1
|
Lei TY, Liao BB, Yang LR, Wang Y, Chen XB. Hypervirulent and carbapenem-resistant Klebsiella pneumoniae: A global public health threat. Microbiol Res 2024; 288:127839. [PMID: 39141971 DOI: 10.1016/j.micres.2024.127839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/16/2024]
Abstract
The evolution of hypervirulent and carbapenem-resistant Klebsiella pneumoniae can be categorized into three main patterns: the evolution of KL1/KL2-hvKp strains into CR-hvKp, the evolution of carbapenem-resistant K. pneumoniae (CRKp) strains into hv-CRKp, and the acquisition of hybrid plasmids carrying carbapenem resistance and virulence genes by classical K. pneumoniae (cKp). These strains are characterized by multi-drug resistance, high virulence, and high infectivity. Currently, there are no effective methods for treating and surveillance this pathogen. In addition, the continuous horizontal transfer and clonal spread of these bacteria under the pressure of hospital antibiotics have led to the emergence of more drug-resistant strains. This review discusses the evolution and distribution characteristics of hypervirulent and carbapenem-resistant K. pneumoniae, the mechanisms of carbapenem resistance and hypervirulence, risk factors for susceptibility, infection syndromes, treatment regimens, real-time surveillance and preventive control measures. It also outlines the resistance mechanisms of antimicrobial drugs used to treat this pathogen, providing insights for developing new drugs, combination therapies, and a "One Health" approach. Narrowing the scope of surveillance but intensifying implementation efforts is a viable solution. Monitoring of strains can be focused primarily on hospitals and urban wastewater treatment plants.
Collapse
Affiliation(s)
- Ting-Yu Lei
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Bin-Bin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Liang-Rui Yang
- First Affiliated Hospital of Dali University, Yunnan 671000, China.
| | - Ying Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Xu-Bing Chen
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
2
|
Ali R, Ali K, Aurongzeb M, Al-Regaiey K, Kori JA, Irfan M, Rashid Y, Al Abduljabbar D, Kaleem I, Bashir S. Characterization of meningitis-causing bacteria, with focus on genomic and pangenomic study of multi-drug resistant Streptococcus pneumoniae from cerebrospinal fluid. Antonie Van Leeuwenhoek 2024; 118:16. [PMID: 39382798 DOI: 10.1007/s10482-024-02016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/19/2024] [Indexed: 10/10/2024]
Abstract
Streptococcus pneumoniae is a major cause of meningitis in under developed countries with low vaccination rates and high antibiotic resistance. This study aimed to analyze 83 suspected meningitis patients in Karachi for the detection of S. pneumoniae followed by its whole genome sequencing and Pan Genome analysis. Out of the 83 samples collected, 33 samples with altered physical (turbidity), cytological (white blood cell count) and biochemical (total protein and total glucose concentrations) parameters indicated potential meningitis cases, while these parameters were within normal healthy ranges in remaining 50 samples. Latex particle agglutination (LPA) was performed on the 33 samples, revealing 20 positive cases of bacterial meningitis. The PCR and culturing methods revealed 5 S. pneumoniae isolates. Antibiotic susceptibility tests showed that one S. pneumoniae strain was resistant to erythromycin, levofloxacin, and tetracycline. Whole-genome sequencing of this resistant strain was performed and S. pneumoniae was confirmed with MLST analysis, while it had > 2.3 Mb genome and a single repUS43 plasmid. In CARD analysis, the strain had tet(M), ermB, RlmA(II), patB, pmrA, and patA ARGs, which could provide resistance against tetracycline, macrolide, fluoroquinolone, and glycopeptide antibiotics. Phylogenetic analysis revealed that the isolate was closely related to strains from Hungary and the USA. Pan-genome analysis with 144 genome assemblies from NCBI database showed that 1101 non-redundant core genes were shared between all strains. This study gives valuable understanding into the prevalence and characterization of meningitis-causing bacteria in Karachi, Pakistan with prime focus on multi-drug resistant S. pneumoniae.
Collapse
Affiliation(s)
- Rehan Ali
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, 75600, Pakistan
| | - Kashif Ali
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, 75600, Pakistan
| | - Muhammad Aurongzeb
- Faculty of Engineering Sciences and Technology (FEST), Department of Applied Sciences, Hamdard University, Karachi, 74600, Pakistan.
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Junaid Ahmed Kori
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Irfan
- Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, ICCBS, University of Karachi, Karachi, 75270, Pakistan
| | - Yasmeen Rashid
- Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Danah Al Abduljabbar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan.
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Cocker D, Birgand G, Zhu N, Rodriguez-Manzano J, Ahmad R, Jambo K, Levin AS, Holmes A. Healthcare as a driver, reservoir and amplifier of antimicrobial resistance: opportunities for interventions. Nat Rev Microbiol 2024; 22:636-649. [PMID: 39048837 DOI: 10.1038/s41579-024-01076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial resistance (AMR) is a global health challenge that threatens humans, animals and the environment. Evidence is emerging for a role of healthcare infrastructure, environments and patient pathways in promoting and maintaining AMR via direct and indirect mechanisms. Advances in vaccination and monoclonal antibody therapies together with integrated surveillance, rapid diagnostics, targeted antimicrobial therapy and infection control measures offer opportunities to address healthcare-associated AMR risks more effectively. Additionally, innovations in artificial intelligence, data linkage and intelligent systems can be used to better predict and reduce AMR and improve healthcare resilience. In this Review, we examine the mechanisms by which healthcare functions as a driver, reservoir and amplifier of AMR, contextualized within a One Health framework. We also explore the opportunities and innovative solutions that can be used to combat AMR throughout the patient journey. We provide a perspective on the current evidence for the effectiveness of interventions designed to mitigate healthcare-associated AMR and promote healthcare resilience within high-income and resource-limited settings, as well as the challenges associated with their implementation.
Collapse
Affiliation(s)
- Derek Cocker
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Gabriel Birgand
- Centre d'appui pour la Prévention des Infections Associées aux Soins, Nantes, France
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Cibles et medicaments des infections et de l'immunitée, IICiMed, Nantes Universite, Nantes, France
| | - Nina Zhu
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jesus Rodriguez-Manzano
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Raheelah Ahmad
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Health Services Research & Management, City University of London, London, UK
- Dow University of Health Sciences, Karachi, Pakistan
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anna S Levin
- Department of Infectious Disease, School of Medicine & Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alison Holmes
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK.
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
4
|
Wen SCH, Harris PNA, Forde B, Permana B, Chatfield MD, Lau CL, Spurling G, Bauer MJ, Balch R, Chambers H, Schlapbach LJ, Clark JE, Dougherty S, Blyth CC, Britton PN, Clifford V, Haeusler GM, McMullan B, Wadia U, Paterson DL, Irwin AD. Characterization of Gram-negative Bloodstream Infections in Hospitalized Australian Children and Their Clinical Outcomes. Clin Infect Dis 2024; 79:734-743. [PMID: 38917034 PMCID: PMC11426278 DOI: 10.1093/cid/ciae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Gram-negative bloodstream infections (GNBSIs) more commonly occur in children with comorbidities and are increasingly associated with antimicrobial resistance. There are few large studies of GNBSIs in children that relate the clinical presentation, pathogen characteristics, and outcomes. METHODS A 3-year prospective study of GNBSIs in children aged <18 years was conducted in 5 Australian children's hospitals between 2019 and 2021. The clinical characteristics, disease severity, and outcomes were recorded. Causative pathogens underwent antibiotic susceptibility testing and whole genome sequencing. RESULTS There were 931 GNBSI episodes involving 818 children. Median age was 3 years (interquartile range, 0.6-8.5). A total of 576/931 episodes (62%) were community onset, though 661/931 (71%) occurred in children with comorbidities and a central venous catheter was present in 558/931 (60%). Central venous catheter (145/931) and urinary tract (149/931) were the most common sources (16% each). One hundred of 931 (11%) children required intensive care unit admission and a further 11% (105/931) developed GNBSIs in intensive care unit. A total of 659/927 (71%) isolates were Enterobacterales, of which 22% (138/630) were third-generation cephalosporin resistant (3GCR). Extended spectrum beta-lactamase genes were confirmed in 65/138 (47%) 3GCR Enterobacterales. Most common extended spectrum beta-lactamase genes were blaCTX-M-15 (34/94, 36%) and blaSHV-12 (10/94, 11%). There were 48 deaths overall and 30-day in-hospital mortality was 3% (32/931). Infections with 3GCR Enterobacterales were independently associated with higher mortality (adjusted odds ratio, 3.2; 95% confidence interval, 1.6-6.4). CONCLUSIONS GNBSIs in children are frequently healthcare associated and affect children younger than age 5 years. Infections with 3GCR Enterobacterales were associated with worse outcomes. These findings will inform optimal management guidelines and help prioritize future antimicrobial clinical trials.
