1
|
Mylona E, Pereira-Dias J, Keane JA, Karkey A, Dongol S, Khokhar F, Tran TA, Cormie C, Higginson E, Baker S. Phenotypic variation in the lipopolysaccharide O-antigen of Salmonella Paratyphi A and implications for vaccine development. Vaccine 2024; 42:126404. [PMID: 39383552 DOI: 10.1016/j.vaccine.2024.126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
Enteric fever remains a major public health problem in South and Southeast Asia. The recent roll-out of the typhoid conjugate vaccine protecting against S. Typhi exhibits great promise for disease reduction in high burden areas. However, some endemic regions remain vulnerable to S. Paratyphi A due to a lack of licensed vaccines and inadequate WASH. Several developmental S. Paratyphi A vaccines exploit O-antigen as the target antigen. It has been hypothesised that O-antigen is under selective and environmental pressure, with mutations in O-antigen biosynthesis genes being reported, but their phenotypic effects are unknown. Here, we aimed to evaluate O-antigen variation in S. Paratyphi A originating from Nepal, and the potential effect of this variation on antibody binding. O-antigen variation was determined by measuring LPS laddering shift following electrophoresis; this analysis was complemented with genomic characterisation of the O-antigen region. We found structural O-antigen variation in <10 % of S. Paratyphi A organisms, but a direct underlying genetic cause could not be identified. High-content imaging was performed to determine antibody binding by commercial O2 monoclonal (mAb) and polyclonal antibodies, as well as polyclonal sera from convalescent patients naturally infected with S. Paratyphi A. Commercial mAbs detected only a fraction of an apparently "clonal" bacterial population, suggesting phase variation and nonuniform O-antigen composition. Notably, and despite visible subpopulation clusters, O-antigen structural changes did not appear to affect the binding ability of polyclonal human antibody considerably, which led to no obvious differences in the functionality of antibodies targeting organisms with different O-antigen conformations. Although these results need to be confirmed in organisms from alternative endemic areas, they are encouraging the use of O-antigen as the target antigen in S. Paratyphi A vaccines.
Collapse
Affiliation(s)
- Elli Mylona
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jacqueline A Keane
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal; The Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Fahad Khokhar
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, UK
| | - Tuan-Anh Tran
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Claire Cormie
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Human Immunology Laboratory, IAVI, London, UK
| |
Collapse
|
2
|
Booth JS, Rapaka RR, McArthur MA, Fresnay S, Darton TC, Blohmke CJ, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Role of circulating T follicular helper subsets following Ty21a immunization and oral challenge with wild type S. Typhi in humans. Front Immunol 2024; 15:1384642. [PMID: 39328410 PMCID: PMC11424897 DOI: 10.3389/fimmu.2024.1384642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rekha R. Rapaka
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A. McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Global Clinical Development, Sanofi, Swiftwater, PA, United States
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Rockville Center for Vaccine Research, GlaxsoSmithKline (GSK), Rockville, MD, United States
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Clinical Infection Research Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, and the National Institute for Health and Care Research (NIHR), Sheffield Biomedical Research Centre, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- GlaxsoSmithKline (GSK) Vaccines, London, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire S. Waddington
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Imperial College Healthcare, National Health Service (NHS) Trust, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
3
|
McCann N, Paganotti Vicentine M, Kim YC, Pollard AJ. The use of controlled human infection models to identify correlates of protection for invasive Salmonella vaccines. Front Immunol 2024; 15:1457785. [PMID: 39257585 PMCID: PMC11385307 DOI: 10.3389/fimmu.2024.1457785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Controlled human infection model (CHIM) studies, which involve deliberate exposure of healthy human volunteers to an infectious agent, are recognised as important tools to advance vaccine development. These studies not only facilitate estimates of vaccine efficacy, but also offer an experimental approach to study disease pathogenesis and profile vaccine immunogenicity in a controlled environment, allowing correlation with clinical outcomes. Consequently, the data from CHIMs can be used to identify immunological correlates of protection (CoP), which can help accelerate vaccine development. In the case of invasive Salmonella infections, vaccination offers a potential instrument to prevent disease. Invasive Salmonella disease, caused by the enteric fever pathogens Salmonella enterica serovar Typhi (S. Typhi) and S. Paratyphi A, B and C, and nontyphoidal Salmonella (iNTS), remains a significant cause of mortality and morbidity in low- and middle-income countries, resulting in over 200,000 deaths and the loss of 15 million DALYs annually. CHIM studies have contributed to the understanding of S. Typhi infection and provided invaluable insight into the development of vaccines and CoP following vaccination against S. Typhi. However, CoP are less well understood for S. Paratyphi A and iNTS. This brief review focuses on the contribution of vaccine-CHIM trials to our understanding of the immune mechanisms associated with protection following vaccines against invasive Salmonella pathogens, particularly in relation to CoP.
Collapse
Affiliation(s)
- Naina McCann
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Margarete Paganotti Vicentine
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Young Chan Kim
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
4
|
Simon J, Perumal Kumaresan A, Chand U, Sriharsha T, Bose S. Tropical Co-infection in a Tertiary Care Center in South India: A Case Report. Cureus 2024; 16:e67487. [PMID: 39310443 PMCID: PMC11416202 DOI: 10.7759/cureus.67487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Tropical co-infections, characterized by overlapping clinical manifestations and the potential for diagnostic confusion, pose significant challenges in the management of febrile illnesses in endemic regions. This case report presents a 33-year-old male with a five-day history of fever, gastrointestinal symptoms, and dry cough, ultimately diagnosed with co-infections of dengue, leptospirosis, and Salmonella paratyphi A. This case underscores the challenges posed by the overlapping clinical features of endemic tropical diseases, emphasizing the necessity for comprehensive diagnostic strategies and tailored treatment protocols in managing febrile illnesses in endemic regions. Clinicians must also consider serological cross-reactivity when interpreting diagnostic tests, as it can complicate the identification of co-infections and impact treatment decisions, necessitating vigilance and an integrated approach in clinical practice.
Collapse
Affiliation(s)
- Jibin Simon
- Internal Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ananthakumar Perumal Kumaresan
- Internal Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Utham Chand
- Internal Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Tirumalasetty Sriharsha
- Internal Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sharan Bose
- Internal Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Raqib R. Bivalent conjugate vaccines for typhoid and paratyphoid fever. Lancet 2024; 403:1516-1517. [PMID: 38555929 DOI: 10.1016/s0140-6736(24)00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Rubhana Raqib
- Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka-1212, Bangladesh.
| |
Collapse
|
6
|
Kulkarni PS, Potey AV, Bharati S, Kunhihitlu A, Narasimha B, Yallapa S, Dharmadhikari A, Gavade V, Kamat CD, Mallya A, Sarma AD, Goel S, Pisal SS, Poonawalla CS, Venkatesan R, Jones E, Flaxman A, Kim YC, Pollard AJ. The safety and immunogenicity of a bivalent conjugate vaccine against Salmonella enterica Typhi and Paratyphi A in healthy Indian adults: a phase 1, randomised, active-controlled, double-blind trial. Lancet 2024; 403:1554-1562. [PMID: 38555928 DOI: 10.1016/s0140-6736(24)00249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Enteric fever caused by Salmonella enterica Typhi and Salmonella Paratyphi A is an important public health problem, especially in low-income and middle-income countries with limited access to safe water and sanitation. We present results from, to our knowledge, the first ever human study of a bivalent paratyphoid A-typhoid conjugate vaccine (Sii-PTCV). METHODS In this double-blind phase 1 study, 60 healthy Indian adults were randomly assigned (1:1) to receive a single intramuscular dose of either Sii-PTCV or typhoid conjugate vaccine (Typbar-TCV). Safety was assessed by observing solicited adverse events for 1 week, unsolicited events for 1 month, and serious adverse events (SAEs) over 6 months. Immunogenicity at 1 month and 6 months was assessed by measuring anti-capsular polysaccharide antigen Vi (anti-Vi) IgG and IgA against Salmonella Typhi and anti-lipopolysaccharide (LPS) IgG against Salmonella Paratyphi A by ELISA, and functional antibodies using serum bactericidal assay (SBA) against Salmonella Paratyphi A. This study is registered with Clinical Trial Registry-India (CTRI/2022/06/043608) and is completed. FINDINGS 60 participants were enrolled. Of these 60 participants, 57 (95%) participants were male and three (5%) participants were female. Solicited adverse events were observed in 27 (90%) of 30 participants who received Sii-PTCV and 26 (87%) of 30 participants who received Typbar-TCV. The most common local solicited event was pain in 27 (90%) participants who received Sii-PTCV and in 23 (77%) participants who received Typbar-TCV. The most common solicited systemic event was myalgia in five (17%) participants who received Sii-PTCV, whereas four (13%) participants who received Typbar-TCV had myalgia and four (13%) had headache. No vaccine-related unsolicited adverse events or SAEs were reported. The seroconversion rates on day 29 were 96·7% (95% CI 82·8-99·9) with Sii-PTCV and 100·0% (88·4-100·0) with Typbar-TCV for anti-Vi IgG; 93·3% (77·9-99·2) with Sii-PTCV and 100·0% (88·4-100·0) with Typbar-TCV for anti-Vi IgA; 100·0% (88·4-100·0) with Sii-PTCV and 3·3% (0·1-17·2) with Typbar-TCV for anti-LPS (paratyphoid); and 93·3% (77·9-99·2) with Sii-PTCV and 0% (0·0-11·6) with Typbar-TCV for SBA titres (paratyphoid). Paratyphoid anti-LPS immune responses were sustained at day 181. INTERPRETATION Sii-PTCV was safe and immunogenic for both typhoid and paratyphoid antigens indicating its potential for providing comprehensive protection against enteric fever. FUNDING Serum Institute of India.
Collapse
|
7
|
Gasperini G, Massai L, De Simone D, Raso MM, Palmieri E, Alfini R, Rossi O, Ravenscroft N, Kuttel MM, Micoli F. O-Antigen decorations in Salmonella enterica play a key role in eliciting functional immune responses against heterologous serovars in animal models. Front Cell Infect Microbiol 2024; 14:1347813. [PMID: 38487353 PMCID: PMC10937413 DOI: 10.3389/fcimb.2024.1347813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. Methods These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Discussion Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.
