1
|
Roubidoux EK, Brigleb PH, Vegesana K, Souquette A, Whitt K, Freiden P, Green A, Thomas PG, McGargill MA, Wolf J, Schultz-Cherry S. Utility of nasal swabs for assessing mucosal immune responses towards SARS-CoV-2. Sci Rep 2023; 13:17820. [PMID: 37857783 PMCID: PMC10587113 DOI: 10.1038/s41598-023-44989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
SARS-CoV-2 has caused millions of infections worldwide since its emergence in 2019. Understanding how infection and vaccination induce mucosal immune responses and how they fluctuate over time is important, especially since they are key in preventing infection and reducing disease severity. We established a novel methodology for assessing SARS-CoV-2 cytokine and antibody responses at the nasal epithelium by using nasopharyngeal swabs collected longitudinally before and after either SARS-CoV-2 infection or vaccination. We then compared responses between mucosal and systemic compartments. We demonstrate that cytokine and antibody profiles differ between compartments. Nasal cytokines show a wound healing phenotype while plasma cytokines are consistent with pro-inflammatory pathways. We found that nasal IgA and IgG have different kinetics after infection, with IgA peaking first. Although vaccination results in low nasal IgA, IgG induction persists for up to 180 days post-vaccination. This research highlights the importance of studying mucosal responses in addition to systemic responses to respiratory infections. The methods described herein can be used to further mucosal vaccine development by giving us a better understanding of immunity at the nasal epithelium providing a simpler, alternative clinical practice to studying mucosal responses to infection.
Collapse
Affiliation(s)
| | - Pamela H Brigleb
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kasi Vegesana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kendall Whitt
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela Freiden
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joshua Wolf
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Lesteberg KE, Araya P, Waugh KA, Chauhan L, Espinosa JM, Beckham JD. Severely ill and high-risk COVID-19 patients exhibit increased peripheral circulation of CD62L+ and perforin+ T cells. Front Immunol 2023; 14:1113932. [PMID: 36817450 PMCID: PMC9932815 DOI: 10.3389/fimmu.2023.1113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The emergence of SARS-CoV-2, which causes COVID-19, has led to over 400 million reported cases worldwide. COVID-19 disease ranges from asymptomatic infection to severe disease and may be impacted by individual immune differences. Methods We used multiparameter flow cytometry to compare CD4+ and CD8+ T cell responses in severe (ICU admitted) and non-severe (admitted to observational unit) hospitalized COVID-19 patients. Results We found that patients with severe COVID- 19 had greater frequencies of CD4+ T cells expressing CD62L compared to non-severe patients and greater frequencies of perforin+ CD8+ T cells compared to recovered patients. Furthermore, greater frequencies of CD62L+ CD4+ and CD8+ T cells were seen in severely ill diabetic patients compared to non-severe and non-diabetic patients, and increased CD62L+ CD4+ T cells were also seen in severely ill patients with hypertension. Discussion This is the first report to show that CD62L+ T cells and perforin+ T cells are associated with severe COVID-19 illness and are significantly increased in patients with high-risk pre-existing conditions including older age and diabetes. These data provide a potential biological marker for severe COVID-19.
Collapse
Affiliation(s)
- Kelsey E. Lesteberg
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine A. Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lakshmi Chauhan
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - J. David Beckham
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain VA Medical Center, Aurora, CO, United States
| |
Collapse
|
6
|
Simon V, Kota V, Bloomquist RF, Hanley HB, Forgacs D, Pahwa S, Pallikkuth S, Miller LG, Schaenman J, Yeaman MR, Manthei D, Wolf J, Gaur AH, Estepp JH, Srivastava K, Carreño JM, Cuevas F, Ellebedy AH, Gordon A, Valdez R, Cobey S, Reed EF, Kolhe R, Thomas PG, Schultz-Cherry S, Ross TM, Krammer F. PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2. mSphere 2022; 7:e0017922. [PMID: 35586986 PMCID: PMC9241545 DOI: 10.1128/msphere.00179-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.
Collapse
Affiliation(s)
- Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ryan F. Bloomquist
- Department of Restorative Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hannah B. Hanley
- Center for Vaccine and Immunology, University of Georgia, Athens, Georgia, USA
| | - David Forgacs
- Center for Vaccine and Immunology, University of Georgia, Athens, Georgia, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Loren G. Miller
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Joanna Schaenman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michael R. Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - David Manthei
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Aditya H. Gaur
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremie H. Estepp
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Frans Cuevas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - PARIS/SPARTA Study Group,
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine and Immunology, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Restorative Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ali H. Ellebedy
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Restorative Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Paul G. Thomas
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ted M. Ross
- Center for Vaccine and Immunology, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Zhai B, Clarke K, Bauer DL, Moehling Geffel KK, Kupul S, Schratz LJ, Nowalk MP, McElroy AK, McLachlan JB, Zimmerman RK, Alcorn JF. SARS-CoV-2 Antibody Response Is Associated with Age and Body Mass Index in Convalescent Outpatients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1711-1718. [PMID: 35321882 PMCID: PMC8976825 DOI: 10.4049/jimmunol.2101156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
Abstract
COVID-19 has had an unprecedented global impact on human health. Understanding the Ab memory responses to infection is one tool needed to effectively control the pandemic. Among 173 outpatients who had virologically confirmed SARS-CoV-2 infection, we evaluated serum Ab concentrations, microneutralization activity, and enumerated SARS-CoV-2-specific B cells in convalescent human blood specimens. Serum Ab concentrations were variable, allowing for stratification of the cohort into high and low responders. Neither participant sex, the timing of blood sampling following the onset of illness, nor the number of SARS-CoV-2 spike protein-specific B cells correlated with serum Ab concentration. Serum Ab concentration was positively associated with microneutralization activity and participant age, with participants under the age of 30 showing the lowest Ab level. These data suggest that young adult outpatients did not generate as robust Ab memory, compared with older adults. Body mass index was also positively correlated with serum Ab levels. Multivariate analyses showed that participant age and body mass index were independently associated with Ab levels. These findings have direct implications for public health policy and current vaccine efforts. Knowledge gained regarding Ab memory following infection will inform the need for vaccination in those previously infected and allow for a better approximation of population-wide protective immunity.
Collapse
Affiliation(s)
- Bo Zhai
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Karen Clarke
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA
| | - David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | | | - Saran Kupul
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Lucas J Schratz
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - M Patricia Nowalk
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Anita K McElroy
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Richard K Zimmerman
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA;
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|