1
|
Wasserman S, Donovan J, Kestelyn E, Watson JA, Aarnoutse RE, Barnacle JR, Boulware DR, Chow FC, Cresswell FV, Davis AG, Dooley KE, Figaji AA, Gibb DM, Huynh J, Imran D, Marais S, Meya DB, Misra UK, Modi M, Raberahona M, Ganiem AR, Rohlwink UK, Ruslami R, Seddon JA, Skolimowska KH, Solomons RS, Stek CJ, Thuong NTT, van Crevel R, Whitaker C, Thwaites GE, Wilkinson RJ. Advancing the chemotherapy of tuberculous meningitis: a consensus view. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00512-7. [PMID: 39342951 PMCID: PMC7616680 DOI: 10.1016/s1473-3099(24)00512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
Tuberculous meningitis causes death or disability in approximately 50% of affected individuals and kills approximately 78 200 adults every year. Antimicrobial treatment is based on regimens used for pulmonary tuberculosis, which overlooks important differences between lung and brain drug distributions. Tuberculous meningitis has a profound inflammatory component, yet only adjunctive corticosteroids have shown clear benefit. There is an active pipeline of new antitubercular drugs, and the advent of biological agents targeted at specific inflammatory pathways promises a new era of improved tuberculous meningitis treatment and outcomes. Yet, to date, tuberculous meningitis trials have been small, underpowered, heterogeneous, poorly generalisable, and have had little effect on policy and practice. Progress is slow, and a new approach is required. In this Personal View, a global consortium of tuberculous meningitis researchers articulate a coordinated, definitive way ahead via globally conducted clinical trials of novel drugs and regimens to advance treatment and improve outcomes for this life-threatening infection.
Collapse
Affiliation(s)
- Sean Wasserman
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; Infection and Immunity, St George's University of London, London, UK
| | - Joseph Donovan
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Evelyne Kestelyn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - James A Watson
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | - James R Barnacle
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; The Francis Crick Institute, London, UK; Department of Infectious Diseases, Imperial College London, London, UK
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Felicia C Chow
- Departments of Neurology and Medicine (Infectious Diseases), University of California San Francisco, San Francisco, CA, USA
| | - Fiona V Cresswell
- Infectious Diseases Institute, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda; HIV Interventions, Medical Research Council-Uganda Virus Research Institute MRC and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Angharad G Davis
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; The Francis Crick Institute, London, UK
| | - Kelly E Dooley
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anthony A Figaji
- Division of Neurosurgery, Neuroscience Institute, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Diana M Gibb
- Medical Research Council Clinical Trials Unit, London, UK
| | - Julie Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, UK
| | - Darma Imran
- Dr Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Suzaan Marais
- Division of Neurology, Neuroscience Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - David B Meya
- Infectious Diseases Institute, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda; Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Usha K Misra
- Medical College, Vivekanand Polyclinic and Institute of Medical Sciences and Apollo Medics Super Speciality Hospital, Lucknow, India
| | - Manish Modi
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mihaja Raberahona
- University Hospital Joseph Raseta Befelatanana, Antananarivo, Madagascar
| | - Ahmad Rizal Ganiem
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran-Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ursula K Rohlwink
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; Division of Neurosurgery, Neuroscience Institute, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran-Hasan Sadikin Hospital, Bandung, Indonesia
| | - James A Seddon
- Department of Infectious Diseases, Imperial College London, London, UK; Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Keira H Skolimowska
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; Infection and Immunity, St George's University of London, London, UK
| | - Regan S Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Cari J Stek
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | - Claire Whitaker
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, UK
| | - Robert J Wilkinson
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; The Francis Crick Institute, London, UK; Department of Infectious Diseases, Imperial College London, London, UK.
| |
Collapse
|
2
|
Wasserman S, Antilus-Sainte R, Abdelgawad N, Odjourian NM, Cristaldo M, Dougher M, Kaya F, Zimmerman M, Denti P, Gengenbacher M. Rifabutin central nervous system concentrations in a rabbit model of tuberculous meningitis. Antimicrob Agents Chemother 2024; 68:e0078324. [PMID: 39028192 PMCID: PMC11304741 DOI: 10.1128/aac.00783-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Tuberculous meningitis (TBM) has a high mortality, possibly due to suboptimal therapy. Drug exposure data of antituberculosis agents in the central nervous system (CNS) are required to develop more effective regimens. Rifabutin is a rifamycin equivalently potent to rifampin in human pulmonary tuberculosis. Here, we show that human-equivalent doses of rifabutin achieved potentially therapeutic exposure in relevant CNS tissues in a rabbit model of TBM, supporting further evaluation in clinical trials.
Collapse
Affiliation(s)
- Sean Wasserman
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
- Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Narineh M. Odjourian
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Melissa Cristaldo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Maureen Dougher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| |
Collapse
|
3
|
Gafar F, Yunivita V, Fregonese F, Apriani L, Aarnoutse RE, Ruslami R, Menzies D. Pharmacokinetics of standard versus high-dose rifampin for tuberculosis preventive treatment: A sub-study of the 2R 2 randomized controlled trial. Int J Antimicrob Agents 2024; 64:107197. [PMID: 38750674 DOI: 10.1016/j.ijantimicag.2024.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Pharmacokinetic data of rifampin, when used for tuberculosis preventive treatment (TPT) are not available. We aimed to describe the pharmacokinetics of rifampin used for TPT, at standard and higher doses, and to assess predictors of rifampin exposure. METHODS A pharmacokinetic sub-study was performed in Bandung, Indonesia among participants in the 2R2 randomized trial, which compared TPT regimens of 2 months of high-dose rifampin at 20 mg/kg/day (2R20) and 30 mg/kg/day (2R30), with 4 months of standard-dose rifampin at 10 mg/kg/day (4R10) in adolescents and adults. Intensive pharmacokinetic sampling was performed after 2-8 weeks of treatment. Pharmacokinetic parameters were assessed non-compartmentally. Total exposure (AUC0-24) and peak concentration (Cmax) between arms were compared using one-way ANOVA and Tukey's post-hoc tests. Multivariable linear regression analyses were used to assess predictors of AUC0-24 and Cmax. RESULTS We enrolled 51 participants in this study. In the 4R10, 2R20, and 2R30 arms, the geometric mean AUC0-24 was 68.0, 186.8, and 289.9 h⋅mg/L, and Cmax was 18.4, 36.7, and 54.4 mg/L, respectively; high interindividual variabilities were observed. Compared with the 4R10 arm, AUC0-24 and Cmax were significantly higher in the 2R20 and 2R30 arms (P < 0.001). Drug doses, body weight, and female sex were predictors of higher rifampin AUC0-24 and Cmax (P < 0.05). AUC0-24 and Cmax values were much higher than those previously reported in persons with TB disease. CONCLUSIONS Doubling and tripling the rifampin dose led to three- and four-fold higher exposure compared to standard dose. Pharmacokinetic/pharmacodynamic modelling and simulations are warranted to support trials of shortening the duration of TPT regimens with high-dose rifampin.
Collapse
Affiliation(s)
- Fajri Gafar
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, McGill University, Montreal, Quebec, Canada; Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Vycke Yunivita
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Federica Fregonese
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Lika Apriani
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia; Division of Epidemiology and Biostatistics, Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| | - Rovina Ruslami
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada; Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Dick Menzies
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, McGill University, Montreal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Montreal Chest Institute, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Gausi K, Mugerwa H, Siccardi M, Montanha MC, Lamorde M, Wiesner L, D’Avolio A, McIlleron H, Wilkins E, De Nicolò A, Maartens G, Khoo S, Kityo C, Denti P, Waitt C. Pharmacokinetics and Safety of Twice-daily Ritonavir-boosted Atazanavir With Rifampicin. Clin Infect Dis 2024; 78:1246-1255. [PMID: 37982585 PMCID: PMC11093668 DOI: 10.1093/cid/ciad700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Critical drug-drug interactions (DDI) and hepatotoxicity complicate concurrent use of rifampicin and protease inhibitors. We investigated whether dose escalation of atazanavir/ritonavir could safely overcome the DDI with rifampicin. METHODS DERIVE (NCT04121195, EDCTP) was a dose-escalation trial in people with human immunodeficiency virus (HIV) on atazanavir/ritonavir-based antiretroviral therapy (ART) in Uganda. Four intensive pharmacokinetic (PK) visits were performed: PK1 300/100 mg OD (baseline); PK2 300/100 mg OD with rifampicin 600 mg; PK3 300/100 mg twice a day (BID) with rifampicin 600 mg OD; PK4 300/100 mg BID with rifampicin 1200 mg OD. Dolutegravir 50 mg BID throughout the study period ensured participants remained protected from subtherapeutic atazanavir concentrations. The data were interpreted with noncompartmental analysis. The target minimum concentration was atazanavir's protein-adjusted IC90 (PA-IC90), 0.014 mg/L. RESULTS We enrolled 26 participants (23 female) with median (range) age 44 (28-61) years and weight 67 (50-75) kg. Compared with PK1, atazanavir Ctau, and AUC were significantly reduced at PK2 by 96% and 85%, respectively. The escalation to BID dosing (PK3) reduced this difference in Ctau, and AUC24 to 18% lower and 8% higher, respectively. Comparable exposures were maintained with double doses of rifampicin. Lowest Ctau during PK1, PK3, and PK4 were 12.7-, 4.8-, and 8.6-fold higher than PA-IC90, respectively, whereas 65% of PK2 Ctau were below the limit of quantification (0.03 mg/L), hence likely below PA-IC90. No participant developed significant elevation of liver enzymes, reported a serious adverse event (SAE) or experienced rebound viraemia. CONCLUSIONS Twice daily atazanavir/ritonavir during rifampicin co-administration was well tolerated and achieved plasma concentrations above the target. CLINICAL TRIALS REGISTRATION NCT04121195. Registered on 09 October 2019, https://clinicaltrials.gov/ct2/show/NCT04121195.
Collapse
Affiliation(s)
- Kamunkhwala Gausi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Henry Mugerwa
- Joint Clinical Research Centre, Research Department, Kampala, Uganda
| | - Marco Siccardi
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Maiara Camotti Montanha
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Mohammed Lamorde
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Antonio D’Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Edmund Wilkins
- North Manchester General Hospital, HIV Research Unit, Manchester, United Kingdom
| | - Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Saye Khoo
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Cissy Kityo
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Catriona Waitt
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Mehta K, Balazki P, van der Graaf PH, Guo T, van Hasselt JGC. Predictions of Bedaquiline Central Nervous System Exposure in Patients with Tuberculosis Meningitis Using Physiologically based Pharmacokinetic Modeling. Clin Pharmacokinet 2024; 63:657-668. [PMID: 38530588 PMCID: PMC11106169 DOI: 10.1007/s40262-024-01363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND OBJECTIVE The use of bedaquiline as a treatment option for drug-resistant tuberculosis meningitis (TBM) is of interest to address the increased prevalence of resistance to first-line antibiotics. To this end, we describe a whole-body physiologically based pharmacokinetic (PBPK) model for bedaquiline to predict central nervous system (CNS) exposure. METHODS A whole-body PBPK model was developed for bedaquiline and its metabolite, M2. The model included compartments for brain and cerebrospinal fluid (CSF). Model predictions were evaluated by comparison to plasma PK time profiles following different dosing regimens and sparse CSF concentrations data from patients. Simulations were then conducted to compare CNS and lung exposures to plasma exposure at clinically relevant dosing schedules. RESULTS The model appropriately described the observed plasma and CSF bedaquiline and M2 concentrations from patients with pulmonary tuberculosis (TB). The model predicted a high impact of tissue binding on target site drug concentrations in CNS. Predicted unbound exposures within brain interstitial exposures were comparable with unbound vascular plasma and unbound lung exposures. However, unbound brain intracellular exposures were predicted to be 7% of unbound vascular plasma and unbound lung intracellular exposures. CONCLUSIONS The whole-body PBPK model for bedaquiline and M2 predicted unbound concentrations in brain to be significantly lower than the unbound concentrations in the lung at clinically relevant doses. Our findings suggest that bedaquiline may result in relatively inferior efficacy against drug-resistant TBM when compared with efficacy against drug-resistant pulmonary TB.
