1
|
De Maria M, Garcia-Reyero N, Stacy NI, Abbott JR, Yu F, Pu R, Kroll KJ, Barboza FR, Walsh MT, Perez-Jimenez JG, Amador DAM, Hunter ME, Denslow ND. In vitro impacts of glyphosate on manatee lymphocytes. ENVIRONMENT INTERNATIONAL 2024; 193:109054. [PMID: 39537518 DOI: 10.1016/j.envint.2024.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/04/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Exposure to contaminants, such as the herbicide glyphosate, can suppress protective immune functions. Glyphosate is the herbicide most used worldwide and has been found in the plasma of more than 50 % of the Florida manatees (Trichechus manatus latirostris) and all-year-round in their aquatic environment. Our objectives were to analyze the consequences of glyphosate exposure on their immune responses via T-lymphocyte proliferation assays and transcriptomics. We isolated peripheral blood mononuclear cells (mainly lymphocytes) of free-ranging manatees and performed T-cell proliferation assays. We used transcriptomics to understand the consequences of glyphosate in vitro exposure. The three doses chosen ranged from environmentally relevant concentrations at 10 to 10,000 µg.L-1 that is considered an environmental contamination scenario. Glyphosate caused a dose-dependent reduction in T-lymphocyte proliferation, with a significant mean reduction of 27.3 % at 10,000 µg.L-1 and up to 51.5 % in some individuals. Additionally, T-lymphocyte proliferation was significantly reduced in mid-winter compared to early winter. Transcriptomic analysis of peripheral blood mononuclear cells indicated that all doses of glyphosate (10, 1,000, and 10,000 µg.L-1) resulted in up-regulation of genes related to acute phase inflammation and inhibition of the T-lymphocyte proliferation pathway. Exposure to this contaminant along with other environmental stressors, such as extreme winters and red tide, might further affect the adaptive immune response of this threatened species.
Collapse
Affiliation(s)
- Maite De Maria
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA; Cherokee Nation System Solutions, Contractor to the United States Geological Survey- Wetland and Aquatic Research Center, Gainesville, FL, USA.
| | - Natalia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University. Starkville, MS, USA
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey R Abbott
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32611, USA; Department of Microbiology and Pathology, Washington State University, Pullman, WA 99163, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Ruyiu Pu
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Kroll
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Francisco R Barboza
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Estonia
| | - Michael T Walsh
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, USA
| | - Juan G Perez-Jimenez
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - David A Moraga Amador
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Margaret E Hunter
- United States Geological Survey, Wetland and Aquatic Research Center, Gainesville, USA.
| | - Nancy D Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Griffen BD, Klimes L, Fletcher LS, Thometz NM. Data needs for sea otter bioenergetics modeling. CONSERVATION PHYSIOLOGY 2024; 12:coae067. [PMID: 39391558 PMCID: PMC11465142 DOI: 10.1093/conphys/coae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Sea otters are keystone predators whose recovery and expansion from historical exploitation throughout their range can serve to enhance local biodiversity, promote community stability, and buffer against habitat loss in nearshore marine systems. Bioenergetics models have become a useful tool in conservation and management efforts of marine mammals generally, yet no bioenergetics model exists for sea otters. Previous research provides abundant data that can be used to develop bioenergetics models for this species, yet important data gaps remain. Here we review the available data that could inform a bioenergetics model, and point to specific open questions that could be answered to more fully inform such an effort. These data gaps include quantifying energy intake through foraging by females with different aged pups in different quality habitats, the influence of body size on energy intake through foraging, and determining the level of fat storage that is possible in sea otters of different body sizes. The more completely we fill these data gaps, the more confidence we can have in the results and predictions produced by future bioenergetics modeling efforts for this species.
