1
|
Poston TB, Girardi J, Polson AG, Bhardwaj A, Yount KS, Jaras Salas I, Trim LK, Li Y, O'Connell CM, Leahy D, Harris JM, Beagley KW, Goonetilleke N, Darville T. Viral-vectored boosting of OmcB- or CPAF-specific T-cell responses fail to enhance protection from Chlamydia muridarum in infection-immune mice and elicits a non-protective CD8-dominant response in naïve mice. Mucosal Immunol 2024; 17:1005-1018. [PMID: 38969067 PMCID: PMC11495396 DOI: 10.1016/j.mucimm.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
A vaccine is needed to combat the Chlamydia epidemic. Replication-deficient viral vectors are safe and induce antigen-specific T-cell memory. We tested the ability of intramuscular immunization with modified vaccinia Ankara (MVA) virus or chimpanzee adenovirus (ChAd) expressing chlamydial outer membrane protein (OmcB) or the secreted protein, chlamydial protease-like activating factor (CPAF), to enhance T-cell immunity and protection in mice previously infected with plasmid-deficient Chlamydia muridarum CM972 and elicit protection in naïve mice. MVA.OmcB or MVA.CPAF increased antigen-specific T cells in CM972-immune mice ∼150 and 50-fold, respectively, but failed to improve bacterial clearance. ChAd.OmcB/MVA.OmcB prime-boost immunization of naïve mice elicited a cluster of differentiation (CD) 8-dominant T-cell response dominated by cluster of differentiation (CD)8 T cells that failed to protect. ChAd.CPAF/ChAd.CPAF prime-boost also induced a CD8-dominant response with a marginal reduction in burden. Challenge of ChAd.CPAF-immunized mice genetically deficient in CD4 or CD8 T cells showed that protection was entirely CD4-dependent. CD4-deficient mice had prolonged infection, whereas CD8-deficient mice had higher frequencies of CPAF-specific CD4 T cells, earlier clearance, and reduced burden than wild-type controls. These data reinforce the essential nature of the CD4 T-cell response in protection from chlamydial genital infection in mice and the need for vaccine platforms that drive CD4-dominant responses.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A Grace Polson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aakash Bhardwaj
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kacy S Yount
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian Jaras Salas
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Logan K Trim
- Center for Immunology and Infection Control and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yanli Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Darren Leahy
- Center for Immunology and Infection Control and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jonathan M Harris
- Center for Immunology and Infection Control and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kenneth W Beagley
- Center for Immunology and Infection Control and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Myers ML, Conlon MT, Gallagher JR, Woolfork DD, Khorrami ND, Park WB, Stradtman-Carvalho RK, Harris AK. Analysis of polyclonal and monoclonal antibody to the influenza virus nucleoprotein in different oligomeric states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612748. [PMID: 39372734 PMCID: PMC11451747 DOI: 10.1101/2024.09.12.612748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Influenza virus nucleoprotein (NP) is one of the most conserved influenza proteins. Both NP antigen and anti-NP antibodies are used as reagents in influenza diagnostic kits, with applications in both clinical practice, and influenza zoonotic surveillance programs. Despite this, studies on the biochemical basis of NP diagnostic serology and NP epitopes are not as developed as for hemagglutinin (HA), the fast-evolving antigen which has been the critical component of current influenza vaccines. Here, we characterized the NP serology of mice, ferret, and human sera and the immunogenic effects of NP antigen presented as different structural complexes. Furthermore, we show that a classical anti-NP mouse mAb HB65 could detect NP in some commercial influenza vaccines. MAb HB65 bound a linear epitope with nanomolar affinity. Our analysis suggests that linear NP epitopes paired with their corresponding characterized detection antibodies could aid in designing and improving diagnostic technologies for influenza virus.
Collapse
Affiliation(s)
- Mallory L. Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Michael T. Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
- Current Address: Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA 98195
| | - John R. Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - De’Marcus D. Woolfork
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Noah D. Khorrami
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - William B. Park
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Regan K. Stradtman-Carvalho
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Audray K. Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| |
Collapse
|
3
|
Henríquez R, Muñoz-Barroso I. Viral vector- and virus-like particle-based vaccines against infectious diseases: A minireview. Heliyon 2024; 10:e34927. [PMID: 39144987 PMCID: PMC11320483 DOI: 10.1016/j.heliyon.2024.e34927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
To overcome the limitations of conventional vaccines, new platforms for vaccine design have emerged such as those based on viral vectors and virus-like particles (VLPs). Viral vector vaccines are highly efficient and the onset of protection is quick. Many recombinant vaccine candidates for humans are based on viruses belonging to different families such as Adenoviridae, Retroviridae, Paramyxoviridae, Rhabdoviridae, and Parvoviridae. Also, the first viral vector vaccine licensed for human vaccination was the Japanese encephalitis virus vaccine. Since then, several viral vectors have been approved for vaccination against the viruses of Lassa fever, Ebola, hepatitis B, hepatitis E, SARS-CoV-2, and malaria. VLPs are nanoparticles that mimic viral particles formed from the self-assembly of structural proteins and VLP-based vaccines against hepatitis B and E viruses, human papillomavirus, and malaria have been commercialized. As evidenced by the accelerated production of vaccines against COVID-19, these new approaches are important tools for vaccinology and for generating rapid responses against pathogens and emerging pandemic threats.
Collapse
Affiliation(s)
- Ruth Henríquez
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| |
Collapse
|
4
|
Evans TG, Castellino F, Kowalik Dobczyk M, Tucker G, Walley AM, Van Leuven K, Klein J, Rutkowski K, Ellis C, Eagling-Vose E, Treanor J, van Baalen C, Filkov E, Laurent C, Thacker J, Asher J, Donabedian A. Assessment of CD8 + T-cell mediated immunity in an influenza A(H3N2) human challenge model in Belgium: a single centre, randomised, double-blind phase 2 study. THE LANCET. MICROBE 2024; 5:645-654. [PMID: 38729196 DOI: 10.1016/s2666-5247(24)00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Protection afforded by inactivated influenza vaccines can theoretically be improved by inducing T-cell responses to conserved internal influenza A antigens. We assessed whether, in an influenza controlled human infection challenge, susceptible individuals receiving a vaccine boosting T-cell responses would exhibit lower viral load and decreased symptoms compared with placebo recipients. METHODS In this single centre, randomised, double-blind phase 2 study, healthy adult (aged 18-55 years) volunteers with microneutralisation titres of less than 20 to the influenza A(H3N2) challenge strain were enrolled at an SGS quarantine facility in Antwerp, Belgium. Participants were randomly assigned double-blind using a permuted-block list with a 3:2 allocation ratio to receive 0·5 mL intramuscular injections of modified vaccinia Ankara (MVA) expressing H3N2 nucleoprotein (NP) and matrix protein 1 (M1) at 1·5 × 108 plaque forming units (4·3 × 108 50% tissue culture infectious dose [TCID50]; MVA-NP+M1 group) or saline placebo (placebo group). At least 6 weeks later, participants were challenged intranasally with 0·5 mL of a 1 × 106 TCID50/mL dose of influenza A/Belgium/4217/2015 (H3N2). Nasal swabs were collected twice daily from day 2 until day 11 for viral PCR, and symptoms of influenza were recorded from day 2 until day 11. The primary outcome was to determine the efficacy of MVA-NP+M1 vaccine to reduce the degree of nasopharyngeal viral shedding as measured by the cumulative viral area under the curve using a log-transformed quantitative PCR. This study is registered with ClinicalTrials.gov, NCT03883113. FINDINGS Between May 2 and Oct 24, 2019, 145 volunteers were enrolled and randomly assigned to the MVA-NP+M1 group (n=87) or the placebo group (n=58). Of these, 118 volunteers entered the challenge period (71 in the MVA-NP+M1 group and 47 in the placebo group) and 117 participants completed the study (71 in the MVA-NP+M1 group and 46 in the placebo group). 78 (54%) of the 145 volunteers were female and 67 (46%) were male. The primary outcome, overall viral load as determined by quantitative PCR, did not show a statistically significant difference between the MVA-NP+M1 (mean 649·7 [95% CI 552·7-746·7) and placebo groups (mean 726·1 [604·0-848·2]; p=0·17). All reported treatment emergent adverse events (TEAEs; 11 in the vaccination phase and 51 in the challenge phase) were grade 1 and 2, except for two grade 3 TEAEs in the placebo group in the challenge phase. A grade 4 second trimester fetal death, considered possibly related to the MVA-NP+M1 vaccination, and an acute psychosis reported in a placebo participant during the challenge phase were reported. INTERPRETATION The use of an MVA vaccine to expand CD4+ or CD8+ T cells to conserved influenza A antigens in peripheral blood did not affect nasopharyngeal viral load in an influenza H3N2 challenge model in seronegative, healthy adults. FUNDING Department of Health and Human Services; Administration for Strategic Preparedness and Response; Biomedical Advanced Research and Development Authority; and Barinthus Biotherapeutics.
