimicrobial prescribing rate ranged from 25% (95% CI 0.24-0.26) to 90% (95% CI 0.89-0.91). The pooled antimicrobial prescription rate was 66% (95% CI 0.57 to 0.73). Subgroup analysis by region revealed that the antimicrobial prescription rate was highest in Africa (79%, 95% CI 0.48-0.94) and lowest in Europe (47%, 95% CI 0.32-0.62). Amoxicillin and amoxicillin-clavulanate antimicrobials from the Access group, along with azithromycin and erythromycin from the Watch group, were the most frequently used antimicrobial agents. This study revealed that the major reasons for antimicrobial prescription were acute bronchitis, pharyngitis, sinusitis, and the common cold. The pooled inappropriate antimicrobial prescription rate was 45% (95% CI 0.38-0.52). Twenty-eight of the included studies reported that prescribing antimicrobials without proper indications was the main cause of inappropriate antimicrobial prescriptions. Additionally, subgroup analysis by region showed a higher inappropriate antimicrobial prescription rate in Asia at 49% (95% CI 0.38-0.60). The result of the funnel plot and Egger's tests revealed no substantial publication bias (Egger's test: p = 0.268). CONCLUSION The prescribing rate and inappropriate use of antimicrobials remain high and vary among countries. Further studies should be conducted to generate information about factors contributing to unnecessary antimicrobial prescriptions in outpatients. SYSTEMATIC REVIEW REGISTRATION Systematic review registration: CRD42023468353.
Collapse
Affiliation(s)
- Gashaw Enbiyale Kasse
- School of Health, Faculty of Medicine and Health, University of New England, Armidale, 2351, Australia.
- Department of Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, 196, Ethiopia.
| | - Suzanne M Cosh
- School of Psychology, Faculty of Medicine and Health, University of New England, Armidale, 2351, Australia
| | - Judy Humphries
- School of Health, Faculty of Medicine and Health, University of New England, Armidale, 2351, Australia
| | - Md Shahidul Islam
- School of Health, Faculty of Medicine and Health, University of New England, Armidale, 2351, Australia
| |
Collapse
|
8
|
Das A, Pathak S, Premkumar M, Sarpparajan CV, Balaji ER, Duttaroy AK, Banerjee A. A brief overview of SARS-CoV-2 infection and its management strategies: a recent update. Mol Cell Biochem 2024; 479:2195-2215. [PMID: 37742314 PMCID: PMC11371863 DOI: 10.1007/s11010-023-04848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has become a global health crisis, inflicting substantial morbidity and mortality worldwide. A diverse range of symptoms, including fever, cough, dyspnea, and fatigue, characterizes COVID-19. A cytokine surge can exacerbate the disease's severity. This phenomenon involves an increased immune response, marked by the excessive release of inflammatory cytokines like IL-6, IL-8, TNF-α, and IFNγ, leading to tissue damage and organ dysfunction. Efforts to reduce the cytokine surge and its associated complications have garnered significant attention. Standardized management protocols have incorporated treatment strategies, with corticosteroids, chloroquine, and intravenous immunoglobulin taking the forefront. The recent therapeutic intervention has also assisted in novel strategies like repurposing existing medications and the utilization of in vitro drug screening methods to choose effective molecules against viral infections. Beyond acute management, the significance of comprehensive post-COVID-19 management strategies, like remedial measures including nutritional guidance, multidisciplinary care, and follow-up, has become increasingly evident. As the understanding of COVID-19 pathogenesis deepens, it is becoming increasingly evident that a tailored approach to therapy is imperative. This review focuses on effective treatment measures aimed at mitigating COVID-19 severity and highlights the significance of comprehensive COVID-19 management strategies that show promise in the battle against COVID-19.
Collapse
Affiliation(s)
- Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Madhavi Premkumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Chitra Veena Sarpparajan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Esther Raichel Balaji
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
9
|
Aggarwal R, Mahajan P, Pandiya S, Bajaj A, Verma SK, Yadav P, Kharat AS, Khan AU, Dua M, Johri AK. Antibiotic resistance: a global crisis, problems and solutions. Crit Rev Microbiol 2024; 50:896-921. [PMID: 38381581 DOI: 10.1080/1040841x.2024.2313024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
Healthy state is priority in today's world which can be achieved using effective medicines. But due to overuse and misuse of antibiotics, a menace of resistance has increased in pathogenic microbes. World Health Organization (WHO) has announced ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) as the top priority pathogens as these have developed resistance against certain antibiotics. To combat such a global issue, it is utmost important to identify novel therapeutic strategies/agents as an alternate to such antibiotics. To name certain antibiotic adjuvants including: inhibitors of beta-lactamase, efflux pumps and permeabilizers for outer membrane can potentially solve the antibiotic resistance problems. In this regard, inhibitors of lytic domain of lytic transglycosylases provide a novel way to not only act as an alternate to antibiotics but also capable of restoring the efficiency of previously resistant antibiotics. Further, use of bacteriophages is another promising strategy to deal with antibiotic resistant pathogens. Taking in consideration the alternatives of antibiotics, a green synthesis nanoparticle-based therapy exemplifies a good option to combat microbial resistance. As horizontal gene transfer (HGT) in bacteria facilitates the evolution of new resistance strains, therefore identifying the mechanism of resistance and development of inhibitors against it can be a novel approach to combat such problems. In our perspective, host-directed therapy (HDT) represents another promising strategy in combating antimicrobial resistance (AMR). This approach involves targeting specific factors within host cells that pathogens rely on for their survival, either through replication or persistence. As many new drugs are under clinical trials it is advisable that more clinical data and antimicrobial stewardship programs should be conducted to fully assess the clinical efficacy and safety of new therapeutic agents.
Collapse
Affiliation(s)
- Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sameeksha Pandiya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Aayushi Bajaj
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Arun S Kharat
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Asad Ullah Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Wang YC, Hsu HC, Shih HI. Invasive Listeriosis After Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection. J Acute Med 2024; 14:130-133. [PMID: 39229357 PMCID: PMC11366690 DOI: 10.6705/j.jacme.202409_14(3).0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 09/05/2024]
Abstract
Acute deteriorated consciousness is commonly reported in elderly COVID-19 patients. Secondary bacterial infection is common in critically ill COVID-19 patients. Listeria monocytogenes is a gram-positive, facultatively intracellular rod-shaped bacterium ubiquitously distributed in the environment and is an opportunistic and foodborne pathogen. Pregnant women and their newborns, adults aged 65 years or older, and immunocompromised people are more vulnerable to Listeria -related invasive disease. A 74-year-old man with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection with initial presentations of headache and acute disorientation, which was finally diagnosed with L . monocytogenes bacteremia and meningitis. Multiplex polymerase chain reaction (Multiplex PCR) assay was used to rapidly diagnose it in the emergency department.
Collapse
Affiliation(s)
- Yu Ching Wang
- National Cheng Kung University Hospital Department of Emergency Medicine Tainan Taiwan
- College of Medicine School of Medicine National Cheng Kung University, Tainan Taiwan
| | - Hsiang-Chin Hsu
- National Cheng Kung University Hospital Department of Emergency Medicine Tainan Taiwan
- College of Medicine School of Medicine National Cheng Kung University, Tainan Taiwan
| | - Hsin-I Shih
- National Cheng Kung University Hospital Department of Emergency Medicine Tainan Taiwan
- College of Medicine School of Medicine National Cheng Kung University, Tainan Taiwan
| |
Collapse
|
11
|
Braun HG, Perera SR, Tremblay YD, Thomassin JL. Antimicrobial resistance in Klebsiella pneumoniae: an overview of common mechanisms and a current Canadian perspective. Can J Microbiol 2024. [PMID: 39213659 DOI: 10.1139/cjm-2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Klebsiella pneumoniae is a ubiquitous opportunistic pathogen of the family Enterobacteriaceae. K. pneumoniae is a member of the ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), a group of bacteria that cause nosocomial infections and are able to resist killing by commonly relied upon antimicrobial agents. The acquisition of antimicrobial resistance (AMR) genes is increasing among community and clinical isolates of K. pneumoniae, making K. pneumoniae a rising threat to human health. In addition to the increase in AMR, K. pneumoniae is also thought to disseminate AMR genes to other bacterial species. In this review, the known mechanisms of K. pneumoniae AMR will be described and the current state of AMR K. pneumoniae within Canada will be discussed, including the impact of the coronavirus disease-2019 pandemic, current perspectives, and outlook for the future.
Collapse
Affiliation(s)
- Hannah G Braun
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sumudu R Perera
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yannick Dn Tremblay
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenny-Lee Thomassin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Duan Y, Ren J, Wang J, Wang S, Zhang R, Zhang H, Hu J, Deng W, Li W, Chen B. The Impact of Early Antibiotic Use on Clinical Outcomes of Patients Hospitalized with COVID-19: A Propensity Score-Matched Analysis. Infect Drug Resist 2024; 17:3425-3438. [PMID: 39145118 PMCID: PMC11322505 DOI: 10.2147/idr.s470957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose Early empiric antibiotics were prescribed to numerous patients during the Coronavirus disease 2019 (COVID-19) pandemic. However, the potential impact of empiric antibiotic therapy on the clinical outcomes of patients hospitalized with COVID-19 is yet unknown. Methods In this retrospective cohort study, early antibiotics use cohort was defined as control group, which was compared with no antibiotic use and delayed antibiotic use cohorts for all-cause mortality during hospitalization. The 1:2 propensity score matched patient populations were further developed to adjust confounding factors. Survival curves were compared between different cohorts using a Log rank test to assess the early antibiotic effectiveness. Results We included a total of 1472 COVID-19 hospitalized patients, of whom 87.4% (1287 patients) received early antibiotic prescriptions. In propensity-score-matched datasets, our analysis comprised 139 patients with non-antibiotic use (with 278 matched controls) and 27 patients with deferred-antibiotic use (with 54 matched controls). Patients with older ages, multiple comorbidities, severe and critical COVID-19 subtypes, higher serum infection indicators, and inflammatory indicators at admission were more likely to receive early antibiotic prescriptions. After adjusting confounding factors likely to influence the prognosis, there is no significant difference in all-cause mortality (HR=1.000(0.246-4.060), p = 1.000) and ICU admission (HR=0.436(0.093-2.04), p = 0.293), need for mechanical ventilation (HR=0.723(0.296-1.763), p = 0.476) and tracheal intubation (HR=1.338(0.221-8.103), p = 0.751) were observed between early antibiotics use cohort and non-antibiotic use cohort. Conclusion Early antibiotics were frequently prescribed to patients in more severe disease condition at admission. However, early antibiotic treatment failed to demonstrate better clinical outcomes in hospitalized patients with COVID-19 in the propensity-score-matched cohorts.
Collapse
Affiliation(s)
- Yishan Duan
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Jing Ren
- The Integrated Care Management Center, West China Hospital of Sichuan University, Chengdu, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Jing Wang
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Suyan Wang
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Rui Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Huohuo Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Jinrui Hu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Wen Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Bojiang Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
13
|
Reiner-Benaim A, Amar S. Trends in decision-making by primary care physicians regarding common infectious complaints. Infect Dis (Lond) 2024; 56:644-652. [PMID: 38647537 DOI: 10.1080/23744235.2024.2344795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Primary care physicians played an important role in the global response during the COVID-19 pandemic, but with the absence of laboratory and diagnostics services, the move to telehealth and the focus on respiratory assessment, they faced increased uncertainty when making clinical decisions. OBJECTIVES This paper aims to examine the impact of the pandemic on decisions made by primary care physicians, as measured by referrals to chest X-ray and laboratory tests and by prescriptions of antibiotics. METHODS We conducted a retrospective study of all visits recorded with fever or cough, presenting to 209 community clinics in Southern Israel during the years 2018-2022. We describe changes in outcome rates across time and use multivariate generalised linear mixed effects model to compare the odds of referrals and prescriptions between periods, while accounting for gender, age, clinic sector, visit type, diagnosis, and season. RESULTS In total, 609,823 visits to primary care physicians complied with the cohort definitions. Social restrictions were associated with a decline in all measured outcomes for primary care physician decisions, most prominently among ages 20-59, for throat culture referral during the first lockdown (OR = 0.46) and for cephalosporine prescription during the second lockdown (OR = 0.55). This trend persisted following the cancellation of the restrictions. CONCLUSIONS Despite higher uncertainty during the COVID-19 social restrictions, the overall course of clinical decision-making processes was maintained, and was associated with a reduction in the use of auxiliary resources, which can improve the quality of patient care by lowering costs and supporting prevention of future antibiotics resistance.