Collapse
Affiliation(s)
- Krina Mehta
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | | | - Piet H van der Graaf
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara, Canterbury, UK
| | - Tingjie Guo
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J G Coen van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Abdelgawad N, Wasserman S, Abdelwahab MT, Davis A, Stek C, Wiesner L, Black J, Meintjes G, Wilkinson RJ, Denti P. Linezolid Population Pharmacokinetic Model in Plasma and Cerebrospinal Fluid Among Patients With Tuberculosis Meningitis. J Infect Dis 2024; 229:1200-1208. [PMID: 37740554 PMCID: PMC11011161 DOI: 10.1093/infdis/jiad413] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Linezolid is evaluated in novel treatment regimens for tuberculous meningitis (TBM). Linezolid pharmacokinetics have not been characterized in this population, particularly in cerebrospinal fluid (CSF), as well as, following its co-administration with high-dose rifampicin. We aimed to characterize linezolid plasma and CSF pharmacokinetics in adults with TBM. METHODS In the LASER-TBM pharmacokinetic substudy, the intervention groups received high-dose rifampicin (35 mg/kg) plus 1200 mg/day of linezolid for 28 days, which was then reduced to 600 mg/day. Plasma sampling was done on day 3 (intensive) and day 28 (sparse). A lumbar CSF sample was obtained on both visits. RESULTS Thirty participants contributed 247 plasma and 28 CSF observations. Their median age and weight were 40 years (range, 27-56) and 58 kg (range, 30-96). Plasma pharmacokinetics was described by a 1-compartment model with first-order absorption and saturable elimination. Maximal clearance was 7.25 L/h, and the Michaelis-Menten constant was 27.2 mg/L. Rifampicin cotreatment duration did not affect linezolid pharmacokinetics. CSF-plasma partitioning correlated with CSF total protein up to 1.2 g/L, where the partition coefficient reached a maximal value of 37%. The plasma-CSF equilibration half-life was ∼3.5 hours. CONCLUSIONS Linezolid was readily detected in CSF despite high-dose rifampicin coadministration. These findings support continued clinical evaluation of linezolid plus high-dose rifampicin for the treatment of TBM in adults. Clinical Trials Registration. ClinicalTrials.gov (NCT03927313).
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Sean Wasserman
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Institute for Infection and Immunity, St George's University of London, United Kingdom
| | - Mahmoud Tareq Abdelwahab
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Angharad Davis
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
- Faculty of Life Sciences, University College London, United Kingdom
| | - Cari Stek
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - John Black
- Department of Medicine, Walter Sisulu University, Mthatha, South Africa
| | - Graeme Meintjes
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Medicine, University of Cape Town, South Africa
| | - Robert J Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, United Kingdom
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
7
|
Yunivita V, Brake LT, Dian S, Ganiem AR, van Crevel R, Ruslami R, Aarnoutse R. Isoniazid exposures and acetylator status in Indonesian tuberculous meningitis patients. Tuberculosis (Edinb) 2024; 144:102465. [PMID: 38142639 DOI: 10.1016/j.tube.2023.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The effect of acetylator status on the exposure to isoniazid in plasma and CSF in tuberculous meningitis (TBM) patients remains largely unexplored. Here, we describe isoniazid exposures and acetylator status of 48 subjects in the ReDEFINe study (NCT02169882). Fifty percentwere fast (half-life <130 min) or slow (half-life >130 min) acetylators. Slow acetylators had higher AUC0-24, Cmax and CSF concentrations than fast acetylators (GM AUC0-24 25.5 vs 10.6 mg/L*h, p < 0.001); plasma Cmax 5.5 vs 3.6 mg/L, p = 0.023; CSF concentration 1.9 vs 1.1 mg/L, p = 0.008). Higher isoniazid doses may benefit fast acetylators in TBM.
Collapse
Affiliation(s)
- Vycke Yunivita
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia.
| | - Lindsey Te Brake
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sofiati Dian
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia; Department of Neurology, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Ahmad Rizal Ganiem
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia; Department of Neurology, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Rob Aarnoutse
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Ardakani R, Jia L, Matthews E, Thakur KT. Therapeutic advances in neuroinfectious diseases. Ther Adv Infect Dis 2024; 11:20499361241274246. [PMID: 39314743 PMCID: PMC11418331 DOI: 10.1177/20499361241274246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/05/2024] [Indexed: 09/25/2024] Open
Abstract
There have been several major advances in therapeutic options for the treatment of neurological infections over the past two decades. These advances encompass both the development of new antimicrobial therapies and the repurposing of existing agents for new indications. In addition, advances in our understanding of the host immune response have allowed for the development of new immunomodulatory strategies in the treatment of neurological infections. This review focuses on the key advances in the treatment of neurological infections, including viral, bacterial, fungal, and prion diseases, with a particular focus on immunomodulatory treatment options. This review also highlights the process by which clinicians can request access to therapeutic agents on a compassionate or emergency basis when they may not be commercially available. While many therapeutic advances have been achieved in the past several years, there remains a pressing need for the continued development of additional therapeutic agents in the treatment of neurological infections.
Collapse
Affiliation(s)
- Rumyar Ardakani
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lucy Jia
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth Matthews
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kiran T. Thakur
- Department of Neurology, Columbia University Irving Medical Center, 177 Fort Washington Avenue, Milstein Hospital, 8GS-300, New York, NY 10032, USA
- Program in Neuroinfectious Diseases, Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital
| |
Collapse
|
9
|
Kimuda S, Kasozi D, Namombwe S, Gakuru J, Mugabi T, Kagimu E, Rutakingirwa MK, Leon KE, Chow F, Wasserman S, Boulware DR, Cresswell FV, Bahr NC. Advancing Diagnosis and Treatment in People Living with HIV and Tuberculosis Meningitis. Curr HIV/AIDS Rep 2023; 20:379-393. [PMID: 37947980 PMCID: PMC10719136 DOI: 10.1007/s11904-023-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE OF REVIEW Tuberculous meningitis (TBM) is the most severe form of tuberculosis. Inadequate diagnostic testing and treatment regimens adapted from pulmonary tuberculosis without consideration of the unique nature of TBM are among the potential drivers. This review focuses on the progress being made in relation to both diagnosis and treatment of TBM, emphasizing promising future directions. RECENT FINDINGS The molecular assay GeneXpert MTB/Rif Ultra has improved sensitivity but has inadequate negative predictive value to "rule-out" TBM. Evaluations of tests focused on the host response and bacterial components are ongoing. Clinical trials are in progress to explore the roles of rifampin, fluoroquinolones, linezolid, and adjunctive aspirin. Though diagnosis has improved, novel modalities are being explored to improve the rapid diagnosis of TBM. Multiple ongoing clinical trials may change current therapies for TBM in the near future.
Collapse
Affiliation(s)
- Sarah Kimuda
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Derrick Kasozi
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Suzan Namombwe
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Jane Gakuru
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Timothy Mugabi
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Enock Kagimu
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | | | - Kristoffer E Leon
- Departments of Neurology and Medicine (Infectious Diseases), University of California San Francisco, San Francisco, CA, USA
| | - Felicia Chow
- Departments of Neurology and Medicine (Infectious Diseases), University of California San Francisco, San Francisco, CA, USA
| | - Sean Wasserman
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Fiona V Cresswell
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- HIV Interventions, MRC/UVRI-LSHTM Uganda Research Unit, Entebbe, Uganda
- Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
10
|
Kengo A, Nabisere R, Gausi K, Musaazi J, Buzibye A, Omali D, Aarnoutse R, Lamorde M, Dooley KE, Sloan DJ, Denti P, Sekaggya-Wiltshire C. Dolutegravir pharmacokinetics in Ugandan patients with TB and HIV receiving standard- versus high-dose rifampicin. Antimicrob Agents Chemother 2023; 67:e0043023. [PMID: 37850738 PMCID: PMC10648962 DOI: 10.1128/aac.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 10/19/2023] Open
Abstract
Higher rifampicin doses may improve tuberculosis treatment outcomes. This could however exacerbate the existing drug interaction with dolutegravir. Moreover, the metabolism of dolutegravir may also be affected by polymorphism of UGT1A1, a gene that codes for uridine diphosphate glucuronosyltransferase. We used population pharmacokinetic modeling to compare the pharmacokinetics of dolutegravir when coadministered with standard- versus high-dose rifampicin in adults with tuberculosis and HIV, and investigated the effect of genetic polymorphisms. Data from the SAEFRIF trial, where participants were randomized to receive first-line tuberculosis treatment with either standard- 10 mg/kg or high-dose 35 mg/kg rifampicin alongside antiretroviral therapy, were used. The dolutegravir model was developed with 211 plasma concentrations from 44 participants. The median (interquartile range) rifampicin area under the curve (AUC) in the standard- and high-dose arms were 32.3 (28.7-36.7) and 153 (138-175) mg·h/L, respectively. A one-compartment model with first-order elimination and absorption through transit compartments best described dolutegravir pharmacokinetics. For a typical 56 kg participant, we estimated a clearance, absorption rate constant, and volume of distribution of 1.87 L/h, 1.42 h-1, and 12.4 L, respectively. Each 10 mg·h/L increase in the AUC of coadministered rifampicin from 32.3 mg·h/L led to a 2.3 (3.1-1.4) % decrease in dolutegravir bioavailability. Genetic polymorphism of UGT1A1 did not significantly affect dolutegravir pharmacokinetics. Simulations of trough dolutegravir concentrations show that the 50 mg twice-daily regimen attains both the primary and secondary therapeutic targets of 0.064 and 0.3 mg/L, respectively, regardless of the dose of coadministered rifampicin, unlike the once-daily regimen.
Collapse
Affiliation(s)
- Allan Kengo
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Ruth Nabisere
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kamunkhwala Gausi
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Joseph Musaazi
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Allan Buzibye
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Denis Omali
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Rob Aarnoutse
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mohammed Lamorde
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kelly E. Dooley
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Derek James Sloan
- Division of Infection and Global Health, School of Medicine, University of St. Andrews, St Andrews, United Kingdom
| | - Paolo Denti
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
11
|
Schildkraut JA, Raaijmakers J, Aarnoutse R, Hoefsloot W, Wertheim HFL, van Ingen J. The role of rifampicin within the treatment of Mycobacterium avium pulmonary disease. Antimicrob Agents Chemother 2023; 67:e0087423. [PMID: 37877693 PMCID: PMC10649009 DOI: 10.1128/aac.00874-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 10/26/2023] Open
Abstract
Rifampicin is recommended for the treatment of Mycobacterium avium complex pulmonary disease alongside azithromycin and ethambutol. We evaluated the azithromycin-ethambutol backbone with and without rifampicin in an intracellular hollow fiber model and performed RNA sequencing to study the differences in adaptation. In an in vitro hollow fiber experiment, we simulated epithelial lining fluid pharmacokinetic profiles of the recommended 3-drug (rifampicin, ethambutol, and azithromycin) or a 2-drug (ethambutol and azithromycin) treatment. THP-1 cells infected with M. avium ATCC700898 were exposed to these regimens for 21 days. We determined intra- and extra-cellular bacterial load- and THP-1 cell densities on days 0, 3, 7, 14, and 21, alongside RNA sequencing. The emergence of macrolide resistance was studied by inoculating intra- and extra-cellular fractions of azithromycin-containing Middlebrook 7H10 agar plates. Complete pharmacokinetic profiles were determined at days 0 and 21. Both therapies maintained stasis of both intra- and extra-cellular bacterial populations for 3 days, whilst regrowth coinciding with the emergence of a macrolide-resistant subpopulation was seen after 7 days. THP-1 cell density remained static. Similar transcriptional profiles were observed for both therapies that were minimally influenced by exposure duration. Transcriptional response was slightly larger during 2-drug treatment. Rifampicin did not add to the antimycobacterial effect to the 2-drug therapy or suppression of emergence resistance. RNA transcription was not greatly altered by the addition of rifampicin, which may be due to strong transcriptional influence of azithromycin and host cells. This questions the role of rifampicin in the currently recommended therapy. These findings should be confirmed in clinical trials.
Collapse
Affiliation(s)
- Jodie A. Schildkraut
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelmer Raaijmakers
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Aarnoutse
- Department of Pharmacy, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heiman F. L. Wertheim
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Kengo A, Gausi K, Nabisere R, Musaazi J, Buzibye A, Omali D, Aarnoutse R, Lamorde M, Dooley KE, Sloan DJ, Sekaggya-Wiltshire C, Denti P. Unexpectedly low drug exposures among Ugandan patients with TB and HIV receiving high-dose rifampicin. Antimicrob Agents Chemother 2023; 67:e0043123. [PMID: 37850737 PMCID: PMC10649026 DOI: 10.1128/aac.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 10/19/2023] Open
Abstract
We characterized the pharmacokinetics of standard- and high-dose rifampicin in Ugandan adults with tuberculosis and HIV taking dolutegravir- or efavirenz-based antiretroviral therapy. A liver model with saturable hepatic extraction adequately described the data, and the increase in exposure between high and standard doses was 4.7-fold. This was lower than what previous reports of dose-exposure nonlinearity would predict and was ascribed to 38% lower bioavailability of the rifampicin-only top-up formulation compared to the fixed-dose combination.