Collapse
Affiliation(s)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
8
|
Smith C, Smith E, Rydlova A, Varro R, Hinton JCD, Gordon MA, Choy RKM, Liu X, Pollard AJ, Chiu C, Cooke GS, Gibani MM. Protocol for the challenge non-typhoidal Salmonella (CHANTS) study: a first-in-human, in-patient, double-blind, randomised, safety and dose-escalation controlled human infection model in the UK. BMJ Open 2024; 14:e076477. [PMID: 38199617 PMCID: PMC10806722 DOI: 10.1136/bmjopen-2023-076477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Invasive non-typhoidal Salmonella (iNTS) serovars are a major cause of community-acquired bloodstream infections in sub-Saharan Africa (SSA). In this setting, Salmonella enterica serovar Typhimurium accounts for two-thirds of infections and is associated with an estimated case fatality rate of 15%-20%. Several iNTS vaccine candidates are in early-stage assessment which-if found effective-would provide a valuable public health tool to reduce iNTS disease burden. The CHANTS study aims to develop a first-in-human Salmonella Typhimurium controlled human infection model, which can act as a platform for future vaccine evaluation, in addition to providing novel insights into iNTS disease pathogenesis. METHODS AND ANALYSIS This double-blind, safety and dose-escalation study will randomise 40-80 healthy UK participants aged 18-50 to receive oral challenge with one of two strains of S. Typhimurium belonging to the ST19 (strain 4/74) or ST313 (strain D23580) lineages. 4/74 is a global strain often associated with diarrhoeal illness predominantly in high-income settings, while D23580 is an archetypal strain representing invasive disease-causing isolates found in SSA. The primary objective is to determine the minimum infectious dose (colony-forming unit) required for 60%-75% of participants to develop clinical or microbiological features of systemic salmonellosis. Secondary endpoints are to describe and compare the clinical, microbiological and immunological responses following challenge. Dose escalation or de-escalation will be undertaken by continual-reassessment methodology and limited within prespecified safety thresholds. Exploratory objectives are to describe mechanisms of iNTS virulence, identify putative immune correlates of protection and describe host-pathogen interactions in response to infection. ETHICS AND DISSEMINATION Ethical approval has been obtained from the NHS Health Research Authority (London-Fulham Research Ethics Committee 21/PR/0051; IRAS Project ID 301659). The study findings will be disseminated in international peer-reviewed journals and presented at national/international stakeholder meetings. Study outcome summaries will be provided to both funders and participants. TRIAL REGISTRATION NUMBER NCT05870150.
Collapse
Affiliation(s)
- Christopher Smith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Emma Smith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Anna Rydlova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Robert Varro
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Melita A Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Southern Region, Malawi
| | | | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, Oxford University, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, Oxford University, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Graham S Cooke
- Department of Infectious Disease, Imperial College London, London, UK
| | - Malick M Gibani
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
9
|
Porter CK, Talaat KR, Isidean SD, Kardinaal A, Chakraborty S, Gutiérrez RL, Sack DA, Bourgeois AL. The Controlled Human Infection Model for Enterotoxigenic Escherichia coli. Curr Top Microbiol Immunol 2024; 445:189-228. [PMID: 34669040 DOI: 10.1007/82_2021_242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The controlled human infection model (CHIM) for enterotoxigenic Escherichia coli (ETEC) has been instrumental in defining ETEC as a causative agent of acute watery diarrhea, providing insights into disease pathogenesis and resistance to illness, and enabling preliminary efficacy evaluations for numerous products including vaccines, immunoprophylactics, and drugs. Over a dozen strains have been evaluated to date, with a spectrum of clinical signs and symptoms that appear to replicate the clinical illness seen with naturally occurring ETEC. Recent advancements in the ETEC CHIM have enhanced the characterization of clinical, immunological, and microbiological outcomes. It is anticipated that omics-based technologies applied to ETEC CHIMs will continue to broaden our understanding of host-pathogen interactions and facilitate the development of primary and secondary prevention strategies.
Collapse
Affiliation(s)
- Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA.
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Sandra D Isidean
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Alwine Kardinaal
- NIZO Food Research, Ede, P.O. Box 20, 6710 BA EDE, Kernhemseweg 2, 6718 ZB EDE, The Netherlands
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Ramiro L Gutiérrez
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - A Louis Bourgeois
- PATH|Center for Vaccine Innovation and Access, 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001, USA
| |
Collapse
|
10
|
MacLennan CA. The Background, Role and Approach for Development of a Controlled Human Infection Model for Nontyphoidal Salmonella. Curr Top Microbiol Immunol 2024; 445:315-335. [PMID: 34958419 DOI: 10.1007/82_2021_246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nontyphoidal Salmonella (NTS) is responsible for a major global burden of disease and economic loss, particularly in low- and middle-income countries. It is designated a priority pathogen by the WHO for vaccine development and, with new impetus from vaccine developers, the establishment of an NTS controlled human infection model (CHIM) is timely and valuable. The broadly dichotomous clinical presentations of diarrhoea and invasive disease, commonly bacteraemia, present significant challenges to the development of an NTS CHIM. Nevertheless, if successful, such a CHIM will be invaluable for understanding the pathogenesis of NTS disease, identifying correlates of protection and advancing candidate vaccines towards licensure. This article describes the background case for a CHIM for NTS, the role of such a CHIM and outlines a potential approach to its development.
Collapse
Affiliation(s)
- Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Bill & Melinda Gates Foundation, 62 Buckingham Gate, London, SW16AJ, UK.
| |
Collapse
|
11
|
Clarkson KA, Porter CK, Talaat KR, Kapulu MC, Chen WH, Frenck RW, Bourgeois AL, Kaminski RW, Martin LB. Shigella-Controlled Human Infection Models: Current and Future Perspectives. Curr Top Microbiol Immunol 2024; 445:257-313. [PMID: 35616717 PMCID: PMC7616482 DOI: 10.1007/82_2021_248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Shigella-controlled human infection models (CHIMs) are an invaluable tool utilized by the vaccine community to combat one of the leading global causes of infectious diarrhea, which affects infants, children and adults regardless of socioeconomic status. The impact of shigellosis disproportionately affects children in low- and middle-income countries (LMICs) resulting in cognitive and physical stunting, perpetuating a cycle that must be halted. Shigella-CHIMs not only facilitate the early evaluation of enteric countermeasures and up-selection of the most promising products but also provide insight into mechanisms of infection and immunity that are not possible utilizing animal models or in vitro systems. The greater understanding of shigellosis obtained in CHIMs builds and empowers the development of new generation solutions to global health issues which are unattainable in the conventional laboratory and clinical settings. Therefore, refining, mining and expansion of safe and reproducible infection models hold the potential to create effective means to end diarrheal disease and associated co-morbidities associated with Shigella infection.
Collapse
Affiliation(s)
- Kristen A Clarkson
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Chad K Porter
- Enteric Disease Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway Street Hampton House, Baltimore, MD, 21205, USA
| | - Melissa C Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi County Hospital, Off Bofa Road, Kilifi, 80108, Kenya
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Robert W Frenck
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - A Louis Bourgeois
- PATH Center for Vaccine Innovation and Access, 455 Massachusetts Avenue NW, Washington, DC, 20001, USA
| | - Robert W Kaminski
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Laura B Martin
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
12
|
Meiring JE, Khanam F, Basnyat B, Charles RC, Crump JA, Debellut F, Holt KE, Kariuki S, Mugisha E, Neuzil KM, Parry CM, Pitzer VE, Pollard AJ, Qadri F, Gordon MA. Typhoid fever. Nat Rev Dis Primers 2023; 9:71. [PMID: 38097589 DOI: 10.1038/s41572-023-00480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Typhoid fever is an invasive bacterial disease associated with bloodstream infection that causes a high burden of disease in Africa and Asia. Typhoid primarily affects individuals ranging from infants through to young adults. The causative organism, Salmonella enterica subsp. enterica serovar Typhi is transmitted via the faecal-oral route, crossing the intestinal epithelium and disseminating to systemic and intracellular sites, causing an undifferentiated febrile illness. Blood culture remains the practical reference standard for diagnosis of typhoid fever, where culture testing is available, but novel diagnostic modalities are an important priority under investigation. Since 2017, remarkable progress has been made in defining the global burden of both typhoid fever and antimicrobial resistance; in understanding disease pathogenesis and immunological protection through the use of controlled human infection; and in advancing effective vaccination programmes through strategic multipartner collaboration and targeted clinical trials in multiple high-incidence priority settings. This Primer thus offers a timely update of progress and perspective on future priorities for the global scientific community.
Collapse
Affiliation(s)
- James E Meiring
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Farhana Khanam
- International Centre for Diarrhoel Disease Research, Dhaka, Bangladesh
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Richelle C Charles
- Massachusetts General Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | | | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Emmanuel Mugisha
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Parry
- Department of Clinical Sciences and Education, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases and Public Health Modelling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Firdausi Qadri
- International Centre for Diarrhoel Disease Research, Dhaka, Bangladesh
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
13
|
Martin LB, Khanam F, Qadri F, Khalil I, Sikorski MJ, Baker S. Vaccine value profile for Salmonella enterica serovar Paratyphi A. Vaccine 2023; 41 Suppl 2:S114-S133. [PMID: 37951691 DOI: 10.1016/j.vaccine.2023.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 11/14/2023]
Abstract
In Asia, there are an estimated 12 million annual cases of enteric fever, a potentially fatal systemic bacterial infection caused by Salmonella enterica serovars Typhi (STy) and Paratyphi A (SPA). The recent availability of typhoid conjugate vaccines (TCV), an increasing incidence of disease caused by SPA and growing antimicrobial resistance (AMR) across the genus Salmonella makes a bivalent STy/SPA vaccine a useful public health proposition. The uptake of a stand-alone paratyphoid vaccine is likely low thus, there is a pipeline of bivalent STy/SPA candidate vaccines. Several candidates are close to entering clinical trials, which if successful should facilitate a more comprehensive approach for enteric fever control. Additionally, the World Health Organization (WHO) has made advancing the development of vaccines that protect young children and working aged adults against both agents of enteric fever a priority objective. This "Vaccine Value Profile" (VVP) addresses information related predominantly to invasive disease caused by SPA prevalent in Asia. Information is included on stand-alone SPA candidate vaccines and candidate vaccines targeting SPA combined with STy. Out of scope for the first version of this VVP is a wider discussion on the development of a universal Salmonella combination candidate vaccine, addressing both enteric fever and invasive non-typhoidal Salmonella disease, for use globally. This VVP is a detailed, high-level assessment of existing, publicly available information to inform and contextualize the public health, economic, and societal potential of pipeline vaccines and vaccine-like products for SPA. Future versions of this VVP will be updated to reflect ongoing activities such as vaccine development strategies and "Full Vaccine Value Assessment" that will inform the value proposition of an SPA vaccine. This VVP was developed by an expert working group from academia, non-profit organizations, public-private partnerships, and multi-lateral organizations as well as in collaboration with stakeholders from the WHO South-East Asian Region. All contributors have extensive expertise on various elements of the VVP for SPA and collectively aimed to identify current research and knowledge gaps.
Collapse
Affiliation(s)
- Laura B Martin
- Independent Consultant (current affiliation US Pharmacopeia Convention), USA.