Collapse
Affiliation(s)
- Anat Reiner-Benaim
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Shimon Amar
- Department of Family Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev and Clalit Health Services, Southern District, Be'er-Sheva, Israel
| |
Collapse
|
14
|
Abniki R, Tashakor A, Masoudi M, Pourdad A, Mansury D. Tracking Antibiotic Resistance Trends in Central Iran Amidst the COVID-19 Pandemic From 2021 to 2023: A Comprehensive Epidemiological Study. Adv Biomed Res 2024; 13:39. [PMID: 39224403 PMCID: PMC11368225 DOI: 10.4103/abr.abr_345_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 09/04/2024] Open
Abstract
Background The emergence of coronavirus disease in 2019 (COVID-19) appears to be having an impact on antibiotic resistance patterns. Specific circumstances during the COVID-19 era may have played a role in the spread of antimicrobial resistance (AMR). This study aimed to look at the changes in AMR patterns of Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii at Al-Zahra Hospital. Materials and Methods From March 2021 to January 2023, 3651 clinical samples were collected from patients hospitalized at Isfahan's Al-Zahra Hospital. The Clinical and Laboratory Standards Institute recommended procedures for detecting gram-negative bacteria and assessing antibiotic susceptibility were used. We divided the information into three years. Results Highest resistance rates were seen in A. baumannii to Ciprofloxacin (98.0%) and Ampicillin-Sulbactam (97.0%). For P. aeruginosa the resistance rate for Ceftazidime (36.1), Levofloxacin (37.8), and Meropenem (47.1) dropped seriously in 2022. Conclusion During the second year of the pandemic in central Iran, all three species studied showed rising rates of AMR. This can be attributable to two peaks within Iran on May 6, 2021 and August 27, 2021. The results of this study show that P. aeruginosa, K. pneumoniae, and A. baumannii bacteria in central Iran have a higher level of antibiotic resistance than previously studied strains before the pandemic.
Collapse
Affiliation(s)
- Reza Abniki
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Tashakor
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Melika Masoudi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Pourdad
- Department of Infection Control, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Miellet S, Byrne MK, Reynolds N, Sweetnam T. A confirmation of the predictive utility of the Antibiotic Use Questionnaire. BMC Public Health 2024; 24:1925. [PMID: 39026260 PMCID: PMC11256407 DOI: 10.1186/s12889-024-18901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The change in the efficacy of antimicrobial agents due to their misuse is implicated in extensive health and mortality related concerns. The Antibiotics Use Questionnaire (AUQ) is a theory driven measure based on the Theory of Planned Behaviour (TpB) factors that is designed to investigate drivers of antibiotic use behaviour. The objective of this study is to replicate the factor structure from the pilot study within a similar Australian confirmation cohort, and to extend this through investigating if the factor structure holds in a Chinese-identifying cohort. METHODS The AUQ was disseminated to two cohorts: a confirmation cohort similar to the original study, and a Chinese identifying cohort. Data analysis was completed on the two data sets independently, and on a combined data set. An orthogonal principal components analysis with varimax rotation was used to assess the factor structure, followed by general linear models to determine the influence of the TpB factors on reported antibiotic use. RESULTS 370 participant responses from the confirmation cohort, and 384 responses from the Chinese-identifying cohort were retained for analysis following review of the data. Results showed modest but acceptable levels of internal reliability across both cohorts. Social norms, and the interaction between attitudes and beliefs and knowledge were significant predictors of self-reported antibiotic use in both cohorts. In the confirmation cohort healthcare training was a significant predictor, and in the Chinese-identifying cohort education was a significant predictor. All other predictors tested produced a nonsignificant relationship with the outcome variable of self-reported antibiotic use. CONCLUSIONS This study successfully replicated the factor structure of the AUQ in a confirmation cohort, as well as a cohort that identified as culturally or legally Chinese, determining that the factor structure is retained when investigated across cultures. The research additionally highlights the need for a measure such as the AUQ, which can identify how differing social, cultural, and community factors can influence what predicts indiscriminate antibiotic use. Future research will be required to determine the full extent to which this tool can be used to guide bespoke community level interventions to assist in the management of antimicrobial resistance.
Collapse
Affiliation(s)
- Sebastien Miellet
- School of Psychology, University of Wollongong, Building 41, Northfields Ave, Wollongong, NSW, 2522, Australia.
- Wollongong Antimicrobial Resistance Research Alliance (WARRA), Wollongong, NSW, Australia.
| | - Mitchell K Byrne
- School of Psychology, University of Wollongong, Building 41, Northfields Ave, Wollongong, NSW, 2522, Australia
- Wollongong Antimicrobial Resistance Research Alliance (WARRA), Wollongong, NSW, Australia
| | - Nina Reynolds
- Wollongong Antimicrobial Resistance Research Alliance (WARRA), Wollongong, NSW, Australia
- School of Business, University of Wollongong, Wollongong, NSW, Australia
| | - Taylor Sweetnam
- Faculty of Health, Charles Darwin University, Northern Territory, Australia
| |
Collapse
|
16
|
Fardelli E, Di Gioacchino M, Lucidi M, Capecchi G, Bruni F, Sodo A, Visca P, Capellini G. Evidence of Correlation between Membrane Phase Transition and Clonogenicity in Dehydrating Acinetobacter baumannii: A Combined Micro-Raman and AFM Study. J Phys Chem B 2024; 128:6806-6815. [PMID: 38959442 DOI: 10.1021/acs.jpcb.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The Gram-negative bacterium Acinetobacter baumannii is one of the most resilient multidrug-resistant pathogens in hospitals. Among Gram-negative bacteria, it is particularly resistant to dehydration (anhydrobiosis), and this feature allows A. baumannii to persist in hospital environments for long periods, subjected to unfavorable conditions. We leverage the combination of μ-Raman spectroscopy and atomic force microscopy (AFM) to investigate the anhydrobiotic mechanisms in A. baumannii cells by monitoring the membrane (both inner and outer membranes) properties of four A. baumannii strains during a 16-week dehydration period and in response to temperature excursions. We noted that the membranes of A. baumannii remained intact during the dehydration period despite undergoing a liquid-crystal-to-gel-phase transition, accompanied by changes in the mechanical properties of the membrane. This was evident from the AFM images, which showed the morphology of the bacterial cells alongside modifications of their superficial mechanical properties, and from the alteration in the intensity ratio of μ-Raman features linked to the CH3 and CH2 symmetric stretching modes. Furthermore, employing a universal power law revealed a significant correlation between this ratio and bacterial fitness across all tested strains. Additionally, we subjected dry A. baumannii to a temperature-dependent experiment, the results of which supported the correlation between the Raman ratio and culturability, demonstrating that the phase transition becomes irreversible when A. baumannii cells undergo different temperature cycles. Besides the relevance to the present study, we argue that μ-Raman can be used as a powerful nondestructive tool to assess the health status of bacterial cells based on membrane properties with a relatively high throughput.
Collapse
Affiliation(s)
- Elisa Fardelli
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Michael Di Gioacchino
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- National Biodiversity Future Center, piazza Marina 61, 90133 Palermo, Italy
| | - Giulia Capecchi
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Fabio Bruni
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Armida Sodo
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - Giovanni Capellini
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- IHP Leibniz Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
17
|
Reedy JL, Jensen KN, Crossen AJ, Basham KJ, Ward RA, Reardon CM, Brown Harding H, Hepworth OW, Simaku P, Kwaku GN, Tone K, Willment JA, Reid DM, Stappers MHT, Brown GD, Rajagopal J, Vyas JM. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. Nat Commun 2024; 15:5817. [PMID: 38987270 PMCID: PMC11237042 DOI: 10.1038/s41467-024-50100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Jennifer L Reedy
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kirstine Nolling Jensen
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Arianne J Crossen
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kyle J Basham
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A Ward
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher M Reardon
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah Brown Harding
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olivia W Hepworth
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patricia Simaku
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Geneva N Kwaku
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuya Tone
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Janet A Willment
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Delyth M Reid
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Mark H T Stappers
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jatin M Vyas
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Su L, Yu T, Zhang C, Huo P, Zhao Z. A prediction model for secondary invasive fungal infection among severe SARS-CoV-2 positive patients in ICU. Front Cell Infect Microbiol 2024; 14:1382720. [PMID: 39040601 PMCID: PMC11260608 DOI: 10.3389/fcimb.2024.1382720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background The global COVID-19 pandemic has resulted in over seven million deaths, and IFI can further complicate the clinical course of COVID-19. Coinfection of COVID-19 and IFI (secondary IFI) pose significant threats not only to healthcare systems but also to patient lives. After the control measures for COVID-19 were lifted in China, we observed a substantial number of ICU patients developing COVID-19-associated IFI. This creates an urgent need for predictive assessment of COVID-19 patients in the ICU environment for early detection of suspected fungal infection cases. Methods This study is a single-center, retrospective research endeavor. We conducted a case-control study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients. The cases consisted of patients who developed any secondary IFI during their ICU stay at Jilin University China-Japan Union Hospital in Changchun, Jilin Province, China, from December 1st, 2022, to August 31st, 2023. The control group consisted of SARS-CoV-2 positive patients without secondary IFI. Descriptive and comparative analyses were performed, and a logistic regression prediction model for secondary IFI in COVID-19 patients was established. Additionally, we observed an increased incidence of COVID-19-associated pulmonary aspergillosis (CAPA) during this pandemic. Therefore, we conducted a univariate subgroup analysis on top of IFI, using non-CAPA patients as the control subgroup. Results From multivariate analysis, the prediction model identified 6 factors that are significantly associated with IFI, including the use of broad-spectrum antibiotics for more than 2 weeks (aOR=4.14, 95% CI 2.03-8.67), fever (aOR=2.3, 95%CI 1.16-4.55), elevated log IL-6 levels (aOR=1.22, 95% CI 1.04-1.43) and prone position ventilation (aOR=2.38, 95%CI 1.15-4.97) as independent risk factors for COVID-19 secondary IFI. High BMI (BMI ≥ 28 kg/m2) (aOR=0.85, 95% CI 0.75-0.94) and the use of COVID-19 immunoglobulin (aOR=0.45, 95% CI 0.2-0.97) were identified as independent protective factors against COVID-19 secondary IFI. The Receiver Operating Curve (ROC) area under the curve (AUC) of this model was 0.81, indicating good classification. Conclusion We recommend paying special attention for the occurrence of secondary IFI in COVID-19 patients with low BMI (BMI < 28 kg/m2), elevated log IL-6 levels and fever. Additionally, during the treatment of COVID-19 patients, we emphasize the importance of minimizing the duration of broad-spectrum antibiotic use and highlight the potential of immunoglobulin application in reducing the incidence of IFI.
