1
|
Bertos E, Sánchez-Cerdá M, Virgós E, Moleón M, Gil-Sánchez JM. Physiological and morphological characterization of endangered European wildcats from the Iberian lineage: Reference values for conservation. Vet J 2025; 309:106272. [PMID: 39608701 DOI: 10.1016/j.tvjl.2024.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The European wildcat (Felis silvestris), particularly its Iberian lineage, is experiencing an important population decline due to various threats. For this reason, we started in 2017 an intensive monitoring of a population of this species in southeastern Spain. To determine their physiological status, we conducted health checks on wildcats during 2017-2023. We captured and anesthetized 10 males (six adults and four non-adults) and 14 females (eight adults and six non-adults) for the collection of biometric measurements and biological samples through a standardized handling protocol. All sampled wildcats were monitored after their release through radio-tracking and/or camera-trapping for at least three months. The collected samples were used to perform morphological, hematological, biochemical, and endocrine analyses. We found that all the physiological parameters fell within previously established ranges (when available) and may serve as a reference for future studies on the wildcat. The studied Iberian wildcats were larger than the wildcats from temperate Europe, which do not conform to Bergmann's rule. This could be the result of an adaptation of Iberian wildcats to capture larger prey (i.e., European rabbit Oryctolagus cuniculus) in the Mediterranean region, and calls for a reassessment of the taxonomic status of the Iberian lineage of this felid. Finally, as revealed by the monitored individuals, the handling protocol proved to be optimal, resulting in a practical guidance for further field surveys.
Collapse
Affiliation(s)
- Elena Bertos
- Tecnologías y Servicios Agrarios S.A., Federico García Lorca, 8, Granada 18014, Spain; Department of Zoology, University of Granada, Granada, Spain.
| | - Mariola Sánchez-Cerdá
- Department of Zoology, University of Granada, Granada, Spain; Harmusch - Asociación de Estudio y Conservación de Fauna, Almodóvar del Campo, Ciudad Real, Spain
| | - Emilio Virgós
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Marcos Moleón
- Department of Zoology, University of Granada, Granada, Spain
| | - José María Gil-Sánchez
- Department of Zoology, University of Granada, Granada, Spain; Harmusch - Asociación de Estudio y Conservación de Fauna, Almodóvar del Campo, Ciudad Real, Spain
| |
Collapse
|
2
|
Yousaf Z, Hussain SM, Ali S, Sarker PK, Al-Ghanim KA. Recuperative Effects of Cinnamon (Cinnamomum zeylanicum) in Catla catla After Sub-Lethal Exposure to Lead. Biol Trace Elem Res 2025; 203:1075-1084. [PMID: 38698173 DOI: 10.1007/s12011-024-04213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
This research was conducted to validate the beneficial effects of incorporating dietary cinnamon (Cinnamomum zeylanicum) powder (CzP) in alleviating lead (Pb) poisoning in fish. Healthy Catla catla individuals (16.36 ± 0.19 g/fish) were distributed across 18 tanks in triplicate groups. The experimental groups were as follows: Control group: fish without supplementation or exposure to Pb; positive control group: fish without supplementation but exposed to 1 mg/L Pb; 5 g/kg CzP along with 1 mg/L Pb exposure; 10 g/kg CzP along with 1 mg/L Pb exposure; 15 g/kg CzP along with 1 mg/L Pb exposure; and 20 g/kg CzP along with 1 mg/L Pb exposure. The trial continued for a period of 60 days. Waterborne Pb had a deleterious effect on fish growth performance, body composition, blood profile, and digestive enzyme activity, along with elevated Pb accumulation in various tissues. Conversely, consumption of cinnamon effectively mitigated the toxic potential of Pb and enhanced fish longevity. Notably, 10 g/kg CzP boosted growth, improved carcass quality, reversed blood indices, restored enzyme function in the gut, and mitigated Pb accumulation in tissues. In summary, the findings revealed that incorporating 10 g/kg of CzP as a dietary supplement in C. catla aquaculture could effectively counteract heavy metal toxicity.
Collapse
Affiliation(s)
- Zeeshan Yousaf
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Tomlinson S. Guiding plant conservation using physiological tools: how mechanistic research can bridge disciplinary divides. CONSERVATION PHYSIOLOGY 2025; 13:coae090. [PMID: 39803326 PMCID: PMC11717880 DOI: 10.1093/conphys/coae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Lay Summary
This editorial introduces a special issue of Conservation Physiology reporting on ‘Traits and Measurements in Plant Conservation’. This article covers previous preferences by different fields of conservation biology in reporting plant or animal research and the manner in which physiological analyses can bridge these divides. Focusing on plant physiology, it summarizes the research of a dozen papers published in the special issue and some burning questions identified by the broader authorship group who contributed to the special issue.
Collapse
Affiliation(s)
- Sean Tomlinson
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science, Kensington, WA 6151, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Debaere SF, Opinion AGR, Allan BJM, Rummer JL, De Boeck G. Bridging the divide in organismal physiology: a case for the integration of behaviour as a physiological process. J Exp Biol 2024; 227:jeb247685. [PMID: 39535050 DOI: 10.1242/jeb.247685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The role of behaviour in animal physiology is much debated, with researchers divided between the traditional view that separates physiology and behaviour, and a progressive perspective that sees behaviour as a physiological effector. We advocate for the latter, and in this Commentary, we argue that behaviour is inherently a physiological process. To do so, we outline the physiological basis for behaviour and draw parallels with recognised physiological processes. We also emphasise the importance of precise language that is shared across biological disciplines, as clear communication is foundational in integrating behaviour into physiology. Our goal with this Commentary is to set the stage for a debate and persuade readers of the merits of including behaviour within the domain of animal physiology. We argue that recognising behaviour as a physiological process is crucial for advancing a unified understanding of physiology, especially in the context of anthropogenic impacts.
Collapse
Affiliation(s)
- Shamil F Debaere
- ECOSPHERE, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Marine Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | | | - Bridie J M Allan
- Department of Marine Science, University of Otāgo, Dunedin 9016, New Zealand
| | - Jodie L Rummer
- Marine Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Gudrun De Boeck
- ECOSPHERE, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
5
|
Martín J, Rodríguez-Ruiz G, Navarro-Castilla Á, Barja I, López P. Blind date: female fossorial amphisbaenians prefer scent marks of large and healthy males. Integr Zool 2024; 19:1018-1033. [PMID: 38247017 DOI: 10.1111/1749-4877.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Selecting a good mate is a decision with important fitness consequences. For this reason, mate choice has promoted the evolution of sexual ornaments signaling the quality of an individual. In fossorial animals, inhabiting visually restricted underground environments, chemical senses should be very important for mate choice. We examined whether sexual chemical signals (substrate scent marks) produced by males of the Iberian worm lizard, Blanus cinereus, a strictly fossorial blind amphisbaenian, provide information to females on morphological traits and health state. We administered corticosterone (CORT) to males simulating a continuous stressor affecting their health. Females preferred settling at sites scent-marked by males in comparison with similar sites with female scent or unmarked sites, but the attractiveness of males' scent differed between individuals. Females preferred scent marks of larger/older males and with a higher immune response, while their body condition and CORT treatment were unrelated to female preferences. Chemical analyses showed that proportions of some compounds in precloacal secretions of males (used to produce scent marks) were correlated with the morphological (body size) and health state (immune response and body condition, but not CORT treatment) of these males. These results suggest that females may make site-selection decisions based on assessing the chemical characteristics of males' scent marks, which were reliably related to some of the traits of the male that produced the scent. Therefore, females might use chemical senses to increase the opportunities to find and mate with males of high quality, coping with the restrictions of the subterranean environment.
Collapse
Affiliation(s)
- José Martín
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Álvaro Navarro-Castilla
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Isabel Barja
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Pilar López
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
6
|
Dichiera AM, Earhart ML, Bugg WS, Brauner CJ, Schulte PM. Too Hot to Handle: A Meta-Analytical Review of the Thermal Tolerance and Adaptive Capacity of North American Sturgeon. GLOBAL CHANGE BIOLOGY 2024; 30:e17564. [PMID: 39563555 DOI: 10.1111/gcb.17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024]
Abstract
Understanding how ectotherms may fare with rising global temperatures and more frequent heatwaves is especially concerning for species already considered at-risk, such as long-lived, late-maturing sturgeon. There have been concerted efforts to collect data on the movement behavior and thermal physiology of North American sturgeon to enhance conservation efforts; thus, we sought to synthesize these data to understand how sturgeon respond to thermal stress and what capacity they have to acclimate and adapt to warming. Here, we combined a systematic literature review and meta-analysis, integrating field-based observations (distribution and spawning) and laboratory-based experiments (survival, activity, growth, metabolism, and upper thermal limits) for large-scale insights to understand the vulnerability of North American sturgeon to rising global temperatures. We summarized the preferred thermal habitat and thermal limits of sturgeon in their natural environment and using meta-analytical techniques, quantified the effect of prolonged temperature change on sturgeon whole-animal physiology and acute upper thermal limits. While acclimation did not have significant effects on physiological rates or survival overall, there were positive trends of activity and metabolism in young-of-the-year sturgeons, likely offset by negative trends of survival in early life. Notably, North American sturgeon have a greater capacity for thermal tolerance plasticity than other fishes, increasing upper thermal limits by 0.56°C per 1°C change in acclimation temperature. But with limited laboratory-based studies, more research is needed to understand if this is a sturgeon trait, or perhaps that of basal fishes in general. Importantly, with these data gaps, the fate of sturgeon remains uncertain as climate change intensifies, and physiological impacts across life stages likely limit ecological success.
Collapse
Affiliation(s)
- Angelina M Dichiera
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, Virginia, USA
| | - Madison L Earhart
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - William S Bugg
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Wu NC, Alton L, Bovo RP, Carey N, Currie SE, Lighton JRB, McKechnie AE, Pottier P, Rossi G, White CR, Levesque DL. Reporting guidelines for terrestrial respirometry: Building openness, transparency of metabolic rate and evaporative water loss data. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111688. [PMID: 38944270 DOI: 10.1016/j.cbpa.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Respirometry is an important tool for understanding whole-animal energy and water balance in relation to the environment. Consequently, the growing number of studies using respirometry over the last decade warrants reliable reporting and data sharing for effective dissemination and research synthesis. We provide a checklist guideline on five key sections to facilitate the transparency, reproducibility, and replicability of respirometry studies: 1) materials, set up, plumbing, 2) subject conditions/maintenance, 3) measurement conditions, 4) data processing, and 5) data reporting and statistics, each with explanations and example studies. Transparency in reporting and data availability has benefits on multiple fronts. Authors can use this checklist to design and report on their study, and reviewers and editors can use the checklist to assess the reporting quality of the manuscripts they review. Improved standards for reporting will enhance the value of primary studies and will greatly facilitate the ability to carry out higher quality research syntheses to address ecological and evolutionary theories.
