1
|
Liu Z, Deligen B, Han Z, Gerile C, Da A. Integrated sequence-based genomic, transcriptomic, and methylation characterization of the susceptibility to tuberculosis in monozygous twins. Heliyon 2024; 10:e31712. [PMID: 38845983 PMCID: PMC11153169 DOI: 10.1016/j.heliyon.2024.e31712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Background Tuberculosis (TB) is a complex disease with a spectrum of outcomes for more than six decades; however, the genomic and epigenetic mechanisms underlying the highly heritable susceptibility to TB remain unclear. Methods Integrated sequence-based genomic, transcriptomic, and methylation analyses were conducted to identity the genetic factors associated with susceptibility to TB in two pairs of Mongolian monozygous twins. In this study, whole-genome sequencing was employed to analyze single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and copy number variations (CNVs). Gene expression was assessed through RNA sequencing, and methylation patterns were examined using the Illumina Infinium Methylation EPIC BeadChip. The gene-gene interaction network was analyzed using differentially expressed genes. Results Our study revealed no significant difference in SNP and InDel profiles between participants with and without TB. Genes with CNVs were involved in human immunity (human leukocyte antigen [HLA] family and interferon [IFN] pathway) and the inflammatory response. Different DNA methylation patterns and mRNA expression profiles were observed in genes participating in immunity (HLA family) and inflammatory responses (IFNA, interleukin 10 receptor [IL-10R], IL-12B, Toll-like receptor, and IL-1B). Conclusions The results of this study suggested that susceptibility to TB is associated with transcriptional and epigenetic alternations of genes involved in immune and inflammatory responses. The genes in the HLA family (HLA-A, HLA-B, and HLA-DRB1) and IFN pathway (IFN-α and IFN-γ) may play major roles in susceptibility to TB.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Batu Deligen
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Zhiqiang Han
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Chaolumen Gerile
- Department of Internal Medicine, Xilinguole Meng Mongolian General Hospital, Xilinhaote, 026000, Inner Mongolia, China
| | - An Da
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| |
Collapse
|
2
|
Guo S, Wan Q, Xu M, Chen M, Chen Z. Transcriptome analysis of host anti-Aeromonas hydrophila infection revealed the pathogenicity of A. hydrophila to American eels (Anguilla rostrata). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109504. [PMID: 38508539 DOI: 10.1016/j.fsi.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.
Collapse
Affiliation(s)
- Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| | - Qijuan Wan
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| |
Collapse
|
3
|
Chen M, Wan Q, Xu M, Chen Z, Guo S. Transcriptome Analysis of Host Anti-Vibrio harveyi Infection Revealed the Pathogenicity of V. harveyi to American Eel (Anguilla rostrata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:306-323. [PMID: 38367180 DOI: 10.1007/s10126-024-10298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.
Collapse
Affiliation(s)
- Minxia Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China.
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
4
|
Xu M, Wang Y, Wan Q, Chen M, Guo S. RNA-seq analysis revealed the pathogenicity of Vibrio vulnificus to American eel (Anguilla rostrata) and the strategy of host anti-V. vulnificus infection. Microb Pathog 2024; 186:106498. [PMID: 38097116 DOI: 10.1016/j.micpath.2023.106498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.
Collapse
Affiliation(s)
- Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Yue Wang
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|
5
|
Wang Y, Zhai S, Wan Q, Xu M, Chen M, Guo S. Pathogenicity of Edwardsiella anguillarum to American eels (Anguilla rostrata) and RNA-seq analysis of host immune response to the E. anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109042. [PMID: 37657556 DOI: 10.1016/j.fsi.2023.109042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Edwardsiella anguillarum is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-E. anguillarum infection remains uncertain. In this study, LD50 of E. anguillarum to American eels was determined and bacterial load in the liver and kidney of eels was assessed post the LD50 of E. anguillarum infection. The results showed that LD50 of E. anguillarum to American eels was determined to be 2.5 × 105 cfu/g body weight, and the bacterial load peaked at 36 and 72 h post the infection (hpi) in the kidney and liver, respectively. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes, as well as ultrastructural pathology in the kidney were charactered by acute nephritis, showing necrosis of the renal tubular epithelial cells, glomerular capillaries dilate, mitochondria swelling and ribosomes separate from the endoplasmic reticulum. Furthermore, the results of qRT-PCR revealed that 12 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 6 hub DEGs play essential role to the anti-E. anguillarum infection in American eels. Pathogenicity of E. anguillarum to American eels and hub genes related host anti- E. anguillarum infection were firstly reported in this study, shedding new light on our understanding of the E. anguillarum pathogenesis and the host immune response to the E. anguillarum infection strategies in gene transcript.
Collapse
Affiliation(s)
- Yue Wang
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China.