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | | | | | - Stephen Baker
- University of Cambridge School of Clinical Medicine, UK.
| |
Collapse
|
14
|
Barton A, Hill J, O'Connor D, Jones C, Jones E, Camara S, Shrestha S, Jin C, Gibani MM, Dobinson HC, Waddington C, Darton TC, Blohmke CJ, Pollard AJ. Early transcriptional responses to human enteric fever challenge. Infect Immun 2023; 91:e0010823. [PMID: 37725060 PMCID: PMC10581002 DOI: 10.1128/iai.00108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023] Open
Abstract
Enteric fever, caused by oral infection with typhoidal Salmonella serovars, presents as a non-specific febrile illness preceded by an incubation period of 5 days or more. The enteric fever human challenge model provides a unique opportunity to investigate the innate immune response during this incubation period, and how this response is altered by vaccination with the Vi polysaccharide or conjugate vaccine. We find that on the same day as ingestion of typhoidal Salmonella, there is already evidence of an immune response, with 199 genes upregulated in the peripheral blood transcriptome 12 hours post-challenge (false discovery rate <0.05). Gene sets relating to neutrophils, monocytes, and innate immunity were over-represented (false discovery rate <0.05). Estimating cell proportions from gene expression data suggested a possible increase in activated monocytes 12 hours post-challenge (P = 0.036, paired Wilcoxon signed-rank test). Furthermore, plasma TNF-α rose following exposure (P = 0.011, paired Wilcoxon signed-rank test). There were no significant differences in gene expression (false discovery rate <0.05) in the 12 hours response between those who did and did not subsequently develop clinical or blood culture confirmed enteric fever or between vaccination groups. Together, these results demonstrate early perturbation of the peripheral blood transcriptome after enteric fever challenge and provide initial insight into early mechanisms of protection.
Collapse
Affiliation(s)
- Amber Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sonu Shrestha
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Malick M. Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Hazel C. Dobinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
15
|
Smith C, Smith E, Chiu C, Hinton J, Perez Sepulveda B, Gordon M, Choy RK, Hill PW, Meiring JE, Darton TC, Carey ME, Cooke G, Gibani MM. The Challenge Non-Typhoidal Salmonella (CHANTS) Consortium: Development of a non-typhoidal Salmonella controlled human infection model: Report from a consultation group workshop, 05 July 2022, London, UK. Wellcome Open Res 2023; 8:111. [PMID: 37808389 PMCID: PMC10558987 DOI: 10.12688/wellcomeopenres.19012.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Invasive non-typhoidal Salmonella disease (iNTS) is a major cause of morbidity and mortality globally, particularly as a cause of bloodstream infection in children and immunocompromised adults in sub-Saharan Africa. Vaccines to prevent non-typhoidal Salmonella (NTS) would represent a valuable public health tool in this setting to avert cases and prevent expansion of antimicrobial resistance. Several NTS and combination typhoidal-NTS vaccine candidates are in early-stage development, although the pathway to licensure is unclear due to challenges in conducting large phase III field trials. Controlled human infection models (CHIM) present an opportunity to accelerate vaccine development for a range of enteric pathogens. Several recent typhoidal Salmonella CHIMs have been conducted safely and have played pivotal roles in progressing vaccine candidates to pre-qualification and licensure. The Challenge Non-Typhoidal Salmonella (CHANTS) consortium has been formed with funding from the Wellcome Trust, to deliver the first NTS CHIM, which can act as a platform for future vaccine evaluation. This paper reports the conclusions of a consultation group workshop convened with key stakeholders. The aims of this meeting were to: (1) define the rationale for an NTS CHIM (2) map the NTS vaccine pipeline (3) refine study design and (4) establish potential future use cases.
Collapse
Affiliation(s)
- Christopher Smith
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Emma Smith
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Jay Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Blanca Perez Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Melita Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | - Peter W.S. Hill
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - James E. Meiring
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Thomas C. Darton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Megan E. Carey
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Graham Cooke
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Malick M. Gibani
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - CHANTS Consortium
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- PATH, Seattle, Washington, 98121, USA
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Smith C, Smith E, Chiu C, Hinton J, Perez Sepulveda B, Gordon M, Choy RK, Hill PW, Meiring JE, Darton TC, Carey ME, Cooke G, Gibani MM. The Challenge Non-Typhoidal Salmonella (CHANTS) Consortium: Development of a non-typhoidal Salmonella controlled human infection model: Report from a consultation group workshop, 05 July 2022, London, UK. Wellcome Open Res 2023; 8:111. [PMID: 37808389 PMCID: PMC10558987 DOI: 10.12688/wellcomeopenres.19012.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 04/21/2024] Open
Abstract
Invasive non-typhoidal Salmonella disease (iNTS) is a major cause of morbidity and mortality globally, particularly as a cause of bloodstream infection in children and immunocompromised adults in sub-Saharan Africa. Vaccines to prevent non-typhoidal Salmonella (NTS) would represent a valuable public health tool in this setting to avert cases and prevent expansion of antimicrobial resistance. Several NTS and combination typhoidal-NTS vaccine candidates are in early-stage development, although the pathway to licensure is unclear due to challenges in conducting large phase III field trials. Controlled human infection models (CHIM) present an opportunity to accelerate vaccine development for a range of enteric pathogens. Several recent typhoidal Salmonella CHIMs have been conducted safely and have played pivotal roles in progressing vaccine candidates to pre-qualification and licensure. The Challenge Non-Typhoidal Salmonella (CHANTS) consortium has been formed with funding from the Wellcome Trust, to deliver the first NTS CHIM, which can act as a platform for future vaccine evaluation. This paper reports the conclusions of a consultation group workshop convened with key stakeholders. The aims of this meeting were to: (1) define the rationale for an NTS CHIM (2) map the NTS vaccine pipeline (3) refine study design and (4) establish potential future use cases.
Collapse
Affiliation(s)
- Christopher Smith
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Emma Smith
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Jay Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Blanca Perez Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Melita Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | - Peter W.S. Hill
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - James E. Meiring
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Thomas C. Darton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Megan E. Carey
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Graham Cooke
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Malick M. Gibani
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - CHANTS Consortium
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- PATH, Seattle, Washington, 98121, USA
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Khalid K, Poh CL. The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria. Vaccines (Basel) 2023; 11:1264. [PMID: 37515079 PMCID: PMC10385262 DOI: 10.3390/vaccines11071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as inactivated vaccines (IVs) and live attenuated vaccines (LAVs), were effective in preventing bacterial infections. However, they have shown reduced efficacy against emerging antibiotic-resistant bacteria, including MDR M. tuberculosis. Additionally, the large-scale production of LAVs and IVs requires the growth of live pathogenic microorganisms. A more promising approach for the accelerated development of vaccines against antibiotic-resistant bacteria involves the use of in silico immunoinformatics techniques and reverse vaccinology. The bioinformatics approach can identify highly conserved antigenic targets capable of providing broader protection against emerging drug-resistant bacteria. Multi-epitope vaccines, such as recombinant protein-, DNA-, or mRNA-based vaccines, which incorporate several antigenic targets, offer the potential for accelerated development timelines. This review evaluates the potential of next-generation vaccine development based on the reverse vaccinology approach and highlights the development of safe and immunogenic vaccines through relevant examples from successful preclinical and clinical studies.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| |
Collapse
|
18
|
Saha T, Arisoyin AE, Bollu B, Ashok T, Babu A, Issani A, Jhaveri S, Avanthika C. Enteric Fever: Diagnostic Challenges and the Importance of Early Intervention. Cureus 2023; 15:e41831. [PMID: 37575696 PMCID: PMC10423039 DOI: 10.7759/cureus.41831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Enteric fever is a systemic infection caused by highly virulent Salmonella enterica serovars: Typhi and Paratyphi. Diagnosis of enteric fever is challenging due to a wide variety of clinical features which overlap with other febrile illnesses. The current diagnostic methods are limited because of the suboptimal sensitivity of conventional tests like blood culture in detecting organisms and the invasive nature of bone marrow culture. It emphasizes the need to develop improved and more reliable diagnostic modalities. The rising rates of multidrug-resistant Salmonella strains call for an accurate understanding of the current management of the disease. Proper public health measures and large-scale immunization programs will help reduce the burden of the disease. A comprehensive surveillance system can help detect the chronic carrier state and is crucial in understanding antibiotic susceptibility patterns. We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar till May 2022. The following search words and medical subject headings (MeSH) were used: "enteric fever," "Salmonella Typhi," "multidrug-resistant Salmonella," chronic carrier state," "Salmonella detection, "and "typhoid vaccine." We reviewed the literature on clinical features, pathophysiology, new diagnostic tests, and interventions to prevent the disease. This article explores enteric fever and its various clinical features and addresses the emerging threat of multidrug resistance. It focuses on novel methods for diagnosis and prevention strategies, including vaccines and the use of surveillance systems employed across different parts of the world.
Collapse
Affiliation(s)
- Tias Saha
- Internal Medicine, Samorita General Hospital, Faridpur, BGD
- Internal Medicine, Diabetic Association Medical College, Faridpur, BGD
| | | | - Bhaswanth Bollu
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Tejaswini Ashok
- Internal Medicine, Jagadguru Sri Shivarathreeshwara Medical College, Mysore, IND
| | - Athira Babu
- Pediatrics, Saudi German Hospital, Dubai, ARE
| | - Ali Issani
- Emergency Medicine, Aga Khan University, Karachi, PAK
| | - Sharan Jhaveri
- Internal Medicine, Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND
| |
Collapse
|
19
|
McCann N, Emary K, Singh N, Mclean F, Camara S, Jones E, Kim YC, Liu X, Greenland M, Conlin K, Hill J, Verheul M, Robinson H, Angus B, Ramasamy MN, Levine MM, Pollard AJ. Accelerating clinical development of a live attenuated vaccine against Salmonella Paratyphi A (VASP): study protocol for an observer-participant-blind randomised control trial of a novel oral vaccine using a human challenge model of Salmonella Paratyphi A infection in healthy adult volunteers. BMJ Open 2023; 13:e068966. [PMID: 37225278 DOI: 10.1136/bmjopen-2022-068966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
INTRODUCTION This is the first efficacy study of an oral live attenuated vaccine against Salmonella Paratyphi A using a human challenge model of paratyphoid infection. S. Paratyphi A is responsible for 3.3 million cases of enteric fever every year, with over 19 000 deaths. Although improvements to sanitation and access to clean water are vital to reduce the burden of this condition, vaccination offers a cost-effective, medium-term solution. Efficacy trials of potential S. Paratyphi vaccine candidates in the field are unlikely to be feasible given the large number of participants required. Human challenge models therefore offer a unique, cost-effective solution to test efficacy of such vaccines. METHODS AND ANALYSIS This is an observer-blind, randomised, placebo-controlled trial phase I/II of the oral live-attenuated vaccine against S. Paratyphi A, CVD 1902. Volunteers will be randomised 1:1 to receive two doses of CVD 1902 or placebo, 14 days apart. One month following second vaccination all volunteers will ingest S. Paratyphi A bacteria with a bicarbonate buffer solution. They will be reviewed daily in the following 14 days and diagnosed with paratyphoid infection if the predefined microbiological or clinical diagnostic criteria are met. All participants will be treated with antibiotics on diagnosis, or at day 14 postchallenge if not diagnosed. The vaccine efficacy will be determined by comparing the relative attack rate, that is, the proportion of those diagnosed with paratyphoid infection, in the vaccine and placebo groups. ETHICS AND DISSEMINATION Ethical approval for this study has been obtained from the Berkshire Medical Research Ethics Committee (REC ref 21/SC/0330). The results will be disseminated via publication in a peer-reviewed journal and presentation at international conferences. TRIAL REGISTRATION NUMBER ISRCTN15485902.