Collapse
Affiliation(s)
- Leilei Su
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Chunmei Zhang
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengfei Huo
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongyan Zhao
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Li Y, Huang K, Yin J, Tan Z, Zhou M, Dai J, Yi B. Clinical evaluation of a multiplex droplet digital PCR for pathogen detection in critically ill COVID-19 patients with bloodstream infections. Infection 2024; 52:1027-1039. [PMID: 38127118 PMCID: PMC11143000 DOI: 10.1007/s15010-023-02157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Nosocomial bloodstream infections (nBSI) have emerged as a clinical concern for physicians treating COVID-19 patients. In this study, we aimed to evaluate the effectiveness of a multiplex ddPCR in detecting bacterial pathogens in the blood of COVID-19 critically ill patients. METHODS This prospective diagnostic study included RT-PCR-confirmed COVID-19 patients admitted to our hospital from December 2022 to February 2023. A multiplex ddPCR assay was used to detect common bacterial pathogens and AMR genes in blood samples of the patients, along with antimicrobial susceptibility testing (AST). The diagnostic performance of the ddPCR assay was evaluated by comparing the results with those obtained through blood culture and clinical diagnosis. Additionally, the ability of ddPCR in detecting bacterial resistance was compared with the AST results. RESULTS Of the 200 blood samples collected from 184 patients, 45 (22.5%) were positive using blood culture, while 113 (56.5%) were positive for bacterial targets using the ddPCR assay. The ddPCR assay outperformed blood culture in pathogen detection rate, mixed infection detection rate, and fungal detection rate. Acinetobacter baumannii and Klebsiella pneumoniae were the most commonly detected pathogens in COVID-19 critically ill patients, followed by Enterococcus and Streptococcus. Compared to blood culture, ddPCR achieved a sensitivity of 75.5%, specificity of 51.0%, PPV of 30.9%, and NPV of 87.8%, respectively. However, there were significant differences in sensitivity among different bacterial species, where Gram-negative bacteria have the highest sensitivity of 90.3%. When evaluated on the ground of clinical diagnosis, the sensitivity, specificity, PPV and NPV of ddPCR were 78.1%, 90.5%, 94.7%, and 65.5%, respectively. In addition, the ddPCR assay detected 23 cases of blaKPC, which shown a better consistent with clinical test results than other detected AMR genes. Compared to blaKPC, there were few other AMR genes detected, indicating that the application of other AMR gene detection in the COVID-19 critically ill patients was limited. CONCLUSION The multiplex ddPCR assay had a significantly higher pathogen detection positivity than the blood culture, which could be an effective diagnostic tool for BSIs in COVID-19 patients and to improve patient outcomes and reduce the burden of sepsis on the healthcare system, though there is room for optimization of the panels used.- Adjusting the targets to include E. faecalis and E. faecium as well as Candida albicans and Candida glabrata could improve the ddPCR' s effectiveness. However, further research is needed to explore the potential of ddPCR in predicting bacterial resistance through AMR gene detection.
Collapse
Affiliation(s)
- Yanbing Li
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Kangkang Huang
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Yin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zheren Tan
- Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Manli Zhou
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jiaoyang Dai
- Department of Laboratory Medicine, Xiangya Medical School, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Bin Yi
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
20
|
Liu Y, Wang R, Liu J, Fan M, Ye Z, Hao Y, Xie F, Wang T, Jiang Y, Liu N, Cui X, Lv Q, Yan L. The vacuolar fusion regulated by HOPS complex promotes hyphal initiation and penetration in Candida albicans. Nat Commun 2024; 15:4131. [PMID: 38755250 PMCID: PMC11099166 DOI: 10.1038/s41467-024-48525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between yeast and hyphae is crucial for regulating the commensalism and pathogenicity in Candida albicans. The mechanisms that affect the invasion of hyphae in solid media, whose deficiency is more related to the pathogenicity of C. albicans, have not been elucidated. Here, we found that the disruption of VAM6 or VPS41 which are components of the homotypic vacuolar fusion and protein sorting (HOPS) complex, or the Rab GTPase YPT72, all responsible for vacuole fusion, led to defects in hyphal growth in both liquid and solid media, but more pronounced on solid agar. The phenotypes of vac8Δ/Δ and GTR1OE-vam6Δ/Δ mutants indicated that these deficiencies are mainly caused by the reduced mechanical forces that drive agar and organs penetration, and confirmed that large vacuoles are required for hyphal mechanical penetration. In summary, our study revealed that large vacuoles generated by vacuolar fusion support hyphal penetration and provided a perspective to refocus attention on the role of solid agar in evaluating C. albicans invasion.
Collapse
Affiliation(s)
- Yu Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ruina Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Jiacun Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Mengting Fan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Zi Ye
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yumeng Hao
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Fei Xie
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ting Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yuanying Jiang
- School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ningning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Xiaoyan Cui
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| | - Quanzhen Lv
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| | - Lan Yan
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
21
|
Falasca K, Vetrugno L, Borrelli P, Di Nicola M, Ucciferri C, Gambi A, Bazydlo M, Taraschi G, Vecchiet J, Maggiore SM. Antimicrobial resistance in intensive care patients hospitalized with SEPSIS: a comparison between the COVID-19 pandemic and pre-pandemic era. Front Med (Lausanne) 2024; 11:1355144. [PMID: 38813381 PMCID: PMC11133528 DOI: 10.3389/fmed.2024.1355144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Coronavirus disease 2019 (COVID-19) is a highly contagious viral illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has had a dramatic effect on the world, resulting in millions of deaths worldwide and causing drastic changes in daily life. A study reported that septic complications were associated with high mortality in COVID-19 patients. This study aimed to evaluate how the COVID-19 pandemic changed the pre-pandemic and post-pandemic prevalence of sepsis in ICUs and to evaluate the different risk factors associated with mortality and the different diffusion of microorganisms and their resistance. Materials and methods We conducted a single-center retrospective observational clinical study, observing all patients in the ICU of the SS Annunziata Hospital in Chieti (Italy) who were diagnosed with sepsis and had a bacterial isolate from their blood culture. Sepsis was diagnosed by SEPSIIS III criteria. We enrolled all in-patients in the ICU from January 2018 to December 2021. We divided the patients into three groups: (1) non-pandemic period (Np) hospitalized in 2018-2019, (2) pandemic period (Pp)-COVID hospitalized in 2020-2021 with a diagnosis of COVID-19, and (3) Pp-non-COVID patients hospitalized in 2020-2021 without a diagnosis of COVID-19. Results From January 2018 to December 2021, 1,559 patients were admitted to the ICU, of which 211 patients [36 (17.1%) in 2018, 52 (24.6%) in 2019, 73 (34.6%) in 2020, and 50 (23.7%) in 2021, respectively] met the selection criteria: 88 patients in period Np, 67 patients in Pp without COVID-19, and 56 patients Pp with COVID-19. The overall mortality of these patients was high (65.9% at 30 days in Np), but decreased during the Pp (60.9%): Pp-non-COVID was 56.7% vs. Pp-COVID 66.1%, with a statistically significant association with APACHE III score (OR 1.08, 95%CI 1.04-1.12, p < 0.001), SOFA score (OR 1.12, 95%CI 1.03-1.22, p = 0.004), and age (OR 1.04, 95%CI 1.02-1.07, p < 0.0001). Between the Np vs. Pp periods, we observed an increase in a few Gram-positive bacteria such as S. capitis (1 pt. -0.9% vs. 14 pt. -7.65%- p = 0.008), S. epidermidis, Streptococcus spp., and E. faecalis, as well as a decrease in a case of blood culture positive for S. aureus, S. hominis, and E. faecium. In Gram-negative bacteria, we observed an increase in cases of Acinetobacter spp. (Np 6 pt. -5.1%- vs. Pp 20 pt. -10.9%, p = 0.082), and Serratia spp., while cases of sepsis decreased from E. faecium (Np 11 pt. -9.4%- vs. Pp 7 pt. -3.8%, p = 0.047), and Enterobacter spp., S. haemolyticus, S. maltophilia, Proteus spp., and P. aeruginosa have not changed. Finally, we found that resistance to OXA-48 (p = 0.040), ESBL (p = 0.002), carbapenems (p = 0.050), and colistin (p = 0.003) decreased with time from Np to Pp, particularly in Pp-COVID. Conclusion This study demonstrated how the COVID-19 pandemic changed the prevalence of sepsis in the ICU. It emerged that the risk factors associated with mortality were APACHE and SOFA scores, age, and, above all, the presence of ESBL-producing bacteria. Despite this, during the pandemic phase, we have observed a significant reduction in the emergence of resistant germs compared to the pre-pandemic phase.
Collapse
Affiliation(s)
- Katia Falasca
- Clinic of Infectious Diseases—Department of Medicine and Science of Aging, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Luigi Vetrugno
- Department of Anesthesiology, Critical Care Medicine and Emergency—Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Paola Borrelli
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Claudio Ucciferri
- Clinic of Infectious Diseases—Department of Medicine and Science of Aging, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Alessandra Gambi
- Laboratory of Clinical Pathology, SS Annunziata Hospital, Chieti, Italy
| | - Magdalena Bazydlo
- Department of Anesthesiology, Critical Care Medicine and Emergency—Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Giorgia Taraschi
- Clinic of Infectious Diseases—Department of Medicine and Science of Aging, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Jacopo Vecchiet
- Clinic of Infectious Diseases—Department of Medicine and Science of Aging, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Salvatore Maurizio Maggiore
- Department of Anesthesiology, Critical Care Medicine and Emergency, Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| |
Collapse
|
22
|
Cao B, Wang X, Yin W, Gao Z, Xia B. The human microbiota is a beneficial reservoir for SARS-CoV-2 mutations. mBio 2024; 15:e0318723. [PMID: 38530031 PMCID: PMC11237538 DOI: 10.1128/mbio.03187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations are rapidly emerging. In particular, beneficial mutations in the spike (S) protein, which can either make a person more infectious or enable immunological escape, are providing a significant obstacle to the prevention and treatment of pandemics. However, how the virus acquires a high number of beneficial mutations in a short time remains a mystery. We demonstrate here that variations of concern may be mutated due in part to the influence of the human microbiome. We searched the National Center for Biotechnology Information database for homologous fragments (HFs) after finding a mutation and the six neighboring amino acids in a viral mutation fragment. Among the approximate 8,000 HFs obtained, 61 mutations in S and other outer membrane proteins were found in bacteria, accounting for 62% of all mutation sources, which is 12-fold higher than the natural variable proportion. A significant proportion of these bacterial species-roughly 70%-come from the human microbiota, are mainly found in the lung or gut, and share a composition pattern with COVID-19 patients. Importantly, SARS-CoV-2 RNA-dependent RNA polymerase replicates corresponding bacterial mRNAs harboring mutations, producing chimeric RNAs. SARS-CoV-2 may collectively pick up mutations from the human microbiota that change the original virus's binding sites or antigenic determinants. Our study clarifies the evolving mutational mechanisms of SARS-CoV-2. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations are rapidly emerging, in particular advantageous mutations in the spike (S) protein, which either increase transmissibility or lead to immune escape and are posing a major challenge to pandemic prevention and treatment. However, how the virus acquires a high number of advantageous mutations in a short time remains a mystery. Here, we provide evidence that the human microbiota is a reservoir of advantageous mutations and aids mutational evolution and host adaptation of SARS-CoV-2. Our findings demonstrate a conceptual breakthrough on the mutational evolution mechanisms of SARS-CoV-2 for human adaptation. SARS-CoV-2 may grab advantageous mutations from the widely existing microorganisms in the host, which is undoubtedly an "efficient" manner. Our study might open a new perspective to understand the evolution of virus mutation, which has enormous implications for comprehending the trajectory of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Birong Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Guangya High School, Guangzhou, China
| | - Xiaoxi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Reedy JL, Jensen KN, Crossen AJ, Basham KJ, Ward RA, Reardon CM, Harding HB, Hepworth OW, Simaku P, Kwaku GN, Tone K, Willment JA, Reid DM, Stappers MHT, Brown GD, Rajagopal J, Vyas JM. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534632. [PMID: 37034634 PMCID: PMC10081279 DOI: 10.1101/2023.03.28.534632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo . Aspergillus -derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Collapse
|
24
|
Lukose L, Kaur G, M MA, Abraham GA, Khera K, Subeesh VK, Castelino RL, Karanth S, Udyavara Kudru C, Varma M, Miraj SS. Predictors and patterns of empirical antibiotic therapy and associated outcomes in COVID-19 patients: a retrospective study in a tertiary care facility in South India. Expert Rev Anti Infect Ther 2024; 22:333-341. [PMID: 38189087 DOI: 10.1080/14787210.2024.2303019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The coronavirus disease (COVID-19) led to a global health crisis. Inappropriate use of antibiotics in COVID-19 patients has been a concern, leading to antimicrobial resistance. This study evaluated the patterns and predictors of empirical antibiotic therapy in COVID-19 patients and associated outcomes. METHODS A hospital-based retrospective study was conducted with 525 patients admitted to Kasturba Hospital, Manipal, India, with moderate and severe COVID-19 from 1 March to 1 August 2021. They were divided based on empirical therapy, and predictors of antibiotic usage were assessed by logistic regression. RESULTS Four hundred and eighty (91.4%) COVID-19 patients received at least one course of antibiotics, with 440 (83.8%) initiating empirical therapy. Patients with severe COVID-19 manifestations were more likely to be prescribed empirical antibiotics. Multivariable analysis showed that patients initiated on empirical antibiotics had significantly elevated levels of procalcitonin [OR: 3.91 (95% CI: 1.66-9.16) (p = 0.001)], invasive ventilation [OR: 3.93 (95% CI: 1.70-9.09) (p = 0.001)], shortness of breath [OR: 2.25 (95% CI: 1.30-3.89) (p = 0.003)] and higher CRP levels [OR: 1.01 (95% CI: 1.00-1.01) (p = 0.005)]. Most antibiotics (65.9%) were prescribed from the 'Watch' group, the highest being ceftriaxone. Only 23.8% of the patients had microbiologically confirmed infections. CONCLUSION The study identified predictors for initiating empirical antibacterial therapy in our setting.