| |
Collapse
|
6
|
Stein CM. Genetic epidemiology of resistance to M. tuberculosis Infection: importance of study design and recent findings. Genes Immun 2023; 24:117-123. [PMID: 37085579 PMCID: PMC10121418 DOI: 10.1038/s41435-023-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Resistance to M. tuberculosis, often referred to as "RSTR" in the literature, is being increasingly studied because of its potential relevance as a clinical outcome in vaccine studies. This review starts by addressing the importance of epidemiological characterization of this phenotype, and ongoing challenges in that characterization. Then, this review summarizes the extant genetic and genomic studies of this phenotype, including heritability studies, candidate gene studies, and genome-wide association studies, as well as whole transcriptome studies. Findings from recent studies that used longitudinal characterization of the RSTR phenotype are compared to those using a cross-sectional definition, and the challenges of using tuberculin skin test and interferon-gamma release assay are discussed. Finally, future directions are proposed. Since this is a rapidly evolving area of public health significance, this review will help frame future research questions and study designs.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Simmons JD, Dill-McFarland KA, Stein CM, Van PT, Chihota V, Ntshiqa T, Maenetje P, Peterson GJ, Benchek P, Nsereko M, Velen K, Fielding KL, Grant AD, Gottardo R, Mayanja-Kizza H, Wallis RS, Churchyard G, Boom WH, Hawn TR. Monocyte Transcriptional Responses to Mycobacterium tuberculosis Associate with Resistance to Tuberculin Skin Test and Interferon Gamma Release Assay Conversion. mSphere 2022; 7:e0015922. [PMID: 35695527 PMCID: PMC9241521 DOI: 10.1128/msphere.00159-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Heavy exposure to Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB) and among the top infectious killers worldwide, results in infection that is cleared, contained, or progresses to disease. Some heavily exposed tuberculosis contacts show no evidence of infection using the tuberculin skin test (TST) and interferon gamma release assay (IGRA); yet the mechanisms underlying this "resister" (RSTR) phenotype are unclear. To identify transcriptional responses that distinguish RSTR monocytes, we performed transcriptome sequencing (RNA-seq) on monocytes isolated from heavily exposed household contacts in Uganda and gold miners in South Africa after ex vivo M. tuberculosis infection. Gene set enrichment analysis (GSEA) revealed several gene pathways that were consistently enriched in response to M. tuberculosis among RSTR subjects compared to controls with positive TST/IGRA testing (latent TB infection [LTBI]) across Uganda and South Africa. The most significantly enriched gene set in which expression was increased in RSTR relative to LTBI M. tuberculosis-infected monocytes was the tumor necrosis factor alpha (TNF-α) signaling pathway whose core enrichment (leading edge) substantially overlapped across RSTR populations. These leading-edge genes included candidate resistance genes (ABCA1 and DUSP2) with significantly increased expression among Uganda RSTRs (false-discovery rate [FDR], <0.1). The distinct monocyte transcriptional response to M. tuberculosis among RSTR subjects, including increased expression of the TNF signaling pathway, highlights genes and inflammatory pathways that may mediate resistance to TST/IGRA conversion and provides therapeutic targets to enhance host restriction of M. tuberculosis intracellular infection. IMPORTANCE After heavy M. tuberculosis exposure, the events that determine why some individuals resist TST/IGRA conversion are poorly defined. Enrichment of the TNF signaling gene set among RSTR monocytes from multiple distinct cohorts suggests an important role for the monocyte TNF response in determining this alternative immune outcome. These TNF responses to M. tuberculosis among RSTRs may contribute to antimicrobial programs that result in early clearance or the priming of alternative (gamma interferon-independent) cellular responses.
Collapse
Affiliation(s)
- Jason D. Simmons
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kimberly A. Dill-McFarland
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Catherine M. Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Phu T. Van
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Violet Chihota
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- The Aurum Institute, Parktown, South Africa
| | | | | | - Glenna J. Peterson
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mary Nsereko
- Uganda-CWRU Research Collaboration, Kampala, Uganda
| | | | - Katherine L. Fielding
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Alison D. Grant
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Africa Health Research Institute, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Gavin Churchyard
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- The Aurum Institute, Parktown, South Africa
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R. Hawn
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Liu C, Yang S. A Meta-Analysis of the Influence of Tumor Necrosis Factor- α-308 Gene Polymorphism on Liver Cirrhosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9764770. [PMID: 35345657 PMCID: PMC8957422 DOI: 10.1155/2022/9764770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 01/30/2023]
Abstract
Cirrhosis is an active hepatic inflammation process of the liver considered as the serious phase of different liver injuries. Epidemiological studies have evaluated the possible association between TNF-α-308G/A gene polymorphism and liver cirrhosis. In this study, we have furthered the study to assess the exact association of TNF-α-308G/A gene polymorphism with liver cirrhosis susceptibility by integrating all available data. Eligible case-control studies were carried out from the establishment of the project to September 2021. Published literature from multiple databases was retrieved, collected, and analyzed by two investigators independently. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for every study. Review Manager 5.2 and Stata 15.0 software were used for meta-analysis and stability was assessed by both subgroup analysis and sensitivity analysis. Begg's funnel plot and Egger's regression across the studies were also explored. We examined 22 case-control studies with 2683 cirrhosis patients and 2905 normal controls in four genetic models (GA vs. GG: OR = 0.95, 95%CI: (0.70, 1.30); AA vs. GG: OR = 1.11, 95% CI: (0.66, 1.85), GA + AA vs. GG: OR = 1.00, 95% CI: (0.73, 1.37); AA vs. GA + GG: OR = 1.07, 95%CI: (0.70,1.63)). TNF-α-308G/A gene polymorphism was relatively independent, and the results did not show a significant difference between the two groups. In the subgroup analysis by etiological classification of liver cirrhosis, cirrhosis after HCV infection was positively associated with the risk of TNF-α-308G/A polymorphism (AA vs. GG: OR = 3.02, 95% CI: (1.15, 7.88), AA vs. GA + GG: OR = 2.68, 95% CI: (1.04, 6.95)). The meta-analysis showed TNF-α-308G/A gene polymorphism might not have affected susceptibility for liver cirrhosis. Nevertheless, further and well-designed studies were needed to confirm the findings.