Collapse
Affiliation(s)
- Naina McCann
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Katherine Emary
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Nisha Singh
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Florence Mclean
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susana Camara
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elizabeth Jones
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Young Chan Kim
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Xinxue Liu
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Melanie Greenland
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kerry Conlin
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jennifer Hill
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marije Verheul
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hannah Robinson
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Brian Angus
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maheshi N Ramasamy
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Myron M Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew J Pollard
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
20
|
Hooda Y, Tanmoy AM, Saha SK, Saha S. Genomic Surveillance of Salmonella Paratyphi A: Neglected No More? Open Forum Infect Dis 2023; 10:S53-S57. [PMID: 37274527 PMCID: PMC10236518 DOI: 10.1093/ofid/ofad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/04/2023] [Indexed: 06/06/2023] Open
Abstract
Salmonella enterica serovar Paratyphi A, the causative agent of paratyphoid fever, is a neglected tropical disease with a high burden and mortality in low- and middle-income countries. Limited information is available regarding its genomic diversity, especially from South Asian countries that are collectively responsible for >80% of all paratyphoid cases. At the 2021 International Conference on Typhoid and Other Salmonelloses, researchers from the around the globe presented their work on Salmonella Paratyphi A genomics. Presentations described recent genomic data from South Asia and the development of Paratype, an open-access single-nucleotide polymorphism-based genotyping scheme, to segregate Salmonella Paratyphi A genomes in a systematic and sustainable manner. In this review, we attempt to summarize the progress made thus far on Salmonella Paratyphi A genomics and discuss the questions that remain to better understand the pathogen and develop interventions to fight it.
Collapse
Affiliation(s)
- Yogesh Hooda
- Child Health Research Foundation, Dhaka, Bangladesh
| | | | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
- Department of Microbiology, Bangladesh Shishu Hospital and Institute, Dhaka, Bangladesh
| | - Senjuti Saha
- Correspondence: Senjuti Saha, PhD, Child Health Research Foundation, 23/2 Khilji Road, Sel Huq Skypark, Block-B, Mohammadpur, Dhaka 1207, Bangladesh ()
| |
Collapse
|
21
|
MacLennan CA, Stanaway J, Grow S, Vannice K, Steele AD. Salmonella Combination Vaccines: Moving Beyond Typhoid. Open Forum Infect Dis 2023; 10:S58-S66. [PMID: 37274529 PMCID: PMC10236507 DOI: 10.1093/ofid/ofad041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
There is now a robust pipeline of licensed and World Health Organization (WHO)-prequalified typhoid conjugate vaccines with a steady progression of national introductions. However, typhoid fever is responsible for less than half the total global burden of Salmonella disease, and even less among children aged <5 years. Invasive nontyphoidal Salmonella disease is the dominant clinical presentation of Salmonella in Africa, and over a quarter of enteric fever in Asia is due to paratyphoid A. In this article, we explore the case for combination Salmonella vaccines, review the current pipeline of these vaccines, and discuss key considerations for their development, including geographies of use, age of administration, and pathways to licensure. While a trivalent typhoid/nontyphoidal Salmonella vaccine is attractive for Africa, and a bivalent enteric fever vaccine for Asia, a quadrivalent vaccine covering the 4 main disease-causing serovars of Salmonella enterica would provide a single vaccine option for global Salmonella coverage.
Collapse
Affiliation(s)
- Calman A MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jeffrey Stanaway
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
| | - Stephanie Grow
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Kirsten Vannice
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
22
|
Frost I, Sati H, Garcia-Vello P, Hasso-Agopsowicz M, Lienhardt C, Gigante V, Beyer P. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. THE LANCET. MICROBE 2023; 4:e113-e125. [PMID: 36528040 PMCID: PMC9892012 DOI: 10.1016/s2666-5247(22)00303-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/10/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022]
Abstract
Vaccines can be highly effective tools in combating antimicrobial resistance as they reduce infections caused by antibiotic-resistant bacteria and antibiotic consumption associated with disease. This Review looks at vaccine candidates that are in development against pathogens on the 2017 WHO bacterial priority pathogen list, in addition to Clostridioides difficile and Mycobacterium tuberculosis. There were 94 active preclinical vaccine candidates and 61 active development vaccine candidates. We classified the included pathogens into the following four groups: Group A consists of pathogens for which vaccines already exist-ie, Salmonella enterica serotype Typhi, Streptococcus pneumoniae, Haemophilus influenzae type b, and M tuberculosis. Group B consists of pathogens with vaccines in advanced clinical development-ie, extra-intestinal pathogenic Escherichia coli, Salmonella enterica serotype Paratyphi A, Neisseria gonorrhoeae, and C difficile. Group C consists of pathogens with vaccines in early phases of clinical development-ie, enterotoxigenic E coli, Klebsiella pneumoniae, non-typhoidal Salmonella, Shigella spp, and Campylobacter spp. Finally, group D includes pathogens with either no candidates in clinical development or low development feasibility-ie, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, Helicobacter pylori, Enterococcus faecium, and Enterobacter spp. Vaccines are already important tools in reducing antimicrobial resistance and future development will provide further opportunities to optimise the use of vaccines against resistance.
Collapse
Affiliation(s)
- Isabel Frost
- World Health Organization, Geneva, Switzerland; Department of Infectious Disease, Imperial College London, London, UK.
| | - Hatim Sati
- World Health Organization, Geneva, Switzerland
| | | | | | - Christian Lienhardt
- Unité Mixte Internationale 233 IRD-U1175 INSERM, Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France; Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Peter Beyer
- World Health Organization, Geneva, Switzerland; Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| |
Collapse
|
23
|
Khan M, Shamim S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms 2022; 10:2006. [PMID: 36296282 PMCID: PMC9606911 DOI: 10.3390/microorganisms10102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is a Gram-negative pathogen that causes typhoid fever in humans. Though many serotypes of Salmonella spp. are capable of causing disease in both humans and animals alike, S. Typhi and S. Paratyphi are common in human hosts only. The global burden of typhoid fever is attributable to more than 27 million cases each year and approximately 200,000 deaths worldwide, with many regions such as Africa, South and Southeast Asia being the most affected in the world. The pathogen is able to cause disease in hosts by evading defense systems, adhesion to epithelial cells, and survival in host cells in the presence of several virulence factors, mediated by virulence plasmids and genes clustered in distinct regions known as Salmonella pathogenicity islands (SPIs). These factors, coupled with plasmid-mediated antimicrobial resistance genes, enable the bacterium to become resistant to various broad-spectrum antibiotics used in the treatment of typhoid fever and other infections caused by Salmonella spp. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains in many countries of the world has raised great concern over the rise of antibiotic resistance in pathogens such as S. Typhi. In order to identify the key virulence factors involved in S. Typhi pathogenesis and infection, this review delves into various mechanisms of virulence, pathogenicity, and antimicrobial resistance to reinforce efficacious disease management.
Collapse
Affiliation(s)
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore 54000, Pakistan
| |
Collapse
|
24
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
25
|
Sztein MB, Booth JS. Controlled human infectious models, a path forward in uncovering immunological correlates of protection: Lessons from enteric fevers studies. Front Microbiol 2022; 13:983403. [PMID: 36204615 PMCID: PMC9530043 DOI: 10.3389/fmicb.2022.983403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric infectious diseases account for more than a billion disease episodes yearly worldwide resulting in approximately 2 million deaths, with children under 5 years old and the elderly being disproportionally affected. Enteric pathogens comprise viruses, parasites, and bacteria; the latter including pathogens such as Salmonella [typhoidal (TS) and non-typhoidal (nTS)], cholera, Shigella and multiple pathotypes of Escherichia coli (E. coli). In addition, multi-drug resistant and extensively drug-resistant (XDR) strains (e.g., S. Typhi H58 strain) of enteric bacteria are emerging; thus, renewed efforts to tackle enteric diseases are required. Many of these entero-pathogens could be controlled by oral or parenteral vaccines; however, development of new, effective vaccines has been hampered by lack of known immunological correlates of protection (CoP) and limited knowledge of the factors contributing to protective responses. To fully comprehend the human response to enteric infections, an invaluable tool that has recently re-emerged is the use of controlled human infection models (CHIMs) in which participants are challenged with virulent wild-type (wt) organisms. CHIMs have the potential to uncover immune mechanisms and identify CoP to enteric pathogens, as well as to evaluate the efficacy of therapeutics and vaccines in humans. CHIMs have been used to provide invaluable insights in the pathogenesis, host-pathogen interaction and evaluation of vaccines. Recently, several Oxford typhoid CHIM studies have been performed to assess the role of multiple cell types (B cells, CD8+ T, Tregs, MAIT, Monocytes and DC) during S. Typhi infection. One of the key messages that emerged from these studies is that baseline antigen-specific responses are important in that they can correlate with clinical outcomes. Additionally, volunteers who develop typhoid disease (TD) exhibit higher levels and more activated cell types (e.g., DC and monocytes) which are nevertheless defective in discrete signaling pathways. Future critical aspects of this research will involve the study of immune responses to enteric infections at the site of entry, i.e., the intestinal mucosa. This review will describe our current knowledge of immunity to enteric fevers caused byS. Typhi and S. Paratyphi A, with emphasis on the contributions of CHIMs to uncover the complex immunological responses to these organisms and provide insights into the determinants of protective immunity.
Collapse
Affiliation(s)
- Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Marcelo B. Sztein,
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Jayaum S. Booth,
| |
Collapse
|
26
|
Xie L, Ming L, Ding M, Deng L, Liu M, Cong Y. Paratyphoid Fever A: Infection and Prevention. Front Microbiol 2022; 13:945235. [PMID: 35875577 PMCID: PMC9304857 DOI: 10.3389/fmicb.2022.945235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Enteric fever is caused by Salmonella enterica serovar Typhi, Salmonella enterica serovar Paratyphi A, B, and C. While S. Typhi remains the primary causative agent of enteric fever, S. Paratyphi A is responsible for an increasing portion of enteric fever incidence. However, the current available vaccines for enteric fever are all developed from S. Typhi, and lack adequate cross immune protection against paratyphoid fever A. Therefore, paratyphoid A vaccines are urgently needed. The present paper reviews the latest progresses in pathogenesis, global burden, infection features of paratyphoid fever A, as well as the status of vaccine development, highlighting the necessity for the development of vaccines against paratyphoid fever A.