Collapse
Affiliation(s)
- Lipin Lukose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gursimran Kaur
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mohammed Asif M
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Gail Ann Abraham
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Kanav Khera
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Viswam K Subeesh
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ronald L Castelino
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Shubhada Karanth
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | | | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
25
|
Prayoga W. Concurrent emergencies: overlapping Salmonella and COVID-19 concerns in public health strategies and preparedness. Front Public Health 2024; 12:1331052. [PMID: 38741915 PMCID: PMC11089248 DOI: 10.3389/fpubh.2024.1331052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Windra Prayoga
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| |
Collapse
|
26
|
Murínová I, Švidrnoch M, Gucký T, Řezáč D, Hlaváč J, Slanař O, Šíma M. Meropenem population pharmacokinetics and model-based dosing optimisation in patients with serious bacterial infection. Eur J Hosp Pharm 2024; 31:253-258. [PMID: 36307183 DOI: 10.1136/ejhpharm-2022-003535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES The objective of this study was to develop a population pharmacokinetic model of meropenem in a heterogeneous population of patients with a serious bacterial infection in order to propose dosing optimisation leading to improved achievement of the pharmacokinetic/pharmacodynamic (PK/PD) target. METHODS A total of 174 meropenem serum levels obtained from 144 patients during therapeutic drug monitoring were analysed using a non-linear mixed-effects modelling approach and Monte Carlo simulation was then used to compare various dosing regimens in order to optimise PK/PD target attainment. RESULTS The meropenem volume of distribution of the patient population was 54.95 L, while clearance started at 3.27 L/hour and increased by 0.91 L/hour with each 1 mL/s/1.73 m2 of estimated glomerular filtration rate. Meropenem clearance was also 0.31 L/hour higher in postoperative patients with central nervous system infection. Meropenem administration by continuous infusion showed a significantly higher probability of attaining the PK/PD target than a standard 30 min infusion (95.3% vs 49.5%). CONCLUSIONS A daily meropenem dose of 3 g, 6 g and 10.5 g administered by continuous infusion was shown to be accurate for patients with moderate to severe renal impairment, normal renal function to mild renal impairment and augmented renal clearance, respectively.
Collapse
Affiliation(s)
- Irena Murínová
- Department of Clinical Pharmacy, Military University Hospital Prague, Prague, Czech Republic
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Martin Švidrnoch
- Laboratory of Pharmacology and Toxicology, AGEL Laboratories, Nový Jičín, Czech Republic
| | - Tomáš Gucký
- Laboratory of Pharmacology and Toxicology, AGEL Laboratories, Nový Jičín, Czech Republic
| | - David Řezáč
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czech Republic
| | - Jan Hlaváč
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
27
|
Ciaccio L, Donnan PT, Parcell BJ, Marwick CA. Community antibiotic prescribing in patients with COVID-19 across three pandemic waves: a population-based study in Scotland, UK. BMJ Open 2024; 14:e081930. [PMID: 38643000 PMCID: PMC11033633 DOI: 10.1136/bmjopen-2023-081930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVES This study aims to examine community antibiotic prescribing across a complete geographical area for people with a positive COVID-19 test across three pandemic waves, and to examine health and demographic factors associated with antibiotic prescribing. DESIGN A population-based study using administrative data. SETTING A complete geographical region within Scotland, UK. PARTICIPANTS Residents of two National Health Service Scotland health boards with SARS-CoV-2 virus test results from 1 February 2020 to 31 March 2022 (n=184 954). Individuals with a positive test result (n=16 025) had data linked to prescription and hospital admission data ±28 days of the test, general practice data for high-risk comorbidities and demographic data. OUTCOME MEASURES The associations between patient factors and the odds of antibiotic prescription in COVID-19 episodes across three pandemic waves from multivariate binary logistic regression. RESULTS Data included 768 206 tests for 184 954 individuals, identifying 16 240 COVID-19 episodes involving 16 025 individuals. There were 3263 antibiotic prescriptions ±28 days for 2395 episodes. 35.6% of episodes had a prescription only before the test date, 52.3% of episodes after and 12.1% before and after. Antibiotic prescribing reduced over time: 20.4% of episodes in wave 1, 17.7% in wave 2 and 12.0% in wave 3. In multivariate logistic regression, being female (OR 1.31, 95% CI 1.19 to 1.45), older (OR 3.02, 95% CI 2.50 to 3.68 75+ vs <25 years), having a high-risk comorbidity (OR 1.45, 95% CI 1.31 to 1.61), a hospital admission ±28 days of an episode (OR 1.58, 95% CI 1.42 to 1.77) and health board region (OR 1.14, 95% CI 1.03 to 1.25, board B vs A) increased the odds of receiving an antibiotic. CONCLUSION Community antibiotic prescriptions in COVID-19 episodes were uncommon in this population and likelihood was associated with patient factors. The reduction over pandemic waves may represent increased knowledge regarding COVID-19 treatment and/or evolving symptomatology.
Collapse
Affiliation(s)
- Laura Ciaccio
- Division of Population Health and Genomics, University of Dundee School of Medicine, Dundee, UK
| | - Peter T Donnan
- Division of Population Health and Genomics, University of Dundee School of Medicine, Dundee, UK
| | - Benjamin J Parcell
- Department of Medical Microbiology, Ninewells Hospital and Medical School, Dundee, UK
| | - Charis A Marwick
- Division of Population Health and Genomics, University of Dundee School of Medicine, Dundee, UK
| |
Collapse
|
28
|
Janc J, Słabisz N, Woźniak A, Łysenko L, Chabowski M, Leśnik P. Infection with the multidrug-resistant Klebsiella pneumoniae New Delhi metallo-B-lactamase strain in patients with COVID-19: Nec Hercules contra plures?. Front Cell Infect Microbiol 2024; 14:1297312. [PMID: 38690325 PMCID: PMC11060079 DOI: 10.3389/fcimb.2024.1297312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Background During the coronavirus disease 2019 (COVID-19) pandemic, in patients treated for SARS-CoV-2 infection, infections with the Klebsiella pneumoniae bacteria producing New Delhi metallo-B-lactamase (NDM) carbapenemase in the USA, Brazil, Mexico, and Italy were observed, especially in intensive care units (ICUs). This study aimed to assess the impact of Klebsiella pneumoniae NDM infection and other bacterial infections on mortality in patients treated in ICUs due to COVID-19. Methods The 160 patients who qualified for the study were hospitalized in ICUs due to COVID-19. Three groups were distinguished: patients with COVID-19 infection only (N = 72), patients with COVID-19 infection and infection caused by Klebsiella pneumoniae NDM (N = 30), and patients with COVID-19 infection and infection of bacterial etiology other than Klebsiella pneumoniae NDM (N = 58). Mortality in the groups and chosen demographic data; biochemical parameters analyzed on days 1, 3, 5, and 7; comorbidities; and ICU scores were analyzed. Results Bacterial infection, including with Klebsiella pneumoniae NDM type, did not elevate mortality rates. In the group of patients who survived the acute phase of COVID-19 the prolonged survival time was demonstrated: the median overall survival time was 13 days in the NDM bacterial infection group, 14 days in the other bacterial infection group, and 7 days in the COVID-19 only group. Comparing the COVID-19 with NDM infection and COVID-19 only groups, the adjusted model estimated a statistically significant hazard ratio of 0.28 (p = 0.002). Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups. Conclusion In patients treated for SARS-CoV-2 infection acquiring a bacterial infection due to prolonged hospitalization associated with the treatment of COVID-19 did not elevate mortality rates. The data suggests that in severe COVID-19 patients who survived beyond the first week of hospitalization, bacterial infections, particularly Klebsiella pneumoniae NDM, do not significantly impact mortality. Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups.
Collapse
Affiliation(s)
- Jarosław Janc
- Department of Anaesthesiology and Intensive Therapy, Hospital of Ministry of the Interior and Administration, Wrocław, Poland
| | - Natalia Słabisz
- Department of Microbiology, 4th Military Clinical Hospital, Wrocław, Poland
| | - Anna Woźniak
- Department of Nursing and Midwifery, Wroclaw Medical University, Wrocław, Poland
| | - Lidia Łysenko
- Departament of Anaesthesiology and Intensive Care Unit, Wroclaw Medical University, Wrocław, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Clinical Hospital, Wrocław, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wrocław University of Science and Technology, Wrocław, Poland
| | - Patrycja Leśnik
- Department of Microbiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
29
|
Niu X, Al-Hatmi AMS, Vitale RG, Lackner M, Ahmed SA, Verweij PE, Kang Y, de Hoog S. Evolutionary trends in antifungal resistance: a meta-analysis. Microbiol Spectr 2024; 12:e0212723. [PMID: 38445857 PMCID: PMC10986544 DOI: 10.1128/spectrum.02127-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
The present paper includes a meta-analysis of literature data on 318 species of fungi belonging to 34 orders in their response to 8 antifungal agents (amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole, posaconazole, terbinafine, and voriconazole). Main trends of MIC results at the ordinal level were visualized. European Committee on Antimicrobial Susceptibility Testing and Clinical & Laboratory Standards Institute (CLSI) clinical breakpoints were used as the staff gauge to evaluate MIC values ranging from resistance to susceptibility, which were subsequently compared with a phylogenetic tree of the fungal kingdom. Several orders (Hypocreales, Microascales, and Mucorales) invariably showed resistance. Also the basidiomycetous orders Agaricales, Polyporales, Sporidiales, Tremellales, and Trichosporonales showed relatively high degrees of azole multi-resistance, while elsewhere in the fungal kingdom, including orders with numerous pathogenic and opportunistic species, that is, Onygenales, Chaetothyiales, Sordariales, and Malasseziales, in general were susceptible to azoles. In most cases, resistance vs susceptibility was consistently associated with phylogenetic distance, members of the same order showing similar behavior. IMPORTANCE A kingdom-wide the largest set of published wild-type antifungal data comparison were analyzed. Trends in resistance in taxonomic groups (monophyletic clades) can be compared with the phylogeny of the fungal kingdom, eventual relationships between fungus-drug interaction and evolution can be described.