Collapse
Affiliation(s)
- Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales 2753, Australia.
| | - Lesley Alton
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia. https://twitter.com/lesley_alton
| | - Rafael P Bovo
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, United States. https://twitter.com/bovo_rp
| | - Nicholas Carey
- Marine Directorate for the Scottish Government, Aberdeen, United Kingdom
| | - Shannon E Currie
- Institute for Cell and Systems Biology, University of Hamburg, Martin-Luther-King Plz 3, 20146 Hamburg, Germany; School of Biosciences, University of Melbourne, Victoria, Australia. https://twitter.com/batsinthbelfry
| | - John R B Lighton
- Sable Systems International, North Las Vegas, NV, United States. https://twitter.com/SableSys
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia; Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia. https://twitter.com/PatriceEcoEvo
| | - Giulia Rossi
- Department of Biology, McMaster University, Hamilton, Ontario, Canada. https://twitter.com/giuliasrossi
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Danielle L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States. https://twitter.com/dl_levesque
| |
Collapse
|
8
|
Schulz AK, Schwaner MJ, Manafzadeh AR. Five Key Strategies for Organizing Interdisciplinary Scientific Events to Strengthen Careers, Collaborations, and Creativity. Integr Comp Biol 2024; 64:769-775. [PMID: 38777628 DOI: 10.1093/icb/icae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Science is becoming increasingly interdisciplinary; the widespread emergence of dedicated interdisciplinary journals, conferences, and graduate programs reflects this trend. Interdisciplinary scientific events are extremely valuable in that they offer opportunities for career advancement, especially among early career researchers, for collaboration beyond traditional disciplinary echo chambers, and for the creative generation of innovative solutions to longstanding scientific problems. However, organizing such events can pose unique challenges due to the intentionality required to meaningfully break down the barriers that separate long-independent disciplines. In this paper, we propose five key strategies for organizing and hosting interdisciplinary scientific events. The recommendations offered here apply both to small symposia aiming to contribute an interdisciplinary component to a larger event and to broad interdisciplinary conferences hosting hundreds or thousands of attendees.
Collapse
Affiliation(s)
- Andrew K Schulz
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M Janneke Schwaner
- Department of Movement Sciences, Katholieke Universiteit, Leuven, 3001, Belgium
| | - Armita R Manafzadeh
- Yale Institute for Biospheric Studies, Yale University, CT 06520, USA
- Department of Earth and Planetary Sciences, Yale University, CT 06520, USA
- Yale Peabody Museum of Natural History, Yale University, CT 06511, USA
| |
Collapse
|
9
|
O’Toole C, White P, Graham CT, Conroy C, Brophy D. Cortisol in fish scales remains stable during extended periods of storage. CONSERVATION PHYSIOLOGY 2024; 12:coae065. [PMID: 39309466 PMCID: PMC11413646 DOI: 10.1093/conphys/coae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Measurement of cortisol in fish scales is attracting considerable attention as a non-invasive indicator of chronic stress in wild populations. For many fish species of management and conservation interest, extensive scale collections exist that could provide extended records of individual stress responses, by combining cortisol measurements with life history information. However, it is not yet known how well cortisol is preserved in the scale during storage. To investigate the stability of scale cortisol, we accelerated potential degradation by storing scales from an individual farmed Atlantic salmon (Salmo salar) in an oven at 50°C for between 2 and 12 weeks. We found no significant relationship between scale cortisol concentration and either storage time or storage temperature. Cortisol concentrations in scales from the same fish were consistent (18.54-21.82 ng. g-1; coefficient of variation (CV) = 3.6%), indicating that scale cortisol can be reliably quantified, even in scales stored for varying periods of time or under different conditions. We also examined the effects of storage in real time using Atlantic salmon scales that were stored in paper envelopes at room temperature for between 3 and 32 years and found no significant relationship between scale cortisol concentration and storage time. Scale cortisol concentrations ranged from 4.05 to 135.37 ng.g-1 and levels of between-individual variability were high (CV = 61%). Given that scale cortisol does not degrade during long-term storage, historical scale collections and associated data describing fish life histories could potentially be used to develop bioindicators of physiological responses in fish populations. Further research is needed to understand scale cortisol variability and its biological relevance.
Collapse
Affiliation(s)
- Christina O’Toole
- Marine and Freshwater Research Centre, ATU Galway City, Atlantic Technological University (ATU), Dublin Road, Galway H91 T8NW, Ireland
- Fisheries Ecosystem Advisory Services, Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland
| | - Philip White
- Marine and Freshwater Research Centre, ATU Galway City, Atlantic Technological University (ATU), Dublin Road, Galway H91 T8NW, Ireland
| | - Conor T Graham
- Marine and Freshwater Research Centre, ATU Galway City, Atlantic Technological University (ATU), Dublin Road, Galway H91 T8NW, Ireland
| | - Caitlin Conroy
- Marine and Freshwater Research Centre, ATU Galway City, Atlantic Technological University (ATU), Dublin Road, Galway H91 T8NW, Ireland
| | - Deirdre Brophy
- Marine and Freshwater Research Centre, ATU Galway City, Atlantic Technological University (ATU), Dublin Road, Galway H91 T8NW, Ireland
| |
Collapse
|
10
|
Monteiro JPP, Dos Santos CCM, de Queiroz JPM, das Chagas RA, Loureiro SN, Nauar AR, Souza-Ferreira MLC, Cardoso AL, Martins C, Petrović TG, Prokić MD, Oliveira-Bahia VRL, Amado LL. Natural modulation of redox status throughout the ontogeny of Amazon frog Physalaemus ephippifer (Anura, Leptodactylidae). Sci Rep 2024; 14:20655. [PMID: 39232193 PMCID: PMC11375210 DOI: 10.1038/s41598-024-71022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
During their development, amphibians undergo various physiological processes that may affect their susceptibility to environmental pollutants. Naturally occurring fluctuations caused by developmental events are often overlooked in ecotoxicological studies. Our aim is to investigate how biomarkers of oxidative stress are modulated at different stages of larval development in the Amazonian amphibian species, Physalaemus ephippifer. The premetamorphosis, prometamorphosis and metamorphic climax stages were used to analyze total antioxidant capacity (ACAP), glutathione S-transferase (GST) activity, lipid peroxidation (LPO) levels and the expression of genes nrf2, gst, gsr (glutathione reductase) and gclc (glycine-cysteine ligase, catalytic subunit). Although there was no difference in ACAP and the genes expression among the studied stages, individuals from the premetamorphosis and prometamorphosis showed higher GST activity than ones under the climax. LPO levels were highest in individuals from the metamorphic climax. The present study suggests that the oxidative status changes during ontogeny of P. ephippifer tadpoles, especially during the metamorphic climax, the most demanding developmental phase. Variations in the redox balance at different developmental stages may lead to a divergent response to pollution. Therefore, we recommend that studies using anuran larvae as biomonitors consider possible physiological differences during ontogeny in their respective analyses.
Collapse
Affiliation(s)
- João Pedro Pantoja Monteiro
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil
- Laboratório Multidisciplinar de Morfofisiologia Animal, Instituto de Ciências Biológicas (UFPA), Belém, Brazil
| | - Carla Carolina Miranda Dos Santos
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica (UFPA), Belém, Brazil
| | - João Paulo Moura de Queiroz
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil
| | - Rafael Anaisce das Chagas
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha Do Norte - CEPNOR/ICMBio, Belém, PA, Brazil
| | - Sarita Nunes Loureiro
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Oceanografia (UFPA), Belém, Brazil
| | - Alana Rodrigues Nauar
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica (UFPA), Belém, Brazil
| | - Maria Luiza Cunha Souza-Ferreira
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil
- Laboratório Multidisciplinar de Morfofisiologia Animal, Instituto de Ciências Biológicas (UFPA), Belém, Brazil
| | - Adauto Lima Cardoso
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, São Paulo, Brazil
| | - Cesar Martins
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, São Paulo, Brazil
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | | | - Lílian Lund Amado
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil.
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil.
- Programa de Pós-Graduação em Farmacologia e Bioquímica (UFPA), Belém, Brazil.
- Programa de Pós-Graduação em Oceanografia (UFPA), Belém, Brazil.
| |
Collapse
|
11
|
Wilkening JV, Feng X, Dawson TE, Thompson SE. Different roads, same destination: The shared future of plant ecophysiology and ecohydrology. PLANT, CELL & ENVIRONMENT 2024; 47:3447-3465. [PMID: 38725360 DOI: 10.1111/pce.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 08/16/2024]
Abstract
Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil-plant-atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century. This review traces the development of the two disciplines, from their respective origins in engineering and ecology, their largely independent growth and maturation, and the eventual development of common conceptual and quantitative frameworks. This common ground has allowed explicit coupling of the disciplines to better understand plant function. Case studies both illuminate the limitations of the disciplines working in isolation, and reveal the exciting possibilities created by consilience between the disciplines. The histories of the two disciplines suggest opportunities for new advances will arise from sharing methodologies, working across multiple levels of complexity, and leveraging new observational technologies. Practically, these exchanges can be supported by creating shared scientific spaces. This review argues that consilience and collaboration are essential for robust and evidence-based predictions and policy responses under global change.
Collapse
Affiliation(s)
- Jean V Wilkening
- Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xue Feng
- Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd E Dawson
- Integrative Biology, University of California, Berkeley, California, USA
- Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Sally E Thompson
- Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia
- Centre for Water and Spatial Science, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Oduor S, Gichuki NN, Brown JL, Parker J, Kimata D, Murray S, Goldenberg SZ, Schutgens M, Wittemyer G. Adrenal and metabolic hormones demonstrate risk-reward trade-offs for African elephants foraging in human-dominated landscapes. CONSERVATION PHYSIOLOGY 2024; 12:coae051. [PMID: 39100509 PMCID: PMC11295215 DOI: 10.1093/conphys/coae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
A key driver of the African savannah elephant population decline is the loss of habitat and associated human-elephant conflict. Elephant physiological responses to these pressures, however, are largely unknown. To address this knowledge gap, we evaluated faecal glucocorticoid metabolite (fGCM) concentrations as an indicator of adrenal activity and faecal thyroid metabolite (fT3) concentrations as an indicator of metabolic activity in relation to land use, livestock density, and human landscape modification, while controlling for the effects of seasonality and primary productivity (measured using the normalized difference vegetation index). Our best-fit model found that fGCM concentrations to be elevated during the dry season, in areas with higher human modification index values, and those with more agropastoral activities and livestock. There was also a negative relationship between primary productivity and fGCM concentrations. We found fT3 concentrations to be higher during the wet season, in agropastoral landscapes, in locations with higher human activity, and in areas with no livestock. This study highlights how elephants balance nutritional rewards and risks in foraging decisions when using human-dominated landscapes, results that can serve to better interpret elephant behaviour at the human-wildlife interface and contribute to more insightful conservation strategies.