Collapse
Affiliation(s)
- Lei Xie
- Precision Medicine Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Lan Ming
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Manlin Ding
- Precision Medicine Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Luxin Deng
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Miao Liu
- Precision Medicine Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanguang Cong
- Precision Medicine Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yanguang Cong,
| |
Collapse
|
27
|
Barton A, Hill J, Bibi S, Chen L, Jones C, Jones E, Camara S, Shrestha S, Jin C, Gibani MM, Dobinson H, Waddington C, Darton TC, Blohmke CJ, Pollard AJ. Genetic Susceptibility to Enteric Fever in Experimentally Challenged Human Volunteers. Infect Immun 2022; 90:e0038921. [PMID: 35254093 PMCID: PMC9022534 DOI: 10.1128/iai.00389-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Infections with Salmonella enterica serovars Typhi and Paratyphi A cause an estimated 14 million cases of enteric fever annually. Here, the controlled nature of challenge studies is exploited to identify genetic variants associated with enteric fever susceptibility. Human challenge participants were genotyped by Illumina OmniExpress-24 BeadChip array (n = 176) and/or transcriptionally profiled by RNA sequencing (n = 174). While the study was underpowered to detect any single nucleotide polymorphisms (SNPs) significant at the whole-genome level, two SNPs within CAPN14 and MIATNB were identified with P < 10-5 for association with development of symptoms or bacteremia following oral S. Typhi or S. Paratyphi A challenge. Imputation of classical human leukocyte antigen (HLA) types from genomic and transcriptomic data identified HLA-B*27:05, previously associated with nontyphoidal Salmonella-induced reactive arthritis, as the HLA type most strongly associated with enteric fever susceptibility (P = 0.011). Gene sets relating to the unfolded protein response/heat shock and endoplasmic reticulum-associated protein degradation were overrepresented in HLA-B*27:05+ participants following challenge. Furthermore, intracellular replication of S. Typhi is higher in C1R cells transfected with HLA-B*27:05 (P = 0.02). These data suggest that activation of the unfolded protein response by HLA-B*27:05 misfolding may create an intracellular environment conducive to S. Typhi replication, increasing susceptibility to enteric fever.
Collapse
Affiliation(s)
- Amber Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sonu Shrestha
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Malick M. Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Hazel Dobinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
28
|
Paediatric enteric fever in Brussels: a case series over 16 years. Eur J Pediatr 2022; 181:1151-1158. [PMID: 34766200 DOI: 10.1007/s00431-021-04309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Enteric fever (EF) is a major public health problem and a witness of the global health disparities. It is caused by Salmonella enterica serovar Typhi (Salmonella ser. Typhi) and Salmonella enterica serovar Paratyphi A, B, C (Salmonella ser. Paratyphi) and is estimated to infect 12-26 million persons yearly. Paediatric data on enteric fever in Europe are scarce. A case series of EF was analysed to describe the clinical presentation, laboratory characteristics and diagnostic challenges identified in a paediatric population in Brussels. We performed a retrospective study of all lab-confirmed cases of enteric fever in children aged 0-15 years at two Brussels teaching hospitals, between January 2005 and December 2020. We reviewed age, gender, travel history, consultations before diagnosis, hospitalisation duration, clinical symptoms and laboratory findings. There were 34 positive isolates of S. typhi and S. paratyphi: 31 patients had positive blood culture, 1 patient had positive bone aspirate and 2 patients had positive stool culture (one was excluded for missing data). There were 20 girls (60%). Median age was 3.5 years (range 5 months to 14 years). Travel to EF endemic areas was present in 55% of patients. Diagnosis was delayed in 80% of children. Eosinopenia was present in 93% of the cohort. The patients had not received any preventive travel education or vaccination. Conlusion: Enteric fever poses diagnostic challenges to clinicians. Eosinopenia in a febrile patient coming from the tropics should raise suspicion of EF. Travellers to endemic areas should be better educated about EF risks, and typhoid fever vaccination must be promoted. What is Known: • Enteric fever is a global public health problem and includes typhoid and paratyphoid fever. • Typhoid fever is vaccine preventable disease. Paratyphoid fever is not vaccine preventable. What is New: • Enteric fever diagnosis is very challenging in non-endemic settings, and a large proportion of patients may develop serious complications if they receive delayed management. Occurrence of small family clusters is possible and mandates education and monitoring of the families of enteric fever affected children. • We report that the widest majority of our enteric fever affected patients (69%) had aneosinophilia (zero eosinophil count), and almost all patients (93%) had eosinopaenia (less than 50 eosinophil count) during their bacteriaemic phase.
Collapse
|
29
|
Anderson J, Imran S, Frost HR, Azzopardi KI, Jalali S, Novakovic B, Osowicki J, Steer AC, Licciardi PV, Pellicci DG. Immune signature of acute pharyngitis in a Streptococcus pyogenes human challenge trial. Nat Commun 2022; 13:769. [PMID: 35140232 PMCID: PMC8828729 DOI: 10.1038/s41467-022-28335-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pyogenes causes at least 750 million infections and more than 500,000 deaths each year. No vaccine is currently available for S. pyogenes and the use of human challenge models offer unique and exciting opportunities to interrogate the immune response to infectious diseases. Here, we use high-dimensional flow cytometric analysis and multiplex cytokine and chemokine assays to study serial blood and saliva samples collected during the early immune response in human participants following challenge with S. pyogenes. We find an immune signature of experimental human pharyngitis characterised by: 1) elevation of serum IL-1Ra, IL-6, IFN-γ, IP-10 and IL-18; 2) increases in peripheral blood innate dendritic cell and monocyte populations; 3) reduced circulation of B cells and CD4+ T cell subsets (Th1, Th17, Treg, TFH) during the acute phase; and 4) activation of unconventional T cell subsets, γδTCR + Vδ2+ T cells and MAIT cells. These findings demonstrate that S. pyogenes infection generates a robust early immune response, which may be important for host protection. Together, these data will help advance research to establish correlates of immune protection and focus the evaluation of vaccines.
Collapse
Affiliation(s)
- Jeremy Anderson
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Samira Imran
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Hannah R Frost
- Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Sedigheh Jalali
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Joshua Osowicki
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.
| | - Andrew C Steer
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.
| | - Paul V Licciardi
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
30
|
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, Bumann D. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci U S A 2021; 118:e2113951118. [PMID: 34911764 PMCID: PMC8713819 DOI: 10.1073/pnas.2113951118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.
Collapse
Affiliation(s)
- Jiagui Li
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Joseph Fanous
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
31
|
Rahman SIA, Nguyen TNT, Khanam F, Thomson NR, Dyson ZA, Taylor-Brown A, Chowdhury EK, Dougan G, Baker S, Qadri F. Genetic diversity of Salmonella Paratyphi A isolated from enteric fever patients in Bangladesh from 2008 to 2018. PLoS Negl Trop Dis 2021; 15:e0009748. [PMID: 34648506 PMCID: PMC8516307 DOI: 10.1371/journal.pntd.0009748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The proportion of enteric fever cases caused by Salmonella Paratyphi A is increasing and may increase further as we begin to introduce typhoid conjugate vaccines (TCVs). While numerous epidemiological and genomic studies have been conducted for S. Typhi, there are limited data describing the genomic epidemiology of S. Paratyphi A in especially in endemic settings, such as Bangladesh. PRINCIPAL FINDINGS We conducted whole genome sequencing (WGS) of 67 S. Paratyphi A isolated between 2008 and 2018 from eight enteric disease surveillance sites across Bangladesh. We performed a detailed phylogenetic analysis of these sequence data incorporating sequences from 242 previously sequenced S. Paratyphi A isolates from a global collection and provided evidence of lineage migration from neighboring countries in South Asia. The data revealed that the majority of the Bangladeshi S. Paratyphi A isolates belonged to the dominant global lineage A (67.2%), while the remainder were either lineage C (19.4%) or F (13.4%). The population structure was relatively homogenous across the country as we did not find any significant lineage distributions between study sites inside or outside Dhaka. Our genomic data showed presence of single point mutations in gyrA gene either at codon 83 or 87 associated with decreased fluoroquinolone susceptibility in all Bangladeshi S. Paratyphi A isolates. Notably, we identified the pHCM2- like cryptic plasmid which was highly similar to S. Typhi plasmids circulating in Bangladesh and has not been previously identified in S. Paratyphi A organisms. SIGNIFICANCE This study demonstrates the utility of WGS to monitor the ongoing evolution of this emerging enteric pathogen. Novel insights into the genetic structure of S. Paratyphi A will aid the understanding of both regional and global circulation patterns of this emerging pathogen and provide a framework for future genomic surveillance studies.
Collapse
Affiliation(s)
- Sadia Isfat Ara Rahman
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - To Nguyen Thi Nguyen
- Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Farhana Khanam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Infection Biology, Faculty of Infections and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Zoe A. Dyson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Infection Biology, Faculty of Infections and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alyce Taylor-Brown
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Emran Kabir Chowdhury
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
32
|
Increasing the High Throughput of a Luminescence-Based Serum Bactericidal Assay (L-SBA). BIOTECH 2021; 10:biotech10030019. [PMID: 35822773 PMCID: PMC9245470 DOI: 10.3390/biotech10030019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Serum bactericidal assay (SBA) is the method to investigate in vitro complement-mediated bactericidal activity of sera raised upon vaccination. The assay is based on incubating the target bacteria and exogenous complement with sera at different dilutions and the result of the assay is represented by the sera dilution being able to kill 50% of bacteria present in the inoculum. The traditional readout of the assay is based on measurement of colony-forming units (CFU) obtained after plating different reaction mixes on agar. This readout is at low throughput and time consuming, even when automated counting is used. We previously described a novel assay with a luminescence readout (L-SBA) based on measurement of ATP released by live bacteria, which allowed to substantially increase the throughput as well as to reduce the time necessary to perform the assay when compared to traditional methods. Here we present a further improvement of the assay by moving from a 96-well to a 384-well format, which allowed us to further increase the throughput and substantially reduce costs while maintaining the high performance of the previously described L-SBA method. The method has been successfully applied to a variety of different pathogens.
Collapse
|
33
|
Shakya M, Neuzil KM, Pollard AJ. Prospects of future typhoid and paratyphoid vaccines in endemic countries. J Infect Dis 2021; 224:S770-S774. [PMID: 34374785 PMCID: PMC8687069 DOI: 10.1093/infdis/jiab393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Low- and middle-income countries face a high burden of typhoid and paratyphoid fever due to poor water quality and inadequate sanitation. The World Health Organization (WHO) recommends the use of typhoid conjugate vaccines (TCV) in endemic settings and Gavi, the Vaccine Alliance, supports TCV introduction. There are currently two WHO-prequalified TCVs with Typbar TCV® introduced in Pakistan, Liberia, and Zimbabwe. Countries should assess disease burden and consider introduction of TCV for programmatic use. Several paratyphoid vaccine candidates are in early stages of development. An effective bivalent vaccine would be the most efficient way to control typhoid and paratyphoid fever.