Collapse
Affiliation(s)
| | - Flora Castellino
- Biodefense Advanced Research and Development Authority, US Department of Health and Human Services, Washington, DC, USA
| | | | | | | | | | | | | | | | | | - John Treanor
- Biodefense Advanced Research and Development Authority, US Department of Health and Human Services, Washington, DC, USA
| | | | - Ella Filkov
- Viroclinics, a Cerba Research Company, Rotterdam, Netherlands
| | | | - Juilee Thacker
- Department of Medicine, University of Rochester; Rochester, NY, USA
| | - Jason Asher
- Biodefense Advanced Research and Development Authority, US Department of Health and Human Services, Washington, DC, USA
| | - Armen Donabedian
- Biodefense Advanced Research and Development Authority, US Department of Health and Human Services, Washington, DC, USA
| |
Collapse
|
5
|
Saranchova I, Xia CW, Besoiu S, Finkel PL, Ellis SLS, Kari S, Munro L, Pfeifer CG, Fazli L, Gleave ME, Jefferies WA. A novel type-2 innate lymphoid cell-based immunotherapy for cancer. Front Immunol 2024; 15:1317522. [PMID: 38524132 PMCID: PMC10958781 DOI: 10.3389/fimmu.2024.1317522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Cell-based cancer immunotherapy has achieved significant advancements, providing a source of hope for cancer patients. Notwithstanding the considerable progress in cell-based immunotherapy, the persistently low response rates and the exorbitant costs associated with their implementation still present a formidable challenge in clinical settings. In the landscape of cell-based cancer immunotherapies, an uncharted territory involves Type 2 innate lymphoid cells (ILC2s) and interleukin-33 (IL-33) which promotes ILC2 functionality, recognized for their inherent ability to enhance immune responses. Recent discoveries regarding their role in actuating cytolytic T lymphocyte responses, including curbing tumor growth rates and hindering metastasis, have added a new dimension to our understanding of the IL-33/ILC2 axis. These recent insights may hold significant promise for ILC2 cell-based immunotherapy. Nevertheless, the prospect of adoptively transferring ILC2s to confer immune protection against tumors has yet to be investigated. The present study addresses this hypothesis, revealing that ILC2s isolated from the lungs of tumor-bearing mice, and tumor infiltrating ILC2s when adoptively transferred after tumor establishment at a ratio of one ILC2 per sixty tumor cells, leads to an influx of tumor infiltrating CD4+ and CD8+ T lymphocytes as well as tumor infiltrating eosinophils resulting in a remarkable reduction in tumor growth. Moreover, we find that post-adoptive transfer of ILC2s, the number of tumor infiltrating ILC2s is inversely proportional to tumor size. Finally, we find corollaries of the IL-33/ILC2 axis enhancing the infiltration of eosinophils in human prostate carcinomas patients' expressing high levels of IL-33 versus those expressing low levels of IL-33. Our results underscore the heightened efficacy of adoptively transferred ILC2s compared to alternative approaches, revealing an approximately one hundred fifty-fold superiority on a cell-per-cell basis over CAR T-cells in the specific targeting and elimination of tumors within the same experimental model. Overall, this study demonstrates the functional significance of ILC2s in cancer immunosurveillance and provides the proof of concept of the potential utility of ILC2 cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Clara Wenjing Xia
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Besoiu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Pablo L. Finkel
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Suresh Kari
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin E. Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Lim CML, Komarasamy TV, Adnan NAAB, Radhakrishnan AK, Balasubramaniam VRMT. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Respir Viruses 2024; 18:e13276. [PMID: 38513364 PMCID: PMC10957243 DOI: 10.1111/irv.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024] Open
Abstract
Every year, influenza virus infections cause significant morbidity and mortality worldwide. They pose a substantial burden of disease, in terms of not only health but also the economy. Owing to the ability of influenza viruses to continuously evolve, annual seasonal influenza vaccines are necessary as a prophylaxis. However, current influenza vaccines against seasonal strains have limited effectiveness and require yearly reformulation due to the virus undergoing antigenic drift or shift. Vaccine mismatches are common, conferring suboptimal protection against seasonal outbreaks, and the threat of the next pandemic continues to loom. Therefore, there is a great need to develop a universal influenza vaccine (UIV) capable of providing broad and durable protection against all influenza virus strains. In the quest to develop a UIV that would obviate the need for annual vaccination and formulation, a multitude of strategies is currently underway. Promising approaches include targeting the highly conserved epitopes of haemagglutinin (HA), neuraminidase (NA), M2 extracellular domain (M2e) and internal proteins of the influenza virus. The identification and characterization of broadly neutralizing antibodies (bnAbs) targeting conserved regions of the viral HA protein, in particular, have provided important insight into novel vaccine designs and platforms. This review discusses universal vaccine approaches presently under development, with an emphasis on those targeting the highly conserved stalk of the HA protein, recent technological advancements used and the future prospects of a UIV in terms of its advantages, developmental obstacles and potential shortcomings.
Collapse
Affiliation(s)
- Caryn Myn Li Lim
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Nur Amelia Azreen Binti Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Ammu Kutty Radhakrishnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| |
Collapse
|
7
|
Sayedahmed EE, Elshafie NO, dos Santos AP, Jagannath C, Sambhara S, Mittal SK. Development of NP-Based Universal Vaccine for Influenza A Viruses. Vaccines (Basel) 2024; 12:157. [PMID: 38400140 PMCID: PMC10892571 DOI: 10.3390/vaccines12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The nucleoprotein (NP) is a vital target for the heterosubtypic immunity of CD8+ cytotoxic T lymphocytes (CTLs) due to its conservation among influenza virus subtypes. To further enhance the T cell immunity of NP, autophagy-inducing peptide C5 (AIP-C5) from the CFP10 protein of Mycobacterium tuberculosis was used. Mice were immunized intranasally (i.n.) with human adenoviral vectors, HAd-C5-NP(H7N9) or HAd-NP(H7N9), expressing NP of an H7N9 influenza virus with or without the AIP-C5, respectively. Both vaccines developed similar levels of NP-specific systemic and mucosal antibody titers; however, there was a significantly higher number of NP-specific CD8 T cells secreting interferon-gamma (IFN-γ) in the HAd-C5-NP(H7N9) group than in the HAd-NP(H7N9) group. The HAd-C5-NP(H7N9) vaccine provided better protection following the challenge with A/Puerto Rico/8/1934(H1N1), A/Hong Kong/1/68(H3N2), A/chukkar/MN/14951-7/1998(H5N2), A/goose/Nebraska/17097/2011(H7N9), or A/Hong Kong/1073/1999(H9N2) influenza viruses compared to the HAd-NP(H7N9) group. The autophagy transcriptomic gene analysis of the HAd-C5-NP(H7N9) group revealed the upregulation of some genes involved in the positive regulation of the autophagy process. The results support further exploring the use of NP and AIP-C5 for developing a universal influenza vaccine for pandemic preparedness.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX 77030, USA;
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| |
Collapse
|
8
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
9
|
Langenmayer MC, Luelf-Averhoff AT, Marr L, Jany S, Freudenstein A, Adam-Neumair S, Tscherne A, Fux R, Rojas JJ, Blutke A, Sutter G, Volz A. Newly Designed Poxviral Promoters to Improve Immunogenicity and Efficacy of MVA-NP Candidate Vaccines against Lethal Influenza Virus Infection in Mice. Pathogens 2023; 12:867. [PMID: 37513714 PMCID: PMC10383309 DOI: 10.3390/pathogens12070867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Influenza, a respiratory disease mainly caused by influenza A and B, viruses of the Orthomyxoviridae, is still a burden on our society's health and economic system. Influenza A viruses (IAV) circulate in mammalian and avian populations, causing seasonal outbreaks with high numbers of cases. Due to the high variability in seasonal IAV triggered by antigenic drift, annual vaccination is necessary, highlighting the need for a more broadly protective vaccine against IAV. The safety tested Modified Vaccinia virus Ankara (MVA) is licensed as a third-generation vaccine against smallpox and serves as a potent vector system for the development of new candidate vaccines against different pathogens. Here, we generated and characterized recombinant MVA candidate vaccines that deliver the highly conserved internal nucleoprotein (NP) of IAV under the transcriptional control of five newly designed chimeric poxviral promoters to further increase the immunogenic properties of the recombinant viruses (MVA-NP). Infections of avian cell cultures with the recombinant MVA-NPs demonstrated efficient synthesis of the IAV-NP which was expressed under the control of the five new promoters. Prime-boost or single shot immunizations in C57BL/6 mice readily induced circulating serum antibodies' binding to recombinant IAV-NP and the robust activation of IAV-NP-specific CD8+ T cell responses. Moreover, the MVA-NP candidate vaccines protected C57BL/6 mice against lethal respiratory infection with mouse-adapted IAV (A/Puerto Rico/8/1934/H1N1). Thus, further studies are warranted to evaluate the immunogenicity and efficacy of these recombinant MVA-NP vaccines in other IAV challenge models in more detail.