Collapse
Affiliation(s)
- Chang Liu
- Department of Gastroenterology, The First People's Hospital of Chong Qing Liang Jiang New Area, Chongqing 401121, China
| | - Songtao Yang
- Department of Gastroenterology, The First People's Hospital of Chong Qing Liang Jiang New Area, Chongqing 401121, China
| |
Collapse
|
9
|
Shah JA, Warr AJ, Graustein AD, Saha A, Dunstan SJ, Thuong NTT, Thwaites GE, Caws M, Thai PVK, Bang ND, Chau TTH, Khor CC, Li Z, Hibberd M, Chang X, Nguyen FK, Hernandez CA, Jones MA, Sassetti CM, Fitzgerald KA, Musvosvi M, Gela A, Hanekom WA, Hatherill M, Scriba TJ, Hawn TR. REL and BHLHE40 Variants Are Associated with IL-12 and IL-10 Responses and Tuberculosis Risk. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1352-1361. [PMID: 35217585 PMCID: PMC8917052 DOI: 10.4049/jimmunol.2100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
The major human genes regulating Mycobacterium tuberculosis-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression in humans are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling. We hypothesized that common variants in CNBP, REL, and BHLHE40 were associated with IL-12 and IL-10 production from dendritic cells, and that these variants also influence adaptive immune responses to bacillus Calmette-Guérin (BCG) vaccination and TB susceptibility. We characterized the association between common variants in CNBP, REL, and BHLHE40, innate immune responses in dendritic cells and monocyte-derived macrophages, BCG-specific T cell responses, and susceptibility to pediatric and adult TB in human populations. BHLHE40 single-nucleotide polymorphism (SNP) rs4496464 was associated with increased BHLHE40 expression in monocyte-derived macrophages and increased IL-10 from peripheral blood dendritic cells and monocyte-derived macrophages after LPS and TB whole-cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL-2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and rs842618 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618 was associated with increased risk for TB meningitis. In summary, we found that genetic variations in REL and BHLHE40 are associated with IL-12 and IL-10 cytokine responses and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.
Collapse
Affiliation(s)
- Javeed A Shah
- University of Washington, Seattle, WA;
- VA Puget Sound Health Care System, Seattle, WA
| | | | - Andrew D Graustein
- University of Washington, Seattle, WA
- VA Puget Sound Health Care System, Seattle, WA
| | | | | | - Nguyen T T Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maxine Caws
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | | | | | - Zheng Li
- Genome Institute of Singapore, A-STAR, Singapore
| | - Martin Hibberd
- London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - Xuling Chang
- University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | | |
Collapse
|
10
|
McHenry ML, Benchek P, Malone L, Nsereko M, Mayanja-Kizza H, Boom WH, Williams SM, Hawn TR, Stein CM. Resistance to TST/IGRA conversion in Uganda: Heritability and Genome-Wide Association Study. EBioMedicine 2021; 74:103727. [PMID: 34871961 PMCID: PMC8652006 DOI: 10.1016/j.ebiom.2021.103727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
Background Pulmonary tuberculosis (TB) is one of the most deadly pathogens on earth. However, the majority of people have resistance to active disease. Further, some individuals, termed resisters (RSTRs), do not develop traditional latent tuberculosis (LTBI). The RSTR phenotype is important for understanding pathogenesis and preventing TB. The host genetic underpinnings of RSTR are largely understudied. Methods In a cohort of 908 Ugandan subjects with genome-wide data on single nucleotide polymorphisms, we assessed the heritability of the RSTR phenotype and other TB phenotypes using restricted maximum likelihood estimation (REML). We then used a subset of 263 RSTR and LTBI subjects with high quality phenotyping and long-term follow-up to identify DNA variants genome-wide associated with the RSTR phenotype relative to LTBI subjects in a case-control GWAS design and annotated and enriched these variants to better understand their role in TB pathogenesis. Results The heritability of the TB outcomes was very high, at 55% for TB vs. LTBI and 50.4% for RSTR vs. LTBI among HIV- subjects, controlling for age and sex. We identified 27 loci associated with the RSTR phenotype (P<5e-05) and our annotation and enrichment analyses suggest an important regulatory role for many of them. Interpretation The heritability results show that the genetic contribution to variation in TB outcomes is very high and our GWAS results highlight variants that may play an important role in resistance to infection as well as TB pathogenesis as a whole.
Collapse
Affiliation(s)
- Michael L McHenry
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - LaShaunda Malone
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mary Nsereko
- Department of Medicine, School of Medicine, Makerere University, Kampala, Uganda
| | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Scott M Williams
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021; 301:122-144. [PMID: 33709421 PMCID: PMC8252066 DOI: 10.1111/imr.12965] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Collapse
Affiliation(s)
- Mitchell Foster
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Philip C. Hill
- Centre for International HealthUniversity of OtagoDunedinNew Zealand
| | - Todia Pediatama Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
- Department of Computational Biology for Individualised Infection MedicineCentre for Individualised Infection Medicine (CiiM) & TWINCOREJoint Ventures between The Helmholtz‐Centre for Infection Research (HZI) and The Hannover Medical School (MHH)HannoverGermany
| | - Bachti Alisjahbana
- Tuberculosis Working GroupFaculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
12
|
Basu Roy R, Sambou B, Sissoko M, Holder B, Gomez MP, Egere U, Sillah AK, Koukounari A, Kampmann B. Protection against mycobacterial infection: A case-control study of mycobacterial immune responses in pairs of Gambian children with discordant infection status despite matched TB exposure. EBioMedicine 2020; 59:102891. [PMID: 32675024 PMCID: PMC7502674 DOI: 10.1016/j.ebiom.2020.102891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Children are particularly susceptible to tuberculosis. However, most children exposed to Mycobacterium tuberculosis are able to control the pathogen without evidence of infection. Correlates of human protective immunity against tuberculosis infection are lacking, and their identification would aid vaccine design. METHODS We recruited pairs of asymptomatic children with discordant tuberculin skin test status but the same sleeping proximity to the same adult with sputum smear-positive tuberculosis in a matched case-control study in The Gambia. Participants were classified as either Highly TB-Exposed Uninfected or Highly TB-Exposed Infected children. Serial luminescence measurements using an in vitro functional auto-luminescent Bacillus Calmette-Guérin (BCG) whole blood assay quantified the dynamics of host control of mycobacterial growth. Assay supernatants were analysed with a multiplex cytokine assay to measure associated inflammatory responses. FINDINGS 29 pairs of matched Highly TB-Exposed Uninfected and Highly TB-Exposed Infected children aged 5 to 15 years old were enroled. Samples from Highly TB-Exposed Uninfected children had higher levels of mycobacterial luminescence at 96 hours than Highly TB-Exposed Infected children. Highly TB-Exposed Uninfected children also produced less BCG-specific interferon-γ than Highly TB-Exposed Infected children at 24 hours and at 96 hours. INTERPRETATION Highly TB-Exposed Uninfected children showed less control of mycobacterial growth compared to Highly TB-Exposed Infected children in a functional assay, whilst cytokine responses mirrored infection status. FUNDING Clinical Research Training Fellowship funded under UK Medical Research Council/Department for International Development Concordat agreement and part of EDCTP2 programme supported by European Union (MR/K023446/1). Also MRC Program Grants (MR/K007602/1, MR/K011944/1, MC_UP_A900/1122).
