1
|
Lo VK, Zillig KW, Cocherell DE, Todgham AE, Fangue NA. Effects of low temperature on growth and metabolism of larval green sturgeon (Acipenser medirostris) across early ontogeny. J Comp Physiol B 2024; 194:427-442. [PMID: 38955877 DOI: 10.1007/s00360-024-01568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 07/04/2024]
Abstract
Southern Distinct Population Segment (sDPS) green sturgeon spawn solely in one stretch of the Sacramento River in California. Management of this spawning habitat is complicated by cold water temperature requirements for the conservation of winter-run Chinook salmon. This study assessed whether low incubation and rearing temperatures resulted in carryover effects across embryo to early juvenile life stages on scaling relationships in growth and metabolism in northern DPS green sturgeon used as a proxy for sDPS green sturgeon. Fish were incubated and reared at 11 °C and 15 °C, with a subset experiencing a reciprocal temperature transfer post-hatch, to assess recovery from cold incubation or to simulate a cold-water dam release which would chill rearing larvae. Growth and metabolic rate of embryos and larvae were measured to 118 days post hatch. Reciprocal temperature transfers revealed a greater effect of low temperature exposure during larval rearing rather than during egg incubation. While 11 °C eggs hatched at a smaller length, log-transformed length-weight relationships showed that these differences in developmental trajectory dissipated as individuals achieved juvenile morphology. However, considerable size-at-age differences persisted between rearing temperatures, with 15 °C fish requiring 60 days post-hatch to achieve 1 g in mass, whereas 11 °C fish required 120 days to achieve 1 g, resulting in fish of the same age at the completion of the experiment with a ca. 37-fold difference in weight. Consequently, our study suggests that cold rearing temperatures have far more consequential downstream effects than cold embryo incubation temperatures. Growth delays from 11 °C rearing temperatures would greatly increase the period of vulnerability to predation in larval green sturgeon. The scaling relationship between log-transformed whole-body metabolism and mass exhibited a steeper slope and thus an increased oxygen requirement with size in 11 °C reared fish, potentially indicating an energetically unsustainable situation. Understanding how cold temperatures affect green sturgeon ontogeny is necessary to refine our larval recruitment estimations for this threatened species.
Collapse
Affiliation(s)
- Vanessa K Lo
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, 95616, USA
| | - Kenneth W Zillig
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, 95616, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, 95616, USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Eisenberg RM, Sandrelli RM, Gamperl AK. Comparing methods for determining the metabolic capacity of lumpfish (Cyclopterus lumpus Linnaeus 1758). JOURNAL OF FISH BIOLOGY 2024; 104:1813-1823. [PMID: 38486407 DOI: 10.1111/jfb.15716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 06/27/2024]
Abstract
Lumpfish (Cyclopterus lumpus) mortalities have been reported during the summer at some North Atlantic salmon cage-sites where they serve as "cleaner fish." To better understand this species' physiology and whether limitations in their metabolic capacity and thermal tolerance can explain this phenomenon, we compared the aerobic scope (AS) of 6°C-acclimated lumpfish (~50 g and 8.8 cm in length at the beginning of experiments) when all individuals (N = 12) were given a chase to exhaustion, a critical swim speed (Ucrit) test, and a critical thermal maximum (CTMax) test (rate of warming 2°C h-1). The Ucrit and CTMax of the lumpfish were 2.36 ± 0.08 body lengths per second and 20.6 ± 0.3°C. The AS of lumpfish was higher during the Ucrit test (206.4 ± 8.5 mg O2 kg-1 h-1) versus that measured in either the CTMax test or after the chase to exhaustion (141.0 ± 15.0 and 124.7 ± 15.5 mg O2 kg-1 h-1, respectively). Maximum metabolic rate (MMR), AS, and "realistic" AS (ASR) measured using the three different protocols were not significantly correlated, indicating that measurements of metabolic capacity using one of these methods cannot be used to estimate values that would be obtained using another method. Additional findings include that (1) the lumpfish's metabolic capacity is comparable to that of Atlantic cod, suggesting that they are not as "sluggish" as previously suggested in the literature, and (2) their CTMax (20.6°C when acclimated to 6°C), in combination with their recently determined ITMax (20.6°C when acclimated to 10°C), indicates that high sea-cage temperatures are unlikely to be the primary cause of lumpfish mortalities at salmon sea-cages during the summer.
Collapse
Affiliation(s)
- Rachel M Eisenberg
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Anthony Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
3
|
Zillig KW, Hannan KD, Baird SE, Cocherell DE, Poletto JB, Fangue NA. Effects of acclimation temperature and feed restriction on the metabolic performance of green sturgeon. CONSERVATION PHYSIOLOGY 2024; 12:coae021. [PMID: 38784525 PMCID: PMC11113080 DOI: 10.1093/conphys/coae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 05/25/2024]
Abstract
Green sturgeon (Acipenser medirostris) are an anadromous threatened species of sturgeon found along the Pacific coast of North America. The southern distinct population segment only spawns in the Sacramento River and is exposed to water temperatures kept artificially cold for the conservation and management of winter-run Chinook salmon (Oncorhynchus tshawytscha). Past research has demonstrated costs of cold-water rearing including reduced growth rates, condition and survivorship of juvenile green sturgeon. Our research investigates how the stressors of water temperature and food limitation influence the metabolic performance of green sturgeon. We reared green sturgeon at two acclimation temperatures (13 and 19°C) and two ration amounts (100% and 40% of optimal feed). We then measured the routine and maximum metabolic rates (RMR and MMR, respectively) of sturgeon acclimated to these rearing conditions across a range of acute temperature exposures (11 to 31°C). Among both temperature acclimation treatments (13 or 19°C), we found that feed restriction reduced RMR across a range of acute temperatures. The influence of feed restriction on RMR and MMR interacted with acclimation temperature. Fish reared at 13°C preserved their MMR and aerobic scope (AS) despite feed restriction, while fish fed reduced rations and acclimated to 19°C showed reduced MMR and AS capacity primarily at temperatures below 16°C. The sympatry of threatened green sturgeon with endangered salmonids produces a conservation conflict, such that cold-water releases for the conservation of at-risk salmonids may constrain the metabolic performance of juvenile green sturgeon. Understanding the impacts of environmental conditions (e.g. temperature, dissolved oxygen) on ecological interactions of green sturgeon will be necessary to determine the influence of salmonid-focused management.
