1
|
Nie L, Zeng X, Li H, Wang S, Yu R. Enzyme-assisted amplification of target cycle triggers the unlocking of locked hairpin probes for let-7a detection. Talanta 2024; 266:125023. [PMID: 37549569 DOI: 10.1016/j.talanta.2023.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The detection of miRNA in cells is difficult owing to its substantially low cellular content. Therefore, developing a highly sensitive sensor to detect cellular miRNA remains a significant challenge. Herein, we report an enzyme-assisted biosensor with target cycle amplification that can trigger the unlocking of locked hairpin probes for sensitive and robust let-7a gene detection. In the research, three kinds of hairpin probes were skillfully designed. The hairpin probe comprises a complementary sequence of a target, primer, and recognition site of Nt. BbvCI restriction endonucleases. In addition, the alternating synergistic impact of polymerase and the nicking enzyme generates considerable triggers to unlock the locked hairpin probe LH1, consequently triggering a subsequent circulating strand displacement reaction to form a stable H1-H2 double strand to ensure sufficient distance between a fluorophore on H1 and a quenching group on bolt DNA (bDNA), and resulting in the recovery of fluorescence. Furthermore, this process does not require complicated operation procedures and instruments, and the target gene let-7a can be sensitively detected. Specifically, the detection limit of the biosensor is as low as 160 fM, and its linear range is 0.5 pM-250 nM. Moreover, this biosensor can be employed to detect let-7a in human serum with good selectivity.
Collapse
Affiliation(s)
- Lanxin Nie
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Xiaogang Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Hongbo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang, 330022, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Suqin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
2
|
Brittain WJ, Brandsetter T, Prucker O, Rühe J. The Surface Science of Microarray Generation-A Critical Inventory. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39397-39409. [PMID: 31322854 DOI: 10.1021/acsami.9b06838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microarrays are powerful tools in biomedical research and have become indispensable for high-throughput multiplex analysis, especially for DNA and protein analysis. The basis for all microarray processing and fabrication is surface modification of a chip substrate and many different strategies to couple probe molecules to such substrates have been developed. We present here a critical assessment of typical biochip generation processes from a surface science point of view. While great progress has been made from a molecular biology point of view on the development of qualitative assays and impressive results have been obtained on the detection of rather low concentrations of DNA or proteins, quantitative chip-based assays are still comparably rare. We argue that lack of stable and reliable deposition chemistries has led in many cases to suboptimal quantitative reproducibility, impeded further progress in microarray development and prevented a more significant penetration of microarray technology into the diagnostic market. We suggest that surface-attached hydrogel networks might be a promising strategy to achieve highly sensitive and quantitatively reproducible microarrays.
Collapse
Affiliation(s)
- William J Brittain
- Department of Chemistry & Biochemistry , Texas State University , 601 University Drive , San Marcos , Texas 78666 , United States
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Thomas Brandsetter
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Oswald Prucker
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| |
Collapse
|
3
|
Aloraini A, ElSawy KM. Potential Breast Anticancer Drug Targets Revealed by Differential Gene Regulatory Network Analysis and Molecular Docking: Neoadjuvant Docetaxel Drug as a Case Study. Cancer Inform 2018; 17:1176935118755354. [PMID: 29449773 PMCID: PMC5808968 DOI: 10.1177/1176935118755354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023] Open
Abstract
Understanding gene-gene interaction and its causal relationship to protein-protein interaction is a viable route for understanding drug action at the genetic level, which is largely hindered by inability to robustly map gene regulatory networks. Here, we use biological prior knowledge of family-to-family gene interactions available in the KEGG database to reveal individual gene-to-gene interaction networks that underlie the gene expression profiles of 2 cell line data sets, sensitive and resistive to neoadjuvant docetaxel breast anticancer drug. Comparison of the topology of the 2 networks revealed that the resistant network is highly connected with 2 large domains of connectivity: one in which the RAF1 and MAP2K2 genes form hubs of connectivity and another in which the RAS gene is highly connected. On the contrary, the sensitive network is highly disrupted with a lower degree of connectivity. We investigated the interactions of the neoadjuvant docetaxel drug with the protein chains encoded by gene-gene interactions that underlie the disruption of the sensitive network topology using protein-protein and drug-protein docking techniques. We found that the sensitive network is likely to be disrupted by interaction of the neoadjuvant docetaxel drug with the DAXX and FGR1 proteins, which is consistent with the observed accumulation of cytoplasmic DAXX and overexpression of FGR1 precursors in cancer cell lines. This indicates that the DAXX and FGR1 proteins could be potential targets for the neoadjuvant docetaxel drug. The work, therefore, provides a new route for understanding the effect of the drug mode of action from the viewpoint of the change in the topology of gene-gene regulatory networks and provides a new avenue for bridging the gap between gene-gene interactions and protein-protein interactions which could have deep implications on mainstream drug development protocols.