Collapse
Affiliation(s)
- Sandy Oduor
- Department of Biology, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
- Department of Reproductive Biology, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| | - Nathaniel N Gichuki
- Department of Biology, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Janine L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| | - Jenna Parker
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, San Diego, CA 92027, USA
| | - Dennis Kimata
- Department of Biology, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Suzan Murray
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Shifra Z Goldenberg
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, San Diego, CA 92027, USA
| | - Maurice Schutgens
- Conservation Science Department, Space for Giants, PO Box 174-10400, Nanyuki, Kenya
| | - George Wittemyer
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
- Save the Elephants, P. O. Box, 54667 - 00200, Nairobi, Kenya
| |
Collapse
|
13
|
Hending D, Randrianarison H, Andriamavosoloarisoa NNM, Ranohatra-Hending C, McCabe G, Cotton S, Holderied M. Forest fragmentation and edge effects impact body condition, fur condition and ectoparasite prevalence in a nocturnal lemur community. CONSERVATION PHYSIOLOGY 2024; 12:coae042. [PMID: 38957844 PMCID: PMC11217907 DOI: 10.1093/conphys/coae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Forest fragmentation and edge effects are two major threats to primate populations. Primates inhabiting fragmented landscapes must survive in a more degraded environment, often with lower food availability compared to continuous forests. Such conditions can have deleterious effects on animal physiological health, yet some primates thrive in these habitats. Here, we assessed how forest fragmentation and associated edge effects impact three different components of physiological health in a nocturnal primate community in the Sahamalaza-Iles Radama National Park, northwest Madagascar. Over two periods, 6 March 2019-30 October 2019 and 10 January 2022-17 May 2022, we collected data on body condition, fur condition scores and ectoparasite prevalence for 125 Mirza zaza, 51 Lepilemur sahamalaza, 27 Cheirogaleus medius and 22 Microcebus sambiranensis individuals, and we compared these metrics between core and edge areas of continuous forest and fragmented forest. Body condition scores for all species varied between areas, with a positive response to fragmentation and edge effects observed for M. zaza and L. sahamalaza and a negative response for C. medius and M. sambiranensis. Fur condition scores and ectoparasite prevalence were less variable, although M. zaza and L. sahamalaza had a significantly negative response to fragmentation and edge effects for these two variables. Interestingly, the impacts of fragmentation and edge effects on physiological health were variable-specific. Our results suggest that lemur physiological responses to fragmentation and edge effects are species-specific, and body condition, fur condition and ectoparasite prevalence are impacted in different ways between species. As other ecological factors, including food availability and inter/intraspecific competition, likely also influence physiological health, additional work is required to determine why certain aspects of lemur physiology are affected by environmental stressors while others remain unaffected. Although many nocturnal lemurs demonstrate resilience to fragmented and degraded habitats, urgent conservation action is needed to safeguard the survival of their forest habitats.
Collapse
Affiliation(s)
- Daniel Hending
- Department of Biology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
| | | | | | - Christina Ranohatra-Hending
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
| | - Grainne McCabe
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
- Wilder Institute, Calgary Zoo, 1300 Zoo Road NE, Calgary, AB T2E 7V6, Canada
| | - Sam Cotton
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
| | - Marc Holderied
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
| |
Collapse
|
14
|
Zhu W, Li Q, Peng M, Yang C, Chen X, Feng P, Liu Q, Zhang B, Zeng D, Zhao Y. Biochemical indicators, cell apoptosis, and metabolomic analyses of the low-temperature stress response and cold tolerance mechanisms in Litopenaeus vannamei. Sci Rep 2024; 14:15242. [PMID: 38956131 PMCID: PMC11219869 DOI: 10.1038/s41598-024-65851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The cold tolerance of Litopenaeus vannamei is important for breeding in specific areas. To explore the cold tolerance mechanism of L. vannamei, this study analyzed biochemical indicators, cell apoptosis, and metabolomic responses in cold-tolerant (Lv-T) and common (Lv-C) L. vannamei under low-temperature stress (18 °C and 10 °C). TUNEL analysis showed a significant increase in apoptosis of hepatopancreatic duct cells in L. vannamei under low-temperature stress. Biochemical analysis showed that Lv-T had significantly increased levels of superoxide dismutase (SOD) and triglycerides (TG), while alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH-L), and uric acid (UA) levels were significantly decreased compared to Lv-C (p < 0.05). Metabolomic analysis displayed significant increases in metabolites such as LysoPC (P-16:0), 11beta-Hydroxy-3,20-dioxopregn-4-en-21-oic acid, and Pirbuterol, while metabolites such as 4-Hydroxystachydrine, Oxolan-3-one, and 3-Methyldioxyindole were significantly decreased in Lv-T compared to Lv-C. The differentially regulated metabolites were mainly enriched in pathways such as Protein digestion and absorption, Central carbon metabolism in cancer and ABC transporters. Our study indicate that low temperature induces damage to the hepatopancreatic duct of shrimp, thereby affecting its metabolic function. The cold resistance mechanism of Lv-T L. vannamei may be due to the enhancement of antioxidant enzymes and lipid metabolism.
Collapse
Affiliation(s)
- Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
15
|
Fuller A. Taking Conservation Physiology forward: editorial vision of the new editor-in-chief. CONSERVATION PHYSIOLOGY 2024; 12:coae039. [PMID: 38952892 PMCID: PMC11215837 DOI: 10.1093/conphys/coae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 07/03/2024]
Affiliation(s)
- Andrea Fuller
- School of Physiology, University of the Witwatersrand, 7 York Rd, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
16
|
Thomas JT, Huerlimann R, Schunter C, Watson SA, Munday PL, Ravasi T. Transcriptomic responses in the nervous system and correlated behavioural changes of a cephalopod exposed to ocean acidification. BMC Genomics 2024; 25:635. [PMID: 38918719 PMCID: PMC11202396 DOI: 10.1186/s12864-024-10542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. RESULTS We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-toned pygmy squid (Idiosepius pygmaeus) to OA conditions, using a de novo transcriptome assembly created with long read PacBio ISO-sequencing data. We then correlated patterns of gene expression with CO2 treatment levels and OA-affected behaviours in the same individuals. OA induced transcriptomic responses within the nervous system related to various different types of neurotransmission, neuroplasticity, immune function and oxidative stress. These molecular changes may contribute to OA-induced behavioural changes, as suggested by correlations among gene expression profiles, CO2 treatment and OA-affected behaviours. CONCLUSIONS This study provides the first molecular insights into the neurobiological effects of OA on a cephalopod and correlates molecular changes with whole animal behavioural responses, helping to bridge the gaps in our knowledge between environmental change and animal responses.
Collapse
Affiliation(s)
- Jodi T Thomas
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Sue-Ann Watson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Queensland Museum, Townsville, QLD, 4810, Australia
| | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
17
|
Van Wert JC, Birnie-Gauvin K, Gallagher J, Hardison EA, Landfield K, Burkepile DE, Eliason EJ. Despite plasticity, heatwaves are costly for a coral reef fish. Sci Rep 2024; 14:13320. [PMID: 38858427 PMCID: PMC11164959 DOI: 10.1038/s41598-024-63273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Climate change is intensifying extreme weather events, including marine heatwaves, which are prolonged periods of anomalously high sea surface temperature that pose a novel threat to aquatic animals. Tropical animals may be especially vulnerable to marine heatwaves because they are adapted to a narrow temperature range. If these animals cannot acclimate to marine heatwaves, the extreme heat could impair their behavior and fitness. Here, we investigated how marine heatwave conditions affected the performance and thermal tolerance of a tropical predatory fish, arceye hawkfish (Paracirrhites arcatus), across two seasons in Moorea, French Polynesia. We found that the fish's daily activities, including recovery from burst swimming and digestion, were more energetically costly in fish exposed to marine heatwave conditions across both seasons, while their aerobic capacity remained the same. Given their constrained energy budget, these rising costs associated with warming may impact how hawkfish prioritize activities. Additionally, hawkfish that were exposed to hotter temperatures exhibited cardiac plasticity by increasing their maximum heart rate but were still operating within a few degrees of their thermal limits. With more frequent and intense heatwaves, hawkfish, and other tropical fishes must rapidly acclimate, or they may suffer physiological consequences that alter their role in the ecosystem.
Collapse
Affiliation(s)
- Jacey C Van Wert
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jordan Gallagher
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Emily A Hardison
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Kaitlyn Landfield
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
18
|
Desai B, Bhowmik T, Srinivasan R, Whitaker N, Ghosal R. Monitoring the stress physiology of free-ranging mugger crocodiles ( Crocodylus palustris) across diverse habitats within Central Gujarat, India. CONSERVATION PHYSIOLOGY 2024; 12:coae035. [PMID: 38840751 PMCID: PMC11151695 DOI: 10.1093/conphys/coae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Animals face several challenges in their natural environment, and to cope with such conditions, they may exhibit contrasting physiological responses that directly affect their overall well-being and survival. In this study, we assessed physiological responses via faecal glucocorticoid metabolite (fGCM) measurements in free-ranging mugger crocodiles inhabiting diverse habitats in Gujarat, India. We sampled muggers within Charotar, a rural area (Zone A) with local people having high tolerance towards the presence of muggers, and Vadodara, a region having both urban (Zone B) and rural (Zone C) areas with high levels of human-mugger conflict (HMC). Further, muggers in Vadodara live in water bodies that are mostly polluted due to sewage disposal from adjoining chemical industries. To measure fGCM (mean ± SEM, ng/g dry faeces) levels in muggers, scats were collected during both breeding (N = 107 scats) and non-breeding (N = 22 scats) seasons from all three zones. We used captive muggers (a focal enclosure) to biologically validate (via capture and restraint) the selected fGCM assay (11-oxoetiocholanolone assay). We showed a significant (P < 0.05) 11-fold increase in fGCM levels between pre-capture (540.9 ± 149.2, N = 11) and post-capture (6259.7 ± 1150.5, N = 11) samples. The validated assay was applied to free-ranging muggers during the breeding season, and Zone A showed significantly (P < 0.05) lower fGCM levels (542.03 ± 71.3) compared to muggers of Zone B (1699.9 ± 180.8) and Zone C (1806.4 ± 243.2), both zones having high levels of HMC with polluted water bodies. A similar contrast in fGCM levels was also observed during the non-breeding season. Overall, the study demonstrated that fGCM levels in muggers varied across habitats, and such variation could be due to a multitude of ecological factors that the species experience in their immediate local environment. Moreover, high fGCM levels in muggers of Vadodara during both breeding and non-breeding seasons may indicate a condition of chronic stress, which could be maladaptive for the species.