Collapse
Affiliation(s)
- Sophie C H Wen
- The University of Queensland, Centre for Clinical Research, Brisbane, Queensland, Australia
- Infection Management Prevention Service, Children's Health Queensland, Brisbane, Queensland, Australia
| | - Patrick N A Harris
- The University of Queensland, Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Brian Forde
- The University of Queensland, Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Budi Permana
- The University of Queensland, Centre for Clinical Research, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Queensland, Australia
| | - Mark D Chatfield
- The University of Queensland, Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Colleen L Lau
- The University of Queensland, Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Geoffrey Spurling
- The University of Queensland, General Practice Clinical Unit, Brisbane, Queensland, Australia
| | - Michelle J Bauer
- The University of Queensland, Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Ross Balch
- The University of Queensland, Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Henry Chambers
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Luregn J Schlapbach
- The University of Queensland, Child Health Research Centre, Brisbane, Queensland, Australia
| | - Julia E Clark
- Infection Management Prevention Service, Children's Health Queensland, Brisbane, Queensland, Australia
| | - Sonia Dougherty
- Infection Management Prevention Service, Children's Health Queensland, Brisbane, Queensland, Australia
| | - Christopher C Blyth
- Wesfarmer Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Network, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Philip N Britton
- Department of Infectious Diseases and Microbiology, The Children's Hospital Westmead, Sydney, New South Wales, Australia
- Sydney Medical School and Sydney Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Vanessa Clifford
- Infectious Diseases Unit, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gabrielle M Haeusler
- Infectious Diseases Unit, Royal Children's Hospital, Melbourne, Victoria, Australia
- Clinical Infections Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Brendan McMullan
- Infectious Diseases and Microbiology, Sydney Children's Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Ushma Wadia
- Wesfarmer Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adam D Irwin
- The University of Queensland, Centre for Clinical Research, Brisbane, Queensland, Australia
- Infection Management Prevention Service, Children's Health Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Sundermann AJ, Kumar P, Griffith MP, Waggle KD, Srinivasa VR, Raabe N, Mills EG, Coyle H, Ereifej D, Creager HM, Ayres A, Van Tyne D, Pless LL, Snyder GM, Roberts M, Harrison LH. Genomic Surveillance for Enhanced Healthcare Outbreak Detection and Control. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24313985. [PMID: 39371154 PMCID: PMC11451765 DOI: 10.1101/2024.09.19.24313985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Current methods are insufficient alone for outbreak detection in hospitals. Real-time genomic surveillance using offers the potential to detect otherwise unidentified outbreaks. We initiated and evaluated the Enhanced Detection System for Healthcare-associated Transmission (EDS-HAT), a real-time genomic surveillance program for outbreak detection and mitigation. Methods This study was conducted at UPMC Presbyterian Hospital from November 2021 to October 2023. Whole genome sequencing (WGS) was performed weekly on healthcare-associated clinical bacterial isolates to identify otherwise undetected outbreaks. Interventions were implemented in real-time based on identified transmission. A clinical and economic impact analysis was conducted to estimate infections averted and net cost savings. Results There were 3,921 bacterial isolates from patient healthcare-associated infections that underwent WGS, of which 476 (12.1%) clustered into 172 outbreaks (size range 2-16 patients). Of the outbreak isolates, 292 (61.3%) had an identified epidemiological link. Among the outbreaks with interventions, 95.6% showed no further transmission on the intervened transmission route. The impact analysis estimated that, over the two-year period, 62 infections were averted, with gross cost savings of $1,011,146, and net savings of $695,706, which translates to a 3.2-fold return on investment. Probabilistic sensitivity analysis showed EDS-HAT was cost-saving and more effective in 98% of simulations. Conclusion Real-time genomic surveillance enabled the rapid detection and control of outbreaks in our hospital and resulted in economic benefits and improvement in patient safety. This study demonstrates the feasibility and effectiveness of integrating genomic surveillance into routine infection prevention practice, offering a paradigm shift in healthcare outbreak detection and control.
Collapse
Affiliation(s)
- Alexander J. Sundermann
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Praveen Kumar
- Department of Health Policy and Management, School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Marissa P. Griffith
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kady D. Waggle
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vatsala Rangachar Srinivasa
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nathan Raabe
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Emma G. Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hunter Coyle
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deena Ereifej
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, Pittsburgh, Pennsylvania, USA
| | - Hannah M. Creager
- Department of Pathology, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ashley Ayres
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, Pittsburgh, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lora Lee Pless
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Graham M. Snyder
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, Pittsburgh, Pennsylvania, USA
| | - Mark Roberts
- Department of Health Policy and Management, School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Lee H. Harrison
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Langham F, Tsai D, Forde BM, Camilleri S, Harris PNA, Roberts JA, Chiong F. Demographic, clinical and molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli bloodstream infections in Central Australia. Pathology 2024:S0031-3025(24)00172-7. [PMID: 39060195 DOI: 10.1016/j.pathol.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 04/28/2024] [Indexed: 07/28/2024]
Abstract
We describe the demographics, clinical and molecular epidemiology of extended-spectrum β-lactamase (ESBL) Escherichia coli bloodstream infections (BSI) in Central Australia. All ESBL-producing E. coli bloodstream isolates from January 2018 to December 2020 were retrospectively identified. Demographic and clinical information was extracted by chart review. Whole-genome sequencing was performed for multi-locus sequence typing, antibiotic-resistance genes, and phylogenetic relationships. We identified 41 non-duplicate episodes of ESBL E. coli BSI. Median age was 55 years (IQR 47-63), 78% were female, 93% were Aboriginal, and half came from a remote community. Infections were predominantly urinary (68%, 28/41). In the 12 months prior, 70% (26/37) of identified patients had been hospitalised and 81% (30/37) prescribed antibiotics. Meropenem and piperacillin-tazobactam susceptibility was maintained in 100% and 95% of isolates, respectively. Co-resistance to non-β-lactam antibiotics was 32% to gentamicin, 61% to trimethoprim/sulfamethoxazole, and 68% to ciprofloxacin. For sequenced isolates, 41% (16/35) were sequence type 131 (ST131). Mean acquired antibiotic-resistance genes for each isolate was 12.3 (SD 3.1). Four isolates carried an OXA-1 gene. Only non-ST131 isolates carried AmpC and acquired quinolone-resistance genes. There was some evidence of clustering of closely related strains, but no evidence of community or healthcare admission overlap. ESBL rates are rapidly rising in Central Australia, which is a conducive environment for antibiotic resistance development (e.g., overcrowding, socioeconomic disadvantages, high healthcare exposure and high antibiotic use). Future research is required to explore resistance-transmission dynamics in this unique setting.