Collapse
Affiliation(s)
- Xueke Niu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Roxana G. Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Unidad de Parasitología, Sector Micología, Hospital J.M. Ramos Mejía, Buenos Aires, Argentina
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah A. Ahmed
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Paul E. Verweij
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Sybren de Hoog
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Ul Mustafa Z, Batool A, Ibrar H, Salman M, Khan YH, Mallhi TH, Meyer JC, Godman B, Moore CE. Bacterial co-infections, secondary infections and antimicrobial use among hospitalized COVID-19 patients in the sixth wave in Pakistan: findings and implications. Expert Rev Anti Infect Ther 2024; 22:229-240. [PMID: 38146949 DOI: 10.1080/14787210.2023.2299387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Previous studies in Pakistan have shown considerable over prescribing of antibiotics in patients hospitalized with COVID-19 despite very low prevalence of bacterial infections. Irrational use of antibiotics will worsen antimicrobial resistance (AMR). METHODS Retrospective analysis of medical records of patients in the COVID-19 wards of three tertiary care hospitals to assess antibiotic use during the sixth COVID-19 wave. RESULTS A total of 284 patients were included, most were male (66.9%), aged 30-50 years (50.7%) with diabetes mellitus the most common comorbidity. The most common symptoms at presentation were cough (47.9%) and arthralgia-myalgia (41.5%). Around 3% were asymptomatic, 34.9% had mild, 30.3% moderate, and 23.6% had severe disease, with 8.1% critical. Chest X-ray abnormalities were seen in 43.3% of patients and 37% had elevated white cell counts, with 35.2% having elevated C-reactive protein levels. Around 91% COVID-19 patients were prescribed antibiotics during their hospital stay, with only a few with proven bacterial co-infections or secondary bacterial infections. Most antibiotics were from the 'Watch' category (90.8%) followed by the 'Reserve' category (4.8%), similar to previous COVID-19 waves. CONCLUSION There continued to be excessive antibiotics use among hospitalized COVID-19 patients in Pakistan. Urgent measures are needed to address inappropriate prescribing including greater prescribing of Access antibiotics where pertinent.
Collapse
Affiliation(s)
- Zia Ul Mustafa
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Pharmacy Services, District Headquarter (DHQ) Hospital, Pakpattan, Pakistan
| | - Arfa Batool
- Department of Medicine, Sheikh Zaid Medical College, Rahim Yar Khan, Pakistan
| | - Hadia Ibrar
- Department of Medicine, Wah Medical College, Rawalpindi, Pakistan
| | - Muhammad Salman
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Johanna C Meyer
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
- South African Vaccination and Immunisation Centre, Sefako Makgatho Health Sciences University, Garankuwa, Pretoria, South Africa
| | - Brian Godman
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
- Strathclyde Institute of Pharmacy and Biomedical Science (SIPBS), University of Strathclyde, Glasgow, UK
| | - Catrin E Moore
- Centre for Neonatal and Pediatric Infection, St. George's University of London, London, UK
| |
Collapse
|
31
|
Li P, Li Y, Zhang Y, Zhu S, Pei Y, Zhang Q, Liu J, Bao J, Sun M. A dynamic nomogram to predict invasive fungal super-infection during healthcare-associated bacterial infection in intensive care unit patients: an ambispective cohort study in China. Front Cell Infect Microbiol 2024; 14:1281759. [PMID: 38469345 PMCID: PMC10925706 DOI: 10.3389/fcimb.2024.1281759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Objectives Invasive fungal super-infection (IFSI) is an added diagnostic and therapeutic dilemma. We aimed to develop and assess a nomogram of IFSI in patients with healthcare-associated bacterial infection (HABI). Methods An ambispective cohort study was conducted in ICU patients with HABI from a tertiary hospital of China. Predictors of IFSI were selected by both the least absolute shrinkage and selection operator (LASSO) method and the two-way stepwise method. The predictive performance of two models built by logistic regression was internal-validated and compared. Then external validity was assessed and a web-based nomogram was deployed. Results Between Jan 1, 2019 and June 30, 2023, 12,305 patients with HABI were screened in 14 ICUs, of whom 372 (3.0%) developed IFSI. Among the fungal strains causing IFSI, the most common was C.albicans (34.7%) with a decreasing proportion, followed by C.tropicalis (30.9%), A.fumigatus (13.9%) and C.glabrata (10.1%) with increasing proportions year by year. Compared with LASSO-model that included five predictors (combination of priority antimicrobials, immunosuppressant, MDRO, aCCI and S.aureus), the discriminability of stepwise-model was improved by 6.8% after adding two more predictors of COVID-19 and microbiological test before antibiotics use (P<0.01).And the stepwise-model showed similar discriminability in the derivation (the area under curve, AUC=0.87) and external validation cohorts (AUC=0.84, P=0.46). No significant gaps existed between the proportion of actual diagnosed IFSI and the frequency of IFSI predicted by both two models in derivation cohort and by stepwise-model in external validation cohort (P=0.16, 0.30 and 0.35, respectively). Conclusion The incidence of IFSI in ICU patients with HABI appeared to be a temporal rising, and our externally validated nomogram will facilitate the development of targeted and timely prevention and control measures based on specific risks of IFSI.
Collapse
Affiliation(s)
- Peng Li
- Department of Infection Control, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Li
- Department of Infection Control, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Youjian Zhang
- Department of Infection Control, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Zhu
- Central Intensive Care Unit, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongju Pei
- Respiratory Intensive Care Unit, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Zhang
- Department of Clinical Microbiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Junping Liu
- Department of Infectious Disease, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Junzhe Bao
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingjie Sun
- Department of Infection Control, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Rhodes RH, Love GL, Da Silva Lameira F, Sadough Shahmirzadi M, Fox SE, Vander Heide RS. Acute neutrophilic vasculitis (leukocytoclasia) in 36 COVID-19 autopsy brains. Diagn Pathol 2024; 19:33. [PMID: 38360666 PMCID: PMC10870569 DOI: 10.1186/s13000-024-01445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Hypercytokinemia, the renin-angiotensin system, hypoxia, immune dysregulation, and vasculopathy with evidence of immune-related damage are implicated in brain morbidity in COVID-19 along with a wide variety of genomic and environmental influences. There is relatively little evidence of direct SARS-CoV-2 brain infection in COVID-19 patients. METHODS Brain histopathology of 36 consecutive autopsies of patients who were RT-PCR positive for SARS-CoV-2 was studied along with findings from contemporary and pre-pandemic historical control groups. Immunostaining for serum and blood cell proteins and for complement components was employed. Microcirculatory wall complement deposition in the COVID-19 cohort was compared to historical control cases. Comparisons also included other relevant clinicopathological and microcirculatory findings in the COVID-19 cohort and control groups. RESULTS The COVID-19 cohort and both the contemporary and historical control groups had the same rate of hypertension, diabetes mellitus, and obesity. The COVID-19 cohort had varying amounts of acute neutrophilic vasculitis with leukocytoclasia in the microcirculation of the brain in all cases. Prominent vascular neutrophilic transmural migration was found in several cases and 25 cases had acute perivasculitis. Paravascular microhemorrhages and petechial hemorrhages (small brain parenchymal hemorrhages) had a slight tendency to be more numerous in cohort cases that displayed less acute neutrophilic vasculitis. Tissue burden of acute neutrophilic vasculitis with leukocytoclasia was the same in control cases as a group, while it was significantly higher in COVID-19 cases. Both the tissue burden of acute neutrophilic vasculitis and the activation of complement components, including membrane attack complex, were significantly higher in microcirculatory channels in COVID-19 cohort brains than in historical controls. CONCLUSIONS Acute neutrophilic vasculitis with leukocytoclasia, acute perivasculitis, and associated paravascular blood extravasation into brain parenchyma constitute the first phase of an immune-related, acute small-vessel inflammatory condition often termed type 3 hypersensitivity vasculitis or leukocytoclastic vasculitis. There is a higher tissue burden of acute neutrophilic vasculitis and an increased level of activated complement components in microcirculatory walls in COVID-19 cases than in pre-pandemic control cases. These findings are consistent with a more extensive small-vessel immune-related vasculitis in COVID-19 cases than in control cases. The pathway(s) and mechanism for these findings are speculative.
Collapse
Affiliation(s)
- Roy H Rhodes
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA.
| | - Gordon L Love
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
| | - Fernanda Da Silva Lameira
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Department of Pathology, Virginia Commonwealth University, Norfolk, Virginia, 23510, USA
| | - Maryam Sadough Shahmirzadi
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
| | - Sharon E Fox
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Pathology and Laboratory Medicine Services, Southeast Louisiana Veterans Healthcare System, New Orleans, Louisiana, 70112, USA
| | - Richard S Vander Heide
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Marshfield Clinic Health System, Marshfield, Wisconsin, 54449, USA
| |
Collapse
|
33
|
Jorda A, Gabler C, Blaschke A, Wölfl-Duchek M, Gelbenegger G, Nussbaumer-Pröll A, Radtke C, Zeitlinger M, Bergmann F. Community-acquired and hospital-acquired bacterial co-infections in patients hospitalized with Covid-19 or influenza: a retrospective cohort study. Infection 2024; 52:105-115. [PMID: 37326938 PMCID: PMC10811098 DOI: 10.1007/s15010-023-02063-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bacterial co-infections are believed to be less frequent in patients with Covid-19 than influenza, but frequencies varied between studies. METHODS This single-center retrospective, propensity score-matched analysis included adult patients with Covid-19 or influenza admitted to normal-care wards between 02/2014 and 12/2021. Covid-19 cases were propensity score matched to influenza cases at a 2:1 ratio. Community-acquired and hospital-acquired bacterial co-infections were defined as positive blood or respiratory cultures ≤ 48 h or > 48 h after hospital admission, respectively. The primary outcome was comparison of community-acquired and hospital-acquired bacterial infections between patients with Covid-19 and influenza in the propensity score-matched cohort. Secondary outcomes included frequency of early and late microbiological testing. RESULTS A total of 1337 patients were included in the overall analysis, of which 360 patients with Covid-19 were matched to 180 patients with influenza. Early (≤ 48 h) microbiological sampling was performed in 138 (38.3%) patients with Covid-19 and 75 (41.7%) patients with influenza. Community-acquired bacterial co-infections were found in 14 (3.9%) of 360 patients with Covid-19 and 7 (3.9%) of 180 patients with influenza (OR 1.0, 95% CI 0.3-2.7). Late (> 48 h) microbiological sampling was performed in 129 (35.8%) patients with Covid-19 and 74 (41.1%) patients with influenza. Hospital-acquired bacterial co-infections were found in 40 (11.1%) of 360 patients with Covid-19 and 20 (11.1%) of 180 patients with influenza (OR 1.0, 95% CI 0.5-1.8). CONCLUSION The rate of community-acquired and hospital-acquired bacterial co-infections was similar in hospitalized Covid-19 and influenza patients. These findings contrast previous literature reporting that bacterial co-infections are less common in Covid-19 than influenza.
Collapse
Affiliation(s)
- Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Cornelia Gabler
- IT Systems and Communications, Medical University of Vienna, Vienna, Austria
| | - Amelie Blaschke
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Alina Nussbaumer-Pröll
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Felix Bergmann
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
34
|
Pai A, Kanji Z, Douglas JJ. Characterization of Coinfections in Patients with COVID-19. Can J Hosp Pharm 2024; 77:e3398. [PMID: 38204505 PMCID: PMC10754398 DOI: 10.4212/cjhp.3398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/21/2023] [Indexed: 01/12/2024]
Abstract
Background Little is known about coinfections in patients with COVID-19, with antibiotics often initiated empirically. Objectives To determine the rates and characteristics of early and late coinfections in COVID-19 patients and to characterize the use of anti-infective agents, especially antibiotics. Methods This retrospective chart review involved patients with COVID-19 who were admitted to Lions Gate Hospital (Vancouver, British Columbia) between January 1 and June 30, 2020. Data were extracted from electronic medical records, and descriptive statistics were used to analyze the data. Results Of the 48 patients admitted during the study period, 10 (21%) were determined to have coinfections: 3 (6%) had early coinfections and 7 (15%) had late coinfections. Early empiric use of antibiotics was observed in 32 (67%) patients; for 29 (91%) of these 32 patients, the therapy was deemed inappropriate. Patients with coinfections had longer hospital stays and more complications. Conclusions Despite low rates of early coinfection, empiric antibiotics were started for a majority of the patients. Most late coinfections occurred in patients in the intensive care unit who required mechanical ventilation. Patients with coinfections had poorer outcomes than those without coinfections.