Collapse
Affiliation(s)
- Brinky Desai
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Roads, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Tathagata Bhowmik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Roads, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Rohith Srinivasan
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Roads, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Nikhil Whitaker
- Madras Crocodile Bank Trust, Post Bag No 4, Mahabalipuram, Chennai 603104, Tamil Nadu, India
| | - Ratna Ghosal
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Roads, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
19
|
Mallett MC, Thiem JD, Butler GL, Kennard MJ. A systematic review of approaches to assess fish health responses to anthropogenic threats in freshwater ecosystems. CONSERVATION PHYSIOLOGY 2024; 12:coae022. [PMID: 38706739 PMCID: PMC11069195 DOI: 10.1093/conphys/coae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Anthropogenic threats such as water infrastructure, land-use changes, overexploitation of fishes and other biological resources, invasive species and climate change present formidable challenges to freshwater biodiversity. Historically, management of fish and fishery species has largely been based on studies of population- and community-level dynamics; however, the emerging field of conservation physiology promotes the assessment of individual fish health as a key management tool. Fish health is highly sensitive to environmental disturbances and is also a fundamental driver of fitness, with implications for population dynamics such as recruitment and resilience. However, the mechanistic links between particular anthropogenic disturbances and changes in fish health, or impact pathways, are diverse and complex. The diversity of ways in which fish health can be measured also presents a challenge for researchers deciding on methods to employ in studies seeking to understand the impact of these threats. In this review, we aim to provide an understanding of the pathway through which anthropogenic threats in freshwater ecosystems impact fish health and the ways in which fish health components impacted by anthropogenic threats can be assessed. We employ a quantitative systematic approach to a corpus of papers related to fish health in freshwater and utilize a framework that summarizes the impact pathway of anthropogenic threats through environmental alterations and impact mechanisms that cause a response in fish health. We found that land-use changes were the most prolific anthropogenic threat, with a range of different health metrics being suitable for assessing the impact of this threat. Almost all anthropogenic threats impacted fish health through two or more impact pathways. A robust understanding of the impact pathways of anthropogenic threats and the fish health metrics that are sensitive to these threats is crucial for fisheries managers seeking to undertake targeted management of freshwater ecosystems.
Collapse
Affiliation(s)
- Maxwell C Mallett
- Australian Rivers Institute, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jason D Thiem
- New South Wales Department of Primary Industries, Narrandera Fisheries Centre, 70 Buckingbong Road, Narrandera, NSW 2700, Australia
| | - Gavin L Butler
- New South Wales Department of Primary Industries, Grafton Fisheries Centre,16 Experiment Farm Road, Trenayr, NSW 2460, Australia
| | - Mark J Kennard
- Australian Rivers Institute, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
20
|
Adami MA, Bertellotti M, Agüero ML, Frixione MG, D'Amico VL. Assessing the impact of urban landfills as feeding sites on physiological parameters of a generalist seabird species. MARINE POLLUTION BULLETIN 2024; 202:116327. [PMID: 38581734 DOI: 10.1016/j.marpolbul.2024.116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
The increasing human population and associated urban waste pose a significant threat to wildlife. Our study focused on the Kelp gull (Larus dominicanus), known for opportunistic feeding in anthropogenic areas, particularly urban landfills. We assessed the physiological status of Kelp gulls at a landfill and compared it with gulls from a protected natural site. Results indicate that gulls from the anthropogenic site exhibited lower levels of key physiological parameters linked to diet, including triglycerides, total proteins, uric acid, plasmatic enzyme activity, body condition index, and leukocyte count, in comparison to their counterparts from the natural site. These findings suggest that Kelp gulls experience inferior physical and nutritional conditions when utilizing anthropogenic sites like landfills governmentally managed.
Collapse
Affiliation(s)
- Miguel A Adami
- Centro para el Estudio de Sistemas Marinos CESIMAR-CONICET, Bvd. Brown 2915, Puerto Madryn, Chubut, Argentina.
| | - Marcelo Bertellotti
- Centro para el Estudio de Sistemas Marinos CESIMAR-CONICET, Bvd. Brown 2915, Puerto Madryn, Chubut, Argentina; School of Production, Environment, and Sustainable Development, University of Chubut, Argentina
| | - María Laura Agüero
- Centro para el Estudio de Sistemas Marinos CESIMAR-CONICET, Bvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Martin G Frixione
- Centro para el Estudio de Sistemas Marinos CESIMAR-CONICET, Bvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Verónica L D'Amico
- Centro para el Estudio de Sistemas Marinos CESIMAR-CONICET, Bvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
21
|
Coyle O, Vredenburg VT, Stillman JH. Interactive abiotic and biotic stressor impacts on a stream-dwelling amphibian. Ecol Evol 2024; 14:e11371. [PMID: 38711490 PMCID: PMC11070774 DOI: 10.1002/ece3.11371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Organisms within freshwater and marine environments are subject to a diverse range of often co-occurring abiotic and biotic stressors. Despite growing awareness of the complex multistress systems at play in aquatic ecosystems, many questions remain regarding how simultaneous stressors interact with one another and jointly impact aquatic species. We looked at multistress interactions in a protected stream ecosystem in Mendocino County, California. Specifically, we examined how diurnal temperature variation, turbidity, and predator cues altered the movement speed of larval Pacific giant salamanders (Dicamptodon tenebrosus). In a second experiment, we looked at how simulated low-flow summer conditions impact the expression of heat-shock proteins (HSPs) in the same species. Larvae moved almost one and a half times faster in the presence of chemical cues from trout and suspended sediment, and almost two times faster when both sediment and trout cues were present but were only marginally affected by temperature and visual cues from conspecifics. Interestingly, the order of stressor exposure also appeared to influence larval speed, where exposure to sediment and trout in earlier trials tended to lead to faster speeds in later trials. Additionally, larvae exposed to low-flow conditions had more variable, but not statistically significantly higher, expression of HSPs. Our findings highlight the potential interactive effects of an abiotic stressor, sedimentation, and a biotic stressor, and predator chemical cues on an ecologically important trait: movement speed. Our findings also demonstrate the likely role of HSPs in larval salamander survival in challenging summer conditions. Taken together, these findings show that larval D. tenebrosus responds behaviorally to biotic and abiotic stressors and suggests a possible pathway for physiological tolerance of environmental stress. Consideration of multistress systems and their effects is important for understanding the full effects of co-occurring stressors on aquatic organisms to guide appropriate conservation and management efforts based on ecologically relevant responses of organisms within an environment.
Collapse
Affiliation(s)
- Oliver Coyle
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
| | - Vance T. Vredenburg
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Jonathon H. Stillman
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Department of Integrative BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
22
|
McGraw KJ, de Souza Penha VA. Using point-of-care devices to examine covariation among blood nutritional-physiological parameters and their relationships with poxvirus infection, habitat urbanization, and male plumage coloration in house finches (Haemorhous mexicanus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:440-449. [PMID: 38385786 DOI: 10.1002/jez.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The development of inexpensive and portable point-of-care devices for measuring nutritional physiological parameters from blood (e.g., glucose, ketones) has accelerated our understanding and assessment of real-time variation in human health, but these have infrequently been tested or implemented in wild animals, especially in relation to other key biological or fitness-related traits. Here we used point-of-care devices to measure blood levels of glucose, ketones, uric acid, and triglycerides in free-ranging house finches (Haemorhous mexicanus)-a common songbird in North America that has been well-studied in the context of urbanization, nutrition, health, and sexual selection-during winter and examined (1) repeatability of these methods for evaluating blood levels in these wild passerines, (2) intercorrelations among these measurements within individuals, (3) how blood nutritional-physiology metrics related to a bird's body condition, habitat of origin (urban vs. suburban), poxvirus infection, and sex; and (4) if the expression of male sexually selected plumage coloration was linked to any of the nutritional-physiological metrics. All blood-nutritional parameters were repeatable. Also, there was significant positive covariation between concentrations of circulating triglycerides and glucose and triglycerides and uric acid. Urban finches had higher blood glucose concentrations than suburban finches, and pox-infected individuals had lower blood triglyceride concentrations than uninfected ones. Last, redder males had higher blood glucose, but lower uric acid levels. These results demonstrate that point-of-care devices can be useful, inexpensive ways of measuring real-time variation in the nutritional physiology of wild birds.