Collapse
Affiliation(s)
- Freya Langham
- Department of Infectious Diseases, Monash Health, Melbourne, Vic, Australia; Alice Springs Hospital, Central Australian Health Service, Alice Springs, NT, Australia.
| | - Danny Tsai
- Alice Springs Hospital, Central Australian Health Service, Alice Springs, NT, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Brian M Forde
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Shayne Camilleri
- Alice Springs Hospital, Central Australian Health Service, Alice Springs, NT, Australia; Department of Infectious Diseases, Austin Health, Melbourne, Vic, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia; Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, Brisbane, Qld, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia; Herston Infectious Diseases Institute, Metro North Health, Brisbane, Qld, Australia; Division of Anaesthesiology, Critical Care, Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Fabian Chiong
- Alice Springs Hospital, Central Australian Health Service, Alice Springs, NT, Australia; Department of Infectious Diseases, The Canberra Hospital, Canberra, ACT, Australia
| |
Collapse
|
7
|
Darwish MM, Catalan MI, Wilson T, McGlynn CC, Suhd-Brondstatter J, Dow AL, Kingsley A, Reilly ME, Cohen SH, Desai AN. Hospital outbreak of Carbapenem-resistant acinetobacter baumannii in the context of local facility transmission. Am J Infect Control 2024; 52:739-741. [PMID: 38246493 DOI: 10.1016/j.ajic.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii are of increasing concern in the health care setting. We describe a cluster of 9 cases in hospitalized patients over a 3-month period that reflected ongoing community transmission from high-risk facilities. Robust surveillance and knowledge of local epidemiology are critical to mitigating onward transmission in the health care setting.
Collapse
Affiliation(s)
- Malik M Darwish
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA.
| | - Marinell I Catalan
- Department of Hospital Epidemiology and Infection Prevention, University of California Davis Medical Center, Sacramento, CA
| | - Timothy Wilson
- Department of Hospital Epidemiology and Infection Prevention, University of California Davis Medical Center, Sacramento, CA
| | - Colin C McGlynn
- Department of Hospital Epidemiology and Infection Prevention, University of California Davis Medical Center, Sacramento, CA
| | - Jennifer Suhd-Brondstatter
- Department of Hospital Epidemiology and Infection Prevention, University of California Davis Medical Center, Sacramento, CA
| | - Allison L Dow
- Department of Hospital Epidemiology and Infection Prevention, University of California Davis Medical Center, Sacramento, CA
| | - Amy Kingsley
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA
| | - Mary E Reilly
- Department of Hospital Epidemiology and Infection Prevention, University of California Davis Medical Center, Sacramento, CA
| | - Stuart H Cohen
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA
| | - Angel N Desai
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA
| |
Collapse
|
8
|
Sangiorgio G, Calvo M, Migliorisi G, Campanile F, Stefani S. The Impact of Enterococcus spp. in the Immunocompromised Host: A Comprehensive Review. Pathogens 2024; 13:409. [PMID: 38787261 PMCID: PMC11124283 DOI: 10.3390/pathogens13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The immunocompromised host is usually vulnerable to infectious diseases due to broad-spectrum treatments and immunological dysregulation. The Enterococcus genus consists of normal gut commensals, which acquire a leading role in infective processes among individuals with compromised immune systems. These microorganisms may express a potential virulence and resistance spectrum, enabling their function as severe pathogens. The Enterococcus spp. infections in immunocompromised hosts appear to be difficult to resolve due to the immunological response impairment and the possibility of facing antimicrobial-resistant strains. As regards the related risk factors, several data demonstrated that prior antibiotic exposure, medical device insertion, prolonged hospitalization and surgical interventions may lead to Enterococcus overgrowth, antibiotic resistance and spread among critical healthcare settings. Herein, we present a comprehensive review of Enterococcus spp. in the immunocompromised host, summarizing the available knowledge about virulence factors, antimicrobial-resistance mechanisms and host-pathogen interaction. The review ultimately yearns for more substantial support to further investigations about enterococcal infections and immunocompromised host response.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| |
Collapse
|
9
|
Aslan AT, Paterson DL. Epidemiology and clinical significance of carbapenemases in Australia: a narrative review. Intern Med J 2024; 54:535-544. [PMID: 38584572 DOI: 10.1111/imj.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
Carbapenemase-producing gram-negative bacteria (CP-GNB) infections threaten public health with high mortality, morbidity and treatment costs. Although frequencies remain low in Australia (total number of CP-GNB infections reported was 907 in 2022), blaIMP-4 has established low levels of endemicity in many states. Imipenemase metallo-β-lactamase types alone accounted for more than half of all carbapenemases in carbapenemase-producing Enterobacterales isolates in Australia, particularly in Enterobacter cloacae complex. New Delhi metallo-β-lactamase constitutes almost 25% of all carbapenemases in Australia and was identified predominantly in Escherichia coli. The OXA-48-like carbapenemases include almost 10% of all carbapenemases and are mainly seen in Klebsiella pneumoniae and E. coli. Although K. pneumoniae carbapenemase-type carbapenemases are rare in Australia, some local outbreaks have occurred. Most carbapenem-resistant (CR) Pseudomonas aeruginosa strains in Australia do not produce carbapenemases. Finally, OXA-23-like carbapenemases are overwhelmingly positive in CR-Acinetobacter baumannii strains in Australia. Treatment of CR-GNB infections challenges physicians. Of 10 new antibiotics active against at least some CR-GNB infections that are approved by the US Food and Drug Administration, just three are approved for use in Australia. In this context, there is still an unmet need for novel antibacterials that can be used for the treatment of CR-GNB infections in Australia, as well as a pressing requirement for new mechanisms to 'de-link' antibiotic sales from their availability. In this narrative review, we aim to overview the epidemiology and clinical significance of carbapenem resistance in Australia as it pertains to Enterobacterales, P. aeruginosa and A. baumannii.
Collapse
Affiliation(s)
- Abdullah Tarik Aslan
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Blane B, Raven KE, Brown NM, Harrison EM, Coll F, Thaxter R, Enoch DA, Gouliouris T, Leek D, Girgis ST, Akram A, Matuszewska M, Rhodes P, Parkhill J, Peacock SJ. Evaluating the impact of genomic epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) on hospital infection prevention and control decisions. Microb Genom 2024; 10. [PMID: 38630616 DOI: 10.1099/mgen.0.001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Genomic epidemiology enhances the ability to detect and refute methicillin-resistant Staphylococcus aureus (MRSA) outbreaks in healthcare settings, but its routine introduction requires further evidence of benefits for patients and resource utilization. We performed a 12 month prospective study at Cambridge University Hospitals NHS Foundation Trust in the UK to capture its impact on hospital infection prevention and control (IPC) decisions. MRSA-positive samples were identified via the hospital microbiology laboratory between November 2018 and November 2019. We included samples from in-patients, clinic out-patients, people reviewed in the Emergency Department and healthcare workers screened by Occupational Health. We sequenced the first MRSA isolate from 823 consecutive individuals, defined their pairwise genetic relatedness, and sought epidemiological links in the hospital and community. Genomic analysis of 823 MRSA isolates identified 72 genetic clusters of two or more isolates containing 339/823 (41 %) of the cases. Epidemiological links were identified between two or more cases for 190 (23 %) individuals in 34/72 clusters. Weekly genomic epidemiology updates were shared with the IPC team, culminating in 49 face-to-face meetings and 21 written communications. Seventeen clusters were identified that were consistent with hospital MRSA transmission, discussion of which led to additional IPC actions in 14 of these. Two outbreaks were also identified where transmission had occurred in the community prior to hospital presentation; these were escalated to relevant IPC teams. We identified 38 instances where two or more in-patients shared a ward location on overlapping dates but carried unrelated MRSA isolates (pseudo-outbreaks); research data led to de-escalation of investigations in six of these. Our findings provide further support for the routine use of genomic epidemiology to enhance and target IPC resources.