Collapse
Affiliation(s)
- Mila Shakya
- Oxford University Clinical Research Unit - Nepal, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Kathleen M Neuzil
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
34
|
Steele AD, Carey ME, Kumar S, MacLennan CA, Ma LF, Diaz Z, Zaidi AKM. Typhoid Conjugate Vaccines and Enteric Fever Control: Where to Next? Clin Infect Dis 2021; 71:S185-S190. [PMID: 32725223 PMCID: PMC7388705 DOI: 10.1093/cid/ciaa343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
After the unprecedented success and acceleration of the global agenda towards typhoid fever control with a strong World Health Organization recommendation and the approval of funding from Gavi, the Vaccine Alliance (Gavi), for the use of a new typhoid conjugate vaccine (TCV), we should turn our minds to the challenges that remain ahead. Despite the evidence showing the safety and clinical efficacy of TCV in endemic populations in developing countries, we should remain vigilant and explore hurdles for the full public health impact of TCV, including vaccine supply for the potential global demand, immunization strategies to optimize the effectiveness and long-term protection provided by the vaccines, potential use of TCV in outbreak settings, and scenarios for addressing chronic carriers. Finally, challenges face endemic countries with poor surveillance systems concerning awareness of the need for TCV and the extent of the issue across their populations, and how to target immunization strategies appropriately.
Collapse
Affiliation(s)
- A Duncan Steele
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Megan E Carey
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Supriya Kumar
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Calman A MacLennan
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Lyou-Fu Ma
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Zoey Diaz
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Anita K M Zaidi
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
35
|
J Barton A, Hill J, J Blohmke C, J Pollard A. Host restriction, pathogenesis and chronic carriage of typhoidal Salmonella. FEMS Microbiol Rev 2021; 45:6159486. [PMID: 33733659 PMCID: PMC8498562 DOI: 10.1093/femsre/fuab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
While conjugate vaccines against typhoid fever have recently been recommended by the World Health Organization for deployment, the lack of a vaccine against paratyphoid, multidrug resistance and chronic carriage all present challenges for the elimination of enteric fever. In the past decade, the development of in vitro and human challenge models has resulted in major advances in our understanding of enteric fever pathogenesis. In this review, we summarise these advances, outlining mechanisms of host restriction, intestinal invasion, interactions with innate immunity and chronic carriage, and discuss how this knowledge may progress future vaccines and antimicrobials.
Collapse
Affiliation(s)
- Amber J Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK.,Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| |
Collapse
|
36
|
Mylona E, Sanchez-Garrido J, Hoang Thu TN, Dongol S, Karkey A, Baker S, Shenoy AR, Frankel G. Very long O-antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death. Cell Microbiol 2021; 23:e13306. [PMID: 33355403 PMCID: PMC8609438 DOI: 10.1111/cmi.13306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
Salmonella Paratyphi A (SPtA) remains one of the leading causes of enteric (typhoid) fever. Yet, despite the recent increased rate of isolation from patients in Asia, our understanding of its pathogenesis is incomplete. Here we investigated inflammasome activation in human macrophages infected with SPtA. We found that SPtA induces GSDMD‐mediated pyroptosis via activation of caspase‐1, caspase‐4 and caspase‐8. Although we observed no cell death in the absence of a functional Salmonella pathogenicity island‐1 (SPI‐1) injectisome, HilA‐mediated overexpression of the SPI‐1 regulon enhances pyroptosis. SPtA expresses FepE, an LPS O‐antigen length regulator, which induces the production of very long O‐antigen chains. Using a ΔfepE mutant we established that the very long O‐antigen chains interfere with bacterial interactions with epithelial cells and impair inflammasome‐mediated macrophage cell death. Salmonella Typhimurium (STm) serovar has a lower FepE expression than SPtA, and triggers higher pyroptosis, conversely, increasing FepE expression in STm reduced pyroptosis. These results suggest that differential expression of FepE results in serovar‐specific inflammasome modulation, which mirrors the pro‐ and anti‐inflammatory strategies employed by STm and SPtA, respectively. Our studies point towards distinct mechanisms of virulence of SPtA, whereby it attenuates inflammasome‐mediated detection through the elaboration of very long LPS O‐polysaccharides.
Collapse
Affiliation(s)
- Elli Mylona
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Julia Sanchez-Garrido
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Trang Nguyen Hoang Thu
- Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Avinash R Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
37
|
Gibani MM, Jin C, Shrestha S, Moore M, Norman L, Voysey M, Jones E, Blackwell L, Thomaides-Brears H, Hill J, Blohmke CJ, Dobinson HC, Baker P, Jones C, Campbell D, Mujadidi YF, Plested E, Preciado-Llanes L, Napolitani G, Simmons A, Gordon MA, Angus B, Darton TC, Cerundulo V, Pollard AJ. Homologous and heterologous re-challenge with Salmonella Typhi and Salmonella Paratyphi A in a randomised controlled human infection model. PLoS Negl Trop Dis 2020; 14:e0008783. [PMID: 33079959 PMCID: PMC7598925 DOI: 10.1371/journal.pntd.0008783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/30/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
Enteric fever is a systemic infection caused by Salmonella Typhi or Paratyphi A. In many endemic areas, these serovars co-circulate and can cause multiple infection-episodes in childhood. Prior exposure is thought to confer partial, but incomplete, protection against subsequent attacks of enteric fever. Empirical data to support this hypothesis are limited, and there are few studies describing the occurrence of heterologous-protection between these closely related serovars. We performed a challenge-re-challenge study using a controlled human infection model (CHIM) to investigate the extent of infection-derived immunity to Salmonella Typhi or Paratyphi A infection. We recruited healthy volunteers into two groups: naïve volunteers with no prior exposure to Salmonella Typhi/Paratyphi A and volunteers previously-exposed to Salmonella Typhi or Paratyphi A in earlier CHIM studies. Within each group, participants were randomised 1:1 to oral challenge with either Salmonella Typhi (104 CFU) or Paratyphi A (103 CFU). The primary objective was to compare the attack rate between naïve and previously challenged individuals, defined as the proportion of participants per group meeting the diagnostic criteria of temperature of ≥38°C persisting for ≥12 hours and/or S. Typhi/Paratyphi bacteraemia up to day 14 post challenge. The attack-rate in participants who underwent homologous re-challenge with Salmonella Typhi was reduced compared with challenged naïve controls, although this reduction was not statistically significant (12/27[44%] vs. 12/19[63%]; Relative risk 0.70; 95% CI 0.41-1.21; p = 0.24). Homologous re-challenge with Salmonella Paratyphi A also resulted in a lower attack-rate than was seen in challenged naïve controls (3/12[25%] vs. 10/18[56%]; RR0.45; 95% CI 0.16-1.30; p = 0.14). Evidence of protection was supported by a post hoc analysis in which previous exposure was associated with an approximately 36% and 57% reduced risk of typhoid or paratyphoid disease respectively on re-challenge. Individuals who did not develop enteric fever on primary exposure were significantly more likely to be protected on re-challenge, compared with individuals who developed disease on primary exposure. Heterologous re-challenge with Salmonella Typhi or Salmonella Paratyphi A was not associated with a reduced attack rate following challenge. Within the context of the model, prior exposure was not associated with reduced disease severity, altered microbiological profile or boosting of humoral immune responses. We conclude that prior Salmonella Typhi and Paratyphi A exposure may confer partial but incomplete protection against subsequent infection, but with a comparable clinical and microbiological phenotype. There is no demonstrable cross-protection between these serovars, consistent with the co-circulation of Salmonella Typhi and Paratyphi A. Collectively, these data are consistent with surveillance and modelling studies that indicate multiple infections can occur in high transmission settings, supporting the need for vaccines to reduce the burden of disease in childhood and achieve disease control. Trial registration NCT02192008; clinicaltrials.gov.
Collapse
Affiliation(s)
- Malick M. Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
- Department of Infectious Diseases, Imperial College London, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Sonu Shrestha
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Maria Moore
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Lily Norman
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Helena Thomaides-Brears
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Hazel C. Dobinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Philip Baker
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Danielle Campbell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Yama F. Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Emma Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | - Lorena Preciado-Llanes
- Institute for Infection and Global Health, University of Liverpool, United Kingdom
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Giorgio Napolitani
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Alison Simmons
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Melita A. Gordon
- Institute for Infection and Global Health, University of Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Brian Angus
- Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Thomas C. Darton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Vincenzo Cerundulo
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, United Kingdom
| |
Collapse
|
38
|
Gibani MM, Voysey M, Jin C, Jones C, Thomaides-Brears H, Jones E, Baker P, Morgan M, Simmons A, Gordon MA, Cerundolo V, Pitzer VE, Angus B, Levine MM, Darton TC, Pollard AJ. The Impact of Vaccination and Prior Exposure on Stool Shedding of Salmonella Typhi and Salmonella Paratyphi in 6 Controlled Human Infection Studies. Clin Infect Dis 2020; 68:1265-1273. [PMID: 30252031 PMCID: PMC6452003 DOI: 10.1093/cid/ciy670] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Shedding of Salmonella Typhi or Paratyphi in the stool or urine leads to contamination of food or water, which is a prerequisite for transmission of enteric fever. Currently, there are limited data on the effect of vaccination or prior exposure on stool shedding. METHODS Six Salmonella Typhi or Paratyphi human challenge studies were conducted between 2011 and 2017. Participants were either unvaccinated or vaccinated with 1 of 4 vaccines: Vi-polysaccharide (Vi-PS), Vi-tetanus-toxoid conjugate vaccine (Vi-TT), live oral Ty21a vaccine, or an experimental vaccine (M01ZH09). Daily stool cultures were collected for 14 days after challenge. RESULTS There were 4934 stool samples collected from 430 volunteers. Participants who received Vi-PS or Vi-TT shed less than unvaccinated participants (odds ratio [OR], 0.34; 95% confidence interval [CI], 0.15-0.77; P = .010 and OR, 0.41; 95% CI, 0.19-0.91, P = .029 for Vi-PS and Vi-TT, respectively). Higher anti-Vi immunoglobulin G titers were associated with less shedding of S. Typhi (P < .0001). A nonsignificant reduction in shedding was associated with Ty21a vaccine (OR, 0.57; 95% CI, 0.27-1.20; P = .140). Individuals previously exposed to S. Typhi shed less than previously unexposed individuals (OR, 0.30; 95% CI, 0.1-0.8; P = .016). Shedding of S. Typhi was more common than S. Paratyphi. CONCLUSIONS Prior vaccination with Vi vaccines, or natural infection, reduces onward transmission of S. Typhi. Field trials of Vi-TT should be designed to detect indirect protection, reflecting the consequence of reduced stool shedding observed in the human challenge model.