Collapse
Affiliation(s)
- Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Victor Aguiar de Souza Penha
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Organismal and Evolutionary Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Zimmer C, Jimeno B, Martin LB. HPA flexibility and FKBP5: promising physiological targets for conservation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220512. [PMID: 38310934 PMCID: PMC10838639 DOI: 10.1098/rstb.2022.0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024] Open
Abstract
Hypothalamic-pituitary-adrenal axis (HPA) flexibility is an emerging concept recognizing that individuals that will cope best with stressors will probably be those using their hormones in the most adaptive way. The HPA flexibility concept considers glucocorticoids as molecules that convey information about the environment from the brain to the body so that the organismal phenotype comes to complement prevailing conditions. In this context, FKBP5 protein appears to set the extent to which circulating glucocorticoid concentrations can vary within and across stressors. Thus, FKBP5 expression, and the HPA flexibility it causes, seem to represent an individual's ability to regulate its hormones to orchestrate organismal responses to stressors. As FKBP5 expression can also be easily measured in blood, it could be a worthy target of conservation-oriented research attention. We first review the known and likely roles of HPA flexibility and FKBP5 in wildlife. We then describe putative genetic, environmental and epigenetic causes of variation in HPA flexibility and FKBP5 expression among and within individuals. Finally, we hypothesize how HPA flexibility and FKBP5 expression should affect organismal fitness and hence population viability in response to human-induced rapid environmental changes, particularly urbanization. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Cédric Zimmer
- Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France
| | - Blanca Jimeno
- Instituto Pirenaico de Ecologia (IPE), CSIC, Avenida Nuestra Señora de la Victoria, 16, 22700 Jaca, Spain
| | - Lynn B. Martin
- Center for Global Health and Infectious Disease Research and Center for Genomics, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
24
|
Alaasam VJ, Behnke TL, Grant AR, Ouyang JQ. Glucocorticoids and land cover: a largescale comparative approach to assess a physiological biomarker for avian conservation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220508. [PMID: 38310940 PMCID: PMC10838646 DOI: 10.1098/rstb.2022.0508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 02/06/2024] Open
Abstract
As humans alter landscapes worldwide, land and wildlife managers need reliable tools to assess and monitor responses of wildlife populations. Glucocorticoid (GC) hormone levels are one common physiological metric used to quantify how populations are coping in the context of their environments. Understanding whether GC levels can reflect broad landscape characteristics, using data that are free and commonplace to diverse stakeholders, is an important step towards physiological biomarkers having practical application in management and conservation. We conducted a phylogenetic comparative analysis using publicly available datasets to test the efficacy of GCs as a biomarker for large spatial-scale avian population monitoring. We used hormone data from HormoneBase (51 species), natural history information and US national land cover data to determine if baseline or stress-induced corticosterone varies with the amount of usable land cover types within each species' home range. We found that stress-induced levels, but not baseline, positively correlated with per cent usable land cover both within and across species. Our results indicate that GC concentrations may be a useful biomarker for characterizing populations across a range of habitat availability, and we advocate for more physiological studies on non-traditional species in less studied populations to build on this framework. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
| | - Tessa L. Behnke
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - Avery R. Grant
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Jenny Q. Ouyang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
25
|
Cooke SJ. Reflections on a decade of service as founding Editor-in-Chief of Conservation Physiology. CONSERVATION PHYSIOLOGY 2024; 12:coad103. [PMID: 38369983 PMCID: PMC10873489 DOI: 10.1093/conphys/coad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/20/2024]
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
26
|
Beaulieu M. Capturing wild animal welfare: a physiological perspective. Biol Rev Camb Philos Soc 2024; 99:1-22. [PMID: 37635128 DOI: 10.1111/brv.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Affective states, such as emotions, are presumably widespread across the animal kingdom because of the adaptive advantages they are supposed to confer. However, the study of the affective states of animals has thus far been largely restricted to enhancing the welfare of animals managed by humans in non-natural contexts. Given the diversity of wild animals and the variable conditions they can experience, extending studies on animal affective states to the natural conditions that most animals experience will allow us to broaden and deepen our general understanding of animal welfare. Yet, this same diversity makes examining animal welfare in the wild highly challenging. There is therefore a need for unifying theoretical frameworks and methodological approaches that can guide researchers keen to engage in this promising research area. The aim of this article is to help advance this important research area by highlighting the central relationship between physiology and animal welfare and rectify its apparent oversight, as revealed by the current scientific literature on wild animals. Moreover, this article emphasises the advantages of including physiological markers to assess animal welfare in the wild (e.g. objectivity, comparability, condition range, temporality), as well as their concomitant limitations (e.g. only access to peripheral physiological markers with complex relationships with affective states). Best-practice recommendations (e.g. replication and multifactorial approaches) are also provided to allow physiological markers to be used most effectively and appropriately when assessing the welfare of animals in their natural habitat. This review seeks to provide the foundation for a new and distinct research area with a vast theoretical and applied potential: wild animal welfare physiology.
Collapse
Affiliation(s)
- Michaël Beaulieu
- Wild Animal Initiative, 5123 W 98th St, 1204, Minneapolis, MN, 55437, USA
| |
Collapse
|
27
|
de Cerqueira LVMP, González Tokman D, Correa CMA, Storck‐Tonon D, Cupello M, Peres CA, Salomão RP. Insularization drives physiological condition of Amazonian dung beetles. Ecol Evol 2023; 13:e10772. [PMID: 38077521 PMCID: PMC10701085 DOI: 10.1002/ece3.10772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 10/16/2024] Open
Abstract
The fragmentation and degradation of otherwise continuous natural landscapes pose serious threats to the health of animal populations, consequently impairing their fitness and survival. While most fragmentation ecology studies focus on habitat remnants embedded withinn terrestrial matrices, the effects of true insularization remains poorly understood. Land-bridge islands created by major dams leads to habitat loss and fragmentation, negatively affecting terrestrial biodiversity. To assess the effects of insularization, we conducted a study on the key aspects of dung beetle physiological condition and body size throughout the Balbina Hydroelectric Reservoir located in the Central Amazon. We assessed these traits at the population and assemblage levels, collecting dung beetles from both forest islands and continuous forest areas while analyzing various landscape variables. We show that landscapes with higher forest cover positively affected dung beetle body size. Interestingly, dung beetle responses to insularization were species-dependent; larger islands tended to host larger individuals of Deltochilum aspericole, while in Canthon triangularis, smaller islands showed larger body sizes. However, individuals from the mainland were larger than those from the islands. Moreover, the proportion of closed-canopy forest in the landscapes also impacted physiological attributes. It negatively affected the body size of Deltochilum aspericole and the lipid mass of Dichotomius boreus, but positively affected the lipid mass of Canthon triangularis. These findings contribute to a better understanding of how habitat fragmentation in aquatic matrices affects the size structure and physiology of insect assemblages. This is essential in formulating effective conservation strategies for preserving biodiversity loss in tropical forest regions and mitigating the consequences of hydropower infrastructure.
Collapse
Affiliation(s)
| | | | - César M. A. Correa
- Laboratório de Bioecologia de Scarabaeoidea (Scaralab)Universidade Estadual de Mato Grosso do SulAquidauanaBrazil
| | - Danielle Storck‐Tonon
- Laboratório de Zoologia, CPEDAUniversidade do Estado de Mato GrossoTangará da SerraBrazil
| | - Mario Cupello
- Departamento de Zoologia, Laboratório de Sistemática e Bioecologia de ColeopteraUniversidade Federal do ParanáCuritibaBrazil
| | - Carlos A. Peres
- School of Environmental SciencesUniversity of East AngliaNorwichUK
| | - Renato Portela Salomão
- Programa de Pós‐Graduação em EcologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil
- Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazMexico
| |
Collapse
|
28
|
Doss EM, Jouffroy M, Rey B, Cohas A, von Hardenberg A, Smith TE. Technical validation and a comparison of two methods to quantify individual levels of glucocorticoids in Alpine marmot hair. MethodsX 2023; 11:102418. [PMID: 37846357 PMCID: PMC10577059 DOI: 10.1016/j.mex.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Quantification of cortisol concentration in hair has become a promising conservation tool for non-invasive monitoring of "stress" in wild populations, yet this method needs to be carefully validated for each species. The goals of the study were:•Immunologically validate two methods (study 1 and 2 respectively) to extract and quantify cortisol in the hair of wild Alpine marmots.•Compare the amount of cortisol extracted from hair samples using two methods i.e. cut into fine pieces (study 1) and hair samples pulverized using a ball mill (study 2).•Determine the extent to which methods in study 2 could provide individual specific hair cortisol (HC) measures when samples were taken from the same body location. Within and between individual variations in HC levels were examined from multiple hair samples from 14 subjects in study 2. We evaluated if inter-individual variations in HC levels could be explained by sex and age.At least twice the amount of cortisol was obtained per g/hair when samples were pulverized in a ball mill prior to extraction compared to when cut into pieces. Our methods demonstrated intra-individual consistency in HC at a given time point: inter-individual variation in HC was three times larger than within individual variance. Sex and age did not impact HC levels.
Collapse
Affiliation(s)
- Elina Marielle Doss
- University of Chester, Conservation Biology Research Group, Chester, United Kingdom
| | - Mathilde Jouffroy
- University of Chester, Conservation Biology Research Group, Chester, United Kingdom
| | - Benjamin Rey
- Université de Lyon, Laboratoire de Biométrie et Biologie Évolutive, Université Lyon1, UMR-CNRS 5558, Villeurbanne, France
| | - Aurélie Cohas
- Université de Lyon, Laboratoire de Biométrie et Biologie Évolutive, Université Lyon1, UMR-CNRS 5558, Villeurbanne, France
| | - Achaz von Hardenberg
- University of Chester, Conservation Biology Research Group, Chester, United Kingdom
| | - Tessa Ellen Smith
- University of Chester, Conservation Biology Research Group, Chester, United Kingdom
| |
Collapse
|
29
|
Turko AJ, Firth BL, Craig PM, Eliason EJ, Raby GD, Borowiec BG. Physiological differences between wild and captive animals: a century-old dilemma. J Exp Biol 2023; 226:jeb246037. [PMID: 38031957 DOI: 10.1242/jeb.246037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Goleta, CA 93117, USA
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Brittney G Borowiec
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| |
Collapse
|
30
|
Correa CMA, da Silva KC, de Oliveira PLM, Salomão RP. The conversion of native savannah into pasturelands does not affect exclusively species diversity: Effects on physiological condition of a highly abundant dung beetle species. Ecol Evol 2023; 13:e10752. [PMID: 38020699 PMCID: PMC10659944 DOI: 10.1002/ece3.10752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Dung beetles are efficient indicators to obtain responses regarding the effects of land use change on biodiversity. Although the biological consequences of Cerrado conversion into pasture have been observed at the assemblage scale, there are no cues regarding the effects of tropical savanna conversion into pasture on physiological condition of dung beetle individuals. In this study, we evaluated whether native and non-native habitats in Cerrado affect the physiological condition and body traits of males and females of Phanaeus palaeno. The individuals were collected from a Cerrado fragment (sensu stricto) and an exotic pasture (Urochloa spp.). Physiological condition was assessed through the estimation of individuals' dry body mass, fat mass, and muscle mass. Body traits were estimated through individual body size and males' horn length. We did not find differences between dung beetle morphological traits between Cerrado and pastures. However, individuals collected in exotic pastures had lower dry mass and fat mass, but higher muscle mass, than in conserved Cerrado. Understanding how the land use change affects individuals' body condition is essential to maintain abundant and healthy populations of dung beetles in human-modified landscapes. Although the estimation of physiological condition is logistically more complex than species body traits, future studies aiming to present complex and finer ecological responses of dung beetles should incorporate physiological data to their approaches.