Collapse
Affiliation(s)
- Beth Blane
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Kathy E Raven
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Nicholas M Brown
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Francesc Coll
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Rachel Thaxter
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
| | - David A Enoch
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
| | - Theodore Gouliouris
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, UK
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
| | - Danielle Leek
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Sophia T Girgis
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Asha Akram
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Marta Matuszewska
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Paul Rhodes
- Next Gen Diagnostics, LLC, (NGD) Mountain View, CA, USA
- Broers Building, 21 JJ Thomson Ave., Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
11
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
12
|
Stelmaszyk L, Stange C, Hügler M, Sidhu JP, Horn H, Tiehm A. Quantification of β-lactamase producing bacteria in German surface waters with subsequent MALDI-TOF MS-based identification and β-lactamase activity assay. Heliyon 2024; 10:e27384. [PMID: 38486766 PMCID: PMC10937694 DOI: 10.1016/j.heliyon.2024.e27384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Environmental oligotrophic bacteria are suspected to be highly relevant carriers of antimicrobial resistance (AMR). However, there is a lack of validated methods for monitoring in the aquatic environment. Since extended-spectrum β-lactamases (ESBLs) play a particularly important role in the clinical sector, a culturing method based on R2A-medium spiked with different combinations of β-lactams was applied to quantify β-lactamase-producing environmental bacteria from surface waters. In German surface water samples (n = 28), oligotrophic bacteria ranging from 4.0 × 103 to 1.7 × 104 CFU per 100 mL were detected on the nutrient-poor medium spiked with 3rd generation cephalosporins and carbapenems. These numbers were 3 log10 higher compared to ESBL-producing Enterobacteriales of clinical relevance from the same water samples. A MALDI-TOF MS identification of the isolates demonstrated, that the method leads to the isolation of environmentally relevant strains with Pseudomonas, Flavobacterium, and Janthinobacterium being predominant β-lactam resistant genera. Subsequent micro-dilution antibiotic susceptibility tests (Micronaut-S test) confirmed the expression of β-lactamases. The qPCR analysis of surface waters DNA extracts showed the presence of β-lactamase genes (blaTEM, blaCMY-2, blaOXA-48, blaVIM-2, blaSHV, and blaNDM-1) at concentrations of 3.7 (±1.2) to 1.0 (±1.9) log10 gene copies per 100 mL. Overall, the results demonstrate a widespread distribution of cephalosporinase and carbapenemase enzymes in oligotrophic environmental bacteria that have to be considered as a reservoir of ARGs and contribute to the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Lara Stelmaszyk
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Claudia Stange
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Michael Hügler
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Jatinder P.S. Sidhu
- CSIRO Oceans and Atmosphere, Ecosciences Precinct, 41 Boggo Road, Brisbane, Australia
| | - Harald Horn
- Karlsruher Institut für Technologie, Engler-Bunte Institute, Wasserchemie und Wassertechnologie, Engler-Bunte-Ring 9a, Karlsruhe, Germany
| | - Andreas Tiehm
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| |
Collapse
|
13
|
McHugh MP, Pettigrew KA, Taori S, Evans TJ, Leanord A, Gillespie SH, Templeton KE, Holden MTG. Consideration of within-patient diversity highlights transmission pathways and antimicrobial resistance gene variability in vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother 2024; 79:656-668. [PMID: 38323373 PMCID: PMC11090465 DOI: 10.1093/jac/dkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND WGS is increasingly being applied to healthcare-associated vancomycin-resistant Enterococcus faecium (VREfm) outbreaks. Within-patient diversity could complicate transmission resolution if single colonies are sequenced from identified cases. OBJECTIVES Determine the impact of within-patient diversity on transmission resolution of VREfm. MATERIALS AND METHODS Fourteen colonies were collected from VREfm positive rectal screens, single colonies were collected from clinical samples and Illumina WGS was performed. Two isolates were selected for Oxford Nanopore sequencing and hybrid genome assembly to generate lineage-specific reference genomes. Mapping to closely related references was used to identify genetic variations and closely related genomes. A transmission network was inferred for the entire genome set using Phyloscanner. RESULTS AND DISCUSSION In total, 229 isolates from 11 patients were sequenced. Carriage of two or three sequence types was detected in 27% of patients. Presence of antimicrobial resistance genes and plasmids was variable within genomes from the same patient and sequence type. We identified two dominant sequence types (ST80 and ST1424), with two putative transmission clusters of two patients within ST80, and a single cluster of six patients within ST1424. We found transmission resolution was impaired using fewer than 14 colonies. CONCLUSIONS Patients can carry multiple sequence types of VREfm, and even within related lineages the presence of mobile genetic elements and antimicrobial resistance genes can vary. VREfm within-patient diversity could be considered in future to aid accurate resolution of transmission networks.
Collapse
Affiliation(s)
- Martin P McHugh
- School of Medicine, University of St Andrews, St Andrews, UK
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Surabhi Taori
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Thomas J Evans
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Alistair Leanord
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Scottish Microbiology Reference Laboratories, Glasgow Royal Infirmary, Glasgow, UK
| | | | - Kate E Templeton
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
14
|
Mustafa AS. Whole Genome Sequencing: Applications in Clinical Bacteriology. Med Princ Pract 2024; 33:185-197. [PMID: 38402870 PMCID: PMC11221363 DOI: 10.1159/000538002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
The success in determining the whole genome sequence of a bacterial pathogen was first achieved in 1995 by determining the complete nucleotide sequence of Haemophilus influenzae Rd using the chain-termination method established by Sanger et al. in 1977 and automated by Hood et al. in 1987. However, this technology was laborious, costly, and time-consuming. Since 2004, high-throughput next-generation sequencing technologies have been developed, which are highly efficient, require less time, and are cost-effective for whole genome sequencing (WGS) of all organisms, including bacterial pathogens. In recent years, the data obtained using WGS technologies coupled with bioinformatics analyses of the sequenced genomes have been projected to revolutionize clinical bacteriology. WGS technologies have been used in the identification of bacterial species, strains, and genotypes from cultured organisms and directly from clinical specimens. WGS has also helped in determining resistance to antibiotics by the detection of antimicrobial resistance genes and point mutations. Furthermore, WGS data have helped in the epidemiological tracking and surveillance of pathogenic bacteria in healthcare settings as well as in communities. This review focuses on the applications of WGS in clinical bacteriology.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
15
|
Lee AS, Dolan L, Jenkins F, Crawford B, van Hal SJ. Active surveillance of carbapenemase-producing Enterobacterales using genomic sequencing for hospital-based infection control interventions. Infect Control Hosp Epidemiol 2024; 45:137-143. [PMID: 37702063 PMCID: PMC10877539 DOI: 10.1017/ice.2023.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Whole-genome sequencing (WGS) is increasingly used to characterize hospital outbreaks of carbapenemase-producing Enterobacterales (CPE). However, access to WGS is variable and testing is often centralized, leading to delays in reporting of results. OBJECTIVE We describe the utility of a local sequencing service to promptly respond to facility needs over an 8-year period. METHODS The study was conducted at Royal Prince Alfred Hospital in Sydney, Australia. All CPE isolated from patient (screening and clinical) and environmental samples from 2015 onward underwent prospective WGS. Results were notified to the infection control unit in real time. When outbreaks were identified, WGS reports were also provided to senior clinicians and the hospital executive administration. Enhanced infection control interventions were refined based on the genomic data. RESULTS In total, 141 CPE isolates were detected from 123 patients and 5 environmental samples. We identified 9 outbreaks, 4 of which occurred in high-risk wards (intensive care unit and/or solid-organ transplant ward). The largest outbreak involved Enterobacterales containing an NDM gene. WGS detected unexpected links among patients, which led to further investigation of epidemiological data that uncovered the outpatient setting and contaminated equipment as reservoirs for ongoing transmission. Targeted interventions as part of outbreak management halted further transmission. CONCLUSIONS WGS has transitioned from an emerging technology to an integral part of local CPE control strategies. Our results show the value of embedding this technology in routine surveillance, with timely reports generated in clinically relevant timeframes to inform and optimize local control measures for greatest impact.