Collapse
Affiliation(s)
- Malick M Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford.,Nuffield Department of Primary Care Health Sciences, University of Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | | | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Philip Baker
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Marcus Morgan
- Oxford University Hospitals, National Health Service Foundation Trust, United Kingdom
| | - Alison Simmons
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, United Kingdom.,Translational Gastroenterology Unit, University of Oxford, United Kingdom
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre.,Institute for Infection and Global Health, University of Liverpool, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Brian Angus
- Oxford University Hospitals, National Health Service Foundation Trust, United Kingdom.,Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford.,National Institute for Health Research Oxford Biomedical Research Centre, United Kingdom
| |
Collapse
|
39
|
Pollard AJ, Sauerwein R, Baay M, Neels P. Third human challenge trial conference, Oxford, United Kingdom, February 6-7, 2020, a meeting report. Biologicals 2020; 66:41-52. [PMID: 32505512 DOI: 10.1016/j.biologicals.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
The third Human Challenge Trial Meeting brought together a broad range of international stakeholders, including academia, regulators, funders and industry, with a considerable delegation from Low- and Middle-Income Countries. Controlled human infection models (CHIMs) can be helpful to study pathogenesis and for the development of vaccines. As challenge agents are used to infect healthy volunteers, ethical considerations include that the challenge studies need to be safe and results should be meaningful. The meeting provided a state-of-the-art overview on a wide range of CHIMs, including viral, bacterial and parasitic challenge agents. Recommendations included globally aligned guidance documents for CHIM studies; further definition of a CHIM, based on the challenge agent used; standardization of methodology and study endpoints; capacity building in Low- and Middle-Income Countries, in performance as well as regulation of CHIM studies; guidance on compensation for participation in CHIM studies; and preparation of CHIM studies, with strong engagement with stakeholders.
Collapse
Affiliation(s)
- Andrew J Pollard
- Department of Paediatrics, University of Oxford, United Kingdom.
| | | | - Marc Baay
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium.
| | - Pieter Neels
- International Alliance for Biological Standardization, Belgium.
| | | |
Collapse
|
40
|
Raymond M, Gibani MM, Day NPJ, Cheah PY. Typhoidal Salmonella human challenge studies: ethical and practical challenges and considerations for low-resource settings. Trials 2019; 20:704. [PMID: 31852488 PMCID: PMC6921376 DOI: 10.1186/s13063-019-3844-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Typhoidal Salmonella is a major global problem affecting more than 12 million people annually. Controlled human infection models (CHIMs) in high-resource settings have had an important role in accelerating the development of conjugate vaccines against Salmonella Typhi. The typhoidal Salmonella model has an established safety profile in over 2000 volunteers in high-income settings, and trial protocols, with modification, could be readily transferred to new study sites. To date, a typhoidal Salmonella CHIM has not been conducted in a low-resource setting, although it is being considered. Our article describes the challenges posed by a typhoidal Salmonella CHIM in the high-resource setting of Oxford and explores considerations for an endemic setting. Development of CHIMs in endemic settings is scientifically justifiable as it remains unclear whether findings from challenge studies performed in high-resource non-endemic settings can be extrapolated to endemic settings, where the burden of invasive Salmonella is highest. Volunteers are likely to differ across a range of important variables such as previous Salmonella exposure, diet, intestinal microbiota, and genetic profile. CHIMs in endemic settings arguably are ethically justifiable as affected communities are more likely to gain benefit from the study. Local training and research capacity may be bolstered. Safety was of primary importance in the Oxford model. Risk of harm to the individual was mitigated by careful inclusion and exclusion criteria; close monitoring with online diary and daily visits; 24/7 on-call staffing; and access to appropriate hospital facilities with capacity for in-patient admission. Risk of harm to the community was mitigated by exclusion of participants with contact with vulnerable persons; stringent hygiene and sanitation precautions; and demonstration of clearance of Salmonella infection from stool following antibiotic treatment. Safety measures should be more stringent in settings where health systems, transport networks, and sanitation are less robust. We compare the following issues between high- and low-resource settings: scientific justification, risk of harm to the individual and community, benefits to the individual and community, participant understanding, compensation, and regulatory requirements. We conclude that, with careful consideration of country-specific ethical and practical issues, a typhoidal Salmonella CHIM in an endemic setting is possible.
Collapse
Affiliation(s)
- Meriel Raymond
- Oxford Vaccine Group Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), Churchill Hospital, Old Road, Headington, Oxford, OX3 7LE, UK
| | - Malick M Gibani
- Oxford Vaccine Group Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), Churchill Hospital, Old Road, Headington, Oxford, OX3 7LE, UK
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand. .,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Nuffield Departmemt of Population Health, The Ethox Centere, University of Oxford, Old Road, Oxford, OX3 7LF, UK.
| |
Collapse
|
41
|
Jin C, Gibani MM, Pennington SH, Liu X, Ardrey A, Aljayyoussi G, Moore M, Angus B, Parry CM, Biagini GA, Feasey NA, Pollard AJ. Treatment responses to Azithromycin and Ciprofloxacin in uncomplicated Salmonella Typhi infection: A comparison of Clinical and Microbiological Data from a Controlled Human Infection Model. PLoS Negl Trop Dis 2019; 13:e0007955. [PMID: 31877141 PMCID: PMC6948818 DOI: 10.1371/journal.pntd.0007955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/08/2020] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The treatment of enteric fever is complicated by the emergence of antimicrobial resistant Salmonella Typhi. Azithromycin is commonly used for first-line treatment of uncomplicated enteric fever, but the response to treatment may be sub-optimal in some patient groups when compared with fluoroquinolones. METHODS We performed an analysis of responses to treatment with azithromycin (500mg once-daily, 14 days) or ciprofloxacin (500mg twice-daily, 14 days) in healthy UK volunteers (18-60 years) enrolled into two Salmonella controlled human infection studies. Study A was a single-centre, open-label, randomised trial. Participants were randomised 1:1 to receive open-label oral ciprofloxacin or azithromycin, stratified by vaccine group (Vi-polysaccharide, Vi-conjugate or control Men-ACWY vaccine). Study B was an observational challenge/re-challenge study, where participants were randomised to challenge with Salmonella Typhi or Salmonella Paratyphi A. Outcome measures included fever clearance time, blood-culture clearance time and a composite measure of prolonged treatment response (persistent fever ≥38.0°C for ≥72 hours, persistently positive S. Typhi blood cultures for ≥72 hours, or change in antibiotic treatment). Both trials are registered with ClinicalTrials.gov (NCT02324751 and NCT02192008). FINDINGS In 81 participants diagnosed with S. Typhi in two studies, treatment with azithromycin was associated with prolonged bacteraemia (median 90.8 hours [95% CI: 65.9-93.8] vs. 20.1 hours [95% CI: 7.8-24.3], p<0.001) and prolonged fever clearance times <37.5°C (hazard ratio 2.4 [95%CI: 1.2-5.0]; p = 0.02). Results were consistent when studies were analysed independently and in a sub-group of participants with no history of vaccination or previous challenge. A prolonged treatment response was observed significantly more frequently in the azithromycin group (28/52 [54.9%]) compared with the ciprofloxacin group (1/29 [3.5%]; p<0.001). In participants treated with azithromycin, observed systemic plasma concentrations of azithromycin did not exceed the minimum inhibitory concentration (MIC), whilst predicted intracellular concentrations did exceed the MIC. In participants treated with ciprofloxacin, the observed systemic plasma concentrations and predicted intracellular concentrations of ciprofloxacin exceeded the MIC. INTERPRETATION Azithromycin at a dose of 500mg daily is an effective treatment for fully sensitive strains of S. Typhi but is associated with delayed treatment response and prolonged bacteraemia when compared with ciprofloxacin within the context of a human challenge model. Whilst the cellular accumulation of azithromycin is predicted to be sufficient to treat intracellular S. Typhi, systemic exposure may be sub-optimal for the elimination of extracellular circulating S. Typhi. In an era of increasing antimicrobial resistance, further studies are required to define appropriate azithromycin dosing regimens for enteric fever and to assess novel treatment strategies, including combination therapies. TRIAL REGISTRATION ClinicalTrials.gov (NCT02324751 and NCT02192008).
Collapse
Affiliation(s)
- Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Malick M. Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Shaun H. Pennington
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Alison Ardrey
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ghaith Aljayyoussi
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Maria Moore
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Brian Angus
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christopher M. Parry
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- School of Tropical Medicine and Global Health, Nagsaki University, Nagasaki, Japan
| | - Giancarlo A. Biagini
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas A. Feasey
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical research Programme, Blantyre, Malawi
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
42
|
Meiring JE, Giubilini A, Savulescu J, Pitzer VE, Pollard AJ. Generating the Evidence for Typhoid Vaccine Introduction: Considerations for Global Disease Burden Estimates and Vaccine Testing Through Human Challenge. Clin Infect Dis 2019; 69:S402-S407. [PMID: 31612941 PMCID: PMC6792111 DOI: 10.1093/cid/ciz630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Typhoid fever has had a major impact on human populations, with the causative pathogen Salmonella enterica serovar Typhi implicated in many outbreaks through history. The current burden of disease is estimated at 11-18 million infections annually, with the majority of infections located in Africa and South Asia. Data that have been used to estimate burden are limited to a small number of blood-culture surveillance studies, largely from densely populated urban centers. Extrapolating these data to estimate disease burden within and across countries highlights the lack of precision in global figures. A number of approaches have been developed, characterizing different geographical areas by water-based risk factors for typhoid infection or broader measures of health and development to more accurately extrapolate incidence. Recognition of the substantial disease burden is essential for policy-makers considering vaccine introduction. Typhoid vaccines have been in development for >100 years. The Vi polysaccharide (ViPS) and Ty21a vaccines have had a World Health Organization (WHO) recommendation for programmatic use in countries with high burden for 10 years, with 1 ViPS vaccine also having WHO prequalification. Despite this, uptake and introduction of these vaccines has been minimal. The development of a controlled human infection model (CHIM) enabled the accelerated testing of the newly WHO-prequalified ViPS-tetanus toxoid protein conjugate vaccine, providing efficacy estimates for the vaccine, prior to larger field trials. There is an urgency to the global control of enteric fever due to the escalating problem of antimicrobial resistance. With more accurate burden of disease estimates and a vaccine showing efficacy in CHIM, that control is now a possibility.