Collapse
Affiliation(s)
- Kenneth W Zillig
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, One Shields Avenue, Davis, CA 95616-5270, USA
| | - Kelly D Hannan
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, One Shields Avenue, Davis, CA 95616-5270, USA
| | - Sarah E Baird
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, One Shields Avenue, Davis, CA 95616-5270, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, One Shields Avenue, Davis, CA 95616-5270, USA
| | - Jamilynn B Poletto
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, One Shields Avenue, Davis, CA 95616-5270, USA
| | - Nann A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, One Shields Avenue, Davis, CA 95616-5270, USA
| |
Collapse
|
4
|
Marcoli R, Symonds JE, Walker SP, Battershill CN, Bird S. Characterising the Physiological Responses of Chinook Salmon ( Oncorhynchus tshawytscha) Subjected to Heat and Oxygen Stress. BIOLOGY 2023; 12:1342. [PMID: 37887052 PMCID: PMC10604766 DOI: 10.3390/biology12101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
In New Zealand, during the hottest periods of the year, some salmon farms in the Marlborough Sounds reach water temperatures above the optimal range for Chinook salmon. High levels of mortality are recorded during these periods, emphasising the importance of understanding thermal stress in this species. In this study, the responses of Chinook salmon (Oncorhynchus tshawytscha) to chronic, long-term changes in temperature and dissolved oxygen were investigated. This is a unique investigation due to the duration of the stress events the fish were exposed to. Health and haematological parameters were analysed alongside gene expression results to determine the effects of thermal stress on Chinook salmon. Six copies of heat shock protein 90 (HSP90) were discovered and characterised: HSP90AA1.1a, HSP90AA1.2a, HSP90AA1.1b, HSP90AA1.2b, HSP90AB1a and HSP90AB1b, as well as two copies of SOD1, named SOD1a and SOD1b. The amino acid sequences contained features similar to those found in other vertebrate HSP90 and SOD1 sequences, and the phylogenetic tree and synteny analysis provided conclusive evidence of their relationship to other vertebrate HSP90 and SOD1 genes. Primers were designed for qPCR to enable the expression of all copies of HSP90 and SOD1 to be analysed. The expression studies showed that HSP90 and SOD1 were downregulated in the liver and spleen in response to longer term exposure to high temperatures and lower dissolved oxygen. HSP90 was also downregulated in the gill; however, the results for SOD1 expression in the gill were not conclusive. This study provides important insights into the physiological and genetic responses of Chinook salmon to temperature and oxygen stress, which are critical for developing sustainable fish aquaculture in an era of changing global climates.
Collapse
Affiliation(s)
- Roberta Marcoli
- Centre for Sustainable Tropical Fisheries, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Jane E. Symonds
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | - Seumas P. Walker
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | | | - Steve Bird
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
5
|
Abdelrazek SMR, Connon RE, Sanchez C, Atencio B, Mauduit F, Lehman B, Hallett SL, Atkinson SD, Foott JS, Daniels ME. Responses to pathogen exposure in sentinel juvenile fall-run Chinook salmon in the Sacramento River, CA. CONSERVATION PHYSIOLOGY 2023; 11:coad066. [PMID: 37649642 PMCID: PMC10465009 DOI: 10.1093/conphys/coad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
This study investigated how the deployment of juvenile Chinook salmon in ambient river conditions and the subsequent exposure to and infection by pathogens was associated with the changes in the expression of genes involved in immune system functioning, general stress and host development. Juvenile fish were deployed in sentinel cages for 21 days in the Sacramento River, CA, USA. Gill, kidney and intestinal tissue were sampled at 0, 7, 14 and 21 days post-deployment. Pathogen detection and host response were assessed by a combination of molecular and histopathological evaluation. Our findings showed that fish became infected by the parasites Ceratonova shasta, Parvicapsula minibicornis and Ichthyophthirius multifiliis, and to a lesser extent, the bacteria Flavobacterium columnare and Rickettsia-like organisms. Co-infection was common among sentinel fish. Expression of investigated genes was altered following deployment and was often associated with pathogen abundance. This study provides a foundation for future avenues of research investigating pathogens that affect out-migrating Chinook salmon in the Sacramento River, and offers crucial knowledge related to conservation efforts.