Collapse
Affiliation(s)
- Allan Kengo
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Kamunkhwala Gausi
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Ruth Nabisere
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Joseph Musaazi
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Allan Buzibye
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Denis Omali
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Rob Aarnoutse
- Department of Pharmacy, Radboud university medical center, Nijmegen, the Netherlands
| | - Mohammed Lamorde
- Infectious Disease Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kelly E. Dooley
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Derek James Sloan
- Division of Infection and Global Health, School of Medicine, University of St. Andrews, Scotland, United Kingdom
| | | | - Paolo Denti
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Dian S, Ganiem AR, Te Brake LH, van Laarhoven A. Current Insights into Diagnosing and Treating Neurotuberculosis in Adults. CNS Drugs 2023; 37:957-972. [PMID: 37978095 DOI: 10.1007/s40263-023-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Neurotuberculosis has the highest morbidity and mortality risk of all forms of extrapulmonary tuberculosis (TB). Early treatment is paramount, but establishing diagnosis are challenging in all three forms of neurotuberculosis: tuberculous meningitis (TBM), spinal TB and tuberculomas. Despite advancements in diagnostic tools and ongoing research aimed at improving TB treatment regimens, the mortality rate for neurotuberculosis remains high. While antituberculosis drugs were discovered in the 1940s, TB treatment regimens were designed for and studied in pulmonary TB and remained largely unchanged for decades. However, new antibiotic regimens and host-directed therapies are now being studied to combat drug resistance and contribute to ending the TB epidemic. Clinical trials are necessary to assess the effectiveness and safety of these treatments, addressing paradoxical responses in neurotuberculosis cases and ultimately improving patient outcomes. Pharmacokinetic-pharmacodynamic analyses can inform evidence-based dose selection and exposure optimization. This review provides an update on the diagnosis and treatment of neurotuberculosis, encompassing both sensitive and resistant antituberculosis drug approaches, drawing on evidence from the literature published over the past decade.
Collapse
Affiliation(s)
- Sofiati Dian
- Department of Neurology, Dr. Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
- Research Centre for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia.
| | - Ahmad Rizal Ganiem
- Department of Neurology, Dr. Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Centre for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Lindsey Hm Te Brake
- Radboudumc Centre for Infectious Disease (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Radboudumc Centre for Infectious Disease (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Stemkens R, de Jager V, Dawson R, Diacon AH, Narunsky K, Padayachee SD, Boeree MJ, van Beek SW, Colbers A, Coenen MJH, Svensson EM, Fuhr U, Phillips PPJ, te Brake LHM, Aarnoutse RE. Drug interaction potential of high-dose rifampicin in patients with pulmonary tuberculosis. Antimicrob Agents Chemother 2023; 67:e0068323. [PMID: 37768317 PMCID: PMC10583668 DOI: 10.1128/aac.00683-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023] Open
Abstract
Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.
Collapse
Affiliation(s)
- Ralf Stemkens
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Rodney Dawson
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | | | - Kim Narunsky
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sherman D. Padayachee
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Martin J. Boeree
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stijn W. van Beek
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angela Colbers
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elin M. Svensson
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Uwe Fuhr
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Lindsey H. M. te Brake
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E. Aarnoutse
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - on behalf of the PanACEA consortium
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- TASK, Cape Town, South Africa
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- UCSF Center for Tuberculosis, University of California, San Francisco, California, USA
| |
Collapse
|
15
|
Akkerman OW, Dijkwel RDC, Kerstjens HAM, van der Werf TS, Srivastava S, Sturkenboom MGG, Bolhuis MS. Isoniazid and rifampicin exposure during treatment in drug-susceptible TB. Int J Tuberc Lung Dis 2023; 27:772-777. [PMID: 37749836 PMCID: PMC10519386 DOI: 10.5588/ijtld.22.0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/15/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND: Observational real-world studies on therapeutic drug monitoring (TDM) in relation to pharmacokinetic (PK) target values are lacking. This study aims to describe the PK of rifampicin (RIF) and isoniazid (INH) in a real-world setting of patients with drug-susceptible TB in relation to frequently used threshold values.METHODS: A total of 116 patients with TB using standard doses of RIF and INH and who had TDM as part of clinical care were included. Maximum plasma concentration (Cmax) and 24 h area under the concentration time curve (AUC24) at standard and revised doses were described in relation to the threshold values (Cmax ≥8 mg/L for RIF and ≥3 mg/L for INH).RESULTS: For RIF (100 patients), median Cmax and median AUC24 were respectively 7.9 mg/L (IQR 6.0-11.0) and 35.8 mg*h/L (IQR 27.4-57.3) at the first TDM measurement after a standard dose of 600 mg. For INH (90 patients), median Cmax and median AUC24 were respectively 2.9 mg/L (IQR 1.3-2.5) and 12.5 mg*h/L (IQR 8.7-18.9) at the first TDM after a standard dose 300 mg. Overall, more than 50% of study participants had drug exposure below threshold values at the first TDM.CONCLUSION: Our study shows that the measured Cmax values for both RIF and INH were frequently below the pre-specified targets, emphasising the need for better justification of drug exposure targets. These TDM results highlight the need for validating PK targets of anti-TB drugs associated with clinically relevant outcomes.
Collapse
Affiliation(s)
- O W Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, Tuberculosis Center Beatrixoord, University of Groningen, University Medical Center Groningen, Haren
| | - R D C Dijkwel
- Departments of Clinical Pharmacy and Pharmacology, and
| | - H A M Kerstjens
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen
| | - T S van der Werf
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, Departments of Internal Medicine and Infectiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - S Srivastava
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA, Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA, Department of Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | - M S Bolhuis
- Departments of Clinical Pharmacy and Pharmacology, and
| |
Collapse
|
16
|
Wilkinson RJ, Donovan J, Thwaites GE, van Crevel R, Wasserman S. Treatment of tuberculous meningitis: Overdue for concerted action. Tuberculosis (Edinb) 2023; 142:102361. [PMID: 37394302 DOI: 10.1016/j.tube.2023.102361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Robert J Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Francis Crick Institute, London, NW1 1AT, United Kingdom; Department of Infectious Diseases, Imperial College, London, W12 0NN, United Kingdom.
| | - Joseph Donovan
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 9HT, United Kingdom
| | - Guy E Thwaites
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Reinout van Crevel
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sean Wasserman
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
17
|
Ardiansyah E, Avila-Pacheco J, Nhat LTH, Dian S, Vinh DN, Hai HT, Bullock K, Alisjahbana B, Netea MG, Estiasari R, Tram TTB, Donovan J, Heemskerk D, Chau TTH, Bang ND, Ganiem AR, Ruslami R, Koeken VACM, Hamers RL, Imran D, Maharani K, Kumar V, Clish CB, van Crevel R, Thwaites G, van Laarhoven A, Thuong NTT. Tryptophan metabolism determines outcome in tuberculous meningitis: a targeted metabolomic analysis. eLife 2023; 12:e85307. [PMID: 37158692 PMCID: PMC10181821 DOI: 10.7554/elife.85307] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
Background Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography-mass spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results CSF tryptophan was associated with 60-day mortality from TBM (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and -positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95% CI = 1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusions TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of death. These findings may reveal new targets for host-directed therapy. Funding This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).
Collapse
Affiliation(s)
- Edwin Ardiansyah
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | | | | | - Sofiati Dian
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas PadjadjaranBandungIndonesia
| | - Dao Nguyen Vinh
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Hoang Thanh Hai
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Kevin Bullock
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Internal Medicine, Hasan Sadikin Hospital, Faculty of Medicine, Universitas PadjadjaranBandungIndonesia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | - Riwanti Estiasari
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas IndonesiaJakartaIndonesia
| | | | - Joseph Donovan
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Dorothee Heemskerk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical CentreAmsterdamNetherlands
| | - Tran Thi Hong Chau
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Hospital for Tropical DiseasesHo Chi Minh CityViet Nam
| | - Nguyen Duc Bang
- Pham Ngoc Thach Hospital for Tuberculosis and Lung DiseaseHo Chi Minh CityViet Nam
| | - Ahmad Rizal Ganiem
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas PadjadjaranBandungIndonesia
| | - Rovina Ruslami
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas PadjadjaranBandungIndonesia
| | - Valerie ACM Koeken
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH)HanoverGermany
| | - Raph L Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas IndonesiaJakartaIndonesia
| | - Darma Imran
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas IndonesiaJakartaIndonesia
| | - Kartika Maharani
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas IndonesiaJakartaIndonesia
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | - Clary B Clish
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | - Guy Thwaites
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
18
|
Wasmann RE, Masini T, Viney K, Verkuijl S, Brands A, Hesseling AC, McIlleron H, Denti P, Dooley KE. A model-based approach for a practical dosing strategy for the short, intensive treatment regimen for paediatric tuberculous meningitis. Front Pharmacol 2023; 14:1055329. [PMID: 37180707 PMCID: PMC10167634 DOI: 10.3389/fphar.2023.1055329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/01/2023] [Indexed: 05/16/2023] Open
Abstract
Following infection with Mycobacterium tuberculosis, young children are at high risk of developing severe forms of tuberculosis (TB) disease, including TB meningitis (TBM), which is associated with significant morbidity and mortality. In 2022, the World Health Organization (WHO) conditionally recommended that a 6-month treatment regimen composed of higher doses of isoniazid (H) and rifampicin (R), with pyrazinamide (Z) and ethionamide (Eto) (6HRZEto), be used as an alternative to the standard 12-month regimen (2HRZ-Ethambutol/10HR) in children and adolescents with bacteriologically confirmed or clinically diagnosed TBM. This regimen has been used in South Africa since 1985, in a complex dosing scheme across weight bands using fixed-dose combinations (FDC) available locally at the time. This paper describes the methodology used to develop a new dosing strategy to facilitate implementation of the short TBM regimen based on newer globally available drug formulations. Several dosing options were simulated in a virtual representative population of children using population PK modelling. The exposure target was in line with the TBM regimen implemented in South Africa. The results were presented to a WHO convened expert meeting. Given the difficulty to achieve simple dosing using the globally available RH 75/50 mg FDC, the panel expressed the preference to target a slightly higher rifampicin exposure while keeping isoniazid exposures in line with those used in South Africa. This work informed the WHO operational handbook on the management of TB in children and adolescents, in which dosing strategies for children with TBM using the short TBM treatment regimen are provided.
Collapse
Affiliation(s)
- Roeland E. Wasmann
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Tiziana Masini
- World Health Organization, Global Tuberculosis Programme, Geneva, Switzerland
| | - Kerri Viney
- World Health Organization, Global Tuberculosis Programme, Geneva, Switzerland
| | - Sabine Verkuijl
- World Health Organization, Global Tuberculosis Programme, Geneva, Switzerland
| | - Annemieke Brands
- World Health Organization, Global Tuberculosis Programme, Geneva, Switzerland
| | - Anneke C. Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E. Dooley
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
19
|
Abdelgawad N, Wasserman S, Abdelwahab MT, Davis A, Stek C, Wiesner L, Black J, Meintjes G, Wilkinson RJ, Denti P. Linezolid population pharmacokinetic model in plasma and cerebrospinal fluid among patients with tuberculosis meningitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.06.23288230. [PMID: 37066148 PMCID: PMC10104225 DOI: 10.1101/2023.04.06.23288230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Linezolid is being evaluated in novel treatment regimens for tuberculous meningitis (TBM). The pharmacokinetics of linezolid have not been characterized in this population, particularly in cerebrospinal fluid (CSF) where exposures may be affected by changes in protein concentration and rifampicin co-administration. Methods This was a sub-study of a phase 2 clinical trial of intensified antibiotic therapy for adults with HIV-associated TBM. Participants in the intervention groups received high-dose rifampicin (35 mg/kg) plus linezolid 1200 mg daily for 28 days followed by 600 mg daily until day 56. Plasma was intensively sampled, and lumbar CSF was collected at a single timepoint in a randomly allocated sampling window, within 3 days after enrolment. Sparse plasma and CSF samples were also obtained on day 28. Linezolid concentrations were analyzed using non-linear mixed effects modelling. Results 30 participants contributed 247 plasma and 28 CSF linezolid observations. Plasma PK was best described by a one-compartment model with first-order absorption and saturable elimination. The typical value of maximal clearance was 7.25 L/h. Duration of rifampicin co-treatment (compared on day 3 versus day 28) did not affect linezolid pharmacokinetics. Partitioning between plasma and CSF correlated with CSF total protein concentration up to 1.2 g/L where the partition coefficient reached a maximal value of 37%. The equilibration half-life between plasma and CSF was estimated at ∼3.5 hours. Conclusion Linezolid was readily detected in CSF despite co-administration of the potent inducer rifampicin at high doses. These findings support continued clinical evaluation of linezolid plus high-dose rifampicin for the treatment of TBM in adults.
Collapse
|
20
|
Litjens CHC, Verscheijden LFM, Svensson EM, van den Broek PHH, van Hove H, Koenderink JB, Russel FGM, Aarnoutse RE, te Brake LHM. Physiologically-Based Pharmacokinetic Modelling to Predict the Pharmacokinetics and Pharmacodynamics of Linezolid in Adults and Children with Tuberculous Meningitis. Antibiotics (Basel) 2023; 12:antibiotics12040702. [PMID: 37107064 PMCID: PMC10135070 DOI: 10.3390/antibiotics12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Linezolid is used off-label for treatment of central nervous system infections. However, its pharmacokinetics and target attainment in cranial cerebrospinal fluid (CSF) in tuberculous meningitis patients is unknown. This study aimed to predict linezolid cranial CSF concentrations and assess attainment of pharmacodynamic (PD) thresholds (AUC:MIC of >119) in plasma and cranial CSF of adults and children with tuberculous meningitis. A physiologically based pharmacokinetic (PBPK) model was developed to predict linezolid cranial CSF profiles based on reported plasma concentrations. Simulated steady-state PK curves in plasma and cranial CSF after linezolid doses of 300 mg BID, 600 mg BID, and 1200 mg QD in adults resulted in geometric mean AUC:MIC ratios in plasma of 118, 281, and 262 and mean cranial CSF AUC:MIC ratios of 74, 181, and 166, respectively. In children using ~10 mg/kg BID linezolid, AUC:MIC values at steady-state in plasma and cranial CSF were 202 and 135, respectively. Our model predicts that 1200 mg per day in adults, either 600 mg BID or 1200 mg QD, results in reasonable (87%) target attainment in cranial CSF. Target attainment in our simulated paediatric population was moderate (56% in cranial CSF). Our PBPK model can support linezolid dose optimization efforts by simulating target attainment close to the site of TBM disease.