Collapse
Affiliation(s)
- Martin C Langenmayer
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | | | - Lisa Marr
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Sylvia Jany
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Astrid Freudenstein
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Silvia Adam-Neumair
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Alina Tscherne
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Juan J Rojas
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- Immunology Unit, Department of Pathology and Experimental Therapies, Faculty of Medicine and Health Sciences, University of Barcelona-Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
- Institute for Veterinary Pathology, LMU Munich, 80539 Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- German Center of Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| |
Collapse
|
10
|
Sanchez MV, Ebensen T, Schulze K, Cargnelutti DE, Scodeller EA, Guzmán CA. Protective Efficacy of a Mucosal Influenza Vaccine Formulation Based on the Recombinant Nucleoprotein Co-Administered with a TLR2/6 Agonist BPPcysMPEG. Pharmaceutics 2023; 15:pharmaceutics15030912. [PMID: 36986773 PMCID: PMC10057018 DOI: 10.3390/pharmaceutics15030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Current influenza vaccines target highly variable surface glycoproteins; thus, mismatches between vaccine strains and circulating strains often diminish vaccine protection. For this reason, there is still a critical need to develop effective influenza vaccines able to protect also against the drift and shift of different variants of influenza viruses. It has been demonstrated that influenza nucleoprotein (NP) is a strong candidate for a universal vaccine, which contributes to providing cross-protection in animal models. In this study, we developed an adjuvanted mucosal vaccine using the recombinant NP (rNP) and the TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl-poly-ethylene-glycol (BPPcysMPEG). The vaccine efficacy was compared with that observed following parenteral vaccination of mice with the same formulation. Mice vaccinated with 2 doses of rNP alone or co-administered with BPPcysMPEG by the intranasal (i.n.) route showed enhanced antigen-specific humoral and cellular responses. Moreover, NP-specific humoral immune responses, characterized by significant NP-specific IgG and IgG subclass titers in sera and NP-specific IgA titers in mucosal territories, were remarkably increased in mice vaccinated with the adjuvanted formulation as compared with those of the non-adjuvanted vaccination group. The addition of BPPcysMPEG also improved NP-specific cellular responses in vaccinated mice, characterized by robust lymphoproliferation and mixed Th1/Th2/Th17 immune profiles. Finally, it is notable that the immune responses elicited by the novel formulation administered by the i.n. route were able to confer protection against the influenza H1N1 A/Puerto Rico/8/1934 virus.
Collapse
Affiliation(s)
- Maria Victoria Sanchez
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Diego Esteban Cargnelutti
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Eduardo A. Scodeller
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
- Correspondence: ; Tel.: +49-531-61814600; Fax: +49-531-618414699
| |
Collapse
|
11
|
Muraduzzaman AKM, Illing PT, Mifsud NA, Purcell AW. Understanding the Role of HLA Class I Molecules in the Immune Response to Influenza Infection and Rational Design of a Peptide-Based Vaccine. Viruses 2022; 14:2578. [PMID: 36423187 PMCID: PMC9695287 DOI: 10.3390/v14112578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza A virus is a respiratory pathogen that is responsible for regular epidemics and occasional pandemics that result in substantial damage to life and the economy. The yearly reformulation of trivalent or quadrivalent flu vaccines encompassing surface glycoproteins derived from the current circulating strains of the virus does not provide sufficient cross-protection against mismatched strains. Unlike the current vaccines that elicit a predominant humoral response, vaccines that induce CD8+ T cells have demonstrated a capacity to provide cross-protection against different influenza strains, including novel influenza viruses. Immunopeptidomics, the mass spectrometric identification of human-leukocyte-antigen (HLA)-bound peptides isolated from infected cells, has recently provided key insights into viral peptides that can serve as potential T cell epitopes. The critical elements required for a strong and long-living CD8+ T cell response are related to both HLA restriction and the immunogenicity of the viral peptide. This review examines the importance of HLA and the viral immunopeptidome for the design of a universal influenza T-cell-based vaccine.
Collapse
Affiliation(s)
| | | | - Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
12
|
Orlova OV, Glazkova DV, Bogoslovskaya EV, Shipulin GA, Yudin SM. Development of Modified Vaccinia Virus Ankara-Based Vaccines: Advantages and Applications. Vaccines (Basel) 2022; 10:vaccines10091516. [PMID: 36146594 PMCID: PMC9503770 DOI: 10.3390/vaccines10091516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a promising viral vector for vaccine development. MVA is well studied and has been widely used for vaccination against smallpox in Germany. This review describes the history of the origin of the virus and its properties as a vaccine, including a high safety profile. In recent years, MVA has found its place as a vector for the creation of vaccines against various diseases. To date, a large number of vaccine candidates based on the MVA vector have already been developed, many of which have been tested in preclinical and clinical studies. We discuss data on the immunogenicity and efficacy of some of these vaccines.
Collapse
|
13
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
14
|
Development of a pentavalent broadly protective nucleoside-modified mRNA vaccine against influenza B viruses. Nat Commun 2022; 13:4677. [PMID: 35945226 PMCID: PMC9362976 DOI: 10.1038/s41467-022-32149-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Messenger RNA (mRNA) vaccines represent a new, effective vaccine platform with high capacity for rapid development. Generation of a universal influenza virus vaccine with the potential to elicit long-lasting, broadly cross-reactive immune responses is a necessity for reducing influenza-associated morbidity and mortality. Here we focus on the development of a universal influenza B virus vaccine based on the lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) platform. We evaluate vaccine candidates based on different target antigens that afford protection against challenge with ancestral and recent influenza B viruses from both antigenic lineages. A pentavalent vaccine combining all tested antigens protects mice from morbidity at a very low dose of 50 ng per antigen after a single vaccination. These findings support the further advancement of nucleoside-modified mRNA-LNPs expressing multiple conserved antigens as universal influenza virus vaccine candidates. The public health concern caused by influenza B virus is often overlooked, yet represents a significant global burden. Here, the authors evaluate the cellular and humoral immune responses of multivalent vaccine candidates, based on the lipid nanoparticle-encapsulated nucleoside-modified mRNA platform, and demonstrate protection of mice from challenge with a broad panel of influenza B viruses.
Collapse
|
15
|
Evans TG, Bussey L, Eagling-Vose E, Rutkowski K, Ellis C, Argent C, Griffin P, Kim J, Thackwray S, Shakib S, Doughty J, Gillies J, Wu J, Druce J, Pryor M, Gilbert S. Efficacy and safety of a universal influenza A vaccine (MVA-NP+M1) in adults when given after seasonal quadrivalent influenza vaccine immunisation (FLU009): a phase 2b, randomised, double-blind trial. THE LANCET INFECTIOUS DISEASES 2022; 22:857-866. [DOI: 10.1016/s1473-3099(21)00702-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 10/18/2022]
|
16
|
Development of a Universal Epitope-Based Influenza Vaccine and Evaluation of Its Effectiveness in Mice. Vaccines (Basel) 2022; 10:vaccines10040534. [PMID: 35455283 PMCID: PMC9026828 DOI: 10.3390/vaccines10040534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/10/2022] Open
Abstract
Vaccination is an effective and economically viable means of protection against the influenza virus, but due to rapid viral evolution, modern seasonal vaccines are not effective enough. Next-generation vaccines are designed to provide protection against a wide range of influenza virus strains, including pandemic variants. In our work, we made an epitope-based universal vaccine, rMVA-k1-k2, against the influenza virus based on the modified vaccinia Ankara (MVA) vector and using our own algorithms to select epitopes from conserved fragments of the NP, M1 and HA proteins of influenza A and B. We show that double immunization protects mice with a 67% or greater efficiency against viral influenza pneumonia when infected with various strains of the H1N1, H2N2, H3N2 and H5N1 subtypes of influenza A. In animals, the level of protection provided by the rMVA-k1-k2 vaccine was comparable to that provided by the universal M001 and MVA-NP+M1 (Invictus) vaccines, which have shown success in clinical trials, against strains of the H1N1 and H3N2 subtypes.