Collapse
Affiliation(s)
- Adel Aloraini
- Department of Computer Science, Qassim University, Buraydah, Saudi Arabia
| | - Karim M ElSawy
- York Centre for Complex Systems Analysis (YCCSA), University of York, York, UK.,Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Sahab ZJ, Semaan SM, Sang QXA. Methodology and Applications of Disease Biomarker Identification in Human Serum. Biomark Insights 2017. [DOI: 10.1177/117727190700200034] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biomarkers are biomolecules that serve as indicators of biological and pathological processes, or physiological and pharmacological responses to a drug treatment. Because of the high abundance of albumin and heterogeneity of plasma lipoproteins and glycoproteins, biomarkers are difficult to identify in human serum. Due to the clinical significance the identification of disease biomarkers in serum holds great promise for personalized medicine, especially for disease diagnosis and prognosis. This review summarizes some common and emerging proteomics techniques utilized in the separation of serum samples and identification of disease signatures. The practical application of each protein separation or identification technique is analyzed using specific examples. Biomarkers of cancers of prostate, breast, ovary, and lung in human serum have been reviewed, as well as those of heart disease, arthritis, asthma, and cystic fibrosis. Despite the advancement of technology few biomarkers have been approved by the Food and Drug Administration for disease diagnosis and prognosis due to the complexity of structure and function of protein biomarkers and lack of high sensitivity, specificity, and reproducibility for those putative biomarkers. The combination of different types of technologies and statistical analysis may provide more effective methods to identify and validate new disease biomarkers in blood.
Collapse
Affiliation(s)
- Ziad J. Sahab
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Suzan M. Semaan
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| |
Collapse
|
5
|
Liu Y, Gudnason H, Li YP, Bang DD, Wolff A. An oligonucleotide-tagged microarray for routine diagnostics of colon cancer by genotyping KRAS mutations. Int J Oncol 2014; 45:1556-64. [PMID: 25018048 DOI: 10.3892/ijo.2014.2541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/14/2014] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent types of cancer, causing significant morbidity and mortality worldwide. CRC is curable if diagnosed at an early stage. Mutations in the oncogene KRAS play a critical role in early development of CRC. Detection of activated KRAS is of diagnostic and therapeutic importance. In this study, KRAS gene fragments containing mutations in codon 12 were amplified by multiplex PCR using a 5'-Cy5-labeled reverse primer in combination with 3'-mutation-specific forward primers that were linked with four unique nucleotide-sequence tags at the 5'-end. The Cy5-labeled reverse primer was extended under PCR amplification to the 5'-end of the mutation-specific forward primers and thus included the complimentary sequence of the tag. PCR products were hybridized to tag-probes immobilized on various substrates and detected by a scanner. Our results indicate that all mutations at codon 12 of KRAS derived from cancer cells and clinical samples could be unambiguously detected. KRAS mutations were accurately detected when the mutant DNA was present only in 10% of the starting mixed materials including wild-type genomic DNA, which was isolated from either cancer cells or spiked fecal samples. The immobilized tag-probes were stable under multiple thermal cycling treatments, allowing re-use of the tag-microarray and further optimization to solid PCR. Our results demonstrated that a novel oligonucleotide-tagged microarray system has been developed which would be suitable to be used for detection of KRAS mutations and clinical diagnosis of CRC.