Collapse
Affiliation(s)
- Andie S. Lee
- Departments of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Leanne Dolan
- Infection Control Unit, Royal Prince Alfred Hospital, Sydney, Australia
| | - Frances Jenkins
- Department of Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Sebastiaan J. van Hal
- Departments of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Hakim H, Glasgow HL, Brazelton JN, Gilliam CH, Richards L, Hayden RT. A prospective bacterial whole-genome-sequencing-based surveillance programme for comprehensive early detection of healthcare-associated infection transmission in paediatric oncology patients. J Hosp Infect 2024; 143:53-63. [PMID: 37939882 DOI: 10.1016/j.jhin.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Bacterial whole-genome sequencing (WGS) and determination of genetic relatedness is an important tool for investigation of epidemiologically suspected outbreaks. AIM This prospective cohort study evaluated a comprehensive, prospective bacterial WGS-based surveillance programme for early detection of transmission of most bacterial pathogens among patients at a paediatric oncology hospital. METHODS Cultured bacterial isolates from clinical diagnostic specimens collected prospectively from both inpatient and outpatient encounters between January 2019 and December 2021 underwent routine WGS and core genome multi-locus sequence typing to determine isolates' relatedness. Previously collected isolates from January to December 2018 were retrospectively analysed for identification of prior or ongoing transmission. Multi-patient clusters were investigated to identify potential transmission events based on temporal and spatial epidemiological links and interventions were introduced. FINDINGS A total of 1497 bacterial isolates from 1025 patients underwent WGS. A total of 259 genetically related clusters were detected, of which 18 (6.9%) multi-patient clusters involving 38 (3.7%) patients were identified. Sixteen clusters involved two patients each, and two clusters involved three patients. Following investigation, epidemiologically plausible transmission links were identified in five (27.8%) multi-patient clusters. None of the multi-patient clusters were suspected by conventional epidemiological surveillance. CONCLUSION Bacterial WGS-based surveillance for early detection of hospital transmission detected several limited multi-patient clusters that were unrecognized by conventional epidemiological methods. Genomic surveillance helped efficiently focus interventions while reducing unnecessary investigations.
Collapse
Affiliation(s)
- H Hakim
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; Infection Prevention and Control, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - H L Glasgow
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J N Brazelton
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - C H Gilliam
- Infection Prevention and Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - L Richards
- Infection Prevention and Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R T Hayden
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
17
|
Rose R, Feehan A, Lain BN, Ashcraft D, Nolan DJ, Velez-Climent L, Huston C, LaFleur T, Rosenthal S, Fogel GB, Miele L, Pankey G, Garcia-Diaz J, Lamers SL. Whole-genome sequencing of carbapenem-resistant Enterobacterales isolates in southeast Louisiana reveals persistent genetic clusters spanning multiple locations. J Infect Public Health 2023; 16:1911-1917. [PMID: 37866269 DOI: 10.1016/j.jiph.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND We investigated 51 g-negative carbapenem-resistant Enterobacterales (CRE) isolates collected from 22 patients over a five-year period from six health care institutions in the Ochsner Health network in southeast Louisiana. METHODS Short genomic reads were generated using Illumina sequencing and assembled for each isolate. Isolates were classified as Enterobacter spp. (n = 20), Klebsiella spp. (n = 30), and Escherichia coli (n = 1) and grouped into 19 different multi-locus sequence types (MLST). Species and patient-specific core genomes were constructed representing ∼50% of the chromosomal genome. RESULTS We identified two sets of patients with genetically related infections; in both cases, the related isolates were collected > 6 months apart, and in one case, the isolates were collected in different locations. On the other hand, we identified four sets of patients with isolates of the same species collected within 21 days from the same location; however, none had genetically related infections. Genes associated with resistance to carbapenem drugs (blaKPC and/or blaCTX-M-15) were found in 76% of the isolates. We found three blaKPC variants (blaKPC-2, blaKPC-3, and blaKPC-4) associated with four different Enterobacter MLST variants, and two blaKPC variants (blaKPC-2, blaKPC-3) associated with seven different Klebsiella MLST variants. CONCLUSIONS Molecular surveillance is increasingly becoming a powerful tool to understand bacterial spread in both community and clinical settings. This study provides evidence that genetically related infections in clinical settings do not necessarily reflect temporal associations, and vice versa. Our results also highlight the regional genomic and resistance diversity within related bacterial lineages.
Collapse
Affiliation(s)
- Rebecca Rose
- BioInfoExperts, LLC, Thibodaux, LA, USA; FoxSeq, LLC, Thibodaux, LA, USA.
| | - Amy Feehan
- Infectious Disease Clinical Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | | | - Deborah Ashcraft
- Infectious Disease Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | | | | | | | | | | | | | - Lucio Miele
- Translational Science and Genetics at LSU Health Science Center, New Orleans, LA, USA
| | - George Pankey
- Infectious Disease Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Julia Garcia-Diaz
- Infectious Disease Clinical Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Susanna L Lamers
- BioInfoExperts, LLC, Thibodaux, LA, USA; FoxSeq, LLC, Thibodaux, LA, USA
| |
Collapse
|
18
|
Tryfinopoulou K, Linkevicius M, Pappa O, Alm E, Karadimas K, Svartström O, Polemis M, Mellou K, Maragkos A, Brolund A, Fröding I, David S, Vatopoulos A, Palm D, Monnet DL, Zaoutis T, Kohlenberg A. Emergence and persistent spread of carbapenemase-producing Klebsiella pneumoniae high-risk clones in Greek hospitals, 2013 to 2022. Euro Surveill 2023; 28:2300571. [PMID: 37997662 PMCID: PMC10668257 DOI: 10.2807/1560-7917.es.2023.28.47.2300571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
BackgroundPreliminary unpublished results of the survey of carbapenem- and/or colistin-resistant Enterobacterales (CCRE survey) showed the expansion of carbapenemase-producing Klebsiella pneumoniae (CPKP) sequence type (ST) 39 in 12 of 15 participating Greek hospitals in 2019.AimWe conducted a rapid survey to determine the extent of spread of CPKP high-risk clones in Greek hospitals in 2022 and compare the distribution of circulating CPKP clones in these hospitals since 2013.MethodsWe analysed whole genome sequences and epidemiological data of 310 K. pneumoniae isolates that were carbapenem-resistant or 'susceptible, increased exposure' from Greek hospitals that participated in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE, 2013-2014), in the CCRE survey (2019) and in a national follow-up survey (2022) including, for the latter, an estimation of transmission events.ResultsFive K. pneumoniae STs including ST258/512 (n = 101 isolates), ST11 (n = 93), ST39 (n = 56), ST147 (n = 21) and ST323 (n = 13) accounted for more than 90% of CPKP isolates in the dataset. While ST11, ST147 and ST258/512 have been detected in participating hospitals since 2013 and 2014, KPC-2-producing ST39 and ST323 emerged in 2019 and 2022, respectively. Based on the defined genetic relatedness cut-off, 44 within-hospital transmission events were identified in the 2022 survey dataset, with 12 of 15 participating hospitals having at least one within-hospital transmission event.ConclusionThe recent emergence and rapid spread of new high-risk K. pneumoniae clones in the Greek healthcare system related to within-hospital transmission is of concern and highlights the need for molecular surveillance and enhanced infection prevention and control measures.
Collapse
Affiliation(s)
- Kyriaki Tryfinopoulou
- These authors contributed equally to this work and share first authorship
- National Public Health Organization, Athens, Greece
| | - Marius Linkevicius
- These authors contributed equally to this work and share first authorship
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Olga Pappa
- National Public Health Organization, Athens, Greece
| | - Erik Alm
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Olov Svartström
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | | | | | - Alma Brolund
- Public Health Agency of Sweden, Stockholm, Sweden
| | - Inga Fröding
- Public Health Agency of Sweden, Stockholm, Sweden
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | | | - Daniel Palm
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | | | - Anke Kohlenberg
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| |
Collapse
|
19
|
Mileto I, Petazzoni G, Corbella M, Gaiarsa S, Merla C, Kuka A, Ramus M, Terulla C, Brandolini M, Piralla A, Cambieri P, Baldanti F. Rapid spread of a novel NDM-producing clone of Klebsiella pneumoniae CC147, Northern Italy, February to August 2023. Euro Surveill 2023; 28:2300522. [PMID: 37855902 PMCID: PMC10588309 DOI: 10.2807/1560-7917.es.2023.28.42.2300522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023] Open
Abstract
New Delhi metallo-beta-lactamase (NDM)-producing Klebsiella pneumoniae (Kp) ST147 caused a large multi-hospital outbreak in Italy from 2018 to 2021. We describe a new ST6668 NDM-producing Kp clone, belonging to CC147, which rapidly spread across hospitals in the Pavia province (Northern Italy) from February to August 2023. Genomic analyses revealed that ST6668 is different from ST147 and fast evolving. As shown here, genomic surveillance programmes are useful for tracking the spread of new clones with reduced susceptibility to most antibiotics.