Collapse
Affiliation(s)
- Samah M R Abdelrazek
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Camilo Sanchez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Benjamin Atencio
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Florian Mauduit
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Brendan Lehman
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Sascha L Hallett
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - J. Scott Foott
- California Nevada Fish Health Center, U.S. Fish and Wildlife Service, Anderson, CA 96007, USA
| | - Miles E Daniels
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| |
Collapse
|
6
|
Zillig KW, FitzGerald AM, Lusardi RA, Cocherell DE, Fangue NA. Intraspecific variation among Chinook Salmon populations indicates physiological adaptation to local environmental conditions. CONSERVATION PHYSIOLOGY 2023; 11:coad044. [PMID: 37346267 PMCID: PMC10281501 DOI: 10.1093/conphys/coad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Understanding interpopulation variation is important to predicting species responses to climate change. Recent research has revealed interpopulation variation among several species of Pacific salmonids; however, the environmental drivers of population differences remain elusive. We tested for local adaptation and countergradient variation by assessing interpopulation variation among six populations of fall-run Chinook Salmon from the western United States. Juvenile fish were reared at three temperatures (11, 16 and 20°C), and five physiological metrics were measured (routine and maximum metabolic rate, aerobic scope, growth rate and critical thermal maximum). We then tested associations between these physiological metrics and 15 environmental characteristics (e.g. rearing temperature, latitude, migration distance, etc.). Statistical associations between the five physiological metrics and 15 environmental characteristics supported our hypotheses of local adaptation. Notably, latitude was a poor predictor of population physiology. Instead, our results demonstrate that populations from warmer habitats exhibit higher thermal tolerance (i.e. critical thermal maxima), faster growth when warm acclimated and greater aerobic capacity at high temperatures. Additionally, populations with longer migrations exhibit higher metabolic capacity. However, overall metabolic capacity declined with warm acclimation, indicating that future climate change may reduce metabolic capacity, negatively affecting long-migrating populations. Linking physiological traits to environmental characteristics enables flexible, population-specific management of disparate populations in response to local conditions.
Collapse
Affiliation(s)
- Kenneth W Zillig
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Alyssa M FitzGerald
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Robert A Lusardi
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
- Center for Watershed Sciences, University of California, Davis, CA 95616, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Nann A Fangue
- Corresponding author: One Shields Avenue, Davis, CA 95616, USA. Tel: +1 (530) 752-4997.
| |
Collapse
|
7
|
Van Wert JC, Hendriks B, Ekström A, Patterson DA, Cooke SJ, Hinch SG, Eliason EJ. Population variability in thermal performance of pre-spawning adult Chinook salmon. CONSERVATION PHYSIOLOGY 2023; 11:coad022. [PMID: 37152448 PMCID: PMC10157787 DOI: 10.1093/conphys/coad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Climate change is causing large declines in many Pacific salmon populations. In particular, warm rivers are associated with high levels of premature mortality in migrating adults. The Fraser River watershed in British Columbia, Canada, supports some of the largest Chinook salmon (Oncorhynchus tshawytscha) runs in the world. However, the Fraser River is warming at a rate that threatens these populations at critical freshwater life stages. A growing body of literature suggests salmonids are locally adapted to their thermal migratory experience, and thus, population-specific thermal performance information can aid in management decisions. We compared the thermal performance of pre-spawning adult Chinook salmon from two populations, a coastal fall-run from the Chilliwack River (125 km cooler migration) and an interior summer-run from the Shuswap River (565 km warmer migration). We acutely exposed fish to temperatures reflecting current (12°C, 18°C) and future projected temperatures (21°C, 24°C) in the Fraser River and assessed survival, aerobic capacity (resting and maximum metabolic rates, absolute aerobic scope (AAS), muscle and ventricle citrate synthase), anaerobic capacity (muscle and ventricle lactate dehydrogenase) and recovery capacity (post-exercise metabolism, blood physiology, tissue lactate). Chilliwack Chinook salmon performed worse at high temperatures, indicated by elevated mortality, reduced breadth in AAS, enhanced plasma lactate and potassium levels and elevated tissue lactate concentrations compared with Shuswap Chinook salmon. At water temperatures exceeding the upper pejus temperatures (Tpejus, defined here as 80% of maximum AAS) of Chilliwack (18.7°C) and Shuswap (20.2°C) Chinook salmon populations, physiological performance will decline and affect migration and survival to spawn. Our results reveal population differences in pre-spawning Chinook salmon performance across scales of biological organization at ecologically relevant temperatures. Given the rapid warming of rivers, we show that it is critical to consider the intra-specific variation in thermal physiology to assist in the conservation and management of Pacific salmon.
Collapse
Affiliation(s)
- Jacey C Van Wert
- Corresponding author: Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA.