Collapse
Affiliation(s)
- Yuliang Liu
- DTU Veterinary Laboratory of Applied Micro-Nanotechnology, Department of Poultry, Fish and Fur Animals, National Veterinary Institute, Technical University of Denmark, DK-8200, Aarhus N, Denmark
| | - Haukur Gudnason
- DTU Nanotech. BioLabchip, Department of Micro and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yi-Ping Li
- DTU Veterinary Laboratory of Applied Micro-Nanotechnology, Department of Poultry, Fish and Fur Animals, National Veterinary Institute, Technical University of Denmark, DK-8200, Aarhus N, Denmark
| | - Dang Duong Bang
- DTU Veterinary Laboratory of Applied Micro-Nanotechnology, Department of Poultry, Fish and Fur Animals, National Veterinary Institute, Technical University of Denmark, DK-8200, Aarhus N, Denmark
| | - Anders Wolff
- DTU Nanotech. BioLabchip, Department of Micro and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Yan-Fang T, Dong W, Li P, Wen-Li Z, Jun L, Na W, Jian W, Xing F, Yan-Hong L, Jian N, Jian P. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Cancer Cell Int 2012; 12:40. [PMID: 22958424 PMCID: PMC3495223 DOI: 10.1186/1475-2867-12-40] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023] Open
Abstract
Background The Real-time PCR Array System is the ideal tool for analyzing the expression of a focused panel of genes. In this study, we will analyze the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Methods Real-time PCR array was designed and tested firstly. Then gene expression profile of 11 pediatric AML and 10 normal controls was analyzed with real-time PCR arrays. We analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool. Results We designed and tested 88 real-time PCR primer pairs for a quantitative gene expression analysis of key genes involved in pediatric AML. The gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. To investigate possible biological interactions of differently regulated genes, datasets representing genes with altered expression profile were imported into the Ingenuity Pathway Analysis Tool. The results revealed 12 significant networks. Of these networks, Cellular Development, Cellular Growth and Proliferation, Tumor Morphology was the highest rated network with 36 focus molecules and the significance score of 41. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to hematological disease, cell death, cell growth and hematological system development. In the top canonical pathways, p53 and Huntington’s disease signaling came out to be the top two most significant pathways with a p value of 1.5E-8 and2.95E-7, respectively. Conclusions The present study demonstrates the gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. We found some genes dyes-regulated in pediatric AML for the first time as FASLG, HDAC4, HDAC7 and some HOX family genes. IPA analysis showed the top important pathways for pediatric AML are p53 and Huntington’s disease signaling. This work may provide new clues of molecular mechanism in pediatric AML.
Collapse
Affiliation(s)
- Tao Yan-Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schertzer MJ, Ahamed MJ, Ben-Mrad R, Lea P, Sullivan PE. Characterizing the surface quality and droplet interface shape for microarray plates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9961-9966. [PMID: 22671939 DOI: 10.1021/la302091t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The variation in the surface quality of microarray plates was examined by measuring the contact angles of 480 droplets on five microarray plates. It was found that the measured contact angle did not accurately predict the droplet shape for moderate Bond numbers (~0.5 ≤ N(B) ≤ 5). By defining an apparent contact angle using the ratio of the contact radius to the height, the variance in the predicted interface shape decreased by greater than a factor of 3 for both local and globally averaged characteristics. The error in the predicted droplet height was also reduced by 3 orders of magnitude.
Collapse
Affiliation(s)
- M J Schertzer
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
8
|
Abstract
Despite the fact that the fundamental principle underlying the most common method of culture media constitution is that of mimicking the natural environment of the preimplantation embryo, one major difference that remains between current embryo culture media and in vivo conditions is the absence of growth factors in vitro. Numerous growth factors are known to be present in the in vivo environment of human and nonhuman preimplantation embryos, often with peak concentrations corresponding to when fertilization and preimplantation embryo growth would occur. Although these growth factors are found in very small concentrations, they have a profound effect on tissue growth and differentiation through attachment to factor-specific receptors on cell surfaces. Receptors for many different growth factors have also been detected in human preimplantation embryos. Preimplantation embryos themselves express many growth factors. The growth factors and receptors are metabolically costly to produce, and thus their presence in the environment of the preimplantation embryo and in the embryo respectively strongly implies that embryos are designed to encounter and respond to the corresponding factors. Studies of embryo coculture also indirectly suggest that growth factors can improve in vitro development. Several animal and human studies attest to a probable beneficial effect of addition of growth factors to culture media. However, there is still ambiguity regarding the exact role of growth factors in embryonic development, the optimal dose of growth factors to be added to culture media, the combinatorial effect and endocrine of growth factors in embryonic development.