Collapse
|
17
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
18
|
Freyn AW, Pine M, Rosado VC, Benz M, Muramatsu H, Beattie M, Tam YK, Krammer F, Palese P, Nachbagauer R, McMahon M, Pardi N. Antigen modifications improve nucleoside-modified mRNA-based influenza virus vaccines in mice. Mol Ther Methods Clin Dev 2021; 22:84-95. [PMID: 34485597 PMCID: PMC8390451 DOI: 10.1016/j.omtm.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
Nucleoside-modified, lipid nanoparticle-encapsulated mRNAs have recently emerged as suitable vaccines for influenza viruses and other pathogens in part because the platform allows delivery of multiple antigens in a single immunization. mRNA vaccines allow for easy antigen modification, enabling rapid iterative design. We studied protein modifications such as mutating functional sites, changing secretion potential, and altering protein conformation, which could improve the safety and/or potency of mRNA-based influenza virus vaccines. Mice were vaccinated intradermally with wild-type or mutant constructs of influenza virus hemagglutinin (HA), neuraminidase (NA), matrix protein 2 (M2), nucleoprotein (NP), or matrix protein 1 (M1). Membrane-bound HA constructs elicited more potent and protective antibody responses than secreted forms. Altering the catalytic site of NA to reduce enzymatic activity decreased reactogenicity while protective immunity was maintained. Disruption of M2 ion channel activity improved immunogenicity and protective efficacy. A comparison of internal proteins NP and M1 revealed the superiority of NP in conferring protection from influenza virus challenge. These findings support the use of the nucleoside-modified mRNA platform for guided antigen design for influenza virus with extension to other pathogens.
Collapse
Affiliation(s)
- Alec W Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria C Rosado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marcel Benz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Bull MB, Cohen CA, Leung NH, Valkenburg SA. Universally Immune: How Infection Permissive Next Generation Influenza Vaccines May Affect Population Immunity and Viral Spread. Viruses 2021; 13:1779. [PMID: 34578360 PMCID: PMC8472936 DOI: 10.3390/v13091779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Next generation influenza vaccines that target conserved epitopes are becoming a clinical reality but still have challenges to overcome. Universal next generation vaccines are considered a vital tool to combat future pandemic viruses and have the potential to vastly improve long-term protection against seasonal influenza viruses. Key vaccine strategies include HA-stem and T cell activating vaccines; however, they could have unintended effects for virus adaptation as they recognise the virus after cell entry and do not directly block infection. This may lead to immune pressure on residual viruses. The potential for immune escape is already evident, for both the HA stem and T cell epitopes, and mosaic approaches for pre-emptive immune priming may be needed to circumvent key variants. Live attenuated influenza vaccines have not been immunogenic enough to boost T cells in adults with established prior immunity. Therefore, viral vectors or peptide approaches are key to harnessing T cell responses. A plethora of viral vector vaccines and routes of administration may be needed for next generation vaccine strategies that require repeated long-term administration to overcome vector immunity and increase our arsenal against diverse influenza viruses.
Collapse
Affiliation(s)
- Maireid B. Bull
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| | - Carolyn A. Cohen
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| | - Nancy H.L. Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China;
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| |
Collapse
|
20
|
Isakova-Sivak I, Stepanova E, Mezhenskaya D, Matyushenko V, Prokopenko P, Sychev I, Wong PF, Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines 2021; 20:1097-1112. [PMID: 34348561 DOI: 10.1080/14760584.2021.1964961] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The licensed seasonal influenza vaccines predominantly induce neutralizing antibodies against immunodominant hypervariable epitopes of viral surface proteins, with limited protection against antigenically distant influenza viruses. Strategies have been developed to improve vaccines' performance in terms of broadly reactive and long-lasting immune response induction. AREAS COVERED We have summarized the advancements in the development of cross-protective influenza vaccines and discussed the challenges in evaluating them in preclinical and clinical trials. Here, the literature regarding the current stage of development of universal influenza vaccine candidates was reviewed. EXPERT OPINION Although various strategies aim to redirect adaptive immune responses from variable immunodominant to immunosubdominant antigens, more conserved epitopes are being investigated. Approaches that improve antibody responses to conserved B cell epitopes have increased the protective efficacy of vaccines within a subtype or phylogenetic group of influenza viruses. Vaccines that elicit significant levels of T cells recognizing highly conserved viral epitopes possess a high cross-protective potential and may cover most circulating influenza viruses. However, the development of T cell-based universal influenza vaccines is challenging owing to the diversity of MHCs in the population, unpredictable degree of immunodominance, lack of adequate animal models, and difficulty in establishing T cell immunity in humans. ABBREVIATIONS cHA: chimeric HA; HBc: hepatitis B virus core protein; HA: hemagglutinin; HLA: human leucocyte antigen; IIV: inactivated influenza vaccine; KLH: keyhole limpet hemocyanin; LAH: long alpha helix; LAIV: live attenuated influenza vaccine; M2e: extracellular domain of matrix 2 protein; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NA: neuraminidase; NS1: non-structural protein 1; qNIV: quadrivalent nanoparticle influenza vaccine; TRM: tissue-resident memory T cells; VE: vaccine effectiveness; VLP: virus-like particles; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina Stepanova
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ivan Sychev
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Pei-Fong Wong
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
21
|
Butler C, Ellis C, Folegatti PM, Swayze H, Allen J, Bussey L, Bellamy D, Lawrie A, Eagling-Vose E, Yu LM, Shanyinde M, Mair C, Flaxman A, Ewer K, Gilbert S, Evans TG. Efficacy and Safety of a Modified Vaccinia Ankara-NP+M1 Vaccine Combined with QIV in People Aged 65 and Older: A Randomised Controlled Clinical Trial (INVICTUS). Vaccines (Basel) 2021; 9:vaccines9080851. [PMID: 34451976 PMCID: PMC8402379 DOI: 10.3390/vaccines9080851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pre-existing T cell responses to influenza have been correlated with improved clinical outcomes in natural history and human challenge studies. We aimed to determine the efficacy, safety and immunogenicity of a T-cell directed vaccine in older people. METHODS This was a multicentre, participant- and safety assessor-blinded, randomised, placebo-controlled trial of the co-administration of Modified Vaccinia Ankara encoding nucleoprotein and matrix protein 1 (MVA-NP+M1) and annual influenza vaccine in participants ≥ 65. The primary outcome was the number of days with moderate or severe influenza-like symptoms (ILS) during the influenza season. RESULTS 846 of a planned 2030 participants were recruited in the UK prior to, and throughout, the 2017/18 flu season. There was no evidence of a difference in the reported rates of days of moderate or severe ILS during influenza-like illness episodes (unadjusted OR = 0.95, 95% CI: 0.54-1.69; adjusted OR = 0.91, 95% CI: 0.51-1.65). The trial was stopped after one season due to a change in the recommended annual flu vaccine, for which safety of the new combination had not been established. More participants in the MVA-NP+M1 group had transient moderate or severe pain, redness, and systemic responses in the first seven days. CONCLUSION The MVA-NP+M1 vaccine is well tolerated in those aged 65 years and over. Larger trials would be needed to determine potential efficacy.
Collapse
Affiliation(s)
- Chris Butler
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Chris Ellis
- Vaccitech Ltd., Oxford OX4 4GE, UK; (C.E.); (L.B.); (E.E.-V.)
| | - Pedro M. Folegatti
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Hannah Swayze
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Julie Allen
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Louise Bussey
- Vaccitech Ltd., Oxford OX4 4GE, UK; (C.E.); (L.B.); (E.E.-V.)
| | - Duncan Bellamy
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Alison Lawrie
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | | | - Ly-Mee Yu
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Milensu Shanyinde
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Catherine Mair
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Amy Flaxman
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Katie Ewer
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Sarah Gilbert
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Thomas G. Evans
- Vaccitech Ltd., Oxford OX4 4GE, UK; (C.E.); (L.B.); (E.E.-V.)
- Correspondence:
| | | |
Collapse
|
22
|
Hirzel C, Chruscinski A, Ferreira VH, L'Huillier AG, Natori Y, Han SH, Cordero E, Humar A, Kumar D. Natural influenza infection produces a greater diversity of humoral responses than vaccination in immunosuppressed transplant recipients. Am J Transplant 2021; 21:2709-2718. [PMID: 33484237 DOI: 10.1111/ajt.16503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 01/25/2023]
Abstract
The humoral immune response to influenza virus infection is complex and may be different compared to the antibody response elicited by vaccination. We analyzed the breadth of IgG and IgA responses in solid organ transplant (SOT) recipients to a diverse collection of 86 influenza antigens elicited by natural influenza A virus (IAV) infection or by vaccination. Antibody levels were quantified using a custom antigen microarray. A total of 120 patients were included: 80 IAV infected (40 A/H1N1 and 40 A/H3N2) and 40 vaccinated. Based on hierarchical clustering analysis, infection with either H1N1 or H3N2 virus showed a more diverse antibody response compared to vaccination. Similarly, H1N1-infected individuals showed a significant IgG response to 27.9% of array antigens and H3N2-infected patients to 43.0% of antigens, whereas vaccination elicited a less broad immune response (7.0% of antigens). Immune responses were not exclusively targeting influenza hemagglutinin (HA) proteins but were also directed against conserved influenza antigens. Serum IgA responses followed a similar profile. This study provides novel data on the breadth of antibody responses to influenza. We also found that the diversity of response is greater in influenza-infected rather than vaccinated patients, providing a potential mechanistic rationale for suboptimal vaccine efficacy in this population.