| | - Brian Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andreas Ekström
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - David A Patterson
- Fisheries and Oceans Canada, Science Branch, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
8
|
McInturf AG, Zillig KW, Cook K, Fukumoto J, Jones A, Patterson E, Cocherell DE, Michel CJ, Caillaud D, Fangue NA. In hot water? Assessing the link between fundamental thermal physiology and predation of juvenile Chinook salmon. Ecosphere 2022. [DOI: 10.1002/ecs2.4264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alexandra G. McInturf
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Animal Behavior Graduate Group University of California Davis California USA
- Coastal Oregon Marine Experiment Station Oregon State University Newport Oregon USA
| | - Ken W. Zillig
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Graduate Group in Ecology University of California Davis California USA
| | - Katherine Cook
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Jacqueline Fukumoto
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Anna Jones
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Emily Patterson
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Dennis E. Cocherell
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Cyril J. Michel
- NOAA Southwest Fisheries Science Center, Fisheries Ecology Division Santa Cruz California USA
| | - Damien Caillaud
- Department of Anthropology University of California Davis California USA
| | - Nann A. Fangue
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| |
Collapse
|
9
|
Lo VK, Martin BT, Danner EM, Cocherell DE, Cech, Jr JJ, Fangue NA. The effect of temperature on specific dynamic action of juvenile fall-run Chinook salmon, Oncorhynchus tshawytscha. CONSERVATION PHYSIOLOGY 2022; 10:coac067. [PMID: 36325131 PMCID: PMC9616469 DOI: 10.1093/conphys/coac067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Basin experience temporally and spatially heterogenous temperature regimes, between cool upper tributaries and the warm channelized Delta, during freshwater rearing and outmigration. Limited water resources necessitate human management of dam releases, allowing temperature modifications. The objective of this study was to examine the effect of temperature on specific dynamic action (SDA), or the metabolic cost associated with feeding and digestion, which is thought to represent a substantial portion of fish energy budgets. Measuring SDA with respect to absolute aerobic scope (AAS), estimated by the difference between maximum metabolic rate (MMR) and standard metabolic rate (SMR), provides a snapshot of its respective energy allocation. Fish were acclimated to 16°C, raised or lowered to each acute temperature (13°C, 16°C, 19°C, 22°C or 24°C), then fed a meal of commercial pellets weighing 2% of their wet mass. We detected a significant positive effect of temperature on SMR and MMR, but not on AAS. As expected, there was no significant effect of temperature on the total O2 cost of digestion, but unlike other studies, we did not see a significant difference in duration, peak metabolic rate standardized to SMR, time to peak, percent of meal energy utilized, nor the ratio of peak O2 consumption to SMR. Peak O2 consumption represented 10.4-14.5% of AAS leaving a large amount of aerobic capacity available for other activities, and meal energy utilized for digestion ranged from 5.7% to 7.2%, leaving substantial remaining energy to potentially assimilate for growth. Our juvenile fall-run Chinook salmon exhibited thermal stability in their SDA response, which may play a role in maintaining homeostasis of digestive capability in a highly heterogeneous thermal environment where rapid growth is important for successful competition with conspecifics and for avoiding predation.
Collapse
Affiliation(s)
- Vanessa K Lo
- Corresponding author: Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA 95616, USA.
| | - Benjamin T Martin
- Department of Theoretical and Computational Ecology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eric M Danner
- NOAA Southwest Fisheries Science Center, Santa Cruz, 95060 CA, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| | - Joseph J Cech, Jr
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| |
Collapse
|
10
|
Gomez Isaza DF, Rodgers EM. Exercise training does not affect heat tolerance in Chinook salmon (Oncorhynchus tshawytscha). Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111229. [PMID: 35500866 DOI: 10.1016/j.cbpa.2022.111229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/21/2023]
Abstract
The progression of climate warming will expose ectotherms to transient heatwave events and temperatures above their tolerance range at increased frequencies. It is therefore pivotal that we understand species' physiological limits and the capacity for various controls to plastically alter these thresholds. Exercise training could have beneficial impacts on organismal heat tolerance through improvements in cardio-respiratory capacity, but this remains unexplored. Using juvenile Chinook salmon (Oncorhynchus tshawytscha), we tested the hypothesis that exercise training improves heat tolerance through enhancements in oxygen-carrying capacity. Fish were trained once daily at 60% of their maximum sustainable swim speed, UCRIT, for 60 min. Tolerance to acute warming was assessed following three weeks of exercise training, measured as the critical thermal maximum (CTMAX). CTMAX measurements were coupled with examinations of the oxygen carrying capacity (haematocrit, haemoglobin concentration, relative ventricle size, and relative splenic mass) as critical components of the oxygen transport cascade in fish. Contrary to our hypothesis, we found that exercise training did not raise the CTMAX of juvenile Chinook salmon with a mean CTMAX increase of just 0.35 °C compared to unexercised control fish. Training also failed to improve the oxygen carrying capacity of fish. Exercise training remains a novel strategy against acute warming that requires substantial fine-tuning before it can be applied to the management of commercial and wild fishes.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia. https://twitter.com/@_danielgomez94
| | - Essie M Rodgers
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
11
|
Muir CA, Garner SR, Damjanovski S, Neff BD. Temperature-dependent plasticity mediates heart morphology and thermal performance of cardiac function in juvenile Atlantic salmon (Salmo salar). J Exp Biol 2022; 225:276049. [PMID: 35860948 DOI: 10.1242/jeb.244305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
In many fishes, upper thermal tolerance is thought to be limited in part by the heart's ability to meet increased oxygen demands during periods of high temperature. Temperature-dependent plasticity within the cardiovascular system may help fishes cope with the thermal stress imposed by increasing water temperatures. In this study, we examined plasticity in heart morphology and function in juvenile Atlantic salmon (Salmo salar) reared under control (+0°C) or elevated (+4°C) temperatures. Using noninvasive Doppler echocardiography, we measured the effect of acute warming on maximum heart rate, stroke distance, and derived cardiac output. A 4°C increase in average developmental temperature resulted in a>5°C increase in the Arrhenius breakpoint temperature for maximum heart rate and enabled the hearts of these fish to continue beating rhythmically to temperatures approximately 2°C higher than control fish. However, these differences in thermal performance were not associated with plasticity in maximum cardiovascular capacity, as peak measures of heart rate, stroke distance, and derived cardiac output did not differ between temperature treatments. Histological analysis of the heart revealed that while ventricular roundness and relative ventricle size did not differ between treatments, the proportion of compact myocardium in the ventricular wall was significantly greater in fish raised at elevated temperatures. Our findings contribute to the growing understanding of how the thermal environment can affect phenotypes later in life and identifies a morphological strategy that may help fishes cope with acute thermal stress.