Collapse
Affiliation(s)
- Alexander Pai
- , BSc(Biochem), ACPR, PharmD, is a Clinical Pharmacist with the Vancouver General Hospital, Vancouver, British Columbia
| | - Zahra Kanji
- , BSc(Pharm), ACPR, PharmD, FCSHP, is a Clinical Pharmacy Specialist - Critical Care with the Department of Pharmacy, Lions Gate Hospital, and a Clinical Professor with the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia
| | - James Joshua Douglas
- , MD, is an Infectious Disease and Critical Care Physician with Lions Gate Hospital, and a Clinical Instructor with the Division of Critical Care Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia
| |
Collapse
|
35
|
Ciurea MV, Jeican II, Balica N, Vrânceanu D, Albu S. Magnetic Resonance Imaging in COVID-19 Associated Rhino-Sinusal Mucormycosis. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:74-80. [PMID: 38846483 PMCID: PMC11151946 DOI: 10.12865/chsj.50.01.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 06/09/2024]
Abstract
Rhino-sinusal mucormycosis is an acute invasive fungal infection rarely encountered in the clinical setting, occurring in severe immunosuppressed patients. However, in patients suffering from COVID-19 disease a dramatic increase in the incidence of mucormycosis has been recorded. The aim of the study is to discuss the MRI findings of patients with COVID-19 associated mucormycosis. This is a retrospective review of 10 hospitalized and operated patients in three Otolaryngologic Departments between the 1st of February 2021 and the 30th of October 2021. All patients presented nasal mucormycosis, histologically verified along with documented SARS-CoV-2 positive RT-PCR test. The sinus involvement, extra sinus spread and peri-sinus invasion were documented in all patients. The correlation between MRI and intra-operative findings was also assessed. The black turbinate sign and peri-antral soft tissue infiltration are early MRI signs characteristic of mucormycosis. Moreoever, MRI has a significantly high positive predictive value for intra-operative findings in COVID-19 associated mucormycosis.
Collapse
Affiliation(s)
- Mircea Viorel Ciurea
- Discipline of Oro-Maxillo-Facial Surgery and Implantology, Faculty of Dental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| | - Ionuț Isaia Jeican
- Department of Anatomy and Embryology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nicolae Balica
- ENT Department, "Victor Babeş" University of Medicine and Pharmacy, Bd. Revolutiei No. 6, 300054 Timisoara, Romania
- "Victor Babeş" University of Medicine and Pharmacy Timisoara, Piaţa Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Daniela Vrânceanu
- ENT Department, Bucharest Emergency University Hospital, 010271 Bucharest, Romania
| | - Silviu Albu
- II-nd Department of Otolaryngology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
36
|
Chaudhury S, Kaur P, Gupta D, Anand P, Chaudhary M, Tiwari S, Mittal A, Gupta J, Kaur S, Singh VD, Dhawan D, Singh P, Sahu SK. Therapeutic Management with Repurposing Approaches: A Mystery During COVID-19 Outbreak. Curr Mol Med 2024; 24:712-733. [PMID: 37312440 DOI: 10.2174/1566524023666230613141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/15/2023]
Abstract
The ubiquitous pandemic that emerged due to COVID-19 affected the whole planet. People all over the globe became vulnerable to the unpredictable emergence of coronavirus. The sudden emergence of respiratory disease in coronavirus infected several patients. This affected human life drastically, from mild symptoms to severe illness, leading to mortality. COVID-19 is an exceptionally communicable disease caused by SARS-CoV-2. According to a genomic study, the viral spike RBD interactions with the host ACE2 protein from several coronavirus strains and the interaction between RBD and ACE2 highlighted the potential change in affinity from the virus causing the COVID-19 outbreak to a progenitor type of SARS-CoV-2. SARS-CoV-2, which could be the principal reservoir, is phylogenetically related to the SARS-like bat virus. Other research works reported that intermediary hosts for the transmission of viruses to humans could include cats, bats, snakes, pigs, ferrets, orangutans, and monkeys. Even with the arrival of vaccines and individuals getting vaccinated and treated with FDAapproved repurposed drugs like Remdesivir, the first and foremost steps aimed towards the possible control and minimization of community transmission of the virus include social distancing, self-realization, and self-health care. In this review paper, we discussed and summarized various approaches and methodologies adopted and proposed by researchers all over the globe to help with the management of this zoonotic outbreak by following repurposed approaches.
Collapse
Affiliation(s)
- Soumik Chaudhury
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Paranjeet Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Deepali Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Palak Anand
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Siddhita Tiwari
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Amit Mittal
- Faculty of Pharmaceutical Sciences, Desh Bhagat University, Amloh Road, Mandi Gobindgarh, 147301, Punjab, India
| | - Jeena Gupta
- School of Bioscience, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Sukhmeen Kaur
- Department of Opthalmology, Punjab Institute of Medical Sciences, Jalandhar, 144001, Punjab, India
| | - Varsh Deep Singh
- American University of Barbados, Wildey, St. Michael, BB11100, Barbados
| | - Dakshita Dhawan
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Princejyot Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| |
Collapse
|
37
|
Torres A, Kuraieva A, Stone GG, Cillóniz C. Systematic review of ceftaroline fosamil in the management of patients with methicillin-resistant Staphylococcus aureus pneumonia. Eur Respir Rev 2023; 32:230117. [PMID: 37852658 PMCID: PMC10582922 DOI: 10.1183/16000617.0117-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for an array of problematic community- and healthcare-acquired infections, including pneumonia, and is frequently associated with severe disease and high mortality rates. Standard recommended treatments for empiric and targeted coverage of suspected MRSA in patients with community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP), including ventilator-associated pneumonia (VAP), are vancomycin and linezolid. However, adverse events such as acute kidney injury and Clostridium difficile infection have been associated with these antibiotics. Ceftaroline fosamil is a β-lactam/extended-spectrum cephalosporin approved for the treatment of adults and children with CAP and complicated skin and soft tissue infections. Ceftaroline has in vitro activity against a range of common Gram-positive bacteria and is distinct among the β-lactams in retaining activity against MRSA. Due to the design of the pivotal randomised controlled trials of ceftaroline fosamil, outcomes in patients with MRSA CAP were not evaluated. However, various reports of real-world outcomes with ceftaroline fosamil for pneumonia caused by MRSA, including CAP and HAP/VAP, been published since its approval. A systematic literature review and qualitative analysis of relevant publications was undertaken to collate and summarise relevant published data on the efficacy and safety of ceftaroline fosamil in patients with MRSA pneumonia. While relatively few real-world outcomes studies are available, the available data suggest that ceftaroline fosamil is a possible alternative to linezolid and vancomycin for MRSA pneumonia. Specific scenarios in which ceftaroline fosamil might be considered include bacteraemia and complicating factors such as empyema.
Collapse
Affiliation(s)
- Antoní Torres
- Dept of Pulmonology, Hospital Clinic, University of Barcelona, IDIBAPS, ICREA, CIBERES, Barcelona, Spain
| | | | | | - Catia Cillóniz
- Dept of Pulmonology, Hospital Clinic, University of Barcelona, IDIBAPS, ICREA, CIBERES, Barcelona, Spain
- Faculty of Health Sciences, Continental University, Huancayo, Peru
| |
Collapse
|
38
|
Driedger M, Daneman N, Brown K, Gold WL, Jorgensen SC, Maxwell C, Schwartz KL, Morris AM, Thiruchelvam D, Langford B, Leung E, MacFadden D. The impact of the COVID-19 pandemic on blood culture practices and bloodstream infections. Microbiol Spectr 2023; 11:e0263023. [PMID: 37975711 PMCID: PMC10783801 DOI: 10.1128/spectrum.02630-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Bacterial infections are a significant cause of morbidity and mortality worldwide. In the wake of the COVID-19 pandemic, previous studies have demonstrated pandemic-related shifts in the epidemiology of bacterial bloodstream infections (BSIs) in the general population and in specific hospital systems. Our study uses a large, comprehensive data set stratified by setting [community, long-term care (LTC), and hospital] to uniquely demonstrate how the effect of the COVID-19 pandemic on BSIs and testing practices varies by healthcare setting. We showed that, while the number of false-positive blood culture results generally increased during the pandemic, this effect did not apply to hospitalized patients. We also found that many infections were likely under-recognized in patients in the community and in LTC, demonstrating the importance of maintaining healthcare for these groups during crises. Last, we found a decrease in infections caused by certain pathogens in the community, suggesting some secondary benefits of pandemic-related public health measures.
Collapse
Affiliation(s)
- Matt Driedger
- Department of Medicine, The University of Ottawa, Ottawa, Ontario, Canada
| | - Nick Daneman
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| | - Kevin Brown
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Wayne L. Gold
- The University Health Network, Toronto, Ontario, Canada
| | | | | | - Kevin L. Schwartz
- ICES, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, Toronto, Ontario, Canada
- Unity Health Toronto, Toronto, Ontario, Canada
| | | | | | - Bradley Langford
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | | | - Derek MacFadden
- Department of Medicine, The University of Ottawa, Ottawa, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Xiao Z, Pan M, Li X, Zhao C. Impact of SARS-CoV2 infection on gut microbiota dysbiosis. MICROBIOME RESEARCH REPORTS 2023; 3:7. [PMID: 38455085 PMCID: PMC10917619 DOI: 10.20517/mrr.2023.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
The composition and function of the gut microbiota constantly influence health. Disruptions in this delicate balance, termed gut microbiota dysbiosis, have been implicated in various adverse health events. As the largest global epidemic since 1918, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had devastating consequences. While the primary impact of Corona Virus Disease 2019 (COVID-19) has been on the respiratory system, a growing body of research has unveiled the significant involvement of the gastrointestinal tract as well. Emerging evidence underscores notable alterations in the gut microbiome of COVID-19 patients. In addition, the gut microbiome is also characterized by an abundance of opportunistic pathogens, which is related to disease manifestations of COVID-19 patients. The intricate bidirectional interaction between the respiratory mucosa and the gut microbiota, known as the gut-lung axis, emerges as a crucial player in the pathological immune response triggered by SARS-CoV-2. Here, we discuss microbiota-based gut characteristics of COVID-19 patients and the long-term consequences of gut microbiota dysregulation. These insights could potentially transform the development of long-term interventions for COVID-19, offering hope for improved outcomes and enhanced patient recovery.
Collapse
Affiliation(s)
- Zhenming Xiao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miaomiao Pan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xinyao Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Frontiers Science Center, Shanghai 200032, China
| |
Collapse
|
40
|
Yassin Z, Farid A, Ahmadi S, Emamikhah M, Motamedi O, Jafari M, Goodarzi A. Coronavirus disease 2019 (COVID-19)-associated brain abscesses caused by Pseudomonas aeruginosa and Aspergillus fumigatus: two case and a review of the literature. J Med Case Rep 2023; 17:520. [PMID: 38049820 PMCID: PMC10694943 DOI: 10.1186/s13256-023-04206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/09/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Bacterial and fungal superinfections are commonly reported in patients with coronavirus disease 2019. CASE PRESENTATION We report the first case of brain and intramedullary abscesses caused by Pseudomonas aeruginosa and a rare case of brain abscesses caused by Aspergillus fumigatus in two post-coronavirus disease 2019 patients. The first patient-34-year-old Iranian woman-presented with weakness of the left upper limb, headaches, and lower limb paresthesia. She had a history of undiagnosed diabetes and had received corticosteroid therapy. The second patient-45-year-old Iranian man-presented with right-sided weakness and had a history of intensive care unit admission. Both patients passed away despite appropriate medical therapy. CONCLUSION The immune dysregulation induced by coronavirus disease 2019 and its' treatments can predispose patients, especially immunosuppressed ones, to bacterial and fungal infections with unusual and opportunistic pathogens in the central nervous system. Pseudomonas aeruginosa and Aspergillus fumigatus should be considered as potential causes of brain infection in any coronavirus disease 2019 patient presenting with neurological symptoms and evidence of brain abscess in imaging, regardless of sinonasal involvement. These patients should get started on appropriate antimicrobial therapy as soon as possible, as any delay in diagnosis or treatment can be associated with adverse outcomes.