Collapse
Affiliation(s)
- Aparna Hegde
- Department of OB/GYN, Division of Reproductive Endocrinology and Infertility, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
9
|
The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr Opin Obstet Gynecol 2008; 20:292-304. [PMID: 18460945 DOI: 10.1097/gco.0b013e3282fe743b] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The present paper reviews evidence that preimplantation embryos are naturally exposed and designed to respond to growth factors during preimplantation development. RECENT FINDINGS Recent studies have demonstrated that in-vivo human preimplantation embryos are exposed to a mixture of many different growth factors, expressed by the follicles, oviducts and endometrium. Receptors for many of these growth factors have also been shown to be expressed by preimplantation embryos, suggesting a functional role during preimplantation development. Studies of in-vitro fertilization in both animals and humans indicate that in-vitro culture of embryos in conventional media lacking growth factors can result in suboptimal growth and a variety of short-term and long-term developmental abnormalities. Studies of embryo coculture indirectly suggest that growth factors can improve in-vitro development. Many studies of defined growth factor supplements demonstrate that their inclusion in culture media can substantially improve preimplantation development and efficacy of in-vitro fertilization, and may reduce long-term developmental abnormalities as well. SUMMARY Embryos are naturally exposed to a complex mixture of growth factors that play an important role in preimplantation embryo development and that are likely to be of substantial benefit if added to in-vitro culture media.
Collapse
|
10
|
Zangar RC, Varnum SM, Bollinger N. Studying Cellular Processes and Detecting Disease with Protein Microarrays. Drug Metab Rev 2008; 37:473-87. [PMID: 16257831 DOI: 10.1080/03602530500205309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein microarrays are a rapidly developing analytic tool with diverse applications in biomedical research. These applications include profiling of disease markers or autoimmune responses, understanding molecular pathways, protein modifications, and protein activities. One factor that is driving this expanding usage is the wide variety of experimental formats that protein microarrays can take. In this review, we provide a short, conceptual overview of the different approaches for protein microarray. We then examine some of the most significant applications of these microarrays to date, with an emphasis on how global protein analyses can be used to facilitate biomedical research.
Collapse
Affiliation(s)
- Richard C Zangar
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | |
Collapse
|
11
|
Agúndez JAG, Golka K, Martínez C, Selinski S, Blaszkewicz M, García-Martín E. Unraveling ambiguous NAT2 genotyping data. Clin Chem 2008; 54:1390-4. [PMID: 18664443 DOI: 10.1373/clinchem.2008.105569] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Arylamine N-acetyltransferase 2 (CoASAc; NAT2, EC 2.3.1.5) is a drug-metabolizing enzyme that displays common polymorphisms leading to impaired drug metabolism and adverse drug effects. Determination of the N-acetyltransferase 2 (arylamine N-acetyltransferase) (NAT2) genotype in clinical practice is hampered by the occurrence of ambiguous haplotype combinations that may lead to patient misclassification. We determined the frequencies for ambiguous NAT2 haplotypes and diplotypes in a white population and investigated the use of PHASE v2.1.1, a statistical program for haplotype reconstruction, to clarify this ambiguity and classify individuals according to their acetylation status. METHODS By means of allele-specific haplotype mapping and sequencing, we determined the haplotypes for 7 common single-nucleotide polymorphisms in the NAT2 gene (n = 2624 haplotypes). To test the performance of PHASE, actual genotypes were deconstructed and then reconstructed by haplotype prediction. RESULTS We identified 21 NAT2 allelic variants, including a new variant allele that combines the single-nucleotide polymorphisms rs1801279, rs1799929, and rs1208. In contrast, the previously described variant alleles *5G, *5J, *6E, *7A, *11A, *11B, and *14B were not identified in the study population. Ambiguous haplotypes were observed in 98 alleles (3.7%), and ambiguous diplotypes were observed in 64 individuals (4.9%). Eleven individuals (0.8%) were misclassified by the use of haplotype prediction. CONCLUSIONS Ambiguous NAT2 genotyping data are common. Actual NAT2 genotypes cannot be fully determined by haplotype prediction techniques. This study provides real haplotype data that can be used as a guide to convert NAT2 haplotypes and diplotypes into actual genotypes in white individuals.
Collapse
Affiliation(s)
- José A G Agúndez
- Department of Pharmacology, Medical School, University of Extremadura, Badajoz, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Coleman MA, Beernink PT, Camarero JA, Albala JS. Applications of functional protein microarrays: identifying protein-protein interactions in an array format. Methods Mol Biol 2008; 385:121-30. [PMID: 18365708 DOI: 10.1007/978-1-59745-426-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The use of protein arrays and their importance in proteomic applications continues to be at the forefront of scientific discovery and innovative technology development. To date, array-based approaches have proven to be a powerful tool for protein expression profiling, novel biomarker discovery, and the examination of protein, DNA, and small molecule interactions. Our laboratory has developed several approaches for characterizing protein-protein interactions using protein microarrays for a variety of different biological applications. Here we describe the identification of protein-protein interactions using a microarray format.