Collapse
Affiliation(s)
- Carlie A Muir
- Department of Biology, Western University, London, ON, Canada
| | - Shawn R Garner
- Department of Biology, Western University, London, ON, Canada
| | | | - Bryan D Neff
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
12
|
Anlauf-Dunn K, Kraskura K, Eliason EJ. Intraspecific variability in thermal tolerance: a case study with coastal cutthroat trout. CONSERVATION PHYSIOLOGY 2022; 10:coac029. [PMID: 35693034 PMCID: PMC9178963 DOI: 10.1093/conphys/coac029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/04/2022] [Accepted: 04/15/2022] [Indexed: 05/24/2023]
Abstract
Fish physiological performance is directly regulated by their thermal environment. Intraspecific comparisons are essential to ascertain the vulnerability of fish populations to climate change and to identify which populations may be more susceptible to extirpation and which may be more resilient to continued warming. In this study, we sought to evaluate how thermal performance varies in coastal cutthroat trout (Oncorhynchus clarki clarki) across four distinct watersheds in OR, USA. Specifically, we measured oxygen consumption rates in trout from the four watersheds with variable hydrologic and thermal regimes, comparing three ecologically relevant temperature treatments (ambient, annual maximum and novel warm). Coastal cutthroat trout displayed considerable intraspecific variability in physiological performance and thermal tolerance across the four watersheds. Thermal tolerance matched the historical experience: the coastal watersheds experiencing warmer ambient temperatures had higher critical thermal tolerance compared with the interior, cooler Willamette watersheds. Physiological performance varied across all four watersheds and there was evidence of a trade-off between high aerobic performance and broad thermal tolerance. Given the evidence of climate regime shifts across the globe, the uncertainty in both the rate and extent of warming and species responses in the near and long term, a more nuanced approach to the management and conservation of native fish species must be considered.
Collapse
Affiliation(s)
- Kara Anlauf-Dunn
- Oregon Department of Fish and Wildlife, 28655
Highway 34, Corvallis, OR 97333, USA
| | - Krista Kraskura
- Department of Ecology, Evolution, and Marine Biology,
University of California Santa Barbara, Santa
Barbara, CA 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution, and Marine Biology,
University of California Santa Barbara, Santa
Barbara, CA 93106, USA
| |
Collapse
|
13
|
Swimming behavior of emigrating Chinook Salmon smolts. PLoS One 2022; 17:e0263972. [PMID: 35290382 PMCID: PMC8923499 DOI: 10.1371/journal.pone.0263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Swimming behavior of Chinook Salmon (Oncorhynchus tshawytscha) smolts affects transit time, route selection and survival in complex aquatic ecosystems. Behavior quantified at the river reach and junction scale is of particular importance for route selection and predator avoidance, though few studies have developed field-based approaches for quantifying swimming behavior of juvenile migratory fishes at this fine spatial scale. Two-dimensional acoustic fish telemetry at a river junction was combined with a three-dimensional hydrodynamic model to estimate in situ emigration swimming behavior of federally-threatened juvenile Chinook salmon smolts. Fish velocity over ground was estimated from telemetry, while the hydrodynamic model supplied simultaneous, colocated water velocities, with swimming velocity defined by the vector difference of the two velocities. Resulting swimming speeds were centered around 2 body lengths/second, and included distinct behaviors of positive rheotaxis, negative rheotaxis, lateral swimming, and passive transport. Lateral movement increased during the day, and positive rheotaxis increased in response to local hydrodynamic velocities. Swim velocity estimates were sensitive to the combination of vertical shear in water velocities and vertical distribution of fish.
Collapse
|
14
|
Mauduit F, Segarra A, Mandic M, Todgham AE, Baerwald MR, Schreier AD, Fangue NA, Connon RE. Understanding risks and consequences of pathogen infections on the physiological performance of outmigrating Chinook salmon. CONSERVATION PHYSIOLOGY 2022; 10:coab102. [PMID: 35492407 PMCID: PMC9040276 DOI: 10.1093/conphys/coab102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The greatest concentration of at-risk anadromous salmonids is found in California (USA)-the populations that have been negatively impacted by the degradation of freshwater ecosystems. While climate-driven environmental changes threaten salmonids directly, they also change the life cycle dynamics and geographic distribution of pathogens, their resulting host-pathogen interactions and potential for disease progression. Recent studies have established the correlation between pathogen detection and salmonid smolt mortality during their migration to the ocean. The objective of the present study was to screen for up to 47 pathogens in juvenile Chinook salmon (Oncorhynchus tshawytscha) that were held in cages at two key sites of the Sacramento River (CA, USA) and measure potential consequences on fish health. To do so, we used a combination of transcriptomic analysis, enzymatic assays for energy metabolism and hypoxia and thermal tolerance measures. Results revealed that fish were infected by two myxozoan parasites: Ceratonova shasta and Parvicapsula minibicornis within a 2-week deployment. Compared to the control fish maintained in our rearing facility, infected fish displayed reduced body mass, depleted hepatic glycogen stores and differential regulation of genes involved in the immune and general stress responses. This suggests that infected fish would have lower chances of migration success. In contrast, hypoxia and upper thermal tolerances were not affected by infection, suggesting that infection did not impair their capacity to cope with acute abiotic stressors tested in this study. An evaluation of long-term consequences of the observed reduced body mass and hepatic glycogen depletion is needed to establish a causal relationship between salmon parasitic infection and their migration success. This study highlights that to assess the potential sublethal effects of a stressor, or to determine a suitable management action for fish, studies need to consider a combination of endpoints from the molecular to the organismal level.