Collapse
Affiliation(s)
- Zeynab Yassin
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armita Farid
- School of Medicine, Iran University of Medical Sciences, Bisotun Street, 6.1 Alley, No 56, Tehran, 1431644311, Iran
| | - Sayedali Ahmadi
- Department of Neurosurgery, Rasool Akram Medical Complex, School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Ave, Tehran, 1431644311, Iran
| | - Maziar Emamikhah
- Department of Neurosurgery, Rasool Akram Medical Complex, School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Ave, Tehran, 1431644311, Iran
| | - Omid Motamedi
- Department of Radiology, Rasool Akram Medical Complex, School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Avenue, Tehran, 1445613131, Iran
| | - Mohammadamin Jafari
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Avenue, Tehran, 1445613131, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Avenue, Tehran, 1445613131, Iran.
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Bombaywala S, Dafale NA. Mapping the spread and mobility of antibiotic resistance in wastewater due to COVID-19 surge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121734-121747. [PMID: 37955733 DOI: 10.1007/s11356-023-30932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Large amounts of antibiotics have been discharged into wastewater during the COVID-19 pandemic due to overuse and misuse of antibiotics to treat patients. Wastewater-based surveillance can be used as an early warning for antibiotic resistance (AR) emergence. The present study analyzed municipal wastewater corresponding to the major pandemic waves (WW1, WW2, and WW3) in India along with hospital wastewater (Ho) taken as a benchmark for AR. Commonly prescribed antibiotics during a pandemic, azithromycin and cefixime residues, were found in the range of 2.1-2.6 μg/L in Ho and WW2. Total residual antibiotic concentration was less in WW2; however, the total antibiotic resistance gene (ARG) count was 1065.6 ppm compared to 85.2 ppm in Ho. Metagenome and RT-qPCR analysis indicated a positive correlation between antibiotics and non-corresponding ARGs (blaOXA, aadA, cat, aph3, and ere), where 7.2-7.5% was carried by plasmid in the bacterial community of WW1 and WW2. Moreover, as the abundance of the dfrA and int1 genes varied most among municipal wastewater, they can be suggested as AR markers for the pandemic. The common pathogens Streptococcus, Escherichia, Shigella, and Aeromonas were putative ARG hosts in metagenome-assembled genomes. The ARG profile and antibiotic levels varied between municipal wastewaters but were fairly similar for WW2 and Ho, suggesting the impact of the pandemic in shaping the resistome pattern. The study provides insights into the resistome dynamic, AR markers, and host-ARG association in wastewater during the COVID-19 surge. Continued surveillance and identification of intervention points for AR beyond the pandemic are essential to curbing the environmental spread of ARGs in the near future.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
42
|
Ayrancı MK, Küçükceran K, Koçak S, Girişgin AS, Dündar ZD. The Role of Procalcitonin/Albumin Ratio and CRP/Albumin Ratio in Predicting In-hospital Mortality in COVID-19 Patients. J Acute Med 2023; 13:150-158. [PMID: 38099207 PMCID: PMC10720914 DOI: 10.6705/j.jacme.202312_13(4).0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 12/17/2023]
Abstract
Background Hospitalized coronavirus disease 2019 (COVID-19) patients have higher mortality rates. Parameters to predict mortality are needed. Therefore, we investigated the power of procalcitonin/albumin ratio (PAR) and C-reactive protein/albumin ratio (CAR) to predict in-hospital mortality in hospitalized COVID-19 patients. Methods In this study, 855 patients were included. Patients' PAR and CAR values were recorded from the hospital information management system. The patients were evaluated in two groups according to their in-hospital mortality status. Results In-hospital mortality was observed in 163 patients (19.1%). The median PAR and CAR values of patients in the non-survivor group were statistically significantly higher than those of patients in the survivor group, PAR (median: 0.07, interquartile range [IQR]: 0.03-0.33 vs. median: 0.02, IQR: 0.01-0.04, respectively; p < 0.001); CAR (median: 27.60, IQR: 12.49-44.91 vs. median: 7.47, IQR: 2.66-18.93, respectively; p < 0.001). The area under the curve (AUC) and odds ratio (OR) values obtained by PAR to predict in-hospital mortality were higher than the values obtained by procalcitonin, CAR, albumin, and CRP (AUCs of PAR, procalcitonin, CAR, albumin, and CRP: 0.804, 0.792, 0.762, 0.755, and 0.748, respectively; OR: PAR > 0.04, procalcitonin > 0.14, CAR > 20.59, albumin < 4.02, and CRP > 63; 8.215, 7.134, 5.842, 6.073, and 5.07, respectively). Patients with concurrent PAR > 0.04 and CAR > 20.59 had an OR of 15.681 compared to patients with concurrent PAR < 0.04 and CAR < 20.59. Conclusions In this study, PAR was found to be more valuable for predicting in-hospital COVID-19 mortality than all other parameters. In addition, concurrent high levels of PAR and CAR were found to be more valuable than a high level of PAR or CAR alone.
Collapse
Affiliation(s)
- Mustafa Kürşat Ayrancı
- Emergency Department, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - Kadir Küçükceran
- Emergency Department, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - Sedat Koçak
- Emergency Department, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | | | - Zerrin Defne Dündar
- Emergency Department, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| |
Collapse
|
43
|
Bennani H, Guennouni M, Ouarradi AE, Hanchi AL, Soraa N. Microbiological profile of multidrug resistant bacteria before and during COVID-19 in CHU Mohammed VI. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:771-778. [PMID: 38156298 PMCID: PMC10751609 DOI: 10.18502/ijm.v15i6.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Background and Objectives A new type of corona virus has caused Corona virus disease-19 and, subsequently, a global pandemic. All individuals are prone to the disease, so drastic measures were taken to prevent its spread. This study aimed to evaluate the impact of COVID-19 on the progression of the antimicrobial resistance rate by comparing two periods: before and during COVID-19. Materials and Methods We used a cross-sectional design to investigate the Antimicrobial Resistance (AMR) rate before (03/2019 to 03/2020) and during COVID-19 (03/2020 to 03/2021) in a University Hospital in Marrakech. The data were analyzed using SPSS Version 25.0. Results Among the 7106 specimens, there was a significant increase in the multidrug-resistant bacterial from 27.38% to 35.87% during COVID-19 (p<0.001), particularly in blood culture, cerebrospinal fluid, catheter, and pus. However, there was a non-significant change in puncture fluid, expectoration, protected distal sampling, joint fluid, stool culture, and genital sampling. A decrease in Multidrug-resistant bacteria (MDRB) was observed only in cytobacteriological urine tests (p<0.05). According to species, there was an increase in extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and methicillin-resistant Staphylococcus aureus. Conclusion In our study, it is particularly noticeable that the MDRB has increased. These results highlight the importance that the pandemic has not been able to slow the progression.
Collapse
Affiliation(s)
- Hind Bennani
- Laboratory of Microbiology, Mohamed VI University Hospital Center, Marrakesh, Morocco
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - Morad Guennouni
- Department of Science and Technology Team, Higher School of Education and Training, Chouaib Doukkali University, El Jadida, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Hassan First University of Settat, Settat, Morocco
| | - Assia El Ouarradi
- Laboratory of Microbiology, Mohamed VI University Hospital Center, Marrakesh, Morocco
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - Asmae Lamrani Hanchi
- Laboratory of Microbiology, Mohamed VI University Hospital Center, Marrakesh, Morocco
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - Nabila Soraa
- Laboratory of Microbiology, Mohamed VI University Hospital Center, Marrakesh, Morocco
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
44
|
Hemida MG, Egamberdieva D, Malik YS. Editorial: Coronaviruses from the One Health perspective. Front Microbiol 2023; 14:1338529. [PMID: 38107854 PMCID: PMC10722431 DOI: 10.3389/fmicb.2023.1338529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
- Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University TIAME, Tashkent, Uzbekistan
- Medical School, Central Asian University, Tashkent, Uzbekistan
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Vety and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
45
|
De La Cadena E, Pallares CJ, García-Betancur JC, Porras JA, Villegas MV. Update of antimicrobial resistance in level III and IV health institutions in Colombia between January 2018 and December 2021. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:457-473. [PMID: 38109138 PMCID: PMC10826464 DOI: 10.7705/biomedica.7065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023]
Abstract
Introduction Antimicrobial resistance surveillance is a fundamental tool for the development, improvement, and adjustment of antimicrobial stewardship programs, therapeutic guidelines, and universal precautions to limit the cross-transmission of resistant bacteria between patients. Since the beginning of 2020, the SARS-CoV-2 pandemic profoundly challenged the health system and, according to some reports, increased the rates of antimicrobial resistance. Objective To describe the behavior of antimicrobial resistance of the most frequent bacterial pathogens in twenty Colombian hospitals from January 2018 to December 2021. Materials and methods We conducted a descriptive study based on the microbiological information recorded from January 2018 to December 2021 in twenty levels III and IV health institutions in twelve Colombian cities. We identified the species of the ten most frequent bacteria along with their resistance profile to the antibiotic markers after analyzing the data through WHONET. Results We found no statistically significant changes in most pathogens’ resistance profiles from January 2018 to December 2021. Only Pseudomonas aeruginosa had a statistically significant increase in its resistance profile, particularly to piperacillin/tazobactam and carbapenems. Conclusions The changes in antimicrobial resistance in these four years were not statistically significant except for P. aeruginosa to piperacillin/tazobactam and carbapenems.
Collapse
Affiliation(s)
- Elsa De La Cadena
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, D.C., Colombia.
| | - Christian José Pallares
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, D.C., Colombia; Comité de Infecciones y Vigilancia Epidemiológica, Clínica Imbanaco, Grupo Quirónsalud, Cali, Colombia.
| | - Juan Carlos García-Betancur
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, D.C..
| | - Jessica A Porras
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, D.C..
| | - María Virginia Villegas
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, D.C., Colombia; Comité de Infecciones y Vigilancia Epidemiológica, Clínica Imbanaco, Grupo Quirónsalud, Cali, Colombia.
| |
Collapse
|
46
|
Bou-Antoun S, Rokadiya S, Ashiru-Oredope D, Demirjian A, Sherwood E, Ellaby N, Gerver S, Grossi C, Harman K, Hartman H, Lochen A, Ragonnet-Cronin M, Squire H, Sutton JM, Thelwall S, Tree J, Bahar MW, Stuart DI, Brown CS, Chand M, Hopkins S. COVID-19 therapeutics: stewardship in England and considerations for antimicrobial resistance. J Antimicrob Chemother 2023; 78:ii37-ii42. [PMID: 37995354 PMCID: PMC10666993 DOI: 10.1093/jac/dkad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The COVID-19 pandemic saw unprecedented resources and funds driven into research for the development, and subsequent rapid distribution, of vaccines, diagnostics and directly acting antivirals (DAAs). DAAs have undeniably prevented progression and life-threatening conditions in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, there are concerns of antimicrobial resistance (AMR), antiviral resistance specifically, for DAAs. To preserve activity of DAAs for COVID-19 therapy, as well as detect possible mutations conferring resistance, antimicrobial stewardship and surveillance were rapidly implemented in England. This paper expands on the ubiquitous ongoing public health activities carried out in England, including epidemiologic, virologic and genomic surveillance, to support the stewardship of DAAs and assess the deployment, safety, effectiveness and resistance potential of these novel and repurposed therapeutics.