Collapse
Affiliation(s)
- Carlijn H. C. Litjens
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Laurens F. M. Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Elin M. Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Petra H. H. van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Hedwig van Hove
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jan B. Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Rob E. Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Lindsey H. M. te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
21
|
Abdelgawad N, Tshavhungwe M(P, Rohlwink U, McIlleron H, Abdelwahab MT, Wiesner L, Castel S, Steele C, Enslin J(N, Thango NS, Denti P, Figaji A. Population Pharmacokinetic Analysis of Rifampicin in Plasma, Cerebrospinal Fluid, and Brain Extracellular Fluid in South African Children with Tuberculous Meningitis. Antimicrob Agents Chemother 2023; 67:e0147422. [PMID: 36815838 PMCID: PMC10019224 DOI: 10.1128/aac.01474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023] Open
Abstract
Limited knowledge is available on the pharmacokinetics of rifampicin in children with tuberculous meningitis (TBM) and its penetration into brain tissue, which is the site of infection. In this analysis, we characterize the distribution of rifampicin in cerebrospinal fluid (CSF), lumbar (LCSF) and ventricular (VCSF), and brain extracellular fluid (ECF). Children with TBM were included in this pharmacokinetic analysis. Sparse plasma, LCSF, and VCSF samples were collected opportunistically, as clinically indicated. Brain ECF was sampled using microdialysis (MD). Rifampicin was quantified with liquid chromatography with tandem mass spectrometry in all samples, and 25-desacetyl rifampicin in the plasma samples. The data were interpreted with nonlinear mixed-effects modeling, with the CSF and brain ECF modeled as "effect compartments." Data were available from 61 children, with median (min-max) age of 2 (0.3 to 10) years and weight of 11.0 (4.8 to 49.0) kg. A one-compartment model for parent and metabolite with first-order absorption and elimination via saturable hepatic clearance described the data well. Allometric scaling, maturation, and auto-induction of clearance were included. The pseudopartition coefficient between plasma and LCSF/VCSF was ~5%, while the value for ECF was only ~0.5%, possibly reflecting low recovery of rifampicin using MD. The equilibration half-life between plasma and LCSF/VCSF was ~4 h and between plasma and ECF ~2 h. Our study confirms previous reports showing that rifampicin concentrations in the LCSF are lower than in plasma and provides novel knowledge about rifampicin in the VCSF and the brain tissue. Despite MD being semiquantitative because the relative recovery cannot be quantified, our study presents a proof-of-concept that rifampicin reaches the brain tissue and that MD is an attractive technique to study site-of-disease pharmacokinetics in TBM.
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Ursula Rohlwink
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahmoud T. Abdelwahab
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Chanel Steele
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Johannes (Nico) Enslin
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Nqobile Sindiswa Thango
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anthony Figaji
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Zhang X, Zhao Z, Wu Q, Wang L, Li L, Wang M, Ren Y, Pan L, Tang H, Li F. Single-cell analysis reveals changes in BCG vaccine-injected mice modeling tuberculous meningitis brain infection. Cell Rep 2023; 42:112177. [PMID: 36862557 DOI: 10.1016/j.celrep.2023.112177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/28/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe and deadly manifestation of tuberculosis. Neurological complications are observed in up to 50% of patients affected. Here, attenuated Mycobacterium bovis are injected into the cerebellum of mice, and histopathological images and cultured colonies confirm successful brain infection. Then, whole-brain tissue is dissected for 10X Genomics single-cell sequencing, and we acquire 15 cell types. Transcriptional changes of inflammation processes are found in multiple cell types. Specifically, Stat1 and IRF1 are shown to mediate inflammation in macrophages and microglia. For neurons, decreased oxidative phosphorylation activity in neurons is observed, which corresponds to TBM clinical symptoms of neurodegeneration. Finally, ependymal cells present prominent transcriptional changes, and decreased FERM domain containing 4A (Frmd4a) may contribute to TBM clinical symptoms of hydrocephalus and neurodegeneration. This study shows a single-cell transcriptome of M. bovis infection in mice and improves the understanding of brain infection and neurological complications in TBM.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhangyan Zhao
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qingguo Wu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Liqun Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Mei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yang Ren
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lei Pan
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Haicheng Tang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Feng Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Aguilar Diaz JM, Abulfathi AA, te Brake LHM, van Ingen J, Kuipers S, Magis-Escurra C, Raaijmakers J, Svensson EM, Boeree MJ. New and Repurposed Drugs for the Treatment of Active Tuberculosis: An Update for Clinicians. Respiration 2023; 102:83-100. [PMID: 36516792 PMCID: PMC9932851 DOI: 10.1159/000528274] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Although tuberculosis (TB) is preventable and curable, the lengthy treatment (generally 6 months), poor patient adherence, high inter-individual variability in pharmacokinetics (PK), emergence of drug resistance, presence of comorbidities, and adverse drug reactions complicate TB therapy and drive the need for new drugs and/or regimens. Hence, new compounds are being developed, available drugs are repurposed, and the dosing of existing drugs is optimized, resulting in the largest drug development portfolio in TB history. This review highlights a selection of clinically available drug candidates that could be part of future TB regimens, including bedaquiline, delamanid, pretomanid, linezolid, clofazimine, optimized (high dose) rifampicin, rifapentine, and para-aminosalicylic acid. The review covers drug development history, preclinical data, PK, and current clinical development.
Collapse
Affiliation(s)
- Jessica M Aguilar Diaz
- Radboudumc Center for Infectious Diseases, Department of Pulmonary Diseases, TB Expert Center Dekkerswald, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ahmed A Abulfathi
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, Lake Nona (Orlando), University of Florida, Gainesville, Florida, USA,Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria,Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lindsey HM te Brake
- Radboudumc Center for Infectious Diseases, Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Kuipers
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cecile Magis-Escurra
- Radboudumc Center for Infectious Diseases, Department of Pulmonary Diseases, TB Expert Center Dekkerswald, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelmer Raaijmakers
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elin M Svensson
- Radboudumc Center for Infectious Diseases, Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Martin J Boeree
- Radboudumc Center for Infectious Diseases, Department of Pulmonary Diseases, TB Expert Center Dekkerswald, Radboud University Medical Center, Nijmegen, The Netherlands,*Martin J. Boeree,
| |
Collapse
|
24
|
Ardiansyah E, Pacheco JA, Nhat LTH, Dian S, Vinh DN, Hai HT, Bullock K, Alisjahbana B, Netea MG, Estiasari R, Tram TTB, Donovan J, Heemskerk D, Chau TTH, Bang ND, Ganiem AR, Ruslami R, Koeken VA, Hamers RL, Imran D, Maharani K, Kumar V, Clish CB, van Crevel R, Thwaites G, van Laarhoven A, Thuong NTT. Tryptophan metabolism determines outcome in tuberculous meningitis: a targeted metabolomic analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.08.23284316. [PMID: 36711829 PMCID: PMC9882445 DOI: 10.1101/2023.01.08.23284316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography mass-spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results CSF tryptophan was associated with 60-day mortality from tuberculous meningitis (HR=1.16, 95%CI=1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and HIV-positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95%CI=1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusion TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of mortality. These findings may reveal new targets for host-directed therapy. Funding This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).
Collapse
Affiliation(s)
- Edwin Ardiansyah
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Sofiati Dian
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Dao Nguyen Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Hoang Thanh Hai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Kevin Bullock
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Riwanti Estiasari
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia
| | | | - Joseph Donovan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- London School of Hygiene and Tropical Medicine, Keppel St, London, United Kingdom
| | - Dorothee Heemskerk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Tran Thi Hong Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Bang
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, District 5, Ho Chi Minh City, Vietnam
| | - Ahmad Rizal Ganiem
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Valerie Acm Koeken
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Raph L Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia
| | - Darma Imran
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia
| | - Kartika Maharani
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Clary B Clish
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Perumal R, Naidoo K, Naidoo A, Letsoalo MP, Esmail A, Joubert I, Denti P, Wiesner L, Padayatchi N, Maartens G, Dheda K. The impact of enteral feeding and therapeutic monitoring of rifampicin with dose escalation in critically ill patients with tuberculosis. Int J Infect Dis 2023; 126:174-180. [PMID: 36462574 DOI: 10.1016/j.ijid.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES Critically ill patients with tuberculosis (TB) face a high mortality risk and require effective treatment. There is a paucity of data on rifampicin pharmacokinetics, the impact of continuous enteral feeding on drug absorption, and the potential of therapeutic drug monitoring (TDM) to optimize drug exposure in these patients. METHODS We performed a sequential pharmacokinetic study to determine the impact of feeding and TDM with rifampicin dose escalation in critically ill patients with TB. Noncompartmental pharmacokinetic analysis was performed. RESULTS Among 20 critically ill patients (40% were HIV-infected), median rifampicin Cmax (maximum serum concentration) in the fasted and fed states were 5.1 µg/ml versus 3.3 µg/ml, respectively (P <0.0001; geometric mean ratio 1.95; 90% confidence interval 1.46-2.60). The proportion of patients with low rifampicin concentrations in the fasted and fed states was 80% vs 100% (P-value = 0.1336). Optimized dosing led to a per-patient median rifampicin dosing of 24.6 mg/kg and a median Cmax increase from 2.4 µg/ml to 17.8 µg/ml (P-value = 0.0005; geometric mean ratio 8.29; 90% confidence interval 3.88-17.74). TDM-guided dose escalation increased the proportion of patients achieving the suggested target rifampicin concentration compared with standard dosing (83% vs 0%, P-value = 0.004). CONCLUSION We found low rifampicin concentrations in all patients receiving continuous enteral feeding. TDM-guided dose escalation provided an effective strategy to achieve target drug exposure in these critically ill patients with TB.
Collapse
Affiliation(s)
- Rubeshan Perumal
- Centre for Lung Infection and Immunity Unit, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa; Medical Research Council-Centre for the AIDS Programme of Research in South Africa HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa; Medical Research Council-Centre for the AIDS Programme of Research in South Africa HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Anushka Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Marothi P Letsoalo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity Unit, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa
| | - Ivan Joubert
- Division of Critical Care Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa; Medical Research Council-Centre for the AIDS Programme of Research in South Africa HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity Unit, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
26
|
Mehta K, Narayanan N, Heysell SK, Bisson GP, Subbian S, Kurepina N, Kreiswirth BN, Vinnard C. Pharmacogenetic variability and the probability of site of action target attainment during tuberculosis meningitis treatment: A physiologically based pharmacokinetic modeling and simulations study. Tuberculosis (Edinb) 2022; 137:102271. [PMID: 36375279 DOI: 10.1016/j.tube.2022.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE AND METHODS Our objective was to investigate the role of patient pharmacogenetic variability in determining site of action target attainment during tuberculous meningitis (TBM) treatment. Rifampin and isoniazid PBPK model that included SLCO1B1 and NAT2 effects on exposures respectively were obtained from literature, modified, and validated using available cerebrospinal-fluid (CSF) concentrations. Population simulations of isoniazid and rifampin concentrations in brain interstitial fluid and probability of target attainment according to genotypes and M. tuberculosis MIC levels, under standard and intensified dosing, were conducted. RESULTS The rifampin and isoniazid model predicted steady-state drug concentration within brain interstitial fluid matched with the observed CSF concentrations. At MIC level of 0.25 mg/L, 57% and 23% of the patients with wild type and heterozygous SLCO1B1 genotype respectively attained the target in CNS with rifampin standard dosing, improving to 98% and 91% respectively with 35 mg/kg dosing. At MIC level of 0.25 mg/L, 33% of fast acetylators attained the target in CNS with isoniazid standard dosing, improving to 90% with 7.5 mg/kg dosing. CONCLUSION In this study, the combined effects of pharmacogenetic and M. tuberculosis MIC variability were potent determinants of target attainment in CNS. The potential for genotype-guided dosing during TBM treatment should be further explored in prospective clinical studies.