Collapse
Affiliation(s)
- Robindra Basu Roy
- Department of Academic Paediatrics, Section of Paediatric Infectious Disease, Imperial College London, St. Mary's Hospital, Praed Street, London W2 1NY, United Kingdom; Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Road, Fajara, The Gambia; Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Basil Sambou
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Road, Fajara, The Gambia
| | - Muhamed Sissoko
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Road, Fajara, The Gambia
| | - Beth Holder
- Department of Academic Paediatrics, Section of Paediatric Infectious Disease, Imperial College London, St. Mary's Hospital, Praed Street, London W2 1NY, United Kingdom; Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion & Reproduction, Imperial College London, Du Cane Road, W12 0HS, United Kingdom
| | - Marie P Gomez
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Road, Fajara, The Gambia
| | - Uzochukwu Egere
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Road, Fajara, The Gambia; Department of International Public Health, Liverpool School of Tropical Medicine, Pembroke Place L3 5QA, United Kingdom
| | - Abdou K Sillah
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Road, Fajara, The Gambia
| | - Artemis Koukounari
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Beate Kampmann
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Road, Fajara, The Gambia; Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom; The Vaccine Centre, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
13
|
McHenry ML, Williams SM, Stein CM. Genetics and evolution of tuberculosis pathogenesis: New perspectives and approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104204. [PMID: 31981609 PMCID: PMC7192760 DOI: 10.1016/j.meegid.2020.104204] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis is the most lethal infectious disease globally, but the vast majority of people who are exposed to the primary causative pathogen, Mycobacterium tuberculosis (MTB), do not develop active disease. Most people do, however, show signs of infection that remain throughout their lifetimes. In this review, we develop a framework that describes several possible transitions from pathogen exposure to TB disease and reflect on the genetics studies to address many of these. The evidence strongly supports a human genetic component for both infection and active disease, but many of the existing studies, including some of our own, do not clearly delineate what transition(s) is being explicitly examined. This can make interpretation difficult in terms of why only some people develop active disease. Nonetheless, both linkage peaks and associations with either active disease or latent infection have been identified. For transition to active disease, pathways defined as active TB altered T and B cell signaling in rheumatoid arthritis and T helper cell differentiation are significantly associated. Pathways that affect transition from exposure to infection are less clear-cut, as studies of this phenotype are less common, and a primary response, if it exists, is not yet well defined. Lastly, we discuss the role that interaction between the MTB lineage and human genetics can play in TB disease, especially severity. Severity of TB is at present the only way to study putative co-evolution between MTB and humans as it is impossible in the absence of disease to know the MTB lineage(s) to which an individual has been exposed. In addition, even though severity has been defined in multiple heterogeneous ways, it appears that MTB-human co-evolution may shape pathogenicity. Further analysis of co-evolution, requiring careful analysis of paired samples, may be the best way to completely assess the genetic basis of TB.
Collapse
Affiliation(s)
- Michael L McHenry
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
14
|
Cubillos-Angulo JM, Arriaga MB, Silva EC, Müller BLA, Ramalho DMP, Fukutani KF, Miranda PFC, Moreira ASR, Ruffino-Netto A, Lapa e Silva JR, Sterling TR, Kritski AL, Oliveira MM, Andrade BB. Polymorphisms in TLR4 and TNFA and Risk of Mycobacterium tuberculosis Infection and Development of Active Disease in Contacts of Tuberculosis Cases in Brazil: A Prospective Cohort Study. Clin Infect Dis 2019; 69:1027-1035. [PMID: 30481307 PMCID: PMC6735688 DOI: 10.1093/cid/ciy1001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/20/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The role of genetic polymorphisms in latent tuberculosis (TB) infection and progression to active TB is not fully understood. METHODS We tested the single-nucleotide polymorphisms (SNPs) rs5743708 (TLR2), rs4986791 (TLR4), rs361525 (TNFA), rs2430561 (IFNG) rs1143627 (IL1B) as risk factors for tuberculin skin test (TST) conversion or development of active TB in contacts of active TB cases. Contacts of microbiologically confirmed pulmonary TB cases were initially screened for longitudinal evaluation up to 24 months, with clinical examination and serial TST, between 1998 and 2004 at a referral center in Brazil. Data and biospecimens were collected from 526 individuals who were contacts of 177 active TB index cases. TST conversion was defined as induration ≥5 mm after a negative TST result (0 mm) at baseline or month 4 visit. Independent associations were tested using logistic regression models. RESULTS Among the 526 contacts, 60 had TST conversion and 44 developed active TB during follow-up. Multivariable regression analysis demonstrated that male sex (odds ratio [OR]: 2.3, 95% confidence interval [CI]: 1.1-4.6), as well as SNPs in TLR4 genes (OR: 62.8, 95% CI: 7.5-525.3) and TNFA (OR: 4.2, 95% CI: 1.9-9.5) were independently associated with TST conversion. Moreover, a positive TST at baseline (OR: 4.7, 95% CI: 2.3-9.7) and SNPs in TLR4 (OR: 6.5, 95% CI: 1.1-36.7) and TNFA (OR: 12.4, 95% CI:5.1-30.1) were independently associated with incident TB. CONCLUSIONS SNPs in TLR4 and TNFA predicted both TST conversion and active TB among contacts of TB cases in Brazil.