Collapse
Affiliation(s)
- Blaine D Griffen
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Lexanne Klimes
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Laura S Fletcher
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Nicole M Thometz
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117, USA
| |
Collapse
|
3
|
Varela L, Tambusso S, Fariña R. Femora nutrient foramina and aerobic capacity in giant extinct xenarthrans. PeerJ 2024; 12:e17815. [PMID: 39131616 PMCID: PMC11316464 DOI: 10.7717/peerj.17815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Nutrient foramina are small openings in the periosteal surface of the mid-shaft region of long bones that traverse the cortical layer and reach the medullary cavity. They are important for the delivery of nutrients and oxygen to bone tissue and are crucial for the repair and remodeling of bones over time. The nutrient foramina in the femur's diaphysis are related to the energetic needs of the femur and have been shown to be related to the maximum metabolic rate (MMR) of taxa. Here, we investigate the relationship between nutrient foramen size and body mass as a proxy to the aerobic capacity of taxa in living and extinct xenarthrans, including living sloths, anteaters, and armadillos, as well as extinct xenarthrans such as glyptodonts, pampatheres, and ground sloths. Seventy femora were sampled, including 20 from extant taxa and 50 from extinct taxa. We obtained the blood flow rate (Q̇) based on foramina area and performed PGLS and phylogenetic ANCOVA in order to explore differences among mammalian groups. Our results show that, among mammals, taxa commonly associated with lower metabolism like living xenarthrans showed relatively smaller foramina, while the foramina of giant extinct xenarthrans like ground sloths and glyptodonts overlapped with non-xenarthran placentals. Consequently, Q̇ estimations indicated aerobic capacities comparable to other placental giant taxa like elephants or some ungulates. Furthermore, the estimation of the MMR for fossil giant taxa showed similar results, with almost all taxa showing high values except for those for which strong semi-arboreal or fossorial habits have been proposed. Moreover, the results are compatible with the diets predicted for extinct taxa, which indicate a strong consumption of grass similar to ungulates and in contrast to the folivorous or insectivorous diets of extant xenarthrans. The ancestral reconstruction of the MMR values indicated a lack of a common pattern for all xenarthrans, strongly supporting the occurrence of low metabolic rates in extant forms due to their particular dietary preferences and arboreal or fossorial habits. Our results highlight the importance of considering different evidence beyond the phylogenetic position of extinct taxa, especially when extinct forms are exceptionally different from their extant relatives. Future studies evaluating the energetic needs of giant extinct xenarthrans should not assume lower metabolic rates for these extinct animals based solely on their phylogenetic position and the observations on their extant relatives.
Collapse
Affiliation(s)
- Luciano Varela
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| | - Sebastián Tambusso
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| | - Richard Fariña
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| |
Collapse
|
4
|
Silva MP, Oliveira C, Prieto R, Silva MA, New L, Pérez‐Jorge S. Bioenergetic modelling of a marine top predator's responses to changes in prey structure. Ecol Evol 2024; 14:e11135. [PMID: 38529024 PMCID: PMC10961477 DOI: 10.1002/ece3.11135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Determining how animals allocate energy, and how external factors influence this allocation, is crucial to understand species' life history requirements and response to disturbance. This response is driven in part by individuals' energy balance, prey characteristics, foraging behaviour and energy required for essential functions. We developed a bioenergetic model to estimate minimum foraging success rate (FSR), that is, the lowest possible prey capture rate for individuals to obtain the minimum energy intake needed to meet daily metabolic requirements, for female sperm whale (Physeter macrocephalus). The model was based on whales' theoretical energetic requirements using foraging and prey characteristics from animal-borne tags and stomach contents, respectively. We used this model to simulate two prey structure change scenarios: (1) decrease in mean prey size, thus lower prey energy content and (2) decrease in prey size variability, reducing the variability in prey energy content. We estimate the whales need minimum of ~14% FSR to meet their energetic requirements, and energy intake is more sensitive to energy content changes than a decrease in energy variability. To estimate vulnerability to prey structure changes, we evaluated the compensation level required to meet bioenergetic demands. Considering a minimum 14% FSR, whales would need to increase energy intake by 21% (5-35%) and 49% (27-67%) to compensate for a 15% and 30% decrease in energy content, respectively. For a 30% and 50% decrease in energy variability, whales would need to increase energy intake by 13% (0-23%) and 24% (10-35%) to meet energetic demands, respectively. Our model demonstrates how foraging and prey characteristics can be used to estimate impact of changing prey structure in top predator energetics, which can help inform bottom-up effects on marine ecosystems. We showed the importance of considering different FSR in bioenergetics models, as it can have decisive implications on estimates of energy acquired and affect the conclusions about top predator's vulnerability to possible environmental fluctuations.
Collapse
Affiliation(s)
- Mariana P. Silva
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Cláudia Oliveira
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Rui Prieto
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Mónica A. Silva
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Leslie New
- Department of Mathematics and Computer ScienceUrsinus CollegeCollegevillePennsylvaniaUSA
| | - Sergi Pérez‐Jorge
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| |
Collapse
|