Collapse
Affiliation(s)
- Cedric Hirzel
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.,Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrzej Chruscinski
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Victor H Ferreira
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Arnaud G L'Huillier
- Pediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Yochiro Natori
- Division of Infectious Diseases, University of Miami, Miami, Florida, USA
| | - Sang H Han
- University of South Korea, Seoul, South Korea
| | - Elisa Cordero
- Hospital Universitario Virgen del Rocío and Biomedicine Research Institute, Seville, Spain.,Spanish Network for Research in Infectious Diseases (REIPI, Seville, Spain
| | - Atul Humar
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Deepali Kumar
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
An Antigenic Thrift-Based Approach to Influenza Vaccine Design. Vaccines (Basel) 2021; 9:vaccines9060657. [PMID: 34208489 PMCID: PMC8235769 DOI: 10.3390/vaccines9060657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/19/2022] Open
Abstract
The antigenic drift theory states that influenza evolves via the gradual accumulation of mutations, decreasing a host’s immune protection against previous strains. Influenza vaccines are designed accordingly, under the premise of antigenic drift. However, a paradox exists at the centre of influenza research. If influenza evolved primarily through mutation in multiple epitopes, multiple influenza strains should co-circulate. Such a multitude of strains would render influenza vaccines quickly inefficacious. Instead, a single or limited number of strains dominate circulation each influenza season. Unless additional constraints are placed on the evolution of influenza, antigenic drift does not adequately explain these observations. Here, we explore the constraints placed on antigenic drift and a competing theory of influenza evolution – antigenic thrift. In contrast to antigenic drift, antigenic thrift states that immune selection targets epitopes of limited variability, which constrain the variability of the virus. We explain the implications of antigenic drift and antigenic thrift and explore their current and potential uses in the context of influenza vaccine design.
Collapse
|
24
|
Ferrara F, Del Rosario JMM, da Costa KAS, Kinsley R, Scott S, Fereidouni S, Thompson C, Kellam P, Gilbert S, Carnell G, Temperton N. Development of Lentiviral Vectors Pseudotyped With Influenza B Hemagglutinins: Application in Vaccine Immunogenicity, mAb Potency, and Sero-Surveillance Studies. Front Immunol 2021; 12:661379. [PMID: 34108964 PMCID: PMC8182064 DOI: 10.3389/fimmu.2021.661379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza B viruses (IBV) cause respiratory disease epidemics in humans and are therefore components of seasonal influenza vaccines. Serological methods are employed to evaluate vaccine immunogenicity prior to licensure. However, classical methods to assess influenza vaccine immunogenicity such as the hemagglutination inhibition assay (HI) and the serial radial hemolysis assay (SRH), have been proven to have many limitations. As such, there is a need to develop innovative methods that can improve on these traditional assays and provide advantages such as ease of production and access, safety, reproducibility, and specificity. It has been previously demonstrated that the use of replication-defective viruses, such as lentiviral vectors pseudotyped with influenza A hemagglutinins in microneutralization assays (pMN) is a safe and sensitive alternative to study antibody responses elicited by natural influenza infection or vaccination. Consequently, we have produced Influenza B hemagglutinin-pseudotypes (IBV PV) using plasmid-directed transfection. To activate influenza B hemagglutinin, we have explored the use of proteases in increasing PV titers via their co-transfection during pseudotype virus production. When tested for their ability to transduce target cells, the influenza B pseudotypes produced exhibit tropism for different cell lines. The pseudotypes were evaluated as alternatives to live virus in microneutralization assays using reference sera standards, mouse and human sera collected during vaccine immunogenicity studies, surveillance sera from seals, and monoclonal antibodies (mAbs) against IBV. The influenza B pseudotype pMN was found to effectively detect neutralizing and cross-reactive responses in all assays and shows promise as an effective and versatile tool in influenza research.
Collapse
Affiliation(s)
- Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Joanne Marie M Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Physical Sciences & Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Kelly A S da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Rebecca Kinsley
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, Veterinary Medicine University, Vienna, Austria
| | - Craig Thompson
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Paul Kellam
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| |
Collapse
|
25
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
26
|
CD8 + T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nat Commun 2021; 12:2931. [PMID: 34006841 PMCID: PMC8132304 DOI: 10.1038/s41467-021-23212-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550-558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA- phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27-CD45RA-PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease.
Collapse
|
27
|
Engineered influenza virions reveal the contributions of non-hemagglutinin structural proteins to vaccine mediated protection. J Virol 2021; 95:JVI.02021-20. [PMID: 33658342 PMCID: PMC8139674 DOI: 10.1128/jvi.02021-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of improved and universal anti-influenza vaccines would represent a major advance in the protection of human health. In order to facilitate the development of such vaccines, understanding how viral proteins can contribute to protection from disease is critical. Much of the previous work to address these questions relied on reductionist systems (i.e. vaccinating with individual proteins or VLPs that contain only a few viral proteins); thus we have an incomplete understanding of how immunity to different subsets of viral proteins contribute to protection. Here, we report the development of a platform in which a single viral protein can be deleted from an authentic viral particle that retains the remaining full complement of structural proteins and viral RNA. As a first study with this system, we chose to delete the major IAV antigen, the hemagglutinin protein, to evaluate how the other components of the viral particle contribute en masse to protection from influenza disease. Our results show that while anti-HA immunity plays a major role in protection from challenge with a vaccine-matched strain, the contributions from other structural proteins were the major drivers of protection against highly antigenically drifted, homosubtypic strains. This work highlights the importance of evaluating the inclusion of non-HA viral proteins in the development of broadly efficacious and long-lasting influenza vaccines.ImportanceInfluenza virus vaccines currently afford short-term protection from viruses that are closely related to the vaccine strains. There is currently much effort to develop improved, next-generation influenza vaccines that elicit broader and longer-lasting protection. While the hemagglutinin protein is the major viral antigen, in this work, we developed an approach with which to evaluate the contributions of the non-hemagglutinin proteins to vaccine mediated protection. Our results indicate that other structural proteins together may help to mediate broad antiviral protection and should be considered in the development of more universal influenza vaccines.
Collapse
|
28
|
Puksuriwong S, Ahmed MS, Sharma R, Krishnan M, Leong S, Lambe T, McNamara PS, Gilbert SC, Zhang Q. Modified Vaccinia Ankara-Vectored Vaccine Expressing Nucleoprotein and Matrix Protein 1 (M1) Activates Mucosal M1-Specific T-Cell Immunity and Tissue-Resident Memory T Cells in Human Nasopharynx-Associated Lymphoid Tissue. J Infect Dis 2021; 222:807-819. [PMID: 31740938 PMCID: PMC7399703 DOI: 10.1093/infdis/jiz593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence supports a critical role of CD8+ T-cell immunity against influenza. Activation of mucosal CD8+ T cells, particularly tissue-resident memory T (TRM) cells recognizing conserved epitopes would mediate rapid and broad protection. Matrix protein 1 (M1) is a well-conserved internal protein. Methods We studied the capacity of modified vaccinia Ankara (MVA)–vectored vaccine expressing nucleoprotein (NP) and M1 (MVA-NP+M1) to activate M1-specific CD8+ T-cell response, including TRM cells, in nasopharynx-associated lymphoid tissue from children and adults. Results After MVA-NP+M1 stimulation, M1 was abundantly expressed in adenotonsillar epithelial cells and B cells. MVA-NP+M1 activated a marked interferon γ–secreting T-cell response to M1 peptides. Using tetramer staining, we showed the vaccine activated a marked increase in M158–66 peptide-specific CD8+ T cells in tonsillar mononuclear cells of HLA-matched individuals. We also demonstrated MVA-NP+M1 activated a substantial increase in TRM cells exhibiting effector memory T-cell phenotype. On recall antigen recognition, M1-specific T cells rapidly undergo cytotoxic degranulation, release granzyme B and proinflammatory cytokines, leading to target cell killing. Conclusions MVA-NP+M1 elicits a substantial M1-specific T-cell response, including TRM cells, in nasopharynx-associated lymphoid tissue, demonstrating its strong capacity to expand memory T-cell pool exhibiting effector memory T-cell phenotype, therefore offering great potential for rapid and broad protection against influenza reinfection.