Collapse
Affiliation(s)
- Juan Manuel Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia
| | - María B Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia
| | - Elisângela C Silva
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
- Recognize the Biology Laboratory, Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro
| | - Beatriz L A Müller
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro
| | - Daniela M P Ramalho
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | - Kiyoshi F Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia
| | - Pryscila F C Miranda
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | - Adriana S R Moreira
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | | | - Jose R Lapa e Silva
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Afrânio L Kritski
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | - Martha M Oliveira
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Universidade Salvador (UNIFACS), Laureate University, Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| |
Collapse
|
15
|
Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol 2019; 18:575-589. [PMID: 29895826 DOI: 10.1038/s41577-018-0025-3] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis is a leading cause of mortality worldwide and establishes a long-lived latent infection in a substantial proportion of the human population. Multiple lines of evidence suggest that some individuals are resistant to latent M. tuberculosis infection despite long-term and intense exposure, and we term these individuals 'resisters'. In this Review, we discuss the epidemiological and genetic data that support the existence of resisters and propose criteria to optimally define and characterize the resister phenotype. We review recent insights into the immune mechanisms of M. tuberculosis clearance, including responses mediated by macrophages, T cells and B cells. Understanding the cellular mechanisms that underlie resistance to M. tuberculosis infection may reveal immune correlates of protection that could be utilized for improved diagnostics, vaccine development and novel host-directed therapeutic strategies.
Collapse
|
16
|
Peters JS, Andrews JR, Hatherill M, Hermans S, Martinez L, Schurr E, van der Heijden Y, Wood R, Rustomjee R, Kana BD. Advances in the understanding of Mycobacterium tuberculosis transmission in HIV-endemic settings. THE LANCET. INFECTIOUS DISEASES 2019; 19:e65-e76. [PMID: 30554995 PMCID: PMC6401310 DOI: 10.1016/s1473-3099(18)30477-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
Tuberculosis claims more human lives than any other infectious disease. This alarming epidemic has fuelled the development of novel antimicrobials and diagnostics. However, public health interventions that interrupt transmission have been slow to emerge, particularly in HIV-endemic settings. Transmission of tuberculosis is complex, involving various environmental, bacteriological, and host factors, among which concomitant HIV infection is important. Preventing person-to-person spread is central to halting the epidemic and, consequently, tuberculosis transmission is now being studied with renewed interest. In this Series paper, we review recent advances in the understanding of tuberculosis transmission, from the view of source-case infectiousness, inherent susceptibility of exposed individuals, appending tools for predicting risk of disease progression, the biophysical nature of the contagion, and the environments in which transmission occurs and is sustained in populations. We focus specifically on how HIV infection affects these features with a view to describing novel transmission blocking strategies in HIV-endemic settings.
Collapse
Affiliation(s)
- Julian S Peters
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sabine Hermans
- Desmond Tutu HIV Centre, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leonardo Martinez
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Erwin Schurr
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Yuri van der Heijden
- Vanderbilt Tuberculosis Center and Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robin Wood
- Desmond Tutu HIV Centre, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Roxana Rustomjee
- Tuberculosis Clinical Research Branch, Therapeutic Research Program, Division of AIDS National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, MD, USA
| | - Bavesh D Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa; South African Medical Research Council HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
| |
Collapse
|
17
|
Basu Roy R, Whittaker E, Seddon JA, Kampmann B. Tuberculosis susceptibility and protection in children. THE LANCET. INFECTIOUS DISEASES 2019; 19:e96-e108. [PMID: 30322790 PMCID: PMC6464092 DOI: 10.1016/s1473-3099(18)30157-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Children represent both a clinically important population susceptible to tuberculosis and a key group in whom to study intrinsic and vaccine-induced mechanisms of protection. After exposure to Mycobacterium tuberculosis, children aged under 5 years are at high risk of progressing first to tuberculosis infection, then to tuberculosis disease and possibly disseminated forms of tuberculosis, with accompanying high risks of morbidity and mortality. Children aged 5-10 years are somewhat protected, until risk increases again in adolescence. Furthermore, neonatal BCG programmes show the clearest proven benefit of vaccination against tuberculosis. Case-control comparisons from key cohorts, which recruited more than 15 000 children and adolescents in total, have identified that the ratio of monocytes to lymphocytes, activated CD4 T cell count, and a blood RNA signature could be correlates of risk for developing tuberculosis. Further studies of protected and susceptible populations are necessary to guide development of novel tuberculosis vaccines that could facilitate the achievement of WHO's goal to eliminate deaths from tuberculosis in childhood.
Collapse
Affiliation(s)
- Robindra Basu Roy
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK; Vaccines and Immunity Theme MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Elizabeth Whittaker
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK
| | - James A Seddon
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK
| | - Beate Kampmann
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK; Vaccines and Immunity Theme MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| |
Collapse
|
18
|
Möller M, Kinnear CJ, Orlova M, Kroon EE, van Helden PD, Schurr E, Hoal EG. Genetic Resistance to Mycobacterium tuberculosis Infection and Disease. Front Immunol 2018; 9:2219. [PMID: 30319657 PMCID: PMC6170664 DOI: 10.3389/fimmu.2018.02219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Natural history studies of tuberculosis (TB) have revealed a spectrum of clinical outcomes after exposure to Mycobacterium tuberculosis, the cause of TB. Not all individuals exposed to the bacterium will become diseased and depending on the infection pressure, many will remain infection-free. Intriguingly, complete resistance to infection is observed in some individuals (termed resisters) after intense, continuing M. tuberculosis exposure. After successful infection, the majority of individuals will develop latent TB infection (LTBI). This infection state is currently (and perhaps imperfectly) defined by the presence of a positive tuberculin skin test (TST) and/or interferon gamma release assay (IGRA), but no detectable clinical disease symptoms. The majority of healthy individuals with LTBI are resistant to clinical TB, indicating that infection is remarkably well-contained in these non-progressors. The remaining 5-15% of LTBI positive individuals will progress to active TB. Epidemiological investigations have indicated that the host genetic component contributes to these infection and disease phenotypes, influencing both susceptibility and resistance. Elucidating these genetic correlates is therefore a priority as it may translate to new interventions to prevent, diagnose or treat TB. The most successful approaches in resistance/susceptibility investigation have focused on specific infection and disease phenotypes and the resister phenotype may hold the key to the discovery of actionable genetic variants in TB infection and disease. This review will not only discuss lessons from epidemiological studies, but will also focus on the contribution of epidemiology and functional genetics to human genetic resistance to M. tuberculosis infection and disease.