Collapse
Affiliation(s)
- F Mauduit
- Corresponding author: Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA.
| | - A Segarra
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| | - M Mandic
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - A E Todgham
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - M R Baerwald
- California Department of Water Resources, Division of Environmental Services, 95814 Sacramento, CA, USA
| | - A D Schreier
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - N A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, 95616 Davis, CA, USA
| | - R E Connon
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| |
Collapse
|
15
|
Adams OA, Zhang Y, Gilbert MH, Lawrence CS, Snow M, Farrell AP. An unusually high upper thermal acclimation potential for rainbow trout. CONSERVATION PHYSIOLOGY 2022; 10:coab101. [PMID: 35492409 PMCID: PMC9040278 DOI: 10.1093/conphys/coab101] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/02/2023]
Abstract
Thermal acclimation, a compensatory physiological response, is central to species survival especially during the current era of global warming. By providing the most comprehensive assessment to date for the cardiorespiratory phenotype of rainbow trout (Oncorhynchus mykiss) at six acclimation temperatures from 15°C to 25°C, we tested the hypothesis that, compared with other strains of rainbow trout, an Australian H-strain of rainbow trout has been selectively inbred to have an unusually high and broad thermal acclimation potential. Using a field setting at the breeding hatchery in Western Australia, thermal performance curves were generated for a warm-adapted H-strain by measuring growth, feed conversion efficiency, specific dynamic action, whole-animal oxygen uptake (ṀO2) during normoxia and hypoxia, the critical maximum temperature and the electrocardiographic response to acute warming. Appreciable growth and aerobic capacity were possible up to 23°C. However, growth fell off drastically at 25°C in concert with increases in the time required to digest a meal, its total oxygen cost and its peak ṀO2. The upper thermal tipping points for appetite and food conversion efficiency corresponded with a decrease in the ability to increase heart rate during warming and an increase in the cost to digest a meal. Also, comparison of upper thermal tipping points provides compelling evidence that limitations to increasing heart rate during acute warming occurred well below the critical thermal maximum (CTmax) and that the faltering ability of the heart to deliver oxygen at different acclimation temperatures is not reliably predicted by CTmax for the H-strain of rainbow trout. We, therefore, reasoned the remarkably high thermal acclimation potential revealed here for the Australian H-strain of rainbow trout reflected the existing genetic variation within the founder Californian population, which was then subjected to selective inbreeding in association with severe heat challenges. This is an encouraging discovery for those with conservation concerns for rainbow trout and other fish species. Indeed, those trying to predict the impact of global warming should more fully consider the possibility that the standing intra-specific genetic variation within a fish species could provide a high thermal acclimation potential, similar to that shown here for rainbow trout.
Collapse
Affiliation(s)
- Olivia A Adams
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yangfan Zhang
- Corresponding author: Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada and Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Matthew H Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Craig S Lawrence
- Faculty of Science, School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Michael Snow
- Aquatic Life Industries, Perth, Western Australia, Australia
| | - Anthony P Farrell
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Opinion AGR, Çakir R, De Boeck G. Better together: Cross-tolerance induced by warm acclimation and nitrate exposure improved the aerobic capacity and stress tolerance of common carp Cyprinus carpio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112777. [PMID: 34534834 DOI: 10.1016/j.ecoenv.2021.112777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Climate warming is a threat of imminent concern that may exacerbate the impact of nitrate pollution on fish fitness. These stressors can individually affect the aerobic capacity and stress tolerance of fish. In combination, they may interact in unexpected ways where exposure to one stressor may heighten or reduce the resilience to another stressor and their interactive effects may not be uniform across species. Here, we examined how nitrate pollution under a warming scenario affects the aerobic scope (AS), and the hypoxia and heat stress susceptibility of a generally tolerant fish species, common carp Cyprinus carpio. We used a 3 × 2 factorial design, where fish were exposed to one of three ecologically relevant levels of nitrate (0, 50, or 200 mg NO3- L-1) and one of two temperatures (18 °C or 26 °C) for 5 weeks. Warm acclimation increased the AS by 11% due to the maintained standard metabolic rate and increased maximum metabolic rate at higher temperature, and the AS improvement seemed greater at higher nitrate concentration. Warm-acclimated fish exposed to 200 mg NO3- L-1 were less susceptible to acute hypoxia, and fish acclimated at higher temperature exhibited improved heat tolerance (critical thermal maxima, CTMax) by 5 °C. This cross-tolerance can be attributed to the hematological results including maintained haemoglobin and increased haematocrit levels that may have compensated for the initial surge in methaemoglobin at higher nitrate exposure.