Collapse
Affiliation(s)
- Sabine Bou-Antoun
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - Sakib Rokadiya
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Diane Ashiru-Oredope
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - Alicia Demirjian
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
- Department of Paediatric Infectious Diseases & Immunology, Evelina London Children's Hospital, London, UK
- Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Emma Sherwood
- Clinical and Emerging Infections (CEI), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Nicholas Ellaby
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Sarah Gerver
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - Carlota Grossi
- COVID-19 Rapid Evidence Service Public Health Advice, Guidance and Expertise (PHAGE), UK Health Security Agency, London NW9 5EQ, UK
| | - Katie Harman
- COVID-19 Vaccines and Applied Epidemiology Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Hassan Hartman
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Alessandra Lochen
- Tuberculosis (TB), Acute Respiratory, Zoonoses, Emerging and Travel infections Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Manon Ragonnet-Cronin
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Hanna Squire
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - J Mark Sutton
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
- Institute of Pharmaceutical Sciences, King’s College London, London, UK
| | - Simon Thelwall
- COVID-19 Vaccines and Applied Epidemiology Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Julia Tree
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Mohammad W Bahar
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Colin S Brown
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - Meera Chand
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Susan Hopkins
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| |
Collapse
|
47
|
Crook P, Logan C, Mazzella A, Wake RM, Cusinato M, Yau T, Ong YE, Planche T, Basarab M, Bicanic T. The impact of immunosuppressive therapy on secondary infections and antimicrobial use in COVID-19 inpatients: a retrospective cohort study. BMC Infect Dis 2023; 23:808. [PMID: 37978457 PMCID: PMC10656831 DOI: 10.1186/s12879-023-08697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Immunosuppressive therapies have become a cornerstone of the management of severe COVID-19. The impact of these therapies on secondary infections and antimicrobial prescribing remains unclear. We sought to assess antimicrobial use and the incidence of bacterial and fungal infections in patients with severe COVID-19, and to explore their associations with receipt of immunosuppressive therapies. METHODS Our retrospective cohort study included 715 hospitalised, adult patients with severe COVID-19 admitted to St George's Hospital, London, UK, during the first UK pandemic wave (1st March-10th June 2020). Co-infections (occurring within 48 h of admission) and secondary infections (≥ 48 h) were defined as a positive microbiological culture with supporting clinical, radiological or laboratory data to suggest true infection. Cox regression models with time-dependent covariates were used to explore the association between immunosuppressant use and secondary infection. RESULTS Microbiologically confirmed co-infection occurred in 4.2% (n = 30) and secondary infection in 9.3% (n = 66) of the cohort (n = 715) and were associated with in-hospital mortality (48% vs 35%, OR 1.8, 95%CI 1.1-2.7, p = 0.01). Respiratory (n = 41, 39%) and bloodstream infections (n = 38, 36%) predominated, with primarily Gram-negative pathogens. 606 (84.7%) patients received an antimicrobial, amounting to 742 days of therapy per 1000 patient-days (DOTs). In multivariable models, receipt of high-dose steroids (≥ 30 mg prednisolone or equivalent) or tocilizumab was significantly associated with increased antimicrobial consumption (+ 5.5 DOTs, 95%CI 3.4-7.7 days) but not secondary infection (HR 0.56, 95%CI 0.26-1.18). CONCLUSIONS Bacterial and fungal infections in severe COVID-19 were uncommon. Receipt of steroids or tocilizumab was independently associated with antimicrobial consumption despite its lack of association with secondary infection. These findings should galvanise efforts to promote antimicrobial stewardship in patients with COVID-19.
Collapse
Affiliation(s)
- Peter Crook
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Clare Logan
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK.
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK.
| | - Andrea Mazzella
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Rachel M Wake
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Martina Cusinato
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Ting Yau
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Yee-Ean Ong
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Medical and Biomedical Education, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Timothy Planche
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Marina Basarab
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Tihana Bicanic
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
48
|
Wałaszek M, Serwacki P, Cholewa Z, Kosiarska A, Świątek-Kwapniewska W, Kołpa M, Rafa E, Słowik R, Nowak K, Różańska A, Wójkowska-Mach J. Ventilator-associated pneumonia in Polish intensive care unit dedicated to COVID-19 patients. BMC Pulm Med 2023; 23:443. [PMID: 37974141 PMCID: PMC10652561 DOI: 10.1186/s12890-023-02743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Healthcare-Associated Infections (HAI) are most frequently associated with patients in the Intensive Care Unit (ICU). Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), led to ICU hospitalization for some patients. METHODS The study was conducted in 2020 and 2021 at a hospital in southern Poland. The Healthcare-Associated Infections Surveillance Network (HAI-Net) of the European Centre for Disease Prevention and Control (ECDC) was used for HAI diagnosis. The aim of this case-control study was to retrospectively assess the epidemiology of HAIs in ICU patients, distinguishing between COVID-19 and non-COVID-19 cases. RESULTS The study included 416 ICU patients: 125 (30%) with COVID-19 and 291 (70%) without COVID-19, p < 0.05. The mortality rate was 80 (64%) for COVID-19 patients and 45 (16%) for non-COVID-19 patients, p < 0.001. Ventilator-Associated Pneumonia (VAP) occurred in 40 cases, with an incidence rate density of 6.3/1000 patient-days (pds): 14.1/1000 pds for COVID-19 patients vs. 3.6/1000 pds for non-COVID-19 patients. Odds Ratio (OR) was 2.297, p < 0.01. Acinetobacter baumannii was the most often isolated microorganism in VAP, with 25 cases (incidence rate 8.5%): 16 (18.2%) in COVID-19 patients vs. 9 (4.4%) in non-COVID-19 patients. OR was 4.814 (1.084-4.806), p < 0.001. CONCLUSIONS Patients treated in the ICU for COVID-19 faced twice the risk of VAP compared to non-COVID-19 patients. The predominant microorganism in VAP cases was Acinetobacter baumannii.
Collapse
Affiliation(s)
- Marta Wałaszek
- University of Applied Sciences in Tarnów, ul. Mickiewicza 8, Tarnów, 33-100, Poland
| | - Piotr Serwacki
- St Luke Regional Hospital in Tarnów, ul. Lwowska 178A, Tarnów, 33-100, Poland
| | - Zbigniew Cholewa
- St Luke Regional Hospital in Tarnów, ul. Lwowska 178A, Tarnów, 33-100, Poland
| | - Alicja Kosiarska
- University of Applied Sciences in Tarnów, ul. Mickiewicza 8, Tarnów, 33-100, Poland
| | | | - Małgorza Kołpa
- University of Applied Sciences in Tarnów, ul. Mickiewicza 8, Tarnów, 33-100, Poland
| | - Elżbieta Rafa
- University of Applied Sciences in Nowy Sącz, ul. Staszica 1, Nowy Sącz, 33-300, Poland
| | - Róża Słowik
- University of Applied Sciences in Tarnów, ul. Mickiewicza 8, Tarnów, 33-100, Poland
| | - Karolina Nowak
- Department of Microbiology, Jagiellonian University Medical College, Czysta str. 18, Krakow, 31-121, Poland
| | - Anna Różańska
- Department of Microbiology, Jagiellonian University Medical College, Czysta str. 18, Krakow, 31-121, Poland.
| | - Jadwiga Wójkowska-Mach
- Department of Microbiology, Jagiellonian University Medical College, Czysta str. 18, Krakow, 31-121, Poland
| |
Collapse
|
49
|
Birhanu B, Debebe S, Nigussie T, Dandana A. Assessment of Medication Prescribing Pattern in COVID-19 Admitted Patients by Using WHO Prescribing Indicators at Eka Kotebe General Hospital, Addis Ababa, Ethiopia; Retrospective Cross-Sectional Study. Drug Healthc Patient Saf 2023; 15:171-177. [PMID: 37941730 PMCID: PMC10629410 DOI: 10.2147/dhps.s416310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Drug therapy is a crucial component of health care and plays a vital role in preserving life. However, the irrational utilization of medications is a worldwide issue, particularly in developing nations. Objective To assess the prescription patterns of medications based on the World Health Organization's prescribing indicator among patients who were admitted with COVID-19 to Eka Kotebe General Hospital in Addis Ababa, Ethiopia, in June 2021. Methods A retrospective cross-sectional analysis was conducted to evaluate the prescription patterns of medications in patients admitted with COVID-19 at Eka Kotebe General Hospital from June 2021 to September 15, 2021. The data were extracted using card review formats and prescription assessment questionnaires, and a systematic random sampling procedure was employed to collect the data. Finally, the data were coded and analyzed using SPSS version 26 to meet the study's objectives. Descriptive statistics were employed to determine the frequency and prevalence, and the results were presented using tables and figures. Results and Discussion The average number of medications prescribed per encounter was 2.64, which is above the WHO standard. The percentage of encounters in which antibiotics and injections were prescribed was 80.20% and 99.2%, which exceeds the upper limit of WHO standard range (20-26.8%) and (13.4-24.1%), respectively. All medications were prescribed using generic names and were included in Eka Kotebe General Hospital's essential drug list, which is in line with WHO standards. Conclusion The degree of polypharmacy and the prescription practices for antibiotics and injections at Eka Kotebe General Hospital deviated from the World Health Organization's standards. As a result, there is a need to enhance medical education programs to rationalize the prescription of antibiotics and injection use.
Collapse
Affiliation(s)
- Belete Birhanu
- Hospital Pharmacy, Eka Kotebe General Hospital, Addis Ababa, Ethiopia
| | - Solomon Debebe
- Hospital Pharmacy, Eka Kotebe General Hospital, Addis Ababa, Ethiopia
| | - Tsegaye Nigussie
- Department of Pharmacy, College of Medicine and Health Science, Arba Minch University, Arba Minch, Ethiopia
| | - Alemayehu Dandana
- Hospital Pharmacy, Eka Kotebe General Hospital, Addis Ababa, Ethiopia
| |
Collapse
|
50
|
Varshney K, Pillay P, Mustafa AD, Shen D, Adalbert JR, Mahmood MQ. A systematic review of the clinical characteristics of influenza-COVID-19 co-infection. Clin Exp Med 2023; 23:3265-3275. [PMID: 37326928 PMCID: PMC10618381 DOI: 10.1007/s10238-023-01116-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
COVID-19 has impacted populations across the globe and has been a major cause of morbidity and mortality. Influenza is another potentially deadly respiratory infection that affects people worldwide. While both of these infections pose major health threats, little is currently understood regarding the clinical aspects of influenza and COVID-19 co-infection. Our objective was to therefore provide a systematic review of the clinical characteristics, treatments, and outcomes for patients who are co-infected with influenza and COVID-19. Our review, which was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, involved searching for literature in seven different databases. Studies were eligible for inclusion if they included at least one co-infected patient, were available in English, and described clinical characteristics for the patients. Data were pooled after extraction. Study quality was assessed using the Joanna Brigg's Institute Checklists. Searches produced a total of 5096 studies, and of those, 64 were eligible for inclusion. A total of 6086 co-infected patients were included, 54.1% of whom were male; the mean age of patients was 55.9 years (SD = 12.3). 73.6% of cases were of influenza A and 25.1% were influenza B. 15.7% of co-infected patients had a poor outcome (death/deterioration). The most common symptoms were fever, cough, and dyspnea, with the most frequent complications being pneumonia, linear atelectasis, and acute respiratory distress syndrome. Oseltamivir, supplemental oxygen, arbidol, and vasopressors were the most common treatments provided to patients. Having comorbidities, and being unvaccinated for influenza, were shown to be important risk factors. Co-infected patients show symptoms that are similar to those who are infected with COVID-19 or influenza only. However, co-infected patients have been shown to be at an elevated risk for poor outcomes compared to mono-infected COVID-19 patients. Screening for influenza in high-risk COVID-19 patients is recommended. There is also a clear need to improve patient outcomes with more effective treatment regimens, better testing, and higher rates of vaccination.
Collapse
Affiliation(s)
- Karan Varshney
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia.
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Preshon Pillay
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Ashmit Daiyan Mustafa
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Dennis Shen
- School of Medicine, University of New England, Armidale, NSW, Australia
| | | | - Malik Quasir Mahmood
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| |
Collapse
|