Collapse
Affiliation(s)
- Irene Mileto
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
- Specialization School of Microbiology and Virology, University of Pavia, Pavia, Italy
- These authors have contributed equally
| | - Greta Petazzoni
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
- These authors have contributed equally
| | - Marta Corbella
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Stefano Gaiarsa
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Cristina Merla
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Angela Kuka
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Marina Ramus
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
- Specialization School of Microbiology and Virology, University of Pavia, Pavia, Italy
| | | | - Micaela Brandolini
- ASST Pavia, Ospedale Unificato Broni-Stradella, Internal Medicine Unit, Stradella, Italy
| | - Antonio Piralla
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Patrizia Cambieri
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
- These authors contributed equally to the work and share the last authorship
| | - Fausto Baldanti
- Microbiology and Virology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
- These authors contributed equally to the work and share the last authorship
| |
Collapse
|
20
|
Hare D, Dembicka KM, Brennan C, Campbell C, Sutton-Fitzpatrick U, Stapleton PJ, De Gascun CF, Dunne CP. Whole-genome sequencing to investigate transmission of SARS-CoV-2 in the acute healthcare setting: a systematic review. J Hosp Infect 2023; 140:139-155. [PMID: 37562592 DOI: 10.1016/j.jhin.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Whole-genome sequencing (WGS) has been used widely to elucidate transmission of SARS-CoV-2 in acute healthcare settings, and to guide infection, prevention, and control (IPC) responses. AIM To systematically appraise available literature, published between January 1st, 2020 and June 30th, 2022, describing the implementation of WGS in acute healthcare settings to characterize nosocomial SARS-CoV-2 transmission. METHODS Searches of the PubMed, Embase, Ovid MEDLINE, EBSCO MEDLINE, and Cochrane Library databases identified studies in English reporting the use of WGS to investigate SARS-CoV-2 transmission in acute healthcare environments. Publications involved data collected up to December 31st, 2021, and findings were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. FINDINGS In all, 3088 non-duplicate records were retrieved; 97 met inclusion criteria, involving 62 outbreak analyses and 35 genomic surveillance studies. No publications from low-income countries were identified. In 87/97 (90%), WGS supported hypotheses for nosocomial transmission, while in 46 out of 97 (47%) suspected transmission events were excluded. An IPC intervention was attributed to the use of WGS in 18 out of 97 (18%); however, only three (3%) studies reported turnaround times ≤7 days facilitating near real-time IPC action, and none reported an impact on the incidence of nosocomial COVID-19 attributable to WGS. CONCLUSION WGS can elucidate transmission of SARS-CoV-2 in acute healthcare settings to enhance epidemiological investigations. However, evidence was not identified to support sequencing as an intervention to reduce the incidence of SARS-CoV-2 in hospital or to alter the trajectory of active outbreaks.
Collapse
Affiliation(s)
- D Hare
- UCD National Virus Reference Laboratory, University College Dublin, Ireland; School of Medicine, University of Limerick, Limerick, Ireland.
| | - K M Dembicka
- School of Medicine, University of Limerick, Limerick, Ireland
| | - C Brennan
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | - C Campbell
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | | | | | - C F De Gascun
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | - C P Dunne
- School of Medicine, University of Limerick, Limerick, Ireland; Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| |
Collapse
|
21
|
Quach JU, Diaz MJ, Huda TI, Kinskey JC, Zaman S, Desantis JE, Cios KJ, Blanck G. Bacterial Sequencing Reads in Blood Exome Files from Melanoma and Cervical Cancer Patients are Associated with Cancer Recurrence. Mol Biotechnol 2023; 65:1476-1484. [PMID: 36653589 DOI: 10.1007/s12033-023-00663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Bacteremia poses great risk for morbidity and mortality for immunocompromised cancer patients. Although the presence of bacteria within solid tumors is gaining greater attention, few studies have analyzed species of bacteria in the blood and their effect on cancer clinical outcomes. Using the Kraken 2 taxonomic profiling tool, we classified bacteria present in blood and primary tumors of cervical cancer and melanoma cases. The Cancer Genome Atlas (TCGA) melanoma blood exome files with Pseudomonas species were found to represent a worse disease-free survival (DFS) probability, while a worse overall survival (OS) result was evidenced for both the TCGA and Moffitt Cancer Center melanoma datasets. Cervical cancer cases with reads representing the Bradyrhizobium genus and Bradyrhizobium sp. BTAi1 found in blood and tumor exome files were found to have lower DFS. Additionally, reduced DFS and OS were observed for cervical cancer cases positive for Bacteroides species including Bacteroides fragilis. This study provides novel evidence and a novel approach for indicating that bacteria in blood is associated with cancer recurrence. These findings may guide the development of more efficient prognostic and screening tools related to bacterial blood infections of melanoma and cervical cancer patients.
Collapse
Affiliation(s)
- Jessica U Quach
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Jacob C Kinskey
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Saif Zaman
- Department of Internal Medicine, Yale University, New Haven, CT, 06520, USA
| | - John E Desantis
- Research Computing, University of South Florida, Tampa, FL, 33620, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
22
|
Fox JM, Saunders NJ, Jerwood SH. Economic and health impact modelling of a whole genome sequencing-led intervention strategy for bacterial healthcare-associated infections for England and for the USA. Microb Genom 2023; 9:mgen001087. [PMID: 37555752 PMCID: PMC10483413 DOI: 10.1099/mgen.0.001087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Bacterial healthcare-associated infections (HAIs) are a substantial source of global morbidity and mortality. The estimated cost associated with HAIs ranges from $35 to $45 billion in the USA alone. The costs and accessibility of whole genome sequencing (WGS) of bacteria and the lack of sufficiently accurate, high-resolution, scalable and accessible analysis for strain identification are being addressed. Thus, it is timely to determine the economic viability and impact of routine diagnostic bacterial genomics. The aim of this study was to model the economic impact of a WGS surveillance system that proactively detects and directs interventions for nosocomial infections and outbreaks compared to the current standard of care, without WGS. Using a synthesis of published models, inputs from national statistics, and peer-reviewed articles, the economic impacts of conducting a WGS-led surveillance system addressing the 11 most common nosocomial pathogen groups in England and the USA were modelled. This was followed by a series of sensitivity analyses. England was used to establish the baseline model because of the greater availability of underpinning data, and this was then modified using USA-specific parameters where available. The model for the NHS in England shows bacterial HAIs currently cost the NHS around £3 billion. WGS-based surveillance delivery is predicted to cost £61.1 million associated with the prevention of 74 408 HAIs and 1257 deaths. The net cost saving was £478.3 million, of which £65.8 million were from directly incurred savings (antibiotics, consumables, etc.) and £412.5 million from opportunity cost savings due to re-allocation of hospital beds and healthcare professionals. The USA model indicates that the bacterial HAI care baseline costs are around $18.3 billion. WGS surveillance costs $169.2 million, and resulted in a net saving of ca.$3.2 billion, while preventing 169 260 HAIs and 4862 deaths. From a 'return on investment' perspective, the model predicts a return to the hospitals of £7.83 per £1 invested in diagnostic WGS in the UK, and US$18.74 per $1 in the USA. Sensitivity analyses show that substantial savings are retained when inputs to the model are varied within a wide range of upper and lower limits. Modelling a proactive WGS system addressing HAI pathogens shows significant improvement in morbidity and mortality while simultaneously achieving substantial savings to healthcare facilities that more than offset the cost of implementing diagnostic genomics surveillance.