Collapse
Affiliation(s)
- April Grace R Opinion
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Rümeysa Çakir
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gudrun De Boeck
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
17
|
Mackey TE, Hasler CT, Durhack T, Jeffrey JD, Macnaughton CJ, Ta K, Enders EC, Jeffries KM. Molecular and physiological responses predict acclimation limits in juvenile brook trout (Salvelinus fontinalis). J Exp Biol 2021; 224:271813. [PMID: 34382658 DOI: 10.1242/jeb.241885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
Understanding the resilience of ectotherms to high temperatures is essential because of the influence of climate change on aquatic ecosystems. The ability of species to acclimate to high temperatures may determine whether populations can persist in their native ranges. We examined physiological and molecular responses of juvenile brook trout (Salvelinus fontinalis) to six acclimation temperatures (5, 10, 15, 20, 23 and 25°C) that span the thermal distribution of the species to predict acclimation limits. Brook trout exhibited an upregulation of stress-related mRNA transcripts (heat shock protein 90-beta, heat shock cognate 71 kDa protein, glutathione peroxidase 1) and downregulation of transcription factors and osmoregulation-related transcripts (nuclear protein 1, Na+/K+/2Cl- co-transporter-1-a) at temperatures ≥20°C. We then examined the effects of acclimation temperature on metabolic rate (MR) and physiological parameters in fish exposed to an acute exhaustive exercise and air exposure stress. Fish acclimated to temperatures ≥20°C exhibited elevated plasma cortisol and glucose, and muscle lactate after exposure to the acute stress. Fish exhibited longer MR recovery times at 15 and 20°C compared with the 5 and 10°C groups; however, cortisol levels remained elevated at temperatures ≥20°C after 24 h. Oxygen consumption in fish acclimated to 23°C recovered quickest after exposure to acute stress. Standard MR was highest and factorial aerobic scope was lowest for fish held at temperatures ≥20°C. Our findings demonstrate how molecular and physiological responses predict acclimation limits in a freshwater fish as the brook trout in the present study had a limited ability to acclimate to temperatures beyond 20°C.
Collapse
Affiliation(s)
- Theresa E Mackey
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada, R3B 2E9
| | - Caleb T Hasler
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada, R3B 2E9
| | - Travis Durhack
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.,Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada, R3T 2N6
| | - Jennifer D Jeffrey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | | | - Kimberly Ta
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Eva C Enders
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada, R3T 2N6
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| |
Collapse
|
18
|
Durhack TC, Mochnacz NJ, Macnaughton CJ, Enders EC, Treberg JR. Life through a wider scope: Brook Trout (Salvelinus fontinalis) exhibit similar aerobic scope across a broad temperature range. J Therm Biol 2021; 99:102929. [DOI: 10.1016/j.jtherbio.2021.102929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 01/19/2023]
|
19
|
Morissette J, Swart S, MacCormack TJ, Currie S, Morash AJ. Thermal variation near the thermal optimum does not affect the growth, metabolism or swimming performance in wild Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2021; 98:1585-1589. [PMID: 32293028 DOI: 10.1111/jfb.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/17/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Typically, laboratory studies on the physiological effects of temperature are conducted using stable acclimation temperatures. Nonetheless, information extrapolated from these studies may not accurately represent wild populations living in thermally variable environments. The aim of this study was to compare the growth rate, metabolism and swimming performance of wild Atlantic salmon exposed to cycling temperatures, 16-21°C, and stable acclimation temperatures, 16, 18.5, 21°C. Growth rate, metabolic rate, swimming performance and anaerobic metabolites did not change among acclimation groups, suggesting that within Atlantic salmon's thermal optimum range, temperature variation has no effect on these physiological properties.
Collapse
Affiliation(s)
- Jenna Morissette
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Sula Swart
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Suzanne Currie
- Deptartment of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Andrea J Morash
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| |
Collapse
|
20
|
McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, Nati JJH, Farrell AP. Intraspecific variation in tolerance of warming in fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1536-1555. [PMID: 33216368 DOI: 10.1111/jfb.14620] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 05/12/2023]
Abstract
Intraspecific variation in key traits such as tolerance of warming can have profound effects on ecological and evolutionary processes, notably responses to climate change. The empirical evidence for three primary elements of intraspecific variation in tolerance of warming in fishes is reviewed. The first is purely mechanistic that tolerance varies across life stages and as fishes become mature. The limited evidence indicates strongly that this is the case, possibly because of universal physiological principles. The second is intraspecific variation that is because of phenotypic plasticity, also a mechanistic phenomenon that buffers individuals' sensitivity to negative impacts of global warming in their lifetime, or to some extent through epigenetic effects over successive generations. Although the evidence for plasticity in tolerance to warming is extensive, more work is required to understand underlying mechanisms and to reveal whether there are general patterns. The third element is intraspecific variation based on heritable genetic differences in tolerance, which underlies local adaptation and may define long-term adaptability of a species in the face of ongoing global change. There is clear evidence of local adaptation and some evidence of heritability of tolerance to warming, but the knowledge base is limited with detailed information for only a few model or emblematic species. There is also strong evidence of structured variation in tolerance of warming within species, which may have ecological and evolutionary significance irrespective of whether it reflects plasticity or adaptation. Although the overwhelming consensus is that having broader intraspecific variation in tolerance should reduce species vulnerability to impacts of global warming, there are no sufficient data on fishes to provide insights into particular mechanisms by which this may occur.