Collapse
Affiliation(s)
- César M. A. Correa
- Laboratório de Bioecologia de Scarabaeoidea (Scaralab)Universidade Estadual de Mato Grosso do SulAquidauanaBrazil
| | - Kalel Caetano da Silva
- Laboratório de Bioecologia de Scarabaeoidea (Scaralab)Universidade Estadual de Mato Grosso do SulAquidauanaBrazil
- Universidade Federal de Mato Grosso do SulAquidauanaBrazil
| | - Pedro Lucas Moreira de Oliveira
- Laboratório de Bioecologia de Scarabaeoidea (Scaralab)Universidade Estadual de Mato Grosso do SulAquidauanaBrazil
- Universidade Federal de Mato Grosso do SulAquidauanaBrazil
| | - Renato Portela Salomão
- Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico
- Pós‐graduação em EcologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| |
Collapse
|
31
|
Tornabene BJ, Hossack BR, Breuner CW. Assay validation of saliva glucocorticoids in Columbia spotted frogs and effects of handling and marking. CONSERVATION PHYSIOLOGY 2023; 11:coad078. [PMID: 38026797 PMCID: PMC10660366 DOI: 10.1093/conphys/coad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/24/2023] [Indexed: 12/01/2023]
Abstract
Non-invasive methods are important to the field of conservation physiology to reduce negative effects on organisms being studied. Glucocorticoid (GC) hormones are often used to assess health of individuals, but collection methods can be invasive. Many amphibians are imperiled worldwide, and saliva is a non- or semi-invasive matrix to measure GCs that has been partially validated for only four amphibian species. Validation ensures that assays are reliable and can detect changes in saliva corticosterone (sCORT) after exposure to stressors, but it is also necessary to ensure sCORT concentrations are correlated with plasma concentrations. To help validate the use of saliva in assessing CORT responses in amphibians, we captured uniquely marked Columbia spotted frogs (Rana luteiventris) on sequential days and collected baseline and stress-induced (after handling) samples. For a subset of individuals, we collected and quantified CORT in both saliva and blood samples, which have not been compared for amphibians. We tested several aspects of CORT responses and, by collecting across separate days, measured repeatability of CORT responses across days. We also evaluated whether methods common to amphibian conservation, such as handling alone or handling, clipping a toe and tagging elevated sCORT. Similar to previous studies, we show that sCORT is reliable concerning parallelism, recovery, precision and sensitivity. sCORT was weakly correlated with plasma CORT (R2 = 0.21), and we detected elevations in sCORT after handling, demonstrating biological validation. Toe clipping and tagging did not increase sCORT over handling alone, but repeated handling elevated sCORT for ~72 hours. However, sCORT responses were highly variable and repeatability was low within individuals and among capture sessions, contrary to previous studies with urinary and waterborne CORT. sCORT is a semi-invasive and rapid technique that could be useful to assess effects of anthropogenic change and conservation efforts, but will require careful study design and future validation.
Collapse
Affiliation(s)
- Brian J Tornabene
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 32 Campus Dr., University of Montana, Missoula, Montana, 59812, USA
- Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, 32 Campus Dr., University of Montana, Missoula, Montana, 59812, USA
| | - Blake R Hossack
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 32 Campus Dr., University of Montana, Missoula, Montana, 59812, USA
- Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, 32 Campus Dr., University of Montana, Missoula, Montana, 59812, USA
| | - Creagh W Breuner
- Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, 32 Campus Dr., University of Montana, Missoula, Montana, 59812, USA
| |
Collapse
|
32
|
Park JK, Do Y. Current State of Conservation Physiology for Amphibians: Major Research Topics and Physiological Parameters. Animals (Basel) 2023; 13:3162. [PMID: 37893886 PMCID: PMC10603670 DOI: 10.3390/ani13203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Analysis of physiological responses can be used to assess population health, identify threat factors, and understand mechanisms of stress. In addition to this, conservation physiologists have sought to establish potential management strategies for environmental change and evaluate the effectiveness of conservation efforts. From past to present, the field of conservation physiology is developing in an increasingly broader context. In this review, we aim to categorize the topics covered in conservation physiology research on amphibians and present the measured physiological parameters to provide directions for future research on conservation physiology. Physiological responses of amphibians to environmental stressors are the most studied topic, but conservation physiological studies on metamorphosis, habitat loss and fragmentation, climate change, and conservation methods are relatively lacking. A number of physiological indices have been extracted to study amphibian conservation physiology, and the indices have varying strengths of correlation with each subject. Future research directions are suggested to develop a comprehensive monitoring method for amphibians, identify interactions among various stressors, establish physiological mechanisms for environmental factors, and quantify the effects of conservation activities on amphibian physiology.
Collapse
Affiliation(s)
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea;
| |
Collapse
|
33
|
Woof L, Cooper S, Kennedy CJ. The effects of SLICE®- and ivermectin-contaminated sediment on avoidance behaviour and oxygen consumption in marine benthic invertebrates. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106155. [PMID: 37690394 DOI: 10.1016/j.marenvres.2023.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Pest management strategies to reduce sea lice infestations in the salmon aquaculture industry include in-feed treatments with ivermectin (IVM) and SLICE® (active ingredient [AI] emamectin benzoate [EMB]), which can result in local contamination of the environment. These compounds partition to sediments, have moderate persistence, and may pose a risk to non-target benthic organisms. The sub-lethal effects of EMB, IVM and a combination of both (EMB/IVM) on the benthic amphipod Eohaustorius estuarius and polychaete Nereis virens at environmentally relevant sediment concentrations were examined in subchronic exposures (28-30-d). E. estuarius avoided sediment containing >50 μg/kg IVM alone and in combination with EMB. N. virens avoided sediment with >50 μg/kg IVM and >0.5 μg/kg EMB/IVM and exhibited impaired burrowing and locomotory behaviour with both treatments. Oxygen consumption was significantly decreased in E. estuarius (up to 50% compared to controls) and increased in N. virens (by ∼ 200%) when exposed to EMB, IVM and EMB/IVM at concentrations <5 μg/kg. IVM, SLICE® and combination exposures at environmentally relevant concentrations caused adverse effects in E. estuarius and N. virens which could significantly alter organism fitness near salmon aquaculture operations.
Collapse
Affiliation(s)
- Lindsay Woof
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephanie Cooper
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
34
|
Kępa M, Tomańska A, Staszewska J, Tarnowska M, Klećkowska-Nawrot J, Goździewska-Harłajczuk K, Kuźniarski A, Gębarowski T, Janeczek M. Functional Anatomy of the Thoracic Limb of the Komodo Dragon ( Varanus komodoensis). Animals (Basel) 2023; 13:2895. [PMID: 37760295 PMCID: PMC10525242 DOI: 10.3390/ani13182895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Since the Komodo dragon has been included on The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, it is crucial to know in detail its biology as there is a limited availability of research material on these animals-mainly those who died in zoos or whose remains were found in the wild. Anatomy is essential for understanding physiology, identification of diseases, adaptations in the environment, and behavior. In this dissection study, the relationship of individual anatomical structures was analyzed, the anatomy of the active and passive movement system of the thoracic limb was described, photographs were taken, and a radiographic examination was conducted. This species has its own differences, even within closely related lizard species. Varanus komodoensis possesses triceps muscles with three heads, and the wrist is extended with additional bones for greater flexibility of the hand. The muscles of the forelimb are analogous to the hind limb; however, they differ in the mass of individual muscles, especially those predisposed to perform the most important antigravity and locomotive functions.
Collapse
Affiliation(s)
- Michał Kępa
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Anna Tomańska
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Joanna Staszewska
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Małgorzata Tarnowska
- Division of Histology and Embryology, Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland;
| | - Joanna Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Faculty of Dentistry, Wrocław Medical University, Krakowska St. 26, 50-425 Wrocław, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| |
Collapse
|
35
|
Guerrero-Sanchez S, Frias L, Saimin S, Orozco-terWengel P, Goossens B. The fast-food effect: costs of being a generalist in a human-dominated landscape. CONSERVATION PHYSIOLOGY 2023; 11:coad055. [PMID: 37588622 PMCID: PMC10427121 DOI: 10.1093/conphys/coad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Agricultural expansion in Southeast Asia has converted most natural landscapes into mosaics of forest interspersed with plantations, dominated by the presence of generalist species that benefit from resource predictability. Dietary shifts, however, can result in metabolic alterations and the exposure of new parasites that can impact animal fitness and population survival. Our study focuses on the Asian water monitor lizard (Varanus salvator), one of the largest predators in the Asian wetlands, as a model species to understand the health consequences of living in a human-dominated landscape in Sabah, Malaysian Borneo. We evaluated the effects of dietary diversity on the metabolism of monitor lizards and the impact on the composition of their parasite communities in an oil palm-dominated landscape. Our results showed that (1) rodent-dominated diets were associated with high levels of lipids, proteins and electrolytes, akin to a fast-food-based diet of little representativeness of the full nutritional requirements, but highly available, and (2) lizards feeding on diverse diets hosted more diverse parasite communities, however, at overall lower parasite prevalence. Furthermore, we observed that the effect of diet on lipid concentration differed depending on the size of individual home ranges, suggesting that sedentarism plays an important role in the accumulation of cholesterol and triglycerides. Parasite communities were also affected by a homogeneous dietary behaviour, as well as by habitat type. Dietary diversity had a negative effect on both parasite richness and prevalence in plantations, but not in forested areas. Our study indicates that human-dominated landscapes can pose a negative effect on generalist species and hints to the unforeseen health consequences for more vulnerable taxa using the same landscapes. Thus, it highlights the potential role of such a widely distributed generalist as model species to monitor physiological effects in the ecosystem in an oil palm-dominated landscape.
Collapse
Affiliation(s)
- Sergio Guerrero-Sanchez
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong. To Yuen Building. 31 To Yuen Street, Kowloon, HK
- Organisms and Environment Division, School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Liesbeth Frias
- Duke-NUS Medical School, Programme in Emerging Infectious Diseases. No. 8 College Road, Singapore 169857
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Silvester Saimin
- Sabah Wildlife Department, 5th Floor, Block B, Wisma Muis, Jalan Access Bomba Negeri, Kota Kinabalu, Sabah, 88100 Malaysia
| | - Pablo Orozco-terWengel
- Organisms and Environment Division, School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Benoit Goossens
- Organisms and Environment Division, School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
- Sabah Wildlife Department, 5th Floor, Block B, Wisma Muis, Jalan Access Bomba Negeri, Kota Kinabalu, Sabah, 88100 Malaysia
- Danau Girang Field Centre, c/o Sabah Wildlife Department, 5th Floor, Block B, Wisma Muis, Jalan Access Bomba Negeri, Kota Kinabalu, Sabah, 88100 Malaysia
| |
Collapse
|
36
|
Falconer S, McAdie M, Mastromonaco G, Schulte-Hostedde AI. Assessing stress physiology within a conservation breeding program for an endangered species. CONSERVATION PHYSIOLOGY 2023; 11:coad041. [PMID: 38026799 PMCID: PMC10660376 DOI: 10.1093/conphys/coad041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/19/2023] [Accepted: 05/29/2023] [Indexed: 12/01/2023]
Abstract
Conservation breeding programs typically involve the management of individuals both in and ex situ, so it is vital to understand how the physiology of managed species changes in these environments to maximize program outcomes. The Vancouver Island marmot (VIM; Marmota vancouverensis) is one species that has been managed in a conservation breeding program to recover the critically low wild population. Previous research has shown there are differences in hair glucocorticoid concentrations for VIMs in different managed groups in the program. Therefore, we used >1000 blood samples collected since the program's inception to assess the neutrophil to lymphocyte (N:L) ratio among captive, pre-release, post-release and wild populations as another metric of stress. In situ VIM populations were found to have a significantly higher N:L ratio than ex situ populations, suggesting that the wild is a more physiologically challenging environment than managed care. Moreover, the effect of age, sex and the month of sampling on the N:L ratio were found to be different for each population. Age had the greatest magnitude of effect in the wild population, and sex was only significant in ex situ populations. This study provided previously unknown insights into the physiology of VIMs and increased post-release monitoring will be useful in the future to fully understand how physiology may be contributing to differences in survival of VIMs in the program.