Collapse
Affiliation(s)
- Marlo Möller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Elouise E. Kroon
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Eileen G. Hoal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Abel L, Fellay J, Haas DW, Schurr E, Srikrishna G, Urbanowski M, Chaturvedi N, Srinivasan S, Johnson DH, Bishai WR. Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives. THE LANCET. INFECTIOUS DISEASES 2018; 18:e64-e75. [DOI: 10.1016/s1473-3099(17)30623-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
|
20
|
Shah JA, Musvosvi M, Shey M, Horne DJ, Wells RD, Peterson GJ, Cox JS, Daya M, Hoal EG, Lin L, Gottardo R, Hanekom WA, Scriba TJ, Hatherill M, Hawn TR. A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guérin-Specific Immune Responses and Tuberculosis. Am J Respir Crit Care Med 2017; 196:502-511. [PMID: 28463648 DOI: 10.1164/rccm.201611-2346oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RATIONALE The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. OBJECTIVES To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. METHODS We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. MEASUREMENTS AND MAIN RESULTS We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2+ CD4+ T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. CONCLUSIONS TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG vaccination.
Collapse
Affiliation(s)
- Javeed A Shah
- 1 University of Washington School of Medicine, Seattle, Washington.,2 Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | | | - Muki Shey
- 3 South African Tuberculosis Vaccine Initiative and.,4 Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - David J Horne
- 1 University of Washington School of Medicine, Seattle, Washington
| | - Richard D Wells
- 1 University of Washington School of Medicine, Seattle, Washington
| | | | - Jeffery S Cox
- 5 University of California Berkeley, Berkeley, California
| | - Michelle Daya
- 6 Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Eileen G Hoal
- 6 Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Lin Lin
- 7 Department of Statistics, Pennsylvania State University, University Park, Pennsylvania; and
| | | | - Willem A Hanekom
- 3 South African Tuberculosis Vaccine Initiative and.,4 Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- 3 South African Tuberculosis Vaccine Initiative and.,4 Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- 3 South African Tuberculosis Vaccine Initiative and.,4 Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas R Hawn
- 1 University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
21
|
Orlova M, Schurr E. Human Genomics of Mycobacterium tuberculosis Infection and Disease. CURRENT GENETIC MEDICINE REPORTS 2017; 5:125-131. [PMID: 29201558 DOI: 10.1007/s40142-017-0124-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Purpose of review The study of the genetic basis of tuberculosis pathogenesis has benefited from powerful technological innovations, a more structured definition of latent and clinical manifestations of the disease, and the application of functional genomics approaches. This short review aims to summarize recent advances and to provide a link with results of previous human genetic studies of tuberculosis susceptibility. Recent findings Transcriptomics has been shown to be a useful tool to predict progression from latency to clinical disease while functional genomics has traced the molecular events that link pathogen-triggered gene expression and host genetics. Resistance to infection with Mycobacterium tuberculosis has been revealed to be strongly impacted by host genetics. Host genomics of clinical disease has been shown to be most powerful when focusing on carefully selected clinical entities and possibly by considering host pathogen combinations. Summary Future studies need to build on the latest molecular findings to define disease subtypes to successfully elucidate the human genetic component in tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,McGill International TB Centre, McGill University, Montreal, Quebec, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,McGill International TB Centre, McGill University, Montreal, Quebec, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Kinnear C, Hoal EG, Schurz H, van Helden PD, Möller M. The role of human host genetics in tuberculosis resistance. Expert Rev Respir Med 2017; 11:721-737. [PMID: 28703045 DOI: 10.1080/17476348.2017.1354700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tuberculosis (TB) remains a public health problem: the latest estimate of new incident cases per year is a staggering 10.4 million. Despite this overwhelming number, the majority of the immunocompetent population can control infection with Mycobacterium tuberculosis. The human genome underlies the immune response and contributes to the outcome of TB infection. Areas covered: Investigations of TB resistance in the general population have closely mirrored those of other infectious diseases and initially involved epidemiological observations. Linkage and association studies, including studies of VDR, SLC11A1 and HLA-DRB1 followed. Genome-wide association studies of common variants, not necessarily sufficient for disease, became possible after technological advancements. Other approaches involved the identification of those individuals with rare disease-causing mutations that strongly predispose to TB, epistasis and the role of ethnicity in disease. Despite these efforts, infection outcome, on an individual basis, cannot yet be predicted. Expert commentary: The early identification of future disease progressors is necessary to stem the TB epidemic. Human genetics may contribute to this endeavour and could in future suggest pathways to target for disease prevention. This will however require concerted efforts to establish large, well-phenotyped cohorts from different ethnicities, improved genomic resources and a better understanding of the human genome architecture.