Collapse
|
23
|
Carroll LM, Pierneef R, Mafuna T, Magwedere K, Matle I. Genus-wide genomic characterization of Macrococcus: insights into evolution, population structure, and functional potential. Front Microbiol 2023; 14:1181376. [PMID: 37547688 PMCID: PMC10400458 DOI: 10.3389/fmicb.2023.1181376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Macrococcus species have been isolated from a range of mammals and mammal-derived food products. While they are largely considered to be animal commensals, Macrococcus spp. can be opportunistic pathogens in both veterinary and human clinical settings. This study aimed to provide insight into the evolution, population structure, and functional potential of the Macrococcus genus, with an emphasis on antimicrobial resistance (AMR) and virulence potential. Methods All high-quality, publicly available Macrococcus genomes (n = 104, accessed 27 August 2022), plus six South African genomes sequenced here (two strains from bovine clinical mastitis cases and four strains from beef products), underwent taxonomic assignment (using four different approaches), AMR determinant detection (via AMRFinderPlus), and virulence factor detection (using DIAMOND and the core Virulence Factor Database). Results Overall, the 110 Macrococcus genomes were of animal commensal, veterinary clinical, food-associated (including food spoilage), and environmental origins; five genomes (4.5%) originated from human clinical cases. Notably, none of the taxonomic assignment methods produced identical results, highlighting the potential for Macrococcus species misidentifications. The most common predicted antimicrobial classes associated with AMR determinants identified across Macrococcus included macrolides, beta-lactams, and aminoglycosides (n = 81, 61, and 44 of 110 genomes; 73.6, 55.5, and 40.0%, respectively). Genes showing homology to Staphylococcus aureus exoenzyme aureolysin were detected across multiple species (using 90% coverage, n = 40 and 77 genomes harboring aureolysin-like genes at 60 and 40% amino acid [AA] identity, respectively). S. aureus Panton-Valentine leucocidin toxin-associated lukF-PV and lukS-PV homologs were identified in eight M. canis genomes (≥40% AA identity, >85% coverage). Using a method that delineates populations using recent gene flow (PopCOGenT), two species (M. caseolyticus and M. armenti) were composed of multiple within-species populations. Notably, M. armenti was partitioned into two populations, which differed in functional potential (e.g., one harbored beta-lactamase family, type II toxin-antitoxin system, and stress response proteins, while the other possessed a Type VII secretion system; PopCOGenT p < 0.05). Discussion Overall, this study leverages all publicly available Macrococcus genomes in addition to newly sequenced genomes from South Africa to identify genomic elements associated with AMR or virulence potential, which can be queried in future experiments.
Collapse
Affiliation(s)
- Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| |
Collapse
|
24
|
Kim PY, Kim AY, Newman JJ, Cella E, Bishop TC, Huwe PJ, Uchakina ON, McKallip RJ, Mack VL, Hill MP, Ogungbe IV, Adeyinka O, Jones S, Ware G, Carroll J, Sawyer JF, Densmore KH, Foster M, Valmond L, Thomas J, Azarian T, Queen K, Kamil JP. A collaborative approach to improving representation in viral genomic surveillance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001935. [PMID: 37467165 PMCID: PMC10355392 DOI: 10.1371/journal.pgph.0001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023]
Abstract
The lack of routine viral genomic surveillance delayed the initial detection of SARS-CoV-2, allowing the virus to spread unfettered at the outset of the U.S. epidemic. Over subsequent months, poor surveillance enabled variants to emerge unnoticed. Against this backdrop, long-standing social and racial inequities have contributed to a greater burden of cases and deaths among minority groups. To begin to address these problems, we developed a new variant surveillance model geared toward building 'next generation' genome sequencing capacity at universities in or near rural areas and engaging the participation of their local communities. The resulting genomic surveillance network has generated more than 1,000 SARS-CoV-2 genomes to date, including the first confirmed case in northeast Louisiana of Omicron, and the first and sixth confirmed cases in Georgia of the emergent BA.2.75 and BQ.1.1 variants, respectively. In agreement with other studies, significantly higher viral gene copy numbers were observed in Delta variant samples compared to those from Omicron BA.1 variant infections, and lower copy numbers were seen in asymptomatic infections relative to symptomatic ones. Collectively, the results and outcomes from our collaborative work demonstrate that establishing genomic surveillance capacity at smaller academic institutions in rural areas and fostering relationships between academic teams and local health clinics represent a robust pathway to improve pandemic readiness.
Collapse
Affiliation(s)
- Paul Y. Kim
- Department of Biological Sciences, Grambling State University, Grambling, LA, United States of America
| | - Audrey Y. Kim
- Department of Biological Sciences, Grambling State University, Grambling, LA, United States of America
| | - Jamie J. Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, United States of America
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Thomas C. Bishop
- Physics and Chemistry Programs, Louisiana Tech University, Ruston, LA, United States of America
| | - Peter J. Huwe
- Mercer University School of Medicine, Macon, GA, United States of America
| | - Olga N. Uchakina
- Mercer University School of Medicine, Macon, GA, United States of America
| | - Robert J. McKallip
- Mercer University School of Medicine, Macon, GA, United States of America
| | - Vance L. Mack
- Mercer Medicine, Macon, GA, United States of America
| | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Jackson State University, Jackson, MS, United States of America
| | - Olawale Adeyinka
- Department of Chemistry, Jackson State University, Jackson, MS, United States of America
| | - Samuel Jones
- Health Services Center, Jackson State University, Jackson, MS, United States of America
| | - Gregory Ware
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Jennifer Carroll
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Jarrod F. Sawyer
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Kenneth H. Densmore
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Michael Foster
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, United States of America
| | - Lescia Valmond
- Department of Biological Sciences, Grambling State University, Grambling, LA, United States of America
| | - John Thomas
- Department of Biological Sciences, Grambling State University, Grambling, LA, United States of America
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Krista Queen
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| | - Jeremy P. Kamil
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, LA, United States of America
| |
Collapse
|
25
|
Permana B, Harris PNA, Runnegar N, Lindsay M, Henderson BC, Playford EG, Paterson DL, Beatson SA, Forde BM. Using Genomics To Investigate an Outbreak of Vancomycin-Resistant Enterococcus faecium ST78 at a Large Tertiary Hospital in Queensland. Microbiol Spectr 2023; 11:e0420422. [PMID: 37191518 PMCID: PMC10269735 DOI: 10.1128/spectrum.04204-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
To investigate an outbreak of vancomycin-resistant Enterococcus faecium (VREfm) sequence type 78 (ST78) in a large tertiary Australian hospital. A collection of 63 VREfm ST78 isolates, identified during a routine genomic surveillance program, were subjected to genomic epidemiological analysis based on whole-genome sequencing (WGS) data. The population structure was reconstructed using phylogenetic analysis, and a collection of publicly available VREfm ST78 genomes were used to provide global context. Core genome single nucleotide polymorphism (SNP) distances and available clinical metadata were used to characterize outbreak clusters and reconstruct transmission events. In silico genotyping confirmed that all study isolates were vanB-type VREfm carrying virulence characteristics of the hospital-associated E. faecium. Phylogenetic analysis identified two distinct phylogenetic clades, only one of which was responsible for a hospital outbreak. Four outbreak subtypes could be defined with examples of recent transmissions. Inference on transmission trees suggested complex transmission routes with unknown environmental reservoirs mediating the outbreak. WGS-based cluster analysis with publicly available genomes identified closely related Australian ST78 and ST203 isolates, highlighting the capacity for WGS to resolve complex clonal relationships between the VREfm lineages. Whole genome-based analysis has provided a high-resolution description of an outbreak of vanB-type VREfm ST78 in a Queensland hospital. Combined routine genomic surveillance and epidemiological analysis have facilitated better understanding of the local epidemiology of this endemic strain, providing valuable insight for better targeted control of VREfm. IMPORTANCE Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of health care-associated infections (HAIs) globally. In Australia, the spread of hospital-adapted VREfm is largely driven by a single clonal group (clonal complex [CC]), CC17, to which the lineage ST78 belongs. While implementing a genomic surveillance program in Queensland, we observed increased incidence of ST78 colonizations and infections among patients. Here, we demonstrate the use of real-time genomic surveillance as a tool to support and enhance infection control (IC) practices. Our results show that real-time whole-genome sequencing (WGS) can efficiently disrupt outbreaks by identifying transmission routes that in turn can be targeted using resource-limited interventions. Additionally, we demonstrate that by placing local outbreaks in a global context, high-risk clones can be identified and targeted prior to them becoming established within clinical environments. Finally, the persistence of these organism within the hospital highlights the need for routine genomic surveillance as a management tool to control VRE transmission.