Collapse
Affiliation(s)
- Matthew A Coleman
- Biosciences Division, Lawrence Livermore National Laboratory, CA, USA
| | | | | | | |
Collapse
|
13
|
Kricka LJ, Master SR. Validation and Quality Control of Protein Microarray-based Analytical Methods. Mol Biotechnol 2007; 38:19-31. [DOI: 10.1007/s12033-007-0066-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 07/06/2007] [Indexed: 01/20/2023]
|
14
|
Järås K, Ressine A, Nilsson E, Malm J, Marko-Varga G, Lilja H, Laurell T. Reverse-Phase versus Sandwich Antibody Microarray, Technical Comparison from a Clinical Perspective. Anal Chem 2007; 79:5817-25. [PMID: 17605470 DOI: 10.1021/ac0709955] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein microarrays are powerful tools to quantify and characterize proteins in multiplex assays. They have great potential within clinical diagnostics and prognostics, as they minimize consumption of both analyte and biological sample. Assays that do not require labeling of the biological specimen, henceforth called label-free, are vital for ease of clinical sample processing. Here, we evaluate two label-free techniques, reverse-phase and sandwich antibody assays, using microarrays on high-performance porous silicon surfaces and fluorescence detection. In view of increasing interest in reverse microarrays, this paper focuses on analytical sensitivity of the reverse assays compared to the more complex but highly sensitive sandwich assay. Sensitivity, linear range, and reproducibility of the two assays were compared using prostate-specific antigen (PSA) in buffer. The sandwich assay displayed 5 orders of magnitude lower detection limit (0.7 ng/mL) compared to the reverse assay (70 microg/mL). PSA at 50 nM (1.5 microg/mL) in cell lysates was detected by the sandwich assay but not by the reverse assay, demonstrating again a far lower detection limit for sandwich microarrays. In independent assay runs of PSA spiked in female serum, the sandwich assay had good linearity (R2 > 0.99) and reproducibility (coefficient of variation < or =15%), and the detection limit could be improved to 0.14 ng/mL. Without further signal amplification, the sandwich assay would be our choice for PSA analysis of clinical samples using a microarray technology platform.
Collapse
Affiliation(s)
- K Järås
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Strauss LG, Pan L, Koczan D, Klippel S, Mikolajczyk K, Burger C, Haberkorn U, Schönleben K, Thiesen HJ, Dimitrakopoulou-Strauss A. Fusion of positron emission tomography (PET) and gene array data: a new approach for the correlative analysis of molecular biological and clinical data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2007; 26:804-12. [PMID: 17679331 DOI: 10.1109/tmi.2007.892645] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The combined assessment of data obtained by positron emission tomography (PET) and gene array techniques provide new capabilities for the interpretation of kinetic tracer studies. The correlative analysis of the data helps to detect dependencies of the kinetics of radiotracer on gene expression. Furthermore, gene expression may be predicted using regression functions if a significant correlation exists, which raises new aspects regarding the interpretation of dynamic PET examinations. The development of new radiopharmaceuticals requires the knowledge of the enhanced expression of genes, especially genes controlling receptors and cell surface proteins. The GenePET program facilitates an interactive approach together with the use of key words to identify possible targets for new radiopharmaceuticals.
Collapse
|
16
|
Babu SCV, Song EJ, Babar SME, Yoo YS. Capillary electrophoresis of signaling molecules. Biomed Chromatogr 2007; 21:890-7. [PMID: 17583878 DOI: 10.1002/bmc.867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The emerging field of quantitative systems biology uses high-throughput bioanalytical measurements to gain a deeper understanding of biological phenomena. With the advent of instrumentation platforms, capillary electrophoresis spans a very wide range of biological applications. This short article focuses on the exploitation of capillary electrophoresis for the systems-level analysis of cell signaling molecules.
Collapse
Affiliation(s)
- Suresh C V Babu
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Korea
| | | | | | | |
Collapse
|
17
|
Renault NK, Mirotti L, Alcocer MJC. Biotechnologies in new high-throughput food allergy tests: why we need them. Biotechnol Lett 2006; 29:333-9. [PMID: 17160623 DOI: 10.1007/s10529-006-9251-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
The increase in prevalence of food allergies generates a need for more accurate and reliable quantitative allergy testing in order to help diagnosis. In this short review, we briefly outline the history of food allergy testing and extend our comments to current multiplex techniques. Particular emphasis is given to new developments in the protein microarray area, where the use of recent advances in biotechnology has the potential to produce high-throughput devices with improved clinical significance.