Collapse
Affiliation(s)
| | | | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Gregory P Bisson
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Newark, NJ, USA
| | - Natalia Kurepina
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Barry N Kreiswirth
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | | |
Collapse
|
27
|
Intensified tuberculosis treatment to reduce the mortality of HIV-infected and uninfected patients with tuberculosis meningitis (INTENSE-TBM): study protocol for a phase III randomized controlled trial. Trials 2022; 23:928. [PMID: 36348453 PMCID: PMC9640846 DOI: 10.1186/s13063-022-06772-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background Tuberculous meningitis (TBM) is the most lethal and disabling form of tuberculosis (TB), particularly in sub-Saharan Africa. Current anti-TB treatment is poorly effective since TBM mortality reaches 40% in HIV-negative patients and up to 70% in HIV-co-infected patients. To reduce TBM-induced morbidity and mortality, the INTENSE-TBM trial evaluates two interventions in both HIV-infected and uninfected patients: an anti-TB treatment intensification using oral high-dose rifampicin (35 mg/kg daily) and linezolid (1200 mg daily and then 600 mg daily) during the first 8 weeks of the anti-TB treatment and the use of adjunctive aspirin (200 mg daily). Methods This is a randomized controlled, phase III, multicenter, 2 × 2 factorial plan superiority trial. The trial has four arms, combining the two experimental treatments (intensified TBM regimen and aspirin) with the two reference treatments (WHO standard TB treatment and placebo), and is open-label for anti-TB treatment and double-blind placebo-controlled for aspirin treatment. This trial is conducted in adults or adolescents of age ≥15 years with TBM defined as “definite,” “probable,” or “possible” using Tuberculosis Meningitis International Research Consortium criteria, in four African countries: Ivory Coast, Madagascar, Uganda, and South Africa. The primary outcome is all-cause death between inclusion and week 40. Discussion The INTENSE-TBM trial represents a key opportunity to enhance TBM treatment with widely available existing drugs notably in high-incidence settings of both TB and HIV. The trial design is pragmatic and the results will permit early and effective applications in TBM patient care, in both HIV and TB high-incidence countries. Trial registration ClinicalTrials.gov NCT04145258. Registered on October 30, 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06772-1.
Collapse
|
28
|
Chan P, Peskov K, Song X. Applications of Model-Based Meta-Analysis in Drug Development. Pharm Res 2022; 39:1761-1777. [PMID: 35174432 PMCID: PMC9314311 DOI: 10.1007/s11095-022-03201-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
Model-based meta-analysis (MBMA) is a quantitative approach that leverages published summary data along with internal data and can be applied to inform key drug development decisions, including the benefit-risk assessment of a treatment under investigation. These risk-benefit assessments may involve determining an optimal dose compared against historic external comparators of a particular disease indication. MBMA can provide a flexible framework for interpreting aggregated data from historic reference studies and therefore should be a standard tool for the model-informed drug development (MIDD) framework.In addition to pairwise and network meta-analyses, MBMA provides further contributions in the quantitative approaches with its ability to incorporate longitudinal data and the pharmacologic concept of dose-response relationship, as well as to combine individual- and summary-level data and routinely incorporate covariates in the analysis.A common application of MBMA is the selection of optimal dose and dosing regimen of the internal investigational molecule to evaluate external benchmarking and to support comparator selection. Two case studies provided examples in applications of MBMA in biologics (durvalumab + tremelimumab for safety) and small molecule (fenebrutinib for efficacy) to support drug development decision-making in two different but well-studied disease areas, i.e., oncology and rheumatoid arthritis, respectively.Important to the future directions of MBMA include additional recognition and engagement from drug development stakeholders for the MBMA approach, stronger collaboration between pharmacometrics and statistics, expanded data access, and the use of machine learning for database building. Timely, cost-effective, and successful application of MBMA should be part of providing an integrated view of MIDD.
Collapse
Affiliation(s)
- Phyllis Chan
- Clinical Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Kirill Peskov
- M&S Decisions LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- STU 'Sirius', Sochi, Russia
| | - Xuyang Song
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, 1 Medimmune Way, Gaithersburg, MD, 20878, USA
| |
Collapse
|
29
|
Sulis G, Tavaziva G, Gore G, Benedetti A, Solomons R, van Toorn R, Thee S, Day J, Verkuijl S, Brands A, Viney K, Masini T, Ahmad Khan F, Chiang SS. Comparative Effectiveness of Regimens for Drug-Susceptible Tuberculous Meningitis in Children and Adolescents: A Systematic Review and Aggregate-Level Data Meta-Analysis. Open Forum Infect Dis 2022; 9:ofac108. [PMID: 35673608 PMCID: PMC9167638 DOI: 10.1093/ofid/ofac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Before August 2021, the only regimen recommended by the World Health Organization (WHO) to treat pediatric drug-susceptible tuberculous meningitis was a 12-month regimen consisting of isoniazid, rifampicin, ethambutol, and pyrazinamide (2HRZE/10HR). The comparative effectiveness of shorter regimens is unknown. Methods To inform a WHO guideline update, we undertook a systematic review and meta-analysis to evaluate outcomes from regimens of 6- to less than 12-months' duration that included, at a minimum, isoniazid, rifampicin, and pyrazinamide. We included studies that applied rigorous diagnostic criteria and reported outcomes for ≥10 children or adolescents. Using generalized linear mixed models, we estimated the random effects pooled proportions of patients with key outcomes. Results Of 7 included studies, none compared regimens head-to-head. Three studies (724 patients) used a 6-month intensive regimen, which includes isoniazid and rifampicin at higher doses, pyrazinamide, and ethionamide instead of ethambutol (6HRZEto). Outcomes for this versus the 12-month regimen (282 patients, 3 studies) were, respectively, as follows: death, 5.5% (95% confidence interval [CI], 2.1%-13.4%) vs 23.9% (95% CI, 17.5%-31.7%); treatment success (survival with or without sequelae), 94.6% (95% CI, 73.9%-99.1%) vs 75.4% (95% CI, 68.7%-81.1%); and neurological sequelae among survivors, 66.0% (95% CI, 55.3%-75.3%) vs 36.3% (95% CI, 30.1%-43.0%). Relapse did not occur among 148 patients followed-up for 2 years after completing the 6-month intensive regimen. Conclusions Our findings are limited by the small number of studies and substantial potential for confounding. Nonetheless, the 6HRZEto regimen was associated with high treatment success and is now recommended by WHO as an alternative to the 12-month regimen.
Collapse
Affiliation(s)
- Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | | | | | - Andrea Benedetti
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Regan Solomons
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ronald van Toorn
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Jeremy Day
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Sabine Verkuijl
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Annemieke Brands
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Kerri Viney
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Tiziana Masini
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | | | - Silvia S Chiang
- Department of Pediatrics, Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Center for International Health Research, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
30
|
Huynh J, Donovan J, Phu NH, Nghia HDT, Thuong NTT, Thwaites GE. Tuberculous meningitis: progress and remaining questions. Lancet Neurol 2022; 21:450-464. [PMID: 35429482 DOI: 10.1016/s1474-4422(21)00435-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/03/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022]
Abstract
Tuberculous meningitis is a devastating brain infection that is caused by Mycobacterium tuberculosis and is notoriously difficult to diagnose and treat. New technologies characterising the transcriptome, proteome, and metabolome have identified new molecules and pathways associated with tuberculous meningitis severity and poor outcomes that could offer novel diagnostic and therapeutic targets. The next-generation GeneXpert MTB/RIF Ultra assay, when used on CSF, offers diagnostic sensitivity for tuberculous meningitis of approximately 70%, although it is not widely available and a negative result cannot rule out tuberculous meningitis. Small trials indicate that clinical outcomes might be improved with increased doses of rifampicin, the addition of linezolid or fluoroquinolones to standard antituberculosis therapy, or treatment with adjunctive aspirin combined with corticosteroids. Large phase 3 clinical trials are underway worldwide to address these and other questions concerning the optimal management of tuberculous meningitis; these studies also form a platform for studying pathogenesis and identifying novel diagnostic and treatment strategies, by allowing the implementation of new genomic, transcriptomic, proteomic, and metabolomic technologies in nested substudies.
Collapse
Affiliation(s)
- Julie Huynh
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK; Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - Joseph Donovan
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK; Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - Nguyen Hoan Phu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK; Vietnam National University School of Medicine, Ho Chi Minh City, Vietnam
| | - Ho Dang Trung Nghia
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Nguyen Thuy Thuong Thuong
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK; Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK; Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam.
| |
Collapse
|
31
|
Paradkar MS, Devaleenal D B, Mvalo T, Arenivas A, Thakur KT, Wolf L, Nimkar S, Inamdar S, Giridharan P, Selladurai E, Kinikar A, Valvi C, Khwaja S, Gadama D, Balaji S, Yadav Kattagoni K, Venkatesan M, Savic R, Swaminathan S, Gupta A, Gupte N, Mave V, Dooley KE. Randomized Clinical Trial of High-Dose Rifampicin With or Without Levofloxacin Versus Standard of Care for Pediatric Tuberculous Meningitis: The TBM-KIDS Trial. Clin Infect Dis 2022; 75:1594-1601. [PMID: 35291004 PMCID: PMC9617573 DOI: 10.1093/cid/ciac208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pediatric tuberculous meningitis (TBM) commonly causes death or disability. In adults, high-dose rifampicin may reduce mortality. The role of fluoroquinolones remains unclear. There have been no antimicrobial treatment trials for pediatric TBM. METHODS TBM-KIDS was a phase 2 open-label randomized trial among children with TBM in India and Malawi. Participants received isoniazid and pyrazinamide plus: (i) high-dose rifampicin (30 mg/kg) and ethambutol (R30HZE, arm 1); (ii) high-dose rifampicin and levofloxacin (R30HZL, arm 2); or (iii) standard-dose rifampicin and ethambutol (R15HZE, arm 3) for 8 weeks, followed by 10 months of standard treatment. Functional and neurocognitive outcomes were measured longitudinally using Modified Rankin Scale (MRS) and Mullen Scales of Early Learning (MSEL). RESULTS Of 2487 children prescreened, 79 were screened and 37 enrolled. Median age was 72 months; 49%, 43%, and 8% had stage I, II, and III disease, respectively. Grade 3 or higher adverse events occurred in 58%, 55%, and 36% of children in arms 1, 2, and 3, with 1 death (arm 1) and 6 early treatment discontinuations (4 in arm 1, 1 each in arms 2 and 3). By week 8, all children recovered to MRS score of 0 or 1. Average MSEL scores were significantly better in arm 1 than arm 3 in fine motor, receptive language, and expressive language domains (P < .01). CONCLUSIONS In a pediatric TBM trial, functional outcomes were excellent overall. The trend toward higher frequency of adverse events but better neurocognitive outcomes in children receiving high-dose rifampicin requires confirmation in a larger trial. CLINICAL TRIALS REGISTRATION NCT02958709.
Collapse
Affiliation(s)
- Mandar S Paradkar
- BJ Government Medical College–Johns Hopkins Clinical Research Site, Pune, India,Johns Hopkins India, Pune, India
| | - Bella Devaleenal D
- Department of Clinical Research, Indian Council of Medical Research–National Institute for Research in Tuberculosis, Chennai, India
| | - Tisungane Mvalo
- UNC Project Malawi, Lilongwe, Malawi,Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ana Arenivas
- Section of Neuropsychology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Kiran T Thakur
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, New York, USA
| | - Lisa Wolf
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Smita Nimkar
- BJ Government Medical College–Johns Hopkins Clinical Research Site, Pune, India,Johns Hopkins India, Pune, India
| | - Sadaf Inamdar
- BJ Government Medical College–Johns Hopkins Clinical Research Site, Pune, India,Johns Hopkins India, Pune, India
| | - Prathiksha Giridharan
- Department of Clinical Research, Indian Council of Medical Research–National Institute for Research in Tuberculosis, Chennai, India
| | | | - Aarti Kinikar
- BJ Government Medical College–Johns Hopkins Clinical Research Site, Pune, India,Department of Pediatrics, BJ Government Medical College, Pune, India
| | - Chhaya Valvi
- BJ Government Medical College–Johns Hopkins Clinical Research Site, Pune, India,Department of Pediatrics, BJ Government Medical College, Pune, India
| | - Saltanat Khwaja
- BJ Government Medical College–Johns Hopkins Clinical Research Site, Pune, India,Johns Hopkins India, Pune, India
| | | | - Sarath Balaji
- Department of Clinical Research, Indian Council of Medical Research–National Institute for Research in Tuberculosis, Chennai, India
| | - Krishna Yadav Kattagoni
- Department of Clinical Research, Indian Council of Medical Research–National Institute for Research in Tuberculosis, Chennai, India
| | - Mythily Venkatesan
- Department of Clinical Research, Indian Council of Medical Research–National Institute for Research in Tuberculosis, Chennai, India
| | - Radojka Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | - Amita Gupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nikhil Gupte
- BJ Government Medical College–Johns Hopkins Clinical Research Site, Pune, India,Johns Hopkins India, Pune, India,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vidya Mave
- BJ Government Medical College–Johns Hopkins Clinical Research Site, Pune, India,Johns Hopkins India, Pune, India,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly E Dooley
- Correspondence: K. Dooley, Johns Hopkins University School of Medicine, 600 N Wolfe St, Osler 527, Baltimore, MD 21287 ()
| | | |
Collapse
|
32
|
Radtke KK, Svensson EM, van der Laan LE, Hesseling AC, Savic RM, Garcia-Prats AJ. Emerging data on rifampicin pharmacokinetics and approaches to optimal dosing in children with tuberculosis. Expert Rev Clin Pharmacol 2022; 15:161-174. [PMID: 35285351 DOI: 10.1080/17512433.2022.2053110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite its longstanding role in tuberculosis (TB) treatment, there continues to be emerging rifampicin research that has important implications for pediatric TB treatment and outstanding questions about its pharmacokinetics and optimal dose in children. AREAS COVERED This review aims to summarize and discuss emerging data on the use of rifampicin for: 1) routine treatment of drug-susceptible TB; 2) special subpopulations such as children with malnutrition, HIV, or TB meningitis; 3) treatment shortening. We also highlight the implications of these new data for child-friendly rifampicin formulations and identify future research priorities. EXPERT OPINION New data consistently show low rifampicin exposures across all pediatric populations with 10-20 mg/kg dosing. Although clinical outcomes in children are generally good, rifampicin dose optimization is needed, especially given a continued push to shorten treatment durations and for specific high-risk populations of children who have worse outcomes. A pooled analysis of existing data using applied pharmacometrics would answer many of the important questions remaining about rifampicin pharmacokinetics needed to optimize doses, especially in special populations. Targeted clinical studies in children with TB meningitis and treatment shortening with high-dose rifampicin are also priorities.