Collapse
Affiliation(s)
- S Falconer
- Department of Biology/School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd, Sudbury, Canada, ON P3E 2C6
| | - M McAdie
- Marmot Recovery Foundation, PO Box 2332 Stn A, Nanaimo, BC, Canada, V9R 6X6
| | - G Mastromonaco
- Reproductive Sciences Unit, Toronto Zoo, 361A Old Finch Avenue, Scarborough, Ontario, Canada, M1B 5K7
| | - A I Schulte-Hostedde
- Department of Biology/School of Natural Sciences, Laurentian University, S-614, Science Building, 935, Ramsey Lake Rd, Sudbury, Canada, ON P3E 2C6
| |
Collapse
|
37
|
Armas F, Favila ME, González-Tokman D, Salomão RP, Baena-Díaz F. Experimental Crosses Between Two Dung Beetle Lineages Show Transgressive Segregation in Physiological Traits. NEOTROPICAL ENTOMOLOGY 2023; 52:442-451. [PMID: 36897325 DOI: 10.1007/s13744-023-01034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Abstract
Physiological traits in insects are intrinsically related to their behavior, fitness, and survival and can reflect adaptations to ecological stressors in different environments, leading to population differentiation that may cause hybrid failure. In this study, we characterized five physiological traits related to body condition (body size, body mass, amount of fat, total hemolymph protein, and phenoloxidase activity) in two geographically separated and recently differentiated lineages of Canthon cyanellus LeConte, 1859 within their natural distribution in Mexico. We also performed experimental hybrid crosses between these lineages to better understand the differentiation process and explore the presence of transgressive segregation over physiological traits in them. We found differences between lineages in all traits except body mass, suggesting selective pressures related to different ecological pressures. These differences were also apparent in the transgressive segregation of all traits in F1 and F2 hybrids, except for phenoloxidase activity. Protein content was sexually dimorphic in both parental lineages but was reversed in hybrids, suggesting a genetic basis for the differences between sexes. The negative sign of transgressive segregation for most traits indicates that hybrids would be smaller, thinner, and generally unfit. Our results suggest that these two lineages may undergo postzygotic reproductive isolation, confirming the cryptic diversity of this species complex.
Collapse
Affiliation(s)
- Fernanda Armas
- Instituto de Ecología A. C. Xalapa, Veracruz, 91070, México
| | - Mario E Favila
- Instituto de Ecología A. C. Xalapa, Veracruz, 91070, México.
| | | | - Renato P Salomão
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, México
| | | |
Collapse
|
38
|
Pringle BA, Duncan MI, Winkler AC, Mafwila S, Jagger C, McKeown NJ, Shaw PW, Henriques R, Potts WM. Ocean warming favours a northern Argyrosomus species over its southern congener, whereas preliminary metabolic evidence suggests that hybridization may promote their adaptation. CONSERVATION PHYSIOLOGY 2023; 11:coad026. [PMID: 37179704 PMCID: PMC10170327 DOI: 10.1093/conphys/coad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Anthropogenic-induced climate change is having profound impacts on aquatic ecosystems, and the resilience of fish populations will be determined by their response to these impacts. The northern Namibian coast is an ocean warming hotspot, with temperatures rising faster than the global average. The rapid warming in Namibia has had considerable impacts on marine fauna, such as the southern extension of the distribution of Argyrosomus coronus from southern Angola into northern Namibian waters, where it now overlaps and hybridizes with the closely related Namibian species, A. inodorus. Understanding how these species (and their hybrids) perform at current and future temperatures is vital to optimize adaptive management for Argyrosomus species. Intermittent flow-through respirometry was used to quantify standard and maximum metabolic rates for Argyrosomus individuals across a range of temperatures. The modelled aerobic scope (AS) of A. inodorus was notably higher at cooler temperatures (12, 15, 18 and 21°C) compared with that of A. coronus, whereas the AS was similar at 24°C. Although only five hybrids were detected and three modelled, their AS was in the upper bounds of the models at 15, 18 and 24°C. These findings suggest that the warming conditions in northern Namibia may increasingly favour A. coronus and promote the poleward movement of the leading edge of their southern distribution. In contrast, the poor aerobic performance of both species at cold temperatures (12°C) suggests that the cold water associated with the permanent Lüderitz Upwelling Cell in the south may constrain both species to central Namibia. This is most concerning for A. inodorus because it may be subjected to a considerable coastal squeeze.
Collapse
Affiliation(s)
- Brett A Pringle
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- Advance Africa Management Services, Johannesburg, South Africa
| | - Murray I Duncan
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- University of Seychelles and Blue Economy Research Institute, Anse Royale, Mahe, Seychelles
| | - Alexander C Winkler
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Samuel Mafwila
- Department of Fisheries and Aquatic Sciences, Sam Nujoma Campus, University of Namibia, Henties Bay, Namibia
| | - Charmaine Jagger
- Department of Fisheries and Aquatic Sciences, Sam Nujoma Campus, University of Namibia, Henties Bay, Namibia
- Ministry of Fisheries and Marine Resources, Swakopmund, Namibia
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Romina Henriques
- Marine Genomics Group, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Warren M Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
39
|
Cooke SJ, Madliger CL, Lennox RJ, Olden JD, Eliason EJ, Cramp RL, Fuller A, Franklin CE, Seebacher F. Biological mechanisms matter in contemporary wildlife conservation. iScience 2023; 26:106192. [PMID: 36895647 PMCID: PMC9988666 DOI: 10.1016/j.isci.2023.106192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Given limited resources for wildlife conservation paired with an urgency to halt declines and rebuild populations, it is imperative that management actions are tactical and effective. Mechanisms are about how a system works and can inform threat identification and mitigation such that conservation actions that work can be identified. Here, we call for a more mechanistic approach to wildlife conservation and management where behavioral and physiological tools and knowledge are used to characterize drivers of decline, identify environmental thresholds, reveal strategies that would restore populations, and prioritize conservation actions. With a growing toolbox for doing mechanistic conservation research as well as a suite of decision-support tools (e.g., mechanistic models), the time is now to fully embrace the concept that mechanisms matter in conservation ensuring that management actions are tactical and focus on actions that have the potential to directly benefit and restore wildlife populations.
Collapse
Affiliation(s)
- Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Corresponding author
| | - Christine L. Madliger
- Department of Biology, Algoma University, 1520 Queen St. East, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Robert J. Lennox
- Norwegian Research Centre (NORCE), Laboratory for Freshwater Ecology and Inland Fisheries, 5008 Bergen, Norway
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA
| | - Erika J. Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rebecca L. Cramp
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Craig E. Franklin
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
40
|
Kır M, Sunar MC, Topuz M, Sarıipek M. Thermal acclimation capacity and standard metabolism of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) at different temperature and salinity combinations. J Therm Biol 2023; 112:103429. [PMID: 36796886 DOI: 10.1016/j.jtherbio.2022.103429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
In aquatic environments, rising temperatures reduce the oxygen content of the water while increasing the oxygen demand of organisms. In intensive shrimp culture, it is of great importance to know the thermal tolerance of cultured species and their oxygen consumption since this affects the physiological condition. In this study, the thermal tolerance of Litopenaeus vannamei was determined by dynamic and static thermal methodologies at different acclimation temperatures (15, 20, 25, and 30 °C) and salinities (10, 20, and 30 ppt). The oxygen consumption rate (OCR) was also measured to determine the standard metabolic rate (SMR) of shrimp. Acclimation temperature significantly affected the thermal tolerance and SMR of Litopenaeus vannamei (P < 0.01). Salinity had a large effect on SMR (P < 0.01) but did not influence the thermal acclimation of the shrimp (P > 0.01). Litopenaeus vannamei is a species that has high thermal tolerance and can survive at extreme temperatures (CTmin-CTmax: 7.2-41.9 °C) with its large dynamic (988, 992, and 1004 °C2) and static thermal polygon areas (748, 778 and 777 °C2) developed at the above temperature and salinity combinations and resistance zone (1001, 81 and 82 °C2). The optimal temperature range of Litopenaeus vannamei is the 25-30 °C range, where a decrease in standard metabolism is determined with increasing temperature. Given the SMR and optimal temperature range, the results of this study indicate that Litopenaeus vannamei should be cultured at 25-30 °C for effective production.
Collapse
Affiliation(s)
- Mehmet Kır
- Faculty of Fisheries, Mugla Sitki Kocman University, 48000, Kotekli, Mugla, Turkey.
| | - Murat Can Sunar
- Faculty of Fisheries, Mugla Sitki Kocman University, 48000, Kotekli, Mugla, Turkey
| | - Mustafa Topuz
- Faculty of Fisheries, Mugla Sitki Kocman University, 48000, Kotekli, Mugla, Turkey
| | - Merve Sarıipek
- Faculty of Fisheries, Sinop University, 57000, Akliman, Sinop, Turkey
| |
Collapse
|
41
|
Ruthsatz K, Eterovick PC, Bartels F, Mausbach J. Contributions of water-borne corticosterone as one non-invasive biomarker in assessing nitrate pollution stress in tadpoles of Rana temporaria. Gen Comp Endocrinol 2023; 331:114164. [PMID: 36400158 DOI: 10.1016/j.ygcen.2022.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Among a multitude of stressors to which wildlife is exposed, environmental pollution is a pervasive one that poses a serious threat. The permeable skin of amphibians is likely to increase direct contact of the body with pollutants, making them a group worth studying to access environmental quality. Consequently, finding reliable and complementary biomarkers that will present detectable and predictable changes in response to pollutants is essential to identify pollution sublethal effects on amphibians and to investigate whether these are in part responsible for population declines. The glucocorticoid hormone corticosterone (CORT), involved in many metabolic functions, is often used to measure the physiological stress response to environmental stressors in amphibians. In this study, we evaluated whether water-borne CORT can serve as a non-invasive biomarker for nitrate pollution stress in the European common frog (Rana temporaria) by comparing the effect of nitrate exposure on hormone release rates and on other physiological downstream biomarkers, i.e., ultimate physiological effects of the stressor. Specifically, we investigated the effect of different nitrate concentrations (0, 10, 50, and 100 mg/L) on water-borne CORT release rates, age, size, and body condition. Exposure to nitrate pollution significantly increased age at metamorphosis and water-borne CORT release rates, and led to reduced mass and body condition, but only at higher nitrate concentrations (i.e., 50 and 100 mg/L). Considering this similar sensitivity to other acknowledged biomarkers, water-borne CORT was a reliable biomarker of physiological stress in R. temporaria exposed to nitrate pollution stress in a controlled single-stressor laboratory approach. Thus, water-borne CORT is a promising method to be included in more holistic approaches. We recommend that such approaches keep testing multiple biomarker combinations, as species are exposed to several stressors likely to interact and produce varied outcomes in different biomarkers in their natural habitats.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Fabian Bartels
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Jelena Mausbach
- Eawag & ETH Zurich,Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
42
|
Leroy C, Brunet JL, Henry M, Alaux C. Using physiology to better support wild bee conservation. CONSERVATION PHYSIOLOGY 2023; 11:coac076. [PMID: 36632323 PMCID: PMC9825782 DOI: 10.1093/conphys/coac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
There is accumulating evidence that wild bees are experiencing a decline in terms of species diversity, abundance or distribution, which leads to major concerns about the sustainability of both pollination services and intrinsic biodiversity. There is therefore an urgent need to better understand the drivers of their decline, as well as design conservation strategies. In this context, the current approach consists of linking observed occurrence and distribution data of species to environmental features. While useful, a highly complementary approach would be the use of new biological metrics that can link individual bee responses to environmental alteration with population-level responses, which could communicate the actual bee sensitivity to environmental changes and act as early warning signals of bee population decline or sustainability. We discuss here through several examples how the measurement of bee physiological traits or performance can play this role not only in better assessing the impact of anthropogenic pressures on bees, but also in guiding conservation practices with the help of the documentation of species' physiological needs. Last but not least, because physiological changes generally occur well in advance of demographic changes, we argue that physiological traits can help in predicting and anticipating future population trends, which would represent a more proactive approach to conservation. In conclusion, we believe that future efforts to combine physiological, ecological and population-level knowledge will provide meaningful contributions to wild bee conservation-based research.