Collapse
Affiliation(s)
- Craig Kinnear
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Eileen G Hoal
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Haiko Schurz
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Paul D van Helden
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Marlo Möller
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| |
Collapse
|
23
|
Wilkinson S, Bishop SC, Allen AR, McBride SH, Skuce RA, Bermingham M, Woolliams JA, Glass EJ. Fine-mapping host genetic variation underlying outcomes to Mycobacterium bovis infection in dairy cows. BMC Genomics 2017; 18:477. [PMID: 28646863 PMCID: PMC5483290 DOI: 10.1186/s12864-017-3836-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/31/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Susceptibility to Mycobacterium bovis infection in cattle is governed in part by host genetics. However, cattle diagnosed as infected with M. bovis display varying signs of pathology. The variation in host response to infection could represent a continuum since time of exposure or distinct outcomes due to differing pathogen handling. The relationships between host genetics and variation in host response and pathological sequelae following M. bovis infection were explored by genotyping 1966 Holstein-Friesian dairy cows at 538,231 SNPs with three distinct phenotypes. These were: single intradermal cervical comparative tuberculin (SICCT) test positives with visible lesions (VLs), SICCT-positives with undetected visible lesions (NVLs) and matched controls SICCT-negative on multiple occasions. RESULTS Regional heritability mapping identified three loci associated with the NVL phenotype on chromosomes 17, 22 and 23, distinct to the region on chromosome 13 associated with the VL phenotype. The region on chromosome 23 was at genome-wide significance and candidate genes overlapping the mapped window included members of the bovine leukocyte antigen class IIb region, a complex known for its role in immunity and disease resistance. Chromosome heritability analysis attributed variance to six and thirteen chromosomes for the VL and NVL phenotypes, respectively, and four of these chromosomes were found to explain a proportion of the phenotypic variation for both the VL and NVL phenotype. By grouping the M. bovis outcomes (VLs and NVLs) variance was attributed to nine chromosomes. When contrasting the two M. bovis infection outcomes (VLs vs NVLs) nine chromosomes were found to harbour heritable variation. Regardless of the case phenotype under investigation, chromosome heritability did not exceed 8% indicating that the genetic control of bTB resistance consists of variants of small to moderate effect situated across many chromosomes of the bovine genome. CONCLUSIONS These findings suggest the host genetics of M. bovis infection outcomes is governed by distinct and overlapping genetic variants. Thus, variation in the pathology of M. bovis infected cattle may be partly genetically determined and indicative of different host responses or pathogen handling. There may be at least three distinct outcomes following M. bovis exposure in dairy cattle: resistance to infection, infection resulting in pathology or no detectable pathology.
Collapse
Affiliation(s)
- S Wilkinson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush EH25 9RG, Edinburgh, UK.
| | - S C Bishop
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush EH25 9RG, Edinburgh, UK
| | - A R Allen
- Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, BT4 3SD, UK
| | - S H McBride
- Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, BT4 3SD, UK
| | - R A Skuce
- Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, BT4 3SD, UK
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - M Bermingham
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush EH25 9RG, Edinburgh, UK
- Current Address: Centre for Genomic and Experimental Medicine, School of Molecular, Genetic and Population Health Sciences, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - J A Woolliams
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush EH25 9RG, Edinburgh, UK
| | - E J Glass
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush EH25 9RG, Edinburgh, UK
| |
Collapse
|
24
|
Uren C, Möller M, van Helden PD, Henn BM, Hoal EG. Population structure and infectious disease risk in southern Africa. Mol Genet Genomics 2017; 292:499-509. [PMID: 28229227 DOI: 10.1007/s00438-017-1296-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Abstract
The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.
Collapse
Affiliation(s)
- Caitlin Uren
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Paul D van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa.
| |
Collapse
|
25
|
Jabot-Hanin F, Cobat A, Feinberg J, Grange G, Remus N, Poirier C, Boland-Auge A, Besse C, Bustamante J, Boisson-Dupuis S, Casanova JL, Schurr E, Alcaïs A, Hoal EG, Delacourt C, Abel L. Major Loci on Chromosomes 8q and 3q Control Interferon γ Production Triggered by Bacillus Calmette-Guerin and 6-kDa Early Secretory Antigen Target, Respectively, in Various Populations. J Infect Dis 2015; 213:1173-9. [PMID: 26690346 PMCID: PMC4779307 DOI: 10.1093/infdis/jiv757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Background. Interferon γ (IFN-γ) release assays (IGRAs) provide an in vitro measurement of antimycobacterial immunity that is widely used as a test for Mycobacterium tuberculosis infection. IGRA outcomes are highly heritable in various populations, but the nature of the involved genetic factors remains unknown. Methods. We conducted a genome-wide linkage analysis of IGRA phenotypes in families from a tuberculosis household contact study in France and a replication study in families from South Africa to confirm the loci identified. Results. We identified a major locus on chromosome 8q controlling IFN-γ production in response to stimulation with live bacillus Calmette-Guerin (BCG; LOD score, 3.81; P = 1.40 × 10−5). We also detected a second locus, on chromosome 3q, that controlled IFN-γ levels in response to stimulation with 6-kDa early secretory antigen target, when accounting for the IFN-γ production shared with that induced by BCG (LOD score, 3.72; P = 1.8 × 10−5). Both loci were replicated in South African families, where tuberculosis is hyperendemic. These loci differ from those previously identified as controlling the response to the tuberculin skin test (TST1 and TST2) and the production of TNF-α (TNF1). Conclusions. The identification of 2 new linkage signals in populations of various ethnic origins living in different M. tuberculosis exposure settings provides new clues about the genetic control of human antimycobacterial immunity.