Collapse
Affiliation(s)
- James E Meiring
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| | - Alberto Giubilini
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, United Kingdom
| | - Julian Savulescu
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, United Kingdom
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| |
Collapse
|
43
|
Oguti B, Gibani M, Darlow C, Waddington CS, Jin C, Plested E, Campbell D, Jones C, Darton TC, Pollard AJ. Factors influencing participation in controlled human infection models: a pooled analysis from six enteric fever studies. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.15469.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Enteric fever is an acute febrile-illness caused by infection with the human-restricted Salmonella serovars Typhi and Paratyphi. Controlled human infection models (CHIM) of S. Typhi and Paratyphi infection are used to accelerate vaccine development and to better understand host-pathogen interactions. The primary motivations for participants to take part in these studies are unknown. We studied participant motivations, attitudes and the factors influencing CHIM study participation. Methods: Participant surveys were nested in six enteric fever CHIM studies conducted at a single centre in Oxford, UK, between 2011 and 2017. All eligible participants received one invitation to complete an anonymous, self-administered paper or online survey on either day 28 or 60 after challenge. A descriptive analysis was performed on these pooled data. All studies were included, to minimize selection bias. Results: Survey response rates varied from 33.0%-86.1%, yielding 201 participants. In the cohort, 113/198(57.0%) were educated to bachelor’s level, 61.6% were employed, 30.3% were students and 4.6% were unemployed. The most commonly cited motivations for CHIM study participation were a desire to contribute to the progression of medicine (170/201; 84.6%); the prospect of financial reimbursement (166/201; 82.6%) and curiosity about clinical trials (117/201; 57.2%). The majority of respondents (139/197; 70.6%) reported that most people advised them against participation. Conclusion: Motivation to participate in a CHIM study was multi-factorial and heavily influenced by internal drivers beyond monetary reimbursement alone. High educational attainment and employment may be protective factors against financial inducement; however, further research is needed, particularly with CHIM studies expanding to low-income and middle-income countries.
Collapse
|
44
|
Blohmke CJ, Muller J, Gibani MM, Dobinson H, Shrestha S, Perinparajah S, Jin C, Hughes H, Blackwell L, Dongol S, Karkey A, Schreiber F, Pickard D, Basnyat B, Dougan G, Baker S, Pollard AJ, Darton TC. Diagnostic host gene signature for distinguishing enteric fever from other febrile diseases. EMBO Mol Med 2019; 11:e10431. [PMID: 31468702 PMCID: PMC6783646 DOI: 10.15252/emmm.201910431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Misdiagnosis of enteric fever is a major global health problem, resulting in patient mismanagement, antimicrobial misuse and inaccurate disease burden estimates. Applying a machine learning algorithm to host gene expression profiles, we identified a diagnostic signature, which could distinguish culture-confirmed enteric fever cases from other febrile illnesses (area under receiver operating characteristic curve > 95%). Applying this signature to a culture-negative suspected enteric fever cohort in Nepal identified a further 12.6% as likely true cases. Our analysis highlights the power of data-driven approaches to identify host response patterns for the diagnosis of febrile illnesses. Expression signatures were validated using qPCR, highlighting their utility as PCR-based diagnostics for use in endemic settings.
Collapse
Affiliation(s)
- Christoph J Blohmke
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | | | - Malick M Gibani
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Hazel Dobinson
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Sonu Shrestha
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Soumya Perinparajah
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Celina Jin
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Harri Hughes
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Luke Blackwell
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Sabina Dongol
- Patan Academy of Healthy SciencesOxford University Clinical Research UnitKathmanduNepal
| | - Abhilasha Karkey
- Patan Academy of Healthy SciencesOxford University Clinical Research UnitKathmanduNepal
| | | | - Derek Pickard
- Infection Genomics ProgramThe Wellcome Trust Sanger InstituteHinxtonUK
| | - Buddha Basnyat
- Patan Academy of Healthy SciencesOxford University Clinical Research UnitKathmanduNepal
| | - Gordon Dougan
- Infection Genomics ProgramThe Wellcome Trust Sanger InstituteHinxtonUK
| | - Stephen Baker
- The Hospital for Tropical DiseasesWellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityVietnam
| | - Andrew J Pollard
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Thomas C Darton
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
- The Hospital for Tropical DiseasesWellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityVietnam
- Department of Infection, Immunity and Cardiovascular DiseaseUniversity of SheffieldSheffieldUK
| |
Collapse
|
45
|
Abstract
Are antibodies important for protection against tuberculosis? The jury has been out for more than 100 years. B cell depletion in experimental Mycobacterium tuberculosis infection failed to identify a major role for these cells in immunity to tuberculosis. However, recent identification of naturally occurring antibodies in humans that are protective during M. tuberculosis infection has reignited the debate. Here, we discuss the evidence for a protective role for antibodies in tuberculosis and consider the feasibility of designing novel tuberculosis vaccines targeting humoral immunity.
Collapse
Affiliation(s)
- Hao Li
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Babak Javid
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China.
| |
Collapse
|
46
|
Abstract
Purpose of review Enteric fever remains a major global-health concern, estimated to be responsible for between 11.9 and 26.9 million cases annually. Long-term prevention of enteric fever will require improved access to safe drinking water combined with investment in sanitation and hygiene interventions. In the short-to-medium term, new control strategies for typhoid fever have arrived in the form of typhoid Vi-conjugate vaccines (TCVs), offering hope that disease control can be achieved in the near future. Recent findings The diagnosis of enteric fever is complicated by its nonspecific clinical presentation, coupled with the low sensitivity of commonly used diagnostics. Investment in diagnostics has the potential to improve management, to refine estimates of disease burden and to facilitate vaccine impact studies. A new generation of reliable, diagnostic tests is needed that are simultaneously accessible, cost-effective, sensitive, and specific. The emergence and global dissemination of multidrug-resistant, fluoroquinolone-resistant, and extensively drug-resistant (XDR) strains of Salmonella Typhi emphasizes the importance of continued surveillance and appropriate antibiotic stewardship, integrated into a global strategy to address antimicrobial resistance (AMR). Current empirical treatment guidelines are out of date and should be updated to respond to local trends in AMR, so as to guide treatment choices in the absence of robust diagnostics and laboratory facilities. In September 2017, the WHO Strategic Advisory Group of Experts (SAGE) immunization recommended the programmatic use of TCVs in high burden countries. Ongoing and future studies should aim to study the impact of these vaccines in a diverse range of setting and to support the deployment of TCVs in high-burden countries. Summary The advent of new generation TCVs offers us a practical and affordable public-health tool that – for the first time – can be integrated into routine childhood immunization programmes. In this review, we advocate for the deployment of TCVs in line with WHO recommendations, to improve child health and limit the spread of antibiotic-resistant S. Typhi.
Collapse
|
47
|
Gibani MM, Jones E, Barton A, Jin C, Meek J, Camara S, Galal U, Heinz E, Rosenberg-Hasson Y, Obermoser G, Jones C, Campbell D, Black C, Thomaides-Brears H, Darlow C, Dold C, Silva-Reyes L, Blackwell L, Lara-Tejero M, Jiao X, Stack G, Blohmke CJ, Hill J, Angus B, Dougan G, Galán J, Pollard AJ. Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model. Nat Med 2019; 25:1082-1088. [PMID: 31270506 PMCID: PMC6892374 DOI: 10.1038/s41591-019-0505-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/30/2019] [Indexed: 11/09/2022]
Abstract
Salmonella Typhi is a human host-restricted pathogen that is responsible for typhoid fever in approximately 10.9 million people annually1. The typhoid toxin is postulated to have a central role in disease pathogenesis, the establishment of chronic infection and human host restriction2–6. However, its precise role in typhoid disease in humans is not fully defined. We studied the role of typhoid toxin in acute infection using a randomized, double-blind S. Typhi human challenge model7. Forty healthy volunteers were randomized (1:1) to oral challenge with 104 colony-forming units of wild-type or an isogenic typhoid toxin deletion mutant (TN) of S. Typhi. We observed no significant difference in the rate of typhoid infection (fever ≥38 °C for ≥12 h and/or S. Typhi bacteremia) between participants challenged with wild-type or TN S. Typhi (15 out of 21 (71%) versus 15 out of 19 (79%); P = 0.58). The duration of bacteremia was significantly longer in participants challenged with the TN strain compared with wild-type (47.6 hours (28.9–97.0) versus 30.3(3.6–49.4); P ≤ 0.001). The clinical syndrome was otherwise indistinguishable between wild-type and TN groups. These data suggest that the typhoid toxin is not required for infection and the development of early typhoid fever symptoms within the context of a human challenge model. Further clinical data are required to assess the role of typhoid toxin in severe disease or the establishment of bacterial carriage. Typhoid toxin is not essential for the pathogenesis of typhoid fever in healthy humans challenged with Salmonella Typhi.
Collapse
Affiliation(s)
- Malick M Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK. .,Department of Medicine, Imperial College London, London, UK.
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amber Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Juliette Meek
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, UK
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Gerlinde Obermoser
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Danielle Campbell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Charlotte Black
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Helena Thomaides-Brears
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christopher Darlow
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Xuyao Jiao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Gabrielle Stack
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Brian Angus
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Medicine, University of Cambridge, Hinxton, UK
| | - Jorge Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
48
|
Abstract
ABSTRACT
The rapid development of genomics and other “-omics” approaches has significantly impacted how we have investigated host-pathogen interactions since the turn of the millennium. Technologies such as next-generation sequencing, stem cell biology, and high-throughput proteomics have transformed the scale and sensitivity with which we interrogate biological samples. These approaches are impacting experimental design in the laboratory and transforming clinical management in health care systems. Here, we review this area from the perspective of research on bacterial pathogens.
Collapse
|
49
|
Johnson R, Mylona E, Frankel G. TyphoidalSalmonella: Distinctive virulence factors and pathogenesis. Cell Microbiol 2018; 20:e12939. [DOI: 10.1111/cmi.12939] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Rebecca Johnson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Elli Mylona
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| |
Collapse
|
50
|
Necchi F, Saul A, Rondini S. Setup of luminescence-based serum bactericidal assay against Salmonella Paratyphi A. J Immunol Methods 2018; 461:117-121. [PMID: 29969587 DOI: 10.1016/j.jim.2018.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/10/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Increasing awareness of Salmonella Paratyphi A's contribution to enteric fever episodes throughout Asia has led to the development of new S. Paratyphi A vaccines. Assays are needed to measure functional antibodies elicited by the new vaccine candidates to assess their immunogenicity and potential protective capacities. Serum bactericidal assay (SBA) is the method of choice to measure functional antibody titers against various bacterial pathogens, but it is rarely been used for large dataset and clinical samples because it is time consuming and labor-intensive. Recently we developed a high-throughput luminescence-based SBA method, against different pathogens, including Salmonella Typhimurium and Enteritidis, Shigella flexneri serovars 2a and 3a, Shigella sonnei and Neisseria meningitidis. Here we further demonstrated the applicability of such method with invasive isolates of S. Paratyphi A to assess the complement-mediated antibody-dependent killing of both preclinical and clinical standard sera. As already found for other organisms, titers obtained by the luminescence-based SBA strongly correlated with those obtained by the conventional agar plate-based assay. The SBA assay described here is a useful tool for measuring functional antibodies elicited by Salmonella vaccines, with the potential of being applied to immunogenicity assessment in clinical trials.
Collapse
Affiliation(s)
- Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy.
| | - Allan Saul
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy
| | - Simona Rondini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|