Collapse
Affiliation(s)
- Neil K Renault
- School of Biosciences, Division of Nutritional Sciences, University of Nottingham, Loughborough, UK
| | | | | |
Collapse
|
18
|
Abstract
The rapid expansion of methods for measuring biological data ranging from DNA sequence variations to mRNA expression and protein abundance presents the opportunity to utilize multiple types of information jointly in the study of human health and disease. Organisms are complex systems that integrate inputs at myriad levels to arrive at an observable phenotype. Therefore, it is essential that questions concerning the etiology of phenotypes as complex as common human diseases take the systemic nature of biology into account, and integrate the information provided by each data type in a manner analogous to the operation of the body itself. While limited in scope, the initial forays into the joint analysis of multiple data types have yielded interesting results that would not have been reached had only one type of data been considered. These early successes, along with the aforementioned theoretical appeal of data integration, provide impetus for the development of methods for the parallel, high-throughput analysis of multiple data types. The idea that the integrated analysis of multiple data types will improve the identification of biomarkers of clinical endpoints, such as disease susceptibility, is presented as a working hypothesis.
Collapse
Affiliation(s)
- David M Reif
- Center for Human Genetics Research, Vanderbilt University Medical School, 519 Light Hall, Nashville, TN 37232-0700, USA.
| | | | | |
Collapse
|
19
|
Hiratsuka M, Sasaki T, Mizugaki M. Genetic testing for pharmacogenetics and its clinical application in drug therapy. Clin Chim Acta 2006; 363:177-86. [PMID: 16126184 DOI: 10.1016/j.cccn.2005.05.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Accepted: 05/05/2005] [Indexed: 11/26/2022]
Abstract
There is wide individual variation in drug responses and adverse effects. As the main causes of the variation in drug responses, attention has focused on the genetic polymorphisms that encode metabolic enzymes regulating pharmacodynamics and receptors modulating the affinity with the responsive sites. Tailor-made drug therapy analyzes genetic polymorphisms involved in drug responses before drug administration and selects drugs and doses suitable for the individual genetic background. Establishment of tailor-made drug therapy is expected to contribute to medical economy by avoiding wasteful drug administration. To promote such medical practice, it is necessary to use simple genetic testing that is clinically convenient. Currently, genetic testing using real-time PCR has been frequently employed at laboratories with its clinical application anticipated. As to the many genes involved in drug responses, to date, the application of patient genetic information to tailor-made drug therapy has been achieved at the practical level. Information on pharmacogenetics will be a critical factor in medical practice in the near future.
Collapse
Affiliation(s)
- Masahiro Hiratsuka
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Japan
| | | | | |
Collapse
|
20
|
Altshuler IM, Zhulidov PA, Bogdanova EA, Mudrik NN, Shagin DA. Application of the Duplex-Specific Nuclease Preference Method to the Analysis of Single Nucleotide Polymorphisms in Human Genes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005. [DOI: 10.1007/s11171-005-0078-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Nielsen UB, Geierstanger BH. Multiplexed sandwich assays in microarray format. J Immunol Methods 2004; 290:107-20. [PMID: 15261575 DOI: 10.1016/j.jim.2004.04.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2004] [Indexed: 11/22/2022]
Abstract
Antibody arrays have evolved into powerful tools for quantifying proteins and qualifying their state of activation in complex biological samples. This level of analysis holds tremendous promise as part of a diagnostic or prognostic platform. In particular, multiplex sandwich ELISA assays performed with microarrays in the wells of multi-well plates enable high-throughput analysis of multiple samples with multivariate readouts. Here, we compare and review recent advances in antibody microarray technology and describe its promises towards the systematic analysis of complex biological samples, ranging from profiling patient sera to studying intracellular signaling.