Collapse
Affiliation(s)
| | - Jean-Luc Brunet
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Mickael Henry
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Cedric Alaux
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| |
Collapse
|
43
|
Chown SL. Macrophysiology for decision‐making. J Zool (1987) 2022. [DOI: 10.1111/jzo.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S. L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
44
|
Boardman L, Lockwood JL, Angilletta MJ, Krause JS, Lau JA, Loik ME, Simberloff D, Thawley CJ, Meyerson LA. The Future of Invasion Science Needs Physiology. Bioscience 2022. [DOI: 10.1093/biosci/biac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Incorporating physiology into models of population dynamics will improve our understanding of how and why invasions succeed and cause ecological impacts, whereas others fail or remain innocuous. Targeting both organismal physiologists and invasion scientists, we detail how physiological processes affect every invasion stage, for both plants and animals, and how physiological data can be better used for studying the spatial dynamics and ecological effects of invasive species. We suggest six steps to quantify the physiological functions related to demography of nonnative species: justifying physiological traits of interest, determining ecologically appropriate time frames, identifying relevant abiotic variables, designing experimental treatments that capture covariation between abiotic variables, measuring physiological responses to these abiotic variables, and fitting statistical models to the data. We also provide brief guidance on approaches to modeling invasions. Finally, we emphasize the benefits of integrating research between communities of physiologists and invasion scientists.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Biological Sciences and with the Center for Biodiversity Research, University of Memphis , Memphis, Tennessee, United States
| | - Julie L Lockwood
- Department of Ecology, Evolution, and Natural Resources at Rutgers University , New Brunswick, New Jersey, United States
| | - Michael J Angilletta
- School of Life Sciences and with the Center for Learning Innovation in Science, Arizona State University , Tempe, Arizona, United States
| | - Jesse S Krause
- Department of Biology, University of Nevada , Reno, Nevada, United States
| | - Jennifer A Lau
- Department of Biology, Indiana University , Bloomington, Indian, United States
| | - Michael E Loik
- Environmental Studies Department, University of California , Santa Cruz, Santa Cruz, California, United States
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee , Knoxville, Tennessee, United States
| | - Christopher J Thawley
- Department of Biological Sciences, University of Rhode Island , Kingston, Rhode Island, United States
| | - Laura A Meyerson
- Department of Natural Resources Science, University of Rhode Island , Kingston, Rhode Island, United States
| |
Collapse
|
45
|
Thompson DP. Conservation physiology: applications for wildlife conservation and management.Christine L.Madliger,Craig E.Franklin,Oliver P.Love, andSteven J.Cooke.2021.Oxford University Press,Oxford, United Kingdom.342 pp. $100.00 hardback. ISBN 978‐0‐19‐884362‐7. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel P. Thompson
- Alaska Department of Fish and Game, Division of Wildlife Conservation Kenai Moose Research Center Soldotna AK 99672 USA
| |
Collapse
|
46
|
Russo SE, Ledder G, Muller EB, Nisbet RM. Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. CONSERVATION PHYSIOLOGY 2022; 10:coac061. [PMID: 36128259 PMCID: PMC9477497 DOI: 10.1093/conphys/coac061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism's state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change.
Collapse
Affiliation(s)
- Sabrina E Russo
- School of Biological Sciences, University of Nebraska, 1104 T Street Lincoln, Nebraska 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska, 1901 Vine Street, N300 Beadle Center, Lincoln, Nebraska 68588-0660, USA
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, Nebraska 68588-0130, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Institut für Biologische Analytik und Consulting IBACON GmbH, Arheilger Weg 17 Roß dorf, Hesse D-64380, Germany
| | - Roger M Nisbet
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
47
|
Snyder KA, Robinson SA, Schmidt S, Hultine KR. Stable isotope approaches and opportunities for improving plant conservation. CONSERVATION PHYSIOLOGY 2022; 10:coac056. [PMID: 35966756 PMCID: PMC9367551 DOI: 10.1093/conphys/coac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/15/2021] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Successful conservation of threatened species and ecosystems in a rapidly changing world requires scientifically sound decision-making tools that are readily accessible to conservation practitioners. Physiological applications that examine how plants and animals interact with their environment are now widely used when planning, implementing and monitoring conservation. Among these tools, stable-isotope physiology is a potentially powerful, yet under-utilized cornerstone of current and future conservation efforts of threatened and endangered plants. We review the underlying concepts and theory of stable-isotope physiology and describe how stable-isotope applications can support plant conservation. We focus on stable isotopes of carbon, hydrogen, oxygen and nitrogen to address plant ecophysiological responses to changing environmental conditions across temporal scales from hours to centuries. We review examples from a broad range of plant taxa, life forms and habitats and provide specific examples where stable-isotope analysis can directly improve conservation, in part by helping identify resilient, locally adapted genotypes or populations. Our review aims to provide a guide for practitioners to easily access and evaluate the information that can be derived from stable-isotope signatures, their limitations and how stable isotopes can improve conservation efforts.
Collapse
Affiliation(s)
- Keirith A Snyder
- Corresponding author: USDA Agricultural Research Service, Great Basin Rangelands Research Unit, Reno,
920 Valley Road, NV 89512, USA.
| | - Sharon A Robinson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Securing Antarctica’s Environmental Future, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, Building 62, Brisbane Queensland 4075, Australia
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 Galvin Parkway, Phoenix, AZ 85008, USA
| |
Collapse
|
48
|
McHuron EA, Adamczak S, Arnould JPY, Ashe E, Booth C, Bowen WD, Christiansen F, Chudzinska M, Costa DP, Fahlman A, Farmer NA, Fortune SME, Gallagher CA, Keen KA, Madsen PT, McMahon CR, Nabe-Nielsen J, Noren DP, Noren SR, Pirotta E, Rosen DAS, Speakman CN, Villegas-Amtmann S, Williams R. Key questions in marine mammal bioenergetics. CONSERVATION PHYSIOLOGY 2022; 10:coac055. [PMID: 35949259 PMCID: PMC9358695 DOI: 10.1093/conphys/coac055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as 'key' questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.
Collapse
Affiliation(s)
- Elizabeth A McHuron
- Corresponding author: Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, WA, 98195, USA.
| | - Stephanie Adamczak
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John P Y Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Erin Ashe
- Oceans Initiative, Seattle, WA, 98102, USA
| | - Cormac Booth
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
| | - W Don Bowen
- Biology Department, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada
| | - Fredrik Christiansen
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Center for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch, Murdoch University, WA 6150, Australia
| | - Magda Chudzinska
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 9XL, UK
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, 46005 Valencia, Spain
- Kolmården Wildlife Park, 618 92 Kolmården, Sweden
| | - Nicholas A Farmer
- NOAA/National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, FL, 33701, USA
| | - Sarah M E Fortune
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cara A Gallagher
- Plant Ecology and Nature Conservation, University of Potsdam, 14476 Potsdam, Germany
| | - Kelly A Keen
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Clive R McMahon
- IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
| | | | - Dawn P Noren
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Shawn R Noren
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews KY16 9LZ, UK
| | - David A S Rosen
- Institute for Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1ZA, Canada
| | - Cassie N Speakman
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Stella Villegas-Amtmann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | | |
Collapse
|
49
|
Climate Change Implications for Metal and Metalloid Dynamics in Aquatic Ecosystems and its Context within the Decade of Ocean Sciences. WATER 2022. [DOI: 10.3390/w14152415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Anthropogenic activities are affecting marine ecosystems, notably coastal ones, in multiple ways and at increasing rates, leading to habitat degradation, loss of biodiversity, and greater exposure of flora and fauna to chemical contaminants, with serious effects on ocean health. Chemical pollution, in particular, is a significant negative stressor for aquatic ecosystems, both oceanic and coastal, and has recently been identified as a priority for conservation efforts. Metals and metalloids, in particular, present environmental persistence, bioavailability, tendency to bioaccumulate along the trophic chain, and potential toxic effects. However, the current scenario of climate change is increasingly affecting the aquatic environment, altering water mass flows and the transport of pollutants, aggravating toxic effects and ecological risks. Moreover, although traditional sources of contamination have been studied for decades, many knowledge gaps persist, in addition to the emerging effects of climate change that are still poorly studied. In this regard, this review aims to discuss climate change implications for metal and metalloid dynamics in aquatic ecosystems and its context within the Decade of Ocean Sciences. We also discuss how an increasing interest in plastic pollution has led to contamination by metals and metalloids being neglected, requiring mutual efforts to move forward in the understating of the negative and often lethal impacts of this type of pollutants, thus aiming at prioritizing contamination by metals and metalloids not just in the oceans, but in all water bodies.
Collapse
|
50
|
Monge O, Schulze CH, Dullinger S, Fusani L, Maggini I. Unshaded coffee imposes a heavier load on thermoregulation than shaded coffee for birds in a tropical mountainous region. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|