Collapse
Affiliation(s)
- Suttida Puksuriwong
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Muhammad S Ahmed
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ravi Sharma
- ENT Departments, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Madhan Krishnan
- ENT Departments, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Sam Leong
- ENT Departments, Aintree University Hospital, Liverpool, United Kingdom
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Paul S McNamara
- Institute of Child Health, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Qibo Zhang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
29
|
Uddbäck I, Kohlmeier JE, Thomsen AR, Christensen JP. Harnessing Cross-Reactive CD8 + T RM Cells for Long-Standing Protection Against Influenza A Virus. Viral Immunol 2021; 33:201-207. [PMID: 32286174 PMCID: PMC7185354 DOI: 10.1089/vim.2019.0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Ida Uddbäck
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Recent developments in vaccines strategies against human viral pathogens. RECENT DEVELOPMENTS IN APPLIED MICROBIOLOGY AND BIOCHEMISTRY 2021. [PMCID: PMC7564847 DOI: 10.1016/b978-0-12-821406-0.00001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, several viruses have emerged or reemerged from obscurity to become serious global health threats, raising alarm regarding their sustained epidemic transmission. One of the main public health concerns of these emerging viruses is their sustained circulation among populations of immunologically naïve, susceptible hosts. With every new viral emergence or reemergence, comes the call for rapid vaccine development and the induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Vaccines are considered a critical component of disease prevention against emerging viral infections because, in many cases, other medical options are limited or nonexistent. While the classic approaches to vaccine development are still amenable to emerging viruses, the advent of latest technologies in molecular techniques has profoundly influenced our understanding of virus biology, and immune responses and vaccination methods based on replicating, attenuated, and nonreplicating virus vector approaches have become useful vaccine platforms. Together with a growing understanding in the biology of newly emerging virus diseases, a range of new vaccine strategies, vaccines against new and reemerging viruses may become a possibility.
Collapse
|
31
|
Orlova OV, Glazkova DV, Tsyganova GM, Antoshkina IV, Mintaev RR, Tikhonov AS, Bogoslovskaya EV, Shipulin GA. Application of real-time PCR to significantly reduce the time to obtain recombinant MVA virus. J Virol Methods 2020; 289:114056. [PMID: 33359615 DOI: 10.1016/j.jviromet.2020.114056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Obtaining a pure recombinant Modified Vaccinia Ankara (MVA) virus is a multistage, time-consuming procedure. We describe a novel single-tube real-time PCR which enables determination of the amount of wild type and recombinant viruses and their ratio in plaques. Use of the real-time PCR significantly reduce the time and efforts needed to obtain purified recombinant MVA. The new approach has been applied to generate recombinant MVAs encoding different SARS-COV-2 antigens.
Collapse
Affiliation(s)
- O V Orlova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia.
| | - D V Glazkova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - G M Tsyganova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - I V Antoshkina
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - R R Mintaev
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia; I. Mechnikov Research Institute of Vaccines and Sera, 105064, Moscow, Russia
| | - A S Tikhonov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - E V Bogoslovskaya
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - G A Shipulin
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| |
Collapse
|
32
|
Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020. [DOI: 10.3390/vaccines8040783
expr 839529059 + 832255227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
|
33
|
Lukacs NW, Malinczak CA. Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020; 8:783. [PMID: 33371275 PMCID: PMC7766447 DOI: 10.3390/vaccines8040783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
Affiliation(s)
- Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
34
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
35
|
Rockman S, Laurie KL, Parkes S, Wheatley A, Barr IG. New Technologies for Influenza Vaccines. Microorganisms 2020; 8:microorganisms8111745. [PMID: 33172191 PMCID: PMC7694987 DOI: 10.3390/microorganisms8111745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Vaccine development has been hampered by the long lead times and the high cost required to reach the market. The 2020 pandemic, caused by a new coronavirus (SARS-CoV-2) that was first reported in late 2019, has seen unprecedented rapid activity to generate a vaccine, which belies the traditional vaccine development cycle. Critically, much of this progress has been leveraged off existing technologies, many of which had their beginnings in influenza vaccine development. This commentary outlines the most promising of the next generation of non-egg-based influenza vaccines including new manufacturing platforms, structure-based antigen design/computational biology, protein-based vaccines including recombinant technologies, nanoparticles, gene- and vector-based technologies, as well as an update on activities around a universal influenza vaccine.
Collapse
Affiliation(s)
- Steven Rockman
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
| | - Karen L. Laurie
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
- Correspondence:
| | - Simone Parkes
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
| | - Adam Wheatley
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
| | - Ian G. Barr
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| |
Collapse
|
36
|
Corder BN, Bullard BL, Poland GA, Weaver EA. A Decade in Review: A Systematic Review of Universal Influenza Vaccines in Clinical Trials during the 2010 Decade. Viruses 2020; 12:E1186. [PMID: 33092070 PMCID: PMC7589362 DOI: 10.3390/v12101186] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
On average, there are 3-5 million severe cases of influenza virus infections globally each year. Seasonal influenza vaccines provide limited protection against divergent influenza strains. Therefore, the development of a universal influenza vaccine is a top priority for the NIH. Here, we report a comprehensive summary of all universal influenza vaccines that were tested in clinical trials during the 2010-2019 decade. Of the 1597 studies found, 69 eligible clinical trials, which investigated 27 vaccines, were included in this review. Information from each trial was compiled for vaccine target, vaccine platform, adjuvant inclusion, clinical trial phase, and results. As we look forward, there are currently three vaccines in phase III clinical trials which could provide significant improvement over seasonal influenza vaccines. This systematic review of universal influenza vaccine clinical trials during the 2010-2019 decade provides an update on the progress towards an improved influenza vaccine.
Collapse
Affiliation(s)
- Brigette N. Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Brianna L. Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Gregory A. Poland
- Mayo Vaccine Research Group, General Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA;
| | - Eric A. Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| |
Collapse
|
37
|
Fernandez-Garcia L, Pacios O, González-Bardanca M, Blasco L, Bleriot I, Ambroa A, López M, Bou G, Tomás M. Viral Related Tools against SARS-CoV-2. Viruses 2020; 12:E1172. [PMID: 33081350 PMCID: PMC7589879 DOI: 10.3390/v12101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
At the end of 2019, a new disease appeared and spread all over the world, the COVID-19, produced by the coronavirus SARS-CoV-2. As a consequence of this worldwide health crisis, the scientific community began to redirect their knowledge and resources to fight against it. Here we summarize the recent research on viruses employed as therapy and diagnostic of COVID-19: (i) viral-vector vaccines both in clinical trials and pre-clinical phases; (ii) the use of bacteriophages to find antibodies specific to this virus and some studies of how to use the bacteriophages themselves as a treatment against viral diseases; and finally, (iii) the use of CRISPR-Cas technology both to obtain a fast precise diagnose of the patient and also the possible use of this technology as a cure.
Collapse
Affiliation(s)
- Laura Fernandez-Garcia
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Olga Pacios
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Mónica González-Bardanca
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Inés Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Antón Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - María López
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| | - Maria Tomás
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| |
Collapse
|
38
|
Exploring the Potential of T-Cells for a Universal Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8040598. [PMID: 33050614 PMCID: PMC7711579 DOI: 10.3390/vaccines8040598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
|
39
|
Ahmed SF, Quadeer AA, Barton JP, McKay MR. Cross-serotypically conserved epitope recommendations for a universal T cell-based dengue vaccine. PLoS Negl Trop Dis 2020; 14:e0008676. [PMID: 32956362 PMCID: PMC7529213 DOI: 10.1371/journal.pntd.0008676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 10/01/2020] [Accepted: 08/04/2020] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV)-associated disease is a growing threat to public health across the globe. Co-circulating as four different serotypes, DENV poses a unique challenge for vaccine design as immunity to one serotype predisposes a person to severe and potentially lethal disease upon infection from other serotypes. Recent experimental studies suggest that an effective vaccine against DENV should elicit a strong T cell response against all serotypes, which could be achieved by directing T cell responses toward cross-serotypically conserved epitopes while avoiding serotype-specific ones. Here, we used experimentally-determined DENV T cell epitopes and patient-derived DENV sequences to assess the cross-serotypic variability of the epitopes. We reveal a distinct near-binary pattern of epitope conservation across serotypes for a large number of DENV epitopes. Based on the conservation profile, we identify a set of 55 epitopes that are highly conserved in at least 3 serotypes. Most of the highly conserved epitopes lie in functionally important regions of DENV non-structural proteins. By considering the global distribution of human leukocyte antigen (HLA) alleles associated with these DENV epitopes, we identify a potentially robust subset of HLA class I and class II restricted epitopes that can serve as targets for a universal T cell-based vaccine against DENV while covering ~99% of the global population.
Collapse
Affiliation(s)
- Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ahmed A. Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, California, United States of America
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
40
|
Abstract
Conventional influenza vaccines are based on predicting the circulating viruses year by year, conferring limited effectiveness since the antigenicity of vaccine strains does not always match the circulating viruses. This necessitates development of universal influenza vaccines that provide broader and lasting protection against pan-influenza viruses. The discovery of the highly conserved immunogens (epitopes) of influenza viruses provides attractive targets for universal vaccine design. Here we review the current understanding with broadly protective immunogens (epitopes) and discuss several important considerations to achieve the goal of universal influenza vaccines.