Collapse
Affiliation(s)
- Kendra K Radtke
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Elin M Svensson
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Louvina E van der Laan
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - Radojka M Savic
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Anthony J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa.,Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
33
|
Zhang M, Wang M, He JQ. Intensified Antituberculosis Therapy Regimen Containing Higher Dose Rifampin for Tuberculous Meningitis: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:822201. [PMID: 35280900 PMCID: PMC8916538 DOI: 10.3389/fmed.2022.822201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background Tuberculous meningitis is difficult to diagnose and is associated with high mortality. Recently, several studies evaluated the intensified regimen containing higher dose rifampin to treat tuberculous meningitis. However, this topic remains to be concluded. Therefore, this systematic review and meta-analysis was conducted to evaluate pharmacokinetics parameters, safety, and survival benefits of high-dose rifampin for tuberculous meningitis. Method Data were searched from PubMed, EMBASE, The Cochrane Library, and Web of Science for studies describing an antituberculosis regimen including a higher dose of rifampin for patients with tuberculous meningitis. The quality of eligible studies was evaluated via The Cochrane Risk of Bias Tool. The meta-analysis was performed by Review Manager 5.3 software, the synthesis of the data was shown in mean difference (MD) or relative risk (RR), and 95% confidence intervals (CIs). Results There were six randomized control trails included in this meta-analysis. The results showed that the concentration in plasma and cerebrospinal fluid (CSF) were significantly higher in the intervention group than the standard group [MD = 22.08, 95%CI (16.24, 27.92), p < 0.00001; MD = 0.74, 95%CI (0.42, 1.05), p < 0.00001], as well as the area under the time concentration curve between 0 and 24 h (AUC0−24) of rifampin [MD 203.56, 95%CI (153.07, 254.05), p < 0.00001] in plasma, but the overall survival did not improve [RR = 0.92, 95%CI (0.67, 1.26), p = 0.61]. For adverse events, the results showed a statistically significant lower incidence of hypersensitivity compared with the intervention group [RR = 1.72, 95%CI (1.13, 2.62), p = 0.01]. Fortunately, other common adverse drug reactions such as liver injury, neurological events, myelosuppression, and cardiotoxicity had no significant increase [RR = 0.98, 95%CI (0.77, 1.26), p = 0.90; RR = 1.10, 95%CI (0.94, 1.30), p = 0.23; RR = 0.82, 95%CI (0.59, 1.13), p = 0.22; RR = 1.11, 95%CI (0.66, 1.86), p = 0.70]. Conclusion This meta-analysis suggested that the intensified treatment regimen including a higher dose of rifampin significantly increased the rifampin concentration both in the plasma and CSF, and it was safe in patients with tuberculous meningitis, but resulted in no improvement in survival rates.
Collapse
|
34
|
Ruiz-Bedoya CA, Mota F, Tucker EW, Mahmud FJ, Reyes-Mantilla MI, Erice C, Bahr M, Flavahan K, De Jesus P, Kim J, Foss CA, Peloquin CA, Hammoud DA, Ordonez AA, Pardo CA, Jain SK. High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J Clin Invest 2022; 132:155851. [PMID: 35085105 PMCID: PMC8920328 DOI: 10.1172/jci155851] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Tuberculous meningitis (TB meningitis) is the most severe form of tuberculosis (TB), requiring 12 months of multidrug treatment for cure, and is associated with high morbidity and mortality. High-dose rifampin (35 mg/kg/d) is safe and improves the bactericidal activity of the standard-dose (10 mg/kg/d) rifampin-containing TB regimen in pulmonary TB. However, there are conflicting clinical data regarding its benefit for TB meningitis, where outcomes may also be associated with intracerebral inflammation. We conducted cross-species studies in mice and rabbits, demonstrating that an intensified high-dose rifampin-containing regimen has significantly improved bactericidal activity for TB meningitis over the first-line, standard-dose rifampin regimen, without an increase in intracerebral inflammation. Positron emission tomography in live animals demonstrated spatially compartmentalized, lesion-specific pathology, with postmortem analyses showing discordant brain tissue and cerebrospinal fluid rifampin levels and inflammatory markers. Longitudinal multimodal imaging in the same cohort of animals during TB treatment as well as imaging studies in two cohorts of TB patients demonstrated that spatiotemporal changes in localized blood-brain barrier disruption in TB meningitis are an important driver of rifampin brain exposure. These data provide unique insights into the mechanisms underlying high-dose rifampin in TB meningitis with important implications for developing new antibiotic treatments for infections.
Collapse
Affiliation(s)
- Camilo A Ruiz-Bedoya
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Filipa Mota
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Elizabeth W Tucker
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Farina J Mahmud
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Maria I Reyes-Mantilla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Clara Erice
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Melissa Bahr
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Kelly Flavahan
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Patricia De Jesus
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - John Kim
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Catherine A Foss
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, University of Florida College of Pharmacy, Gainesville, United States of America
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, NIH, Bethesda, United States of America
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
35
|
McIlleron H. Treating children with tuberculosis—Using pharmacometrics to do better. Br J Clin Pharmacol 2022; 88:894-896. [DOI: 10.1111/bcp.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine University of Cape Town Cape Town South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI‐Africa), Institute of Infectious Disease and Molecular Medicine University of Cape Town Cape Town South Africa
| |
Collapse
|
36
|
Ruslami R, Gafar F, Yunivita V, Parwati I, Ganiem AR, Aarnoutse RE, Wilffert B, Alffenaar JWC, Nataprawira HM. Pharmacokinetics and safety/tolerability of isoniazid, rifampicin and pyrazinamide in children and adolescents treated for tuberculous meningitis. Arch Dis Child 2022; 107:70-77. [PMID: 34183327 PMCID: PMC8685623 DOI: 10.1136/archdischild-2020-321426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/14/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess the pharmacokinetics and safety/tolerability of isoniazid, rifampicin and pyrazinamide in children and adolescents with tuberculous meningitis (TBM). DESIGN Prospective observational pharmacokinetic study with an exploratory pharmacokinetic/pharmacodynamic analysis. SETTING Hasan Sadikin Hospital, Bandung, Indonesia. PATIENTS Individuals aged 0-18 years clinically diagnosed with TBM and receiving first-line anti-tuberculosis drug dosages according to revised WHO-recommended treatment guidelines. INTERVENTIONS Plasma and cerebrospinal fluid (CSF) concentrations of isoniazid, rifampicin and pyrazinamide were assessed on days 2 and 10 of treatment. MAIN OUTCOME MEASURES Plasma exposures during the daily dosing interval (AUC0-24), peak plasma concentrations (Cmax) and CSF concentrations. RESULTS Among 20 eligible patients, geometric mean AUC0-24 of isoniazid, rifampicin and pyrazinamide was 18.5, 66.9 and 315.5 hour∙mg/L on day 2; and 14.5, 71.8 and 328.4 hour∙mg/L on day 10, respectively. Large interindividual variabilities were observed in AUC0-24 and Cmax of all drugs. All patients had suboptimal rifampicin AUC0-24 for TBM treatment indication and very low rifampicin CSF concentrations. Four patients developed grade 2-3 drug-induced liver injury (DILI) within the first 4 weeks of treatment, in whom anti-tuberculosis drugs were temporarily stopped, and no DILI recurred after reintroduction of rifampicin and isoniazid. AUC0-24 of isoniazid, rifampicin and pyrazinamide along with Cmax of isoniazid and pyrazinamide on day 10 were higher in patients who developed DILI than those without DILI (p<0.05). CONCLUSION Higher rifampicin doses are strongly warranted in treatment of children and adolescents with TBM. The association between higher plasma concentrations of isoniazid, rifampicin and pyrazinamide and the development of DILI needs confirmatory studies.
Collapse
Affiliation(s)
- Rovina Ruslami
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Fajri Gafar
- Unit of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Vycke Yunivita
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ida Parwati
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ahmad R Ganiem
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia,Westmead Hospital, Sydney, New South Wales, Australia
| | - Heda M Nataprawira
- Division of Pediatric Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| |
Collapse
|
37
|
Tuberculous Meningitis in Children: Reducing the Burden of Death and Disability. Pathogens 2021; 11:pathogens11010038. [PMID: 35055986 PMCID: PMC8778027 DOI: 10.3390/pathogens11010038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Tuberculous meningitis disproportionately affects young children. As the most devastating form of tuberculosis, it is associated with unacceptably high rates of mortality and morbidity even if treated. Challenging to diagnose and treat, tuberculous meningitis commonly causes long-term neurodisability in those who do survive. There remains an urgent need for strengthened surveillance, improved rapid diagnostics technology, optimised anti-tuberculosis drug therapy, investigation of new host-directed therapy, and further research on long-term functional and neurodevelopmental outcomes to allow targeted intervention. This review focuses on the neglected field of paediatric tuberculous meningitis and bridges current clinical gaps with research questions to improve outcomes from this crippling disease.
Collapse
|
38
|
Garcia-Prats AJ, Svensson EM, Winckler J, Draper HR, Fairlie L, van der Laan LE, Masenya M, Schaaf HS, Wiesner L, Norman J, Aarnoutse RE, Karlsson MO, Denti P, Hesseling AC. Pharmacokinetics and safety of high-dose rifampicin in children with TB: the Opti-Rif trial. J Antimicrob Chemother 2021; 76:3237-3246. [PMID: 34529779 DOI: 10.1093/jac/dkab336] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rifampicin doses of 40 mg/kg in adults are safe and well tolerated, may shorten anti-TB treatment and improve outcomes, but have not been evaluated in children. OBJECTIVES To characterize the pharmacokinetics and safety of high rifampicin doses in children with drug-susceptible TB. PATIENTS AND METHODS The Opti-Rif trial enrolled dosing cohorts of 20 children aged 0-12 years, with incremental dose escalation with each subsequent cohort, until achievement of target exposures or safety concerns. Cohort 1 opened with a rifampicin dose of 15 mg/kg for 14 days, with a single higher dose (35 mg/kg) on day 15. Pharmacokinetic data from days 14 and 15 were analysed using population modelling and safety data reviewed. Incrementally increased rifampicin doses for the next cohort (days 1-14 and day 15) were simulated from the updated model, up to the dose expected to achieve the target exposure [235 mg/L·h, the geometric mean area under the concentration-time curve from 0 to 24 h (AUC0-24) among adults receiving a 35 mg/kg dose]. RESULTS Sixty-two children were enrolled in three cohorts. The median age overall was 2.1 years (range = 0.4-11.7). Evaluated doses were ∼35 mg/kg (days 1-14) and ∼50 mg/kg (day 15) for cohort 2 and ∼60 mg/kg (days 1-14) and ∼75 mg/kg (day 15) for cohort 3. Approximately half of participants had an adverse event related to study rifampicin; none was grade 3 or higher. A 65-70 mg/kg rifampicin dose was needed in children to reach the target exposure. CONCLUSIONS High rifampicin doses in children achieved target exposures and the doses evaluated were safe over 2 weeks.