Collapse
Affiliation(s)
- Budi Permana
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Australia
| | - Patrick N. A. Harris
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Pathology Queensland, Central Laboratory, Brisbane, Australia
| | - Naomi Runnegar
- Princess Alexandra–Southside Clinical School, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Margaret Lindsay
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | | | - E. G. Playford
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - David L. Paterson
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
| | - Brian M. Forde
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Bunce M, Geoghegan JL, Winter D, de Ligt J, Wiles S. Exploring the depth and breadth of the genomics toolbox during the COVID-19 pandemic: insights from Aotearoa New Zealand. BMC Med 2023; 21:213. [PMID: 37316857 DOI: 10.1186/s12916-023-02909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Genomic technologies have become routine in the surveillance and monitoring of the coronavirus disease 2019 (COVID-19) pandemic, as evidenced by the millions of SARS-CoV-2 sequences uploaded to international databases. Yet the ways in which these technologies have been applied to manage the pandemic are varied. MAIN TEXT Aotearoa New Zealand was one of a small number of countries to adopt an elimination strategy for COVID-19, establishing a managed isolation and quarantine system for all international arrivals. To aid our response, we rapidly set up and scaled our use of genomic technologies to help identify community cases of COVID-19, to understand how they had arisen, and to determine the appropriate action to maintain elimination. Once New Zealand pivoted from elimination to suppression in late 2021, our genomic response changed to focusing on identifying new variants arriving at the border, tracking their incidence around the country, and examining any links between specific variants and increased disease severity. Wastewater detection, quantitation and variant detection were also phased into the response. Here, we explore New Zealand's genomic journey through the pandemic and provide a high-level overview of the lessons learned and potential future capabilities to better prepare for future pandemics. CONCLUSIONS Our commentary is aimed at health professionals and decision-makers who might not be familiar with genetic technologies, how they can be used, and why this is an area with great potential to assist in disease detection and tracking now and in the future.
Collapse
Affiliation(s)
- Michael Bunce
- Institute of Environmental Science and Research, Kenepuru, Porirua, 5022, New Zealand
- Department of Conservation, Wellington, 6011, New Zealand
| | - Jemma L Geoghegan
- Institute of Environmental Science and Research, Kenepuru, Porirua, 5022, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - David Winter
- Institute of Environmental Science and Research, Kenepuru, Porirua, 5022, New Zealand
| | - Joep de Ligt
- Institute of Environmental Science and Research, Kenepuru, Porirua, 5022, New Zealand.
| | - Siouxsie Wiles
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
- Te Pūnaha Matatini, Auckland, New Zealand.
| |
Collapse
|
27
|
Birgand G, Ahmad R, Bulabula ANH, Singh S, Bearman G, Sánchez EC, Holmes A. Innovation for infection prevention and control-revisiting Pasteur's vision. Lancet 2022; 400:2250-2260. [PMID: 36528378 PMCID: PMC9754656 DOI: 10.1016/s0140-6736(22)02459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Louis Pasteur has long been heralded as one of the fathers of microbiology and immunology. Less known is Pasteur's vision on infection prevention and control (IPC) that drove current infection control, public health, and much of modern medicine and surgery. In this Review, we revisited Pasteur's pioneering works to assess progress and challenges in the process and technological innovation of IPC. We focused on Pasteur's far-sighted conceptualisation of the hospital as a reservoir of microorganisms and amplifier of transmission, aseptic technique in surgery, public health education, interdisciplinary working, and the protection of health services and patients. Examples from across the globe help inform future thinking for IPC innovation, adoption, scale up and sustained use.
Collapse
Affiliation(s)
- Gabriel Birgand
- Centre d'appui pour la Prévention des Infections Associées aux Soins, Nantes, France; National Institute for Health and Care Research Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance at Imperial College London, London, UK
| | - Raheelah Ahmad
- National Institute for Health and Care Research Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance at Imperial College London, London, UK; School of Health and Psychological Sciences, City University of London, London, UK; Institute of Business and Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Sanjeev Singh
- Department of Medicine, Amrita Institute of Medical Sciences, Amrita University, Kerala, India
| | - Gonzalo Bearman
- Division of Infectious Diseases, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Enrique Castro Sánchez
- National Institute for Health and Care Research Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance at Imperial College London, London, UK; College of Nursing, Midwifery and Healthcare, Richard Wells Centre, University of West London, London, UK
| | - Alison Holmes
- National Institute for Health and Care Research Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance at Imperial College London, London, UK; Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
28
|
Duan Q, Wang Q, Sun S, Cui Q, Ding Q, Wang R, Wang H. ST11 Carbapenem-Resistant Klebsiella pneumoniae Clone Harboring blaNDM Replaced a blaKPC Clone in a Tertiary Hospital in China. Antibiotics (Basel) 2022; 11:antibiotics11101373. [PMID: 36290031 PMCID: PMC9598860 DOI: 10.3390/antibiotics11101373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The nosocomial spread of carbapenem-resistant Enterobacterales (CRE) is extremely common, resulting in severe burdens on healthcare systems. In particular, the high-risk Klebsiella pneumoniae ST11 strain has a wide endemic area in China. The current study describes the results of continuous monitoring of CRE genotypes and phenotypes in a tertiary hospital in North China from 2012 to 2020. A total of 160 isolates were collected, including 109 Klebsiella. pneumoniae (68.13%), 29 Escherichia coli (26.60%), 12 Enterobacter cloacae (7.50%), and 10 other strains (6.25%). A total of 149 carbapenemase genes were detected, of which blaKPC-2 (51.0%) was the most common, followed by blaNDM-1 (22.82%), and blaNDM-5 (23.49%). Based on multi-locus sequence typing, the ST11 strain (66.1%) dominates K. pneumoniae, followed by ST15 (13.8%). Interestingly, the proportion of blaNDM (22.2%, 16/72) in ST11 K. pneumoniae was significantly increased in 2018−2019. Hence, whole-genome sequencing was performed on ST11 K. pneumoniae. Growth curves and in vitro competition experiments showed that K. pneumoniae carrying blaNDM exhibited a stronger growth rate (p < 0.001) and competition index (p < 0.001) than K. pneumoniae carrying blaKPC. Moreover, K. pneumoniae carrying blaNDM had a stronger biofilm-forming ability than K. pneumoniae carrying blaKPC (t = 6.578; p < 0.001). K. pneumoniae carrying blaKPC exhibited increased defense against bactericidal activity than K. pneumoniae carrying blaNDM. Thus, ST11 K. pneumoniae carrying blaNDM has strong adaptability and can locally replace K. pneumoniae carrying blaKPC to become an epidemic strain. Based on these findings, infection control and preventive measures should focus on the high-risk ST11-K. pneumoniae strain.
Collapse
Affiliation(s)
- Qiaoyan Duan
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan 030012, China
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Qiaozhen Cui
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan 030012, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
- Correspondence:
| |
Collapse
|