Collapse
Affiliation(s)
- Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute
| | - Jacqueline Feinberg
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute
| | - Ghislain Grange
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute
| | - Natascha Remus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute
| | - Christine Poirier
- Centre de Lutte Anti-Tuberculeuse, Centre Hospitalier Intercommunal de Créteil
| | - Anne Boland-Auge
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | - Céline Besse
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University Howard Hughes Medical Institute, New York, New York
| | - Erwin Schurr
- McGill International TB Centre, McGill University, Montreal, Canada Department of Human Genetics, McGill University, Montreal, Canada Department of Medicine, McGill University, Montreal, Canada
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University
| | - Eileen G Hoal
- Division of Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology and DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Paris Descartes University, Sorbonne Paris Cité, Imagine Institute St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University
| |
Collapse
|
26
|
Hamzaoui A. [Childhood tuberculosis]. REVUE DE PNEUMOLOGIE CLINIQUE 2015; 71:168-180. [PMID: 24932504 DOI: 10.1016/j.pneumo.2014.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Childhood TB is an indication of failing TB control in the community. It allows disease persistence in the population. Mortality and morbidity due to TB is high in children. Moreover, HIV co-infection and multidrug-resistant diseases are as frequent in children as in adults. Infection is more frequent in younger children. Disease risk after primary infection is greatest in infants younger than 2 years. In case of exposure, evidence of infection can be obtained using the tuberculin skin test (TST) or an interferon-gamma assay (IGRA). There is no evidence to support the use of IGRA over TST in young children. TB suspicion should be confirmed whenever possible, using new available tools, particularly in case of pulmonary and lymph node TB. Induced sputum, nasopharyngeal aspiration and fine needle aspiration biopsy provide a rapid and definitive diagnosis of mycobacterial infection in a large proportion of patients. Analysis of paediatric samples revealed higher sensitivity and specificity values of molecular techniques in comparison with the ones originated from adults. Children require higher drugs dosages than adults. Short courses of steroids are associated with TB treatment in case of respiratory distress, bronchoscopic desobstruction is proposed for severe airways involvement and antiretroviral therapy is mandatory in case of HIV infection. Post-exposure prophylaxis in children is a highly effective strategy to reduce the risk of TB disease. The optimal therapy for treatment of latent infection with a presumably multidrug-resistant Mycobacterium tuberculosis strain is currently not known.
Collapse
Affiliation(s)
- A Hamzaoui
- Pavillon B, hôpital Abderrahmen-Mami, 2080 Ariana, Tunisie.
| |
Collapse
|
27
|
Innate Resistance to Tuberculosis in Man, Cattle and Laboratory Animal Models: Nipping Disease in the Bud? J Comp Pathol 2014; 151:291-308. [DOI: 10.1016/j.jcpa.2014.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 01/04/2023]
|
28
|
Cobat A, Poirier C, Hoal E, Boland-Auge A, de La Rocque F, Corrard F, Grange G, Migaud M, Bustamante J, Boisson-Dupuis S, Casanova JL, Schurr E, Alcaïs A, Delacourt C, Abel L. Tuberculin skin test negativity is under tight genetic control of chromosomal region 11p14-15 in settings with different tuberculosis endemicities. J Infect Dis 2014; 211:317-21. [PMID: 25143445 PMCID: PMC4279780 DOI: 10.1093/infdis/jiu446] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A substantial proportion of subjects exposed to a contagious tuberculosis case display lack of tuberculin skin test (TST) reactivity. We previously mapped a major locus (TST1) controlling lack of TST reactivity in families from an area in South Africa where tuberculosis is hyperendemic. Here, we conducted a household tuberculosis contact study in a French area where the endemicity of tuberculosis is low. A genome-wide analysis of TST negativity identified a significant linkage signal (P < 3 × 10−5) in close vicinity of TST1. Combined analysis of the 2 samples increased evidence of linkage (P = 2.4 × 10−6), further implicating genetic factors located on 11p14-15. This region overlaps the TNF1 locus controlling mycobacteria-driven tumor necrosis factor α production.
Collapse
Affiliation(s)
- Aurélie Cobat
- McGill International TB Centre Department of Human Genetics Department of Medicine, McGill University, Montreal, Canada
| | - Christine Poirier
- Centre de Lutte Anti-Tuberculeuse, Centre Hospitalier Intercommunal de Créteil, Créteil
| | - Eileen Hoal
- Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | - France de La Rocque
- Association Clinique et Thérapeutique Infantile du Val de Marne, Saint Maur des Fossés
| | - François Corrard
- Association Clinique et Thérapeutique Infantile du Val de Marne, Saint Maur des Fossés
| | - Ghislain Grange
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.1163
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.1163 University Paris Descartes, Sorbonne Paris Cité, Imagine Institute
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.1163 University Paris Descartes, Sorbonne Paris Cité, Imagine Institute
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.1163 University Paris Descartes, Sorbonne Paris Cité, Imagine Institute St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.1163 University Paris Descartes, Sorbonne Paris Cité, Imagine Institute St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch Howard Hughes Medical Institute, Rockefeller University, New York, New York
| | - Erwin Schurr
- McGill International TB Centre Department of Human Genetics Department of Medicine, McGill University, Montreal, Canada
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.1163 University Paris Descartes, Sorbonne Paris Cité, Imagine Institute URC, CIC, Necker, and Cochin Hospitals, Paris, France St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch
| | | | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.1163 University Paris Descartes, Sorbonne Paris Cité, Imagine Institute St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch
| |
Collapse
|
29
|
Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130428. [PMID: 24821915 PMCID: PMC4024222 DOI: 10.1098/rstb.2013.0428] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Only a small fraction of individuals exposed to Mycobacterium tuberculosis develop clinical tuberculosis (TB). Over the past century, epidemiological studies have shown that human genetic factors contribute significantly to this interindividual variability, and molecular progress has been made over the past decade for at least two of the three key TB-related phenotypes: (i) a major locus controlling resistance to infection with M. tuberculosis has been identified, and (ii) proof of principle that severe TB of childhood can result from single-gene inborn errors of interferon-γ immunity has been provided; genetic association studies with pulmonary TB in adulthood have met with more limited success. Future genetic studies of these three phenotypes could consider subgroups of subjects defined on the basis of individual (e.g. age at TB onset) or environmental (e.g. pathogen strain) factors. Progress may also be facilitated by further methodological advances in human genetics. Identification of the human genetic variants controlling the various stages and forms of TB is critical for understanding TB pathogenesis. These findings should have major implications for TB control, in the definition of improved prevention strategies, the optimization of vaccines and clinical trials and the development of novel treatments aiming to restore deficient immune responses.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, , 75015 Paris, France
| | | | | | | | | |
Collapse
|