Collapse
Affiliation(s)
- Anthony J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 2870 University Avenue, Suite 200, Madison, WI 53705, USA
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen (864), The Netherlands.,Department of Pharmacy, Uppsala University, PO Box 580, 751 23 Uppsala, Sweden
| | - Jana Winckler
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Heather R Draper
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Lee Fairlie
- Wits Reproductive Health and HIV Institute Shandukani CRS, Faculty of Health Sciences, University of the Witwatersrand, 22 Esselen Street, Hilbrow 2001, South Africa
| | - Louvina E van der Laan
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Masebole Masenya
- Wits Reproductive Health and HIV Institute Shandukani CRS, Faculty of Health Sciences, University of the Witwatersrand, 22 Esselen Street, Hilbrow 2001, South Africa
| | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, K45 Old Main Building, Groote Schuur Hospital, Observatory, Cape Town 7925, South Africa
| | - Jennifer Norman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, K45 Old Main Building, Groote Schuur Hospital, Observatory, Cape Town 7925, South Africa
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen (864), The Netherlands
| | - Mats O Karlsson
- Department of Pharmacy, Uppsala University, PO Box 580, 751 23 Uppsala, Sweden
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, K45 Old Main Building, Groote Schuur Hospital, Observatory, Cape Town 7925, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| |
Collapse
|
39
|
Saylor D. Neurologic Complications of Tuberculosis. Continuum (Minneap Minn) 2021; 27:992-1017. [PMID: 34623101 DOI: 10.1212/con.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article describes the current epidemiology, common clinical characteristics, and up-to-date evidence-based approaches to the diagnosis and management of the most common neurologic complications of tuberculosis (TB): tuberculous meningitis, intracranial tuberculoma, and spinal TB. RECENT FINDINGS Central nervous system (CNS) TB remains common and associated with significant mortality and neurologic sequelae worldwide. Human immunodeficiency virus (HIV) co-infection is strongly associated with both the development of and mortality due to CNS TB. Strongyloides co-infection is associated with reduced CNS inflammation and improved outcomes in the setting of tuberculous meningitis. Stroke remains a common complication of tuberculous meningitis, and emerging evidence suggests aspirin may be used in this context. Although a recent nucleic acid amplification test has demonstrated suboptimal sensitivity in the diagnosis of CNS TB, emerging diagnostic techniques include cell-free DNA, peripheral blood microRNA, metagenomic next-generation sequencing, and advanced imaging techniques, but these are not yet well validated. CNS TB is associated with high mortality even with current treatment regimens, although novel, promising strategies for treatment are under investigation, including a combination of IV isoniazid and ethambutol and high-dose rifampicin. SUMMARY TB can affect the nervous system in various ways and is associated with high mortality. Diagnosis remains challenging in endemic settings, with empiric treatment often initiated without a definitive diagnosis. Furthermore, optimal treatment regimens remain uncertain because current treatment for all forms of CNS TB is extrapolated from trials of tuberculous meningitis whereas the role of steroids in people with HIV and tuberculous meningitis remains controversial.
Collapse
|
40
|
Plasma Pharmacokinetics of High-Dose Oral versus Intravenous Rifampicin in Patients with Tuberculous Meningitis: a Randomized Controlled Trial. Antimicrob Agents Chemother 2021; 65:e0014021. [PMID: 33972248 PMCID: PMC7611291 DOI: 10.1128/aac.00140-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Higher doses of intravenous rifampicin may improve outcomes in tuberculous meningitis but are impractical in high-burden settings. We hypothesized that plasma rifampicin exposures would be similar between oral dosing of 35 mg/kg of body weight and intravenous dosing of 20 mg/kg, which has been proposed for efficacy trials in tuberculous meningitis. We performed a randomized parallel-group pharmacokinetic study nested within a clinical trial of intensified antimicrobial therapy for tuberculous meningitis. HIV-positive participants with tuberculous meningitis were recruited from South African hospitals and randomized to one of three rifampicin dosing groups: standard (oral 10 mg/kg), high dose (oral 35 mg/kg), and intravenous (20 mg/kg). Intensive pharmacokinetic sampling was done on day 3. Data were described using noncompartmental analysis, and exposures were compared by geometric mean ratios (GMRs). Forty-six participants underwent pharmacokinetic sampling (standard dose, n = 17; high-dose oral, n = 15; intravenous, n = 14). The median CD4 count was 130 cells/mm3 (interquartile range [IQR], 66 to 253 cells/mm3). The rifampicin geometric mean area under the concentration-time curve from 0 to 24 h (AUC0-24) values were 42.9 μg · h/ml (95% confidence interval [CI], 24.5 to 75.0 μg · h/ml) for the standard dose, 295.2 μg · h/ml (95% CI, 189.9 to 458.8 μg · h/ml) for the high oral dose, and 206.5 μg · h/ml (95% CI, 154.6 to 275.8 μg · h/ml) for intravenous administration. The rifampicin AUC0-24 GMR was 1.44 (90% CI, 0.84 to 2.21) and the maximal concentration of drug in serum (Cmax) GMR was 0.89 (90% CI, 0.63 to 1.23) for high-dose oral administration with respect to intravenous dosing. The plasma rifampicin AUC0-24 was higher after an oral 35-mg/kg dose than with intravenous administration at a 20-mg/kg dose over the first few days of tuberculosis (TB) treatment. The findings support oral rifampicin dosing in future tuberculous meningitis trials.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) tuberculosis is the most devastating form of tuberculosis (TB), with mortality and or neurological sequelae in over half of individuals. We reviewed original research and systematic reviews published since 1 January 2019 for new developments in CNS TB pathophysiology, diagnosis, management and prognosis. RECENT FINDINGS Insight in the pathophysiology is increasing steadily since the landmark studies in 1933, focussing on granuloma type classification, the relevance of the M. tuberculosis bacterial burden and the wide range of immunological responses. Although Xpert/RIF has been recommended by the WHO for extrapulmonary TB diagnosis, culture is still needed to increase the sensitivity of TB meningitis diagnosis. Sequential MRIs can improve understanding of neurological deficits at baseline and during treatment. Pharmacokinetic/pharmacodynamic modelling suggests that higher doses of rifampicin and isoniazid in TB meningitis could improve survival. SUMMARY Recent studies in the field of CNS-TB have largely focussed on TB meningitis. The outcome may improve by optimizing treatment dosing. This needs to be confirmed in clinical trials. Due to the important role of inflammation, these trials should be used as the platform to study the inflammatory and metabolomic responses. This could improve understanding of the biology of this disease and improve patient outlook by enabling individualised host-directed therapy.
Collapse
Affiliation(s)
- Sofiati Dian
- Department of Neurology, Faculty of Medicine, Universitas Padjdjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
- Infectious Disease Research Center, Faculty of Medicine, Padjadjaran University/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Ahmad Rizal Ganiem
- Department of Neurology, Faculty of Medicine, Universitas Padjdjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
- Infectious Disease Research Center, Faculty of Medicine, Padjadjaran University/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Arjan van Laarhoven
- Department of Internal Medicine Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
42
|
Onorato L, Gentile V, Russo A, Di Caprio G, Alessio L, Chiodini P, Coppola N. Standard versus high dose of rifampicin in the treatment of pulmonary tuberculosis: a systematic review and meta-analysis. Clin Microbiol Infect 2021; 27:830-837. [PMID: 33813119 DOI: 10.1016/j.cmi.2021.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES A growing amount of evidence suggests that the rifampicin dosing currently recommended for tuberculosis treatment could be associated with inadequate exposure and unfavourable outcomes. We aimed to compare clinical and microbiological efficacy and safety outcomes of standard and higher rifampicin dosing. METHODS Data sources were MEDLINE, Google Scholar and the Cochrane Library. This was a systematic review and meta-analysis that included experimental or observational studies comparing 8-week sputum culture conversion, treatment failure, or safety outcomes in naïve patients with pulmonary tuberculosis treated with standard (10 mg/kg) or higher doses of rifampicin. RESULTS Of a total of 9683 citations screened, eight randomized controlled trials were included, accounting for 1897 subjects; the risk of bias was low in three studies, high in two and intermediate in three. At week 8 a higher proportion of patients in the high-dose group obtained a sputum culture conversion than those in the standard dose group (83.7% versus 80.6%, RR 1.06; 95%CI 1.01-1.12, p 0.028); this result was confirmed in the sub-analysis including patients treated with a rifampicin dose of ≥20 mg/kg, but not in those treated with 11-19 mg/kg. Events of treatment failure at end of treatment showed no significant difference between the two groups (RR 0.84; 95%CI 0.59-1.21, p 0.362). In the analysis evaluating safety outcome, the difference in the occurrence of a grade 3 or 4 liver toxicity or adverse drug reactions leading to discontinuation was not significant at the statistical analysis among the groups (7.2% versus 5.4%, RR 1.19; 95%CI 0.81-1.73, p 0.370, and 1.5% versus 0.6%, RR 2.31; 95%CI 0.65-8.21, p 0.195, respectively). No statistical heterogeneity among studies was observed for each outcome. CONCLUSIONS High doses of rifampicin were associated with an increased rate of sputum culture conversion at 8 weeks of treatment, particularly in patients receiving ≥20 mg/kg.
Collapse
Affiliation(s)
- Lorenzo Onorato
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Valeria Gentile
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Antonio Russo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Giovanni Di Caprio
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Loredana Alessio
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Paolo Chiodini
- Department of Mental Health and Public Medicine, Section of Statistics, University of Campania, Naples, Italy
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy.
| |
Collapse
|
43
|
Cresswell FV, Meya DB, Kagimu E, Grint D, te Brake L, Kasibante J, Martyn E, Rutakingirwa M, Quinn CM, Okirwoth M, Tugume L, Ssembambulidde K, Musubire AK, Bangdiwala AS, Buzibye A, Muzoora C, Svensson EM, Aarnoutse R, Boulware DR, Elliott AM. High-Dose Oral and Intravenous Rifampicin for the Treatment of Tuberculous Meningitis in Predominantly Human Immunodeficiency Virus (HIV)-Positive Ugandan Adults: A Phase II Open-Label Randomized Controlled Trial. Clin Infect Dis 2021; 73:876-884. [PMID: 33693537 PMCID: PMC8423465 DOI: 10.1093/cid/ciab162] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High-dose rifampicin may improve outcomes of tuberculous meningitis (TBM). Little safety or pharmacokinetic (PK) data exist on high-dose rifampicin in human immunodeficiency virus (HIV) coinfection, and no cerebrospinal fluid (CSF) PK data exist from Africa. We hypothesized that high-dose rifampicin would increase serum and CSF concentrations without excess toxicity. METHODS In this phase II open-label trial, Ugandan adults with suspected TBM were randomized to standard-of-care control (PO-10, rifampicin 10 mg/kg/day), intravenous rifampicin (IV-20, 20 mg/kg/day), or high-dose oral rifampicin (PO-35, 35 mg/kg/day). We performed PK sampling on days 2 and 14. The primary outcomes were total exposure (AUC0-24), maximum concentration (Cmax), CSF concentration, and grade 3-5 adverse events. RESULTS We enrolled 61 adults, 92% were living with HIV, median CD4 count was 50 cells/µL (interquartile range [IQR] 46-56). On day 2, geometric mean plasma AUC0-24hr was 42.9·h mg/L with standard-of-care 10 mg/kg dosing, 249·h mg/L for IV-20 and 327·h mg/L for PO-35 (P < .001). In CSF, standard of care achieved undetectable rifampicin concentration in 56% of participants and geometric mean AUC0-24hr 0.27 mg/L, compared with 1.74 mg/L (95% confidence interval [CI] 1.2-2.5) for IV-20 and 2.17 mg/L (1.6-2.9) for PO-35 regimens (P < .001). Achieving CSF concentrations above rifampicin minimal inhibitory concentration (MIC) occurred in 11% (2/18) of standard-of-care, 93% (14/15) of IV-20, and 95% (18/19) of PO-35 participants. Higher serum and CSF levels were sustained at day 14. Adverse events did not differ by dose (P = .34). CONCLUSIONS Current international guidelines result in sub-therapeutic CSF rifampicin concentration for 89% of Ugandan TBM patients. High-dose intravenous and oral rifampicin were safe and respectively resulted in exposures ~6- and ~8-fold higher than standard of care, and CSF levels above the MIC.