Collapse
Affiliation(s)
- Ulrik B Nielsen
- Merrimack Pharmaceuticals, 101 Binney Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
22
|
Maekawa M, Nagaoka T, Taniguchi T, Higashi H, Sugimura H, Sugano K, Yonekawa H, Satoh T, Horii T, Shirai N, Takeshita A, Kanno T. Three-dimensional microarray compared with PCR-single-strand conformation polymorphism analysis/DNA sequencing for mutation analysis of K-ras codons 12 and 13. Clin Chem 2004; 50:1322-7. [PMID: 15178652 DOI: 10.1373/clinchem.2004.032060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND We developed a rapid, precise, and accurate microarray-based method that uses a three-dimensional platform for detection of mutations. METHODS We used the PamChip microarray to detect mutations in codons 12 and 13 of K-ras in 15 cell lines and 81 gastric or colorectal cancer tissues. Fluorescein isothiocyanate-labeled PCR products were analyzed with the microarray. We confirmed the microarray results with PCR-single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. RESULTS We could correctly identify wild-type, heterozygous, and homozygous mutant genotypes with the PamChip microarray in <3.5 h. The array data were consistent with those of PCR-SSCP analysis and DNA sequencing. All 15 cell lines and 80 of 81 clinical cancer specimens (98.8%; 95% confidence interval, 96.4-100%) were genotyped accurately with the microarray, a rate better than that of direct DNA sequencing (38.9%) or SSCP (93.8%). Only one clinical specimen was misdiagnosed as homozygous for the wild-type allele. Densitometric analysis of SSCP bands indicated that the content of the mutant allele in the specimen was approximately 16%. The PamChip microarray could detect mutant alleles representing more than 25% of the SSCP band proportions. Therefore, the limit for detection of mutant alleles by the PamChip microarray was estimated to be 16-25% of the total DNA. CONCLUSIONS The PamChip microarray is a novel three-dimensional microarray system and can be used to analyze K-ras mutations quickly and accurately. The mutation detection rate was nearly 100% and was similar to that of PCR-SSCP together with sequencing analysis, but the microarray analysis was faster and easier.
Collapse
Affiliation(s)
- Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Stimulated by the achievements of the first phase in genomics and the resulting need of assigning functions to the acquired sequence information, novel formats of immunoassays are being developed for high-throughput multi-analyte studies. In principle, they are similar in nature to the microarray assays already established at the level of nucleic acids. However, the biochemical diversity and the sheer number of proteins are such that an equivalent analysis is much more complex and thus difficult to accomplish. The wide range of protein concentration complicates matters further. Performing microarray immunoassays already represents a challenge at the level of preparing a working chip surface. Arrays have been produced on filter supports, in microtiter plate wells and on glass slides, the last two usually coated with one-, two- or three-dimensionally structured surface modifications. The usefulness and suitability of all these support media for the construction and application of antibody microarrays are reviewed in this manuscript in terms of the different kinds of immunoassay and the various detection procedures. Additionally, the employment of microarrays containing alternative sensor molecules is discussed in this context. The sensitivity of microspot immunoassays predicted by the current analyte theory is not yet a reality, indicating the extent of both the technology's potential and the size of the task still ahead.
Collapse
Affiliation(s)
- Wlad Kusnezow
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
24
|
Sparreboom A, Danesi R, Ando Y, Chan J, Figg WD. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist Updat 2003; 6:71-84. [PMID: 12729805 DOI: 10.1016/s1368-7646(03)00005-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ATP-binding cassette (ABC) genes play a role in the resistance of malignant cells to anticancer agents. The ABC gene products, including ABCB1 (P-glycoprotein), ABCC1 (MRP1), ABCC2 (MRP2, cMOAT), and ABCG2 (BCRP, MXR, ABCP) are also known to influence oral absorption and disposition of a wide variety of drugs. As a result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. Naturally occurring variants in ABC transporter genes have been identified that might affect the function and expression of the protein. This review focuses on recent advances in the pharmacogenomics of ABC transporters, and discusses potential implications of genetic variants for the chemotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Alex Sparreboom
- Clinical Pharmacology Research Core, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Booth SA, Drebot MA, Martin IE, Ng LK. Design of oligonucleotide arrays to detect point mutations: molecular typing of antibiotic resistant strains of Neisseria gonorrhoeae and hantavirus infected deer mice. Mol Cell Probes 2003; 17:77-84. [PMID: 12788028 DOI: 10.1016/s0890-8508(03)00005-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microarrays are promising tools for use in molecular diagnostics due to their ability to perform a multitude of tests simultaneously. In the case of genotyping many such tests will require discrimination of sequence at the single nucleotide level. A number of challenges exist including binding of optimal quantities of probe to the chip surface, the use of uniform hybridization conditions across the chip and the generation of labeled target. We investigated two model systems to test out the efficacy and ease with which probes can be designed for this purpose. In the first of these we designed primers to identify five mutations found in two genes from N. gonohorroeae, gyrA and parC that have been implicated in ciprofloxacin resistance. In the second system we used a similar strategy to identify four mutations in AT rich mitochondrial DNA from deer mice. These mutations are associated with deer mice subspecies that originate from different geographical regions of Canada and harbor different hantavirus strains. In every case we were able to design probes that could discriminate mutations in the target sequences under uniform hybridization conditions, even when targets were fairly long in length, up to 400 bp. Our results suggest that microarray analysis of point mutations might be very useful for automated identification and characterization of pathogens and their hosts.