Collapse
|
41
|
Sant S, Quiñones-Parra SM, Koutsakos M, Grant EJ, Loudovaris T, Mannering SI, Crowe J, van de Sandt CE, Rimmelzwaan GF, Rossjohn J, Gras S, Loh L, Nguyen THO, Kedzierska K. HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. PLoS Pathog 2020; 16:e1008714. [PMID: 32750095 PMCID: PMC7428290 DOI: 10.1371/journal.ppat.1008714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/14/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Seasonal influenza virus infections cause 290,000–650,000 deaths annually and severe morbidity in 3–5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαβ clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαβ clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases. Annual influenza infections cause significant morbidity and morbidity globally. Established T-cell immunity directed at conserved viral regions provides some protection against influenza viruses and promotes rapid recovery, leading to better clinical outcomes. Killer CD8+ T-cells recognising viral peptides in a context of HLA-I glycoproteins, provide the broadest ever reported immunity across distinct influenza strains and subtypes. We asked whether the expression of certain HLA-I alleles affects CD8+ T cells responses. Our study clearly illustrates altered immunodominance hierarchies and immunodomination within broadly-cross-reactive influenza-specific CD8+ T-cells in individuals expressing two or more universal HLA-I alleles, key for T cell-directed vaccines and immunotherapies.
Collapse
Affiliation(s)
- Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Sergio M. Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Emma J. Grant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, Victoria, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Guus F. Rimmelzwaan
- National Influenza Center and Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| |
Collapse
|
42
|
Saad-Roy CM, McDermott AB, Grenfell BT. Dynamic Perspectives on the Search for a Universal Influenza Vaccine. J Infect Dis 2020; 219:S46-S56. [PMID: 30715467 DOI: 10.1093/infdis/jiz044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A universal influenza vaccine (UIV) could considerably alleviate the public health burden of both seasonal and pandemic influenza. Although significant progress has been achieved in clarifying basic immunology and virology relating to UIV, several important questions relating to the dynamics of infection, immunity, and pathogen evolution remain unsolved. In this study, we review these gaps, which span integrative levels, from cellular to global and timescales from molecular events to decades. We argue that they can be best addressed by a tight integration of empirical (laboratory, epidemiological) research and theory and suggest fruitful areas for this synthesis. In particular, quantifying natural and vaccinal limitations on viral transmission are central to this effort.
Collapse
Affiliation(s)
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey.,Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey.,Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
43
|
Romeli S, Hassan SS, Yap WB. Multi-Epitope Peptide-Based and Vaccinia-Based Universal Influenza Vaccine Candidates Subjected to Clinical Trials. Malays J Med Sci 2020; 27:10-20. [PMID: 32788837 PMCID: PMC7409566 DOI: 10.21315/mjms2020.27.2.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
In light of the limited protection conferred by current influenza vaccines, immunisation using universal influenza vaccines has been proposed for protection against all or most influenza sub-types. The fundamental principle of universal influenza vaccines is based on conserved antigens found in most influenza strains, such as matrix 2, nucleocapsid, matrix 1 and stem of hemagglutinin proteins. These antigens trigger cross-protective immunity against different influenza strains. Many researchers have attempted to produce the conserved epitopes of these antigens in the form of peptides in the hope of generating universal influenza vaccine candidates that can broadly induce cross-reactive protection against influenza viral infections. However, peptide vaccines are poorly immunogenic when applied individually owing to their small molecular sizes. Hence, strategies, such as combining peptides as multi-epitope vaccines or presenting peptides on vaccinia virus particles, are employed. This review discusses the clinical and laboratory findings of several multi-epitope peptide vaccine candidates and vaccinia-based peptide vaccines. The majority of these vaccine candidates have reached the clinical trial phase. The findings in this study will indeed shed light on the applicability of universal influenza vaccines to prevent seasonal and pandemic influenza outbreaks in the near future.
Collapse
Affiliation(s)
- Syazwani Romeli
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Wei Boon Yap
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Sha Z, Shang H, Miao Y, Huang J, Niu X, Chen R, Hu L, Huang H, Wei K, Zhu R. Recombinant Lactococcus Lactis Expressing M1-HA2 Fusion Protein Provides Protective Mucosal Immunity Against H9N2 Avian Influenza Virus in Chickens. Front Vet Sci 2020; 7:153. [PMID: 32266297 PMCID: PMC7105734 DOI: 10.3389/fvets.2020.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/03/2020] [Indexed: 01/16/2023] Open
Abstract
H9N2 subtype low pathogenicity avian influenza virus (LPAIV) is distributed worldwide and causes enormous economic losses in the poultry industry. Despite immunization of almost all chickens with inactivated vaccines, the disease still remains widespread. We speculated that improving mucosal or cellular immune responses could contribute to improved control of H9N2 viruses. In this study, we constructed a novel Lactococcus lactis (L. lactis) strain expressing a recombinant fusion protein consisting of the M1 and HA2 proteins derived from an antigenically conserved endemic H9N2 virus strain. The M1-HA2 fusion protein was cloned downstream of a gene encoding a secretory peptide, and we subsequently confirmed that the fusion protein was secreted from L. lactis by Western blotting. We assessed the immunogenicity and protective effects of this recombinant L. lactis strain. Eighty 1-day-old chickens were divided into four groups, and the experimental groups were orally vaccinated twice with the recombinant L. lactis strain. Fecal and intestinal samples, sera, and bronchoalveolar lavage fluid were collected at 7, 14, and 21 days post-vaccination (dpv). Chickens vaccinated with the recombinant L. lactis strain showed significantly increased levels of serum antibodies, T cell-mediated immune responses, and mucosal secretory IgA (SIgA). Following challenge with H9N2 virus at 21 dpv, chickens vaccinated with the recombinant L. lactis strain showed decreased weight loss, lower viral titers in the lung, and reduced lung pathological damage. In summary, our results demonstrated that a recombinant L. lactis strain expressing an H9N2 M1-HA2 fusion protein could induce protective mucosal and systemic immunity. This oral vaccine is H9N2 virus-specific and represents a significant design improvement compared with previous studies. Our study provides a theoretical basis for improving mucosal immune responses to prevent and control H9N2 virus infection.
Collapse
Affiliation(s)
- Zhou Sha
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hongqi Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yongqiang Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jin Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Xiangyun Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ruichang Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Liping Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province, Jinan, China
| | - He Huang
- Shandong New Hope Liuhe Co., Ltd, New Hope Group, Qingdao, China
| | - Kai Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
45
|
Gao R, Sheng Z, Sreenivasan CC, Wang D, Li F. Influenza A Virus Antibodies with Antibody-Dependent Cellular Cytotoxicity Function. Viruses 2020; 12:v12030276. [PMID: 32121563 PMCID: PMC7150983 DOI: 10.3390/v12030276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza causes millions of cases of hospitalizations annually and remains a public health concern on a global scale. Vaccines are developed and have proven to be the most effective countermeasures against influenza infection. Their efficacy has been largely evaluated by hemagglutinin inhibition (HI) titers exhibited by vaccine-induced neutralizing antibodies, which correlate fairly well with vaccine-conferred protection. Contrarily, non-neutralizing antibodies and their therapeutic potential are less well defined, yet, recent advances in anti-influenza antibody research indicate that non-neutralizing Fc-effector activities, especially antibody-dependent cellular cytotoxicity (ADCC), also serve as a critical mechanism in antibody-mediated anti-influenza host response. Monoclonal antibodies (mAbs) with Fc-effector activities have the potential for prophylactic and therapeutic treatment of influenza infection. Inducing mAbs mediated Fc-effector functions could be a complementary or alternative approach to the existing neutralizing antibody-based prevention and therapy. This review mainly discusses recent advances in Fc-effector functions, especially ADCC and their potential role in influenza countermeasures. Considering the complexity of anti-influenza approaches, future vaccines may need a cocktail of immunogens in order to elicit antibodies with broad-spectrum protection via multiple protective mechanisms.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody-Dependent Cell Cytotoxicity
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate
- Influenza A virus/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Zizhang Sheng
- Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| | - Chithra C. Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- Correspondence: (D.W.); (F.L.)