Collapse
Affiliation(s)
- Fiona V Cresswell
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom,Infectious Diseases Institute, Makerere University, Kampala, Uganda,Medical Research Council - Uganda Virus Research Institute – LSHTM Uganda Research Unit, Entebbe, Uganda,Correspondence: F. Cresswell, Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK ()
| | - David B Meya
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Enock Kagimu
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Daniel Grint
- Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Lindsey te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, The Netherlands
| | - John Kasibante
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Emily Martyn
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | | | - Carson M Quinn
- University of California, San Francisco, San Francisco, California, USA
| | - Micheal Okirwoth
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Lillian Tugume
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | | | - Abdu K Musubire
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Ananta S Bangdiwala
- Division of Biostatistics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Allan Buzibye
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Conrad Muzoora
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, The Netherlands,Department of Pharmacy, Uppsala University, Sweden
| | - Rob Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, The Netherlands
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Alison M Elliott
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom,Medical Research Council - Uganda Virus Research Institute – LSHTM Uganda Research Unit, Entebbe, Uganda
| |
Collapse
|
44
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
45
|
Population Pharmacokinetic Properties of Antituberculosis Drugs in Vietnamese Children with Tuberculous Meningitis. Antimicrob Agents Chemother 2020; 65:AAC.00487-20. [PMID: 33139294 PMCID: PMC7927832 DOI: 10.1128/aac.00487-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022] Open
Abstract
Optimal dosing of children with tuberculous meningitis (TBM) remains uncertain and is currently based on the treatment of pulmonary tuberculosis in adults. This study aimed to investigate the population pharmacokinetics of isoniazid, rifampin, pyrazinamide, and ethambutol in Vietnamese children with TBM, to propose optimal dosing in these patients, and to determine the relationship between drug exposure and treatment outcome. A total of 100 Vietnamese children with TBM were treated with an 8-month antituberculosis regimen. Optimal dosing of children with tuberculous meningitis (TBM) remains uncertain and is currently based on the treatment of pulmonary tuberculosis in adults. This study aimed to investigate the population pharmacokinetics of isoniazid, rifampin, pyrazinamide, and ethambutol in Vietnamese children with TBM, to propose optimal dosing in these patients, and to determine the relationship between drug exposure and treatment outcome. A total of 100 Vietnamese children with TBM were treated with an 8-month antituberculosis regimen. Nonlinear mixed-effects modeling was used to evaluate the pharmacokinetic properties of the four drugs and to simulate different dosing strategies. The pharmacokinetic properties of rifampin and pyrazinamide in plasma were described successfully by one-compartment disposition models, while those of isoniazid and ethambutol in plasma were described by two-compartment disposition models. All drug models included allometric scaling of body weight and enzyme maturation during the first years of life. Cerebrospinal fluid (CSF) penetration of rifampin was relatively poor and increased with increasing protein levels in CSF, a marker of CSF inflammation. Isoniazid and pyrazinamide showed good CSF penetration. Currently recommended doses of isoniazid and pyrazinamide, but not ethambutol and rifampin, were sufficient to achieve target exposures. The ethambutol dose cannot be increased because of ocular toxicity. Simulation results suggested that rifampin dosing at 50 mg/kg of body weight/day would be required to achieve the target exposure. Moreover, low rifampin plasma exposure was associated with an increased risk of neurological disability. Therefore, higher doses of rifampin could be considered, but further studies are needed to establish the safety and efficacy of increased dosing.
Collapse
|
46
|
Marais S, Cresswell FV, Hamers RL, Te Brake LHM, Ganiem AR, Imran D, Bangdiwala A, Martyn E, Kasibante J, Kagimu E, Musubire A, Maharani K, Estiasari R, Kusumaningrum A, Kusumadjayanti N, Yunivita V, Naidoo K, Lessells R, Moosa Y, Svensson EM, Huppler Hullsiek K, Aarnoutse RE, Boulware DR, van Crevel R, Ruslami R, Meya DB. High dose oral rifampicin to improve survival from adult tuberculous meningitis: A randomised placebo-controlled double-blinded phase III trial (the HARVEST study). Wellcome Open Res 2020; 4:190. [PMID: 33083560 PMCID: PMC7542255 DOI: 10.12688/wellcomeopenres.15565.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Tuberculous meningitis (TBM), the most severe form of tuberculosis (TB), results in death or neurological disability in >50%, despite World Health Organisation recommended therapy. Current TBM regimen dosages are based on data from pulmonary TB alone. Evidence from recent phase II pharmacokinetic studies suggests that high dose rifampicin (R) administered intravenously or orally enhances central nervous system penetration and may reduce TBM associated mortality. We hypothesize that, among persons with TBM, high dose oral rifampicin (35 mg/kg) for 8 weeks will improve survival compared to standard of care (10 mg/kg), without excess adverse events. Protocol: We will perform a parallel group, randomised, placebo-controlled, double blind, phase III multicentre clinical trial comparing high dose oral rifampicin to standard of care. The trial will be conducted across five clinical sites in Uganda, South Africa and Indonesia. Participants are HIV-positive or negative adults with clinically suspected TBM, who will be randomised (1:1) to one of two arms: 35 mg/kg oral rifampicin daily for 8 weeks (in combination with standard dose isoniazid [H], pyrazinamide [Z] and ethambutol [E]) or standard of care (oral HRZE, containing 10 mg/kg/day rifampicin). The primary end-point is 6-month survival. Secondary end points are: i) 12-month survival ii) functional and neurocognitive outcomes and iii) safety and tolerability. Tertiary outcomes are: i) pharmacokinetic outcomes and ii) cost-effectiveness of the intervention. We will enrol 500 participants over 2.5 years, with follow-up continuing until 12 months post-enrolment. Discussion: Our best TBM treatment still results in unacceptably high mortality and morbidity. Strong evidence supports the increased cerebrospinal fluid penetration of high dose rifampicin, however conclusive evidence regarding survival benefit is lacking. This study will answer the important question of whether high dose oral rifampicin conveys a survival benefit in TBM in HIV-positive and -negative individuals from Africa and Asia. Trial registration: ISRCTN15668391 (17/06/2019)
Collapse
Affiliation(s)
- Suzaan Marais
- Department of Neurology, Inkosi Albert Luthuli Central Hospital, Durban, 4091, South Africa
| | - Fiona V Cresswell
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda.,Clinical Research Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.,MRC-UVRI, London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Raph L Hamers
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lindsey H M Te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ahmad R Ganiem
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran/ Hasan Sadikin Hospital, Bandung, 40161, Indonesia.,Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadaran, Bandung, 40161, Indonesia
| | - Darma Imran
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Dr Cipto Mangukusumo Hospital, Jakarta, 10430, Indonesia
| | - Ananta Bangdiwala
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily Martyn
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| | - John Kasibante
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| | - Enock Kagimu
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| | - Abdu Musubire
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| | - Kartika Maharani
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Dr Cipto Mangukusumo Hospital, Jakarta, 10430, Indonesia
| | - Riwanti Estiasari
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Dr Cipto Mangukusumo Hospital, Jakarta, 10430, Indonesia
| | - Ardiana Kusumaningrum
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Dr Cipto Mangukusumo Hospital, Jakarta, 10430, Indonesia
| | - Nadytia Kusumadjayanti
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadaran, Bandung, 40161, Indonesia
| | - Vycke Yunivita
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran/ Hasan Sadikin Hospital, Bandung, 40161, Indonesia.,Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadaran, Bandung, 40161, Indonesia
| | - Kogieleum Naidoo
- Centre for the AIDS programme of research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Durban, 4041, South Africa.,CAPRISA-MRC HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa
| | - Richard Lessells
- Centre for the AIDS programme of research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Durban, 4041, South Africa.,KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Yunus Moosa
- Department of Infectious Diseases, Division of Internal Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, 4013, South Africa
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Katherine Huppler Hullsiek
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - David R Boulware
- Division of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Reinout van Crevel
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rovina Ruslami
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadaran, Bandung, 40161, Indonesia.,Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - David B Meya
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| |
Collapse
|
47
|
Marais S, Cresswell FV, Hamers RL, te Brake LH, Ganiem AR, Imran D, Bangdiwala A, Martyn E, Kasibante J, Kagimu E, Musubire A, Maharani K, Estiasari R, Kusumaningrum A, Kusumadjayanti N, Yunivita V, Naidoo K, Lessells R, Moosa Y, Svensson EM, Huppler Hullsiek K, Aarnoutse RE, Boulware DR, van Crevel R, Ruslami R, Meya DB. High dose oral rifampicin to improve survival from adult tuberculous meningitis: A randomised placebo-controlled double-blinded phase III trial (the HARVEST study). Wellcome Open Res 2020; 4:190. [PMID: 33083560 PMCID: PMC7542255 DOI: 10.12688/wellcomeopenres.15565.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 11/12/2023] Open
Abstract
Background: Tuberculous meningitis (TBM), the most severe form of tuberculosis (TB), results in death or neurological disability in >50%, despite World Health Organisation recommended therapy. Current TBM regimen dosages are based on data from pulmonary TB alone. Evidence from recent phase II pharmacokinetic studies suggests that high dose rifampicin (R) administered intravenously or orally enhances central nervous system penetration and may reduce TBM associated mortality. We hypothesize that, among persons with TBM, high dose oral rifampicin (35 mg/kg) for 8 weeks will improve survival compared to standard of care (10 mg/kg), without excess adverse events. Protocol: We will perform a parallel group, randomised, placebo-controlled, double blind, phase III multicentre clinical trial comparing high dose oral rifampicin to standard of care. The trial will be conducted across five clinical sites in Uganda, South Africa and Indonesia. Participants are HIV-positive or negative adults with clinically suspected TBM, who will be randomised (1:1) to one of two arms: 35 mg/kg oral rifampicin daily for 8 weeks (in combination with standard dose isoniazid [H], pyrazinamide [Z] and ethambutol [E]) or standard of care (oral HRZE, containing 10 mg/kg/day rifampicin). The primary end-point is 6-month survival. Secondary end points are: i) 12-month survival ii) functional and neurocognitive outcomes and iii) safety and tolerability. Tertiary outcomes are: i) pharmacokinetic outcomes and ii) cost-effectiveness of the intervention. We will enrol 500 participants over 2.5 years, with follow-up continuing until 12 months post-enrolment. Discussion: Our best TBM treatment still results in unacceptably high mortality and morbidity. Strong evidence supports the increased cerebrospinal fluid penetration of high dose rifampicin, however conclusive evidence regarding survival benefit is lacking. This study will answer the important question of whether high dose oral rifampicin conveys a survival benefit in TBM in HIV-positive and -negative individuals from Africa and Asia. Trial registration: ISRCTN15668391 (17/06/2019).
Collapse
Affiliation(s)
- Suzaan Marais
- Department of Neurology, Inkosi Albert Luthuli Central Hospital, Durban, 4091, South Africa
| | - Fiona V Cresswell
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- MRC-UVRI, London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Raph L. Hamers
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lindsey H.M. te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ahmad R. Ganiem
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran/ Hasan Sadikin Hospital, Bandung, 40161, Indonesia
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadaran, Bandung, 40161, Indonesia
| | - Darma Imran
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Dr Cipto Mangukusumo Hospital, Jakarta, 10430, Indonesia
| | - Ananta Bangdiwala
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily Martyn
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| | - John Kasibante
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| | - Enock Kagimu
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| | - Abdu Musubire
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| | - Kartika Maharani
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Dr Cipto Mangukusumo Hospital, Jakarta, 10430, Indonesia
| | - Riwanti Estiasari
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Dr Cipto Mangukusumo Hospital, Jakarta, 10430, Indonesia
| | - Ardiana Kusumaningrum
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Dr Cipto Mangukusumo Hospital, Jakarta, 10430, Indonesia
| | - Nadytia Kusumadjayanti
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadaran, Bandung, 40161, Indonesia
| | - Vycke Yunivita
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran/ Hasan Sadikin Hospital, Bandung, 40161, Indonesia
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadaran, Bandung, 40161, Indonesia
| | - Kogieleum Naidoo
- Centre for the AIDS programme of research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Durban, 4041, South Africa
- CAPRISA-MRC HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa
| | - Richard Lessells
- Centre for the AIDS programme of research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Durban, 4041, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Yunus Moosa
- Department of Infectious Diseases, Division of Internal Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, 4013, South Africa
| | - Elin M. Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Katherine Huppler Hullsiek
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rob E. Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - David R. Boulware
- Division of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Reinout van Crevel
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rovina Ruslami
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadaran, Bandung, 40161, Indonesia
- Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - David B. Meya
- Infectious Diseases Institute, Mulago College of Health Sciences, Kampala, PO Box 22418, Uganda
| |
Collapse
|
48
|
Seddon JA, Wilkinson R, van Crevel R, Figaji A, Thwaites GE. Knowledge gaps and research priorities in tuberculous meningitis. Wellcome Open Res 2019; 4:188. [PMID: 32118120 PMCID: PMC7014926 DOI: 10.12688/wellcomeopenres.15573.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculous meningitis (TBM) is the most severe and disabling form of tuberculosis (TB), accounting for around 1-5% of the global TB caseload, with mortality of approximately 20% in children and up to 60% in persons co-infected with human immunodeficiency virus even in those treated. Relatively few centres of excellence in TBM research exist and the field would therefore benefit from greater co-ordination, advocacy, collaboration and early data sharing. To this end, in 2009, 2015 and 2019 we convened the TBM International Research Consortium, bringing together approximately 50 researchers from five continents. The most recent meeting took place on 1 st and 2 nd March 2019 in Lucknow, India. During the meeting, researchers and clinicians presented updates in their areas of expertise, and additionally presented on the knowledge gaps and research priorities in that field. Discussion during the meeting was followed by the development, by a core writing group, of a synthesis of knowledge gaps and research priorities within seven domains, namely epidemiology, pathogenesis, diagnosis, antimicrobial therapy, host-directed therapy, critical care and implementation science. These were circulated to the whole consortium for written input and feedback. Further cycles of discussion between the writing group took place to arrive at a consensus series of priorities. This article summarises the consensus reached by the consortium concerning the unmet needs and priorities for future research for this neglected and often fatal disease.
Collapse
Affiliation(s)
- James A Seddon
- Infectious Diseases, Imperial College London, London, W2 1PG, UK
- Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, St. Mary's Campus, London, W2 1PG, UK
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, Western Cape, 8005, South Africa
| | - Robert Wilkinson
- Infectious Diseases, Imperial College London, London, W2 1PG, UK
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Francis Crick Institute, London, NW1 1AT, UK
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anthony Figaji
- Neuroscience Institute, Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
| | - Guy E Thwaites
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam
| |
Collapse
|