Collapse
Affiliation(s)
- Stephanie A Booth
- National Microbiology Laboratory, Population and Public Health Branch, Health Canada, Winnipeg, Man, Canada
| | | | | | | |
Collapse
|
26
|
Natarajan K, Shepard LA, Chodosh J. The use of DNA array technology in studies of ocular viral pathogenesis. DNA Cell Biol 2002; 21:483-90. [PMID: 12167252 DOI: 10.1089/10445490260099782] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA arrays can be used to simultaneously analyze the expression of hundreds of genes and permit systematic approaches to biological discovery with a potentially profound impact on genomics, pharmacogenomics, and proteomics. Microarrays have been used to study host-pathogen interactions, and recently this technology has been applied to investigate host-virus interactions. DNA arrays are used to monitor host alterations in several virus-induced cancers and upon infection with wild-type or modified viruses, or viral gene products. Alternatively, viral chips are used to characterize the transcriptional program of pathogenic viruses and in antiviral drug screening and drug resistance. With an aim to extend the use of this technology to ocular research, and specifically to study changes in host cell transcription in ocular adenovirus infection, we used a commercial array to compare adenovirus-infected human corneal cells to mock-infected cells. Of the 1176 genes analyzed, 72 genes associated with cell cycle regulation, apoptosis, oncogenesis, transcription, signaling, and inflammation were differentially regulated. In this review we summarize the use of DNA arrays in the study of viral infections and suggest potential uses of the technology in ocular viral pathogenesis research.
Collapse
Affiliation(s)
- K Natarajan
- Molecular Pathogenesis of Eye Infection Research Center, Dean A. McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
27
|
Woodbury RL, Varnum SM, Zangar RC. Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA. J Proteome Res 2002; 1:233-7. [PMID: 12645900 DOI: 10.1021/pr025506q] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We developed an ELISA in high-density microarray format to detect hepatocyte growth factor (HGF) in human serum. The microassay can detect HGF at sub-pg/mL concentrations in sample volumes of 100 microL or less. The microassay is also quantitative and was used to detect elevated HGF levels in sera from recurrent breast cancer patients. The microarray format provides the potential for high-throughput quantitation of multiple biomarkers in parallel, as demonstrated with a multiplex analysis of five biomarker proteins.
Collapse
Affiliation(s)
- Ronald L Woodbury
- Battelle, Pacific Northwest National Laboratory, Molecular Biosciences Department, P7-56, P.O. Box 999, Richland, Washington 99352, USA
| | | | | |
Collapse
|
28
|
Tam SW, Wiese R, Lee S, Gilmore J, Kumble KD. Simultaneous analysis of eight human Th1/Th2 cytokines using microarrays. J Immunol Methods 2002; 261:157-65. [PMID: 11861074 DOI: 10.1016/s0022-1759(01)00572-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The adaptive immune system induces T cells to change from a naive phenotype to a Th1/Th2 phenotype each of which produce characteristic types of cytokines. Knowledge of whether a specific immune response is Th1 or Th2 is a useful indicator for diseases with basis in immune function disorder. An assay that can rapidly analyze multiple cytokines indicative of these two cell types from small sample quantities can be an extremely useful research and diagnostic tool. Silanized glass slides were printed with multiple arrays of capture antibodies to detect eight different cytokines involved in the Th1/Th2 response along with control proteins for assessing assay performance. Arrays were developed by sequential addition of known antigen amounts, detector antibodies and a fluorescent detection system followed by imaging and quantification. These arrays were used to determine the specificity, sensitivity and reproducibility of the assay and the performance compared with conventional ELISA. This multiplexed assay is able to measure human Th1/Th2 cytokines in sample volumes lower than 20 microl. The assay sensitivity for the eight cytokines range from 0.3 microg/l for IL-4 to 6.4 microg/l for IL-5 which are either comparable to or higher than those reported for conventional ELISA or bead-based multiplex ELISA methods. This assay can be automated to measure expression levels of multiple Th1/Th2 cytokines simultaneously from tens to hundreds of biological samples. This assay platform is more sensitive and has a larger dynamic range as compared to a conventional ELISA in addition to significantly reducing the time and cost of assay. This platform provides a versatile system to rapidly quantify a wide variety of proteins in a multiplex format.
Collapse
Affiliation(s)
- Sun W Tam
- Genometrix, Inc., 2700 Research Forest Drive, The Woodlands, TX 77381, USA
| | | | | | | | | |
Collapse
|