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- BioSNTR, Brookings, SD 57007, USA
- Correspondence: (D.W.); (F.L.)
| |
Collapse
|
46
|
Vogel OA, Manicassamy B. Broadly Protective Strategies Against Influenza Viruses: Universal Vaccines and Therapeutics. Front Microbiol 2020; 11:135. [PMID: 32117155 PMCID: PMC7020694 DOI: 10.3389/fmicb.2020.00135] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Influenza virus is a respiratory pathogen that can cause disease in humans, with symptoms ranging from mild to life-threatening. The vast majority of influenza virus infections in humans are observed during seasonal epidemics and occasional pandemics. Given the substantial public health burden associated with influenza virus infection, yearly vaccination is recommended for protection against seasonal influenza viruses. Despite vigilant surveillance for new variants and careful selection of seasonal vaccine strains, the efficacy of seasonal vaccines can vary widely from year to year. This often results in lowered protection within the population, regardless of vaccination status. In order to broaden the protection afforded by seasonal influenza vaccines, the National Institute of Allergy and Infectious Diseases (NIAID) has deemed the development of a universal influenza virus vaccine to be a priority in influenza virus vaccine research. This universal vaccine would provide protection against all influenza virus strains, eliminating the need for the yearly reformulations of seasonal influenza vaccines. In addition to universal influenza vaccine efforts, substantial progress has been made in developing novel influenza virus therapeutics that utilize broadly neutralizing antibodies to provide protection against influenza virus infection and to mitigate disease outcomes during infection. In this review, we discuss various approaches toward the goal of improving influenza virus vaccine efficacy through a universal influenza virus vaccine. We also address the novel methods of discovery and utilization of broadly neutralizing antibodies to improve influenza disease outcomes.
Collapse
Affiliation(s)
- Olivia A Vogel
- Department of Microbiology, The University of Chicago, Chicago, IL, United States
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
47
|
Dendritic Cells Targeting Lactobacillus plantarum Strain NC8 with a Surface-Displayed Single-Chain Variable Fragment of CD11c Induce an Antigen-Specific Protective Cellular Immune Response. Infect Immun 2020; 88:IAI.00759-19. [PMID: 31740528 DOI: 10.1128/iai.00759-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Influenza A virus (H1N1) is an acute, highly contagious respiratory virus. The use of lactic acid bacteria (LAB) to deliver mucosal vaccines against influenza virus infection is a research hot spot. In this study, two recombinant Lactobacillus plantarum strains expressing hemagglutinin (HA) alone or coexpressing aCD11c-HA to target HA protein to dendritic cells (DCs) by fusion to an anti-CD11c single-chain antibody (aCD11c) were constructed. The activation of bone marrow dendritic cells (BMDCs) by recombinant strains and the interaction of activated BMDCs and sorted CD4+ or CD8+ T cells were evaluated through flow cytometry in vitro, and cellular supernatants were assessed by using an enzyme-linked immunosorbent assay kit. The results demonstrated that, compared to the HA strain, the aCD11c-HA strain significantly increased the activation of BMDCs and increased the production of CD4+ gamma interferon-positive (IFN-γ+) T cells, CD8+ IFN-γ+ T cells, and IFN-γ in the cell culture supernatant in vitro Consistent with these results, the aCD11c-HA strain clearly increased the activation and maturation of DCs, the HA-specific responses of CD4+ IFN-γ+ T cells, CD8+ IFN-γ+ T cells, and CD8+ CD107a+ T cells, and the proliferation of T cells in the spleen, finally increasing the levels of specific antibodies and neutralizing antibodies in mice. In addition, the protection of immunized mice was observed after viral infection, as evidenced by improved weight loss, survival, and lung pathology. The adoptive transfer of CD8+ T cells from the aCD11c-HA mice to NOD/Lt-SCID mice resulted in a certain level of protection after influenza virus infection, highlighting the efficacy of the aCD11c targeting strategy.
Collapse
|
48
|
Marín-López A, Barreiro-Piñeiro N, Utrilla-Trigo S, Barriales D, Benavente J, Nogales A, Martínez-Costas J, Ortego J, Calvo-Pinilla E. Cross-protective immune responses against African horse sickness virus after vaccination with protein NS1 delivered by avian reovirus muNS microspheres and modified vaccinia virus Ankara. Vaccine 2019; 38:882-889. [PMID: 31708178 DOI: 10.1016/j.vaccine.2019.10.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023]
Abstract
African horse sickness virus (AHSV) is an insect-borne pathogen that causes acute disease in horses and other equids. In an effort to improve the safety of currently available vaccines and to acquire new knowledge about the determinants of AHSV immunogenicity, new generation vaccines are being developed. In this work we have generated and tested a novel immunization approach comprised of nonstructural protein 1 (NS1) of AHSV serotype 4 (AHSV-4) incorporated into avian reovirus muNS protein microspheres (MS-NS1) and/or expressed using recombinant modified vaccinia virus Ankara vector (MVA-NS1). The protection conferred against AHSV by a homologous MS-NS1 or heterologous MS-NS1 and MVA-NS1 prime/boost was evaluated in IFNAR (-/-) mice. Our results indicate that immunization based on MS-NS1 and MVA-NS1 afforded complete protection against the infection with homologous AHSV-4. Moreover, priming with MS-NS1 and boost vaccination with MVA-NS1 (MS-MVA-NS1) triggered NS1 specific cytotoxic CD8 + T cells and prevented AHSV disease in IFNAR (-/-) mice after challenge with heterologous serotype AHSV-9. Cross-protective immune responses are highly important since AHS can be caused by nine different serotypes, which means that a universal polyvalent vaccination would need to induce protective immunity against all serotypes.
Collapse
Affiliation(s)
- Alejandro Marín-López
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sergio Utrilla-Trigo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Diego Barriales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Javier Benavente
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Ortego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain.
| | - Eva Calvo-Pinilla
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| |
Collapse
|
49
|
Li Y, Cui Y, Zhu Y, Li W, Li S, Fang J, Xiao P, Han J, Yao W, Sun L, Jin N, Li X. Deletion of multiple genes induces virulence reduction of vaccinia virus Tiantan strain. Virus Res 2019; 276:197807. [PMID: 31707001 DOI: 10.1016/j.virusres.2019.197807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to knock out two non-essential gene fragments (TC7L-TK2L and TJ2R) related to virulence, immunomodulation, and host range in the vaccinia virus Tian Tan strain (VTT), and combining with double-label screening and exogenous screening marker knockout techniques to construct attenuated strains with multiple gene deletions(rVTT-TC-TJ). The shuttle plasmids pSK-TC and pSK-TJ were constructed by designing 2 pairs of recombinant arms, combined with poxvirus early and late complex strong promoter pE/L and exogenous screening marker enhanced green fluorescent protein(EGFP). The results showed that knocking out the two gene fragments does not affect the replication ability of the virus and displays a good genetic stability. Furthermore, a series of in vivo and in vitro experiments demonstrate that although virulence of rVTT-TC-TJ is attenuated significantly, high immunogenicity was maintained. These results support the potential development of rVTT-TC-TJ as a safe viral vector or vaccine.
Collapse
Affiliation(s)
- Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130021, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China
| | - Yingli Cui
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China; Gynecology Oncology Department, Norman Bethune First Hospital, Jilin University, Changchun 130000, PR China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130021, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China
| | - Wenjie Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130021, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China
| | - Shanzhi Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130021, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China
| | - Jinbo Fang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130021, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China
| | - Pengpeng Xiao
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China; Institute of Virology, Wenzhou University, Wenzhou 325035, PR China
| | - Jicheng Han
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130021, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China
| | - Wei Yao
- Center for Disease Control and Prevention, Agency for Offices Administration, Central Military Commission, Beijing 100082, PR China
| | - Lili Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China; Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun 130012, PR China.
| | - Ningyi Jin
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130021, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China; Institute of Virology, Wenzhou University, Wenzhou 325035, PR China; Jiang su Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130021, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, PR China; Jiang su Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
50
|
Assessment of Immunogenicity and Efficacy of a Zika Vaccine Using Modified Vaccinia Ankara Virus as Carriers. Pathogens 2019; 8:pathogens8040216. [PMID: 31684117 PMCID: PMC6963679 DOI: 10.3390/pathogens8040216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has spread to more than 70 countries worldwide since 2015. Despite active research, there are currently no licensed vaccines or therapeutics. We have previously reported the development of various adenoviral vectored vaccine candidates (ChAdOx1 ZIKV) with the ability to stimulate effective immunity in mice and provide protection upon a ZIKV challenge model, using a non-adjuvanted single vaccination approach. In this study, we constructed various modified vaccinia Ankara (MVA) viruses to express the ZIKV Envelope (E) with modifications on the precursor membrane (prM) or on the C-terminus envelope transmembrane domain (TM), similar to our ChAdOx1 vaccine candidates. MVA-ZIKV vaccine candidates were evaluated as a non-adjuvanted single vaccination regimen against a ZIKV Brazilian isolate, using viraemia as the correlate of protection. Here, we report the induction of a modest level of anti-ZIKV E antibodies by all MVA vectored vaccines and sub-optimal efficacy in a ZIKV challenge model. Our results indicate the requirement of additional strategies when using MVA-ZIKV vaccines to afford sterile protection upon a non-adjuvanted and single vaccination regime.
Collapse
|