Collapse
Affiliation(s)
- David J McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Yangfan Zhang
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - Felipe R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, Araraquara, Brazil
| | - Julie J H Nati
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Rodgers EM, Franklin CE. Aerobic scope and climate warming: Testing the “
plastic floors and concrete ceilings
” hypothesis in the estuarine crocodile (
Crocodylus porosus
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:108-117. [DOI: 10.1002/jez.2412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Essie M. Rodgers
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Craig E. Franklin
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
22
|
Gomez Isaza DF, Cramp RL, Franklin CE. Thermal acclimation offsets the negative effects of nitrate on aerobic scope and performance. J Exp Biol 2020; 223:jeb224444. [PMID: 32647016 DOI: 10.1242/jeb.224444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/06/2020] [Indexed: 08/26/2023]
Abstract
Rising temperatures are set to imperil freshwater fishes as climate change ensues unless compensatory strategies are employed. However, the presence of additional stressors, such as elevated nitrate concentrations, may affect the efficacy of compensatory responses. Here, juvenile silver perch (Bidyanus bidyanus) were exposed to current-day summer temperatures (28°C) or a future climate-warming scenario (32°C) and simultaneously exposed to one of three ecologically relevant nitrate concentrations (0, 50 or 100 mg l-1). We measured indicators of fish performance (growth, swimming), aerobic scope (AS) and upper thermal tolerance (CTmax) to test the hypothesis that nitrate exposure would increase susceptibility to elevated temperatures and limit thermal compensatory responses. After 8 weeks of acclimation, the thermal sensitivity and plasticity of AS and swimming performance were tested at three test temperatures (28, 32, 36°C). The AS of 28°C-acclimated fish declined with increasing temperature, and the effect was more pronounced in nitrate-exposed individuals. In these fish, declines in AS corresponded with poorer swimming performance and a 0.8°C decrease in CTmax compared with unexposed fish. In contrast, acclimation to 32°C masked the effects of nitrate; fish acclimated to 32°C displayed a thermally insensitive phenotype whereby locomotor performance remained unchanged, AS was maintained and CTmax was increased by ∼1°C irrespective of nitrate treatment compared with fish acclimated to 28°C. However, growth was markedly reduced in 32°C-acclimated compared with 28°C-acclimated fish. Our results indicate that nitrate exposure increases the susceptibility of fish to acute high temperatures, but thermal compensation can override some of these potentially detrimental effects.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca L Cramp
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
23
|
Gilbert MJH, Harris LN, Malley BK, Schimnowski A, Moore JS, Farrell AP. The thermal limits of cardiorespiratory performance in anadromous Arctic char ( Salvelinus alpinus): a field-based investigation using a remote mobile laboratory. CONSERVATION PHYSIOLOGY 2020; 8:coaa036. [PMID: 32346481 PMCID: PMC7176916 DOI: 10.1093/conphys/coaa036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 05/31/2023]
Abstract
Despite immense concern over amplified warming in the Arctic, physiological research to address related conservation issues for valuable cold-adapted fish, such as the Arctic char (Salvelinus alpinus), is lacking. This crucial knowledge gap is largely attributable to the practical and logistical challenges of conducting sensitive physiological investigations in remote field settings. Here, we used an innovative, mobile aquatic-research laboratory to assess the effects of temperature on aerobic metabolism and maximum heart rate (f Hmax) of upriver migrating Arctic char in the Kitikmeot region of Nunavut in the central Canadian Arctic. Absolute aerobic scope was unchanged at temperatures from 4 to 16°C, while f Hmax increased with temperature (Q 10 = 2.1), as expected. However, f Hmax fell precipitously below 4°C and it began to plateau above ~ 16°C, reaching a maximum at ~ 19°C before declining and becoming arrhythmic at ~ 21°C. Furthermore, recovery from exhaustive exercise appeared to be critically impaired above 16°C. The broad thermal range (~4-16°C) for increasing f Hmax and maintaining absolute aerobic scope matches river temperatures commonly encountered by migrating Arctic char in this region. Nevertheless, river temperatures can exceed 20°C during warm events and our results confirm that such temperatures would limit exercise performance and thus impair migration in this species. Thus, unless Arctic char can rapidly acclimatize or alter its migration timing or location, which are both open questions, these impairments would likely impact population persistence and reduce lifetime fitness. As such, future conservation efforts should work towards quantifying and accounting for the impacts of warming, variable river temperatures on migration and reproductive success.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Les N Harris
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Brendan K Malley
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Adrian Schimnowski
- Arctic Research Foundation, 1505 Charleswood Road, Winnipeg, MB, R3S 1C2, Canada
| | - Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes and Département de Biologie, Université Laval, 1030 Avenue de la Médecine, Quebec City, QC, Québec G1V 0A6, Canada
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Faculty of Land and Food Systems, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, V6T 1Z4
| |
Collapse
|
24
|
Jeffries KM, Fangue NA, Connon RE. Multiple sub-lethal thresholds for cellular responses to thermal stressors in an estuarine fish. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:33-45. [DOI: 10.1016/j.cbpa.2018.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
|
25
|
Lapointe D, Cooperman MS, Chapman LJ, Clark TD, Val AL, Ferreira MS, Balirwa JS, Mbabazi D, Mwanja M, Chhom L, Hannah L, Kaufman L, Farrell AP, Cooke SJ. Predicted impacts of climate warming on aerobic performance and upper thermal tolerance of six tropical freshwater fishes spanning three continents. CONSERVATION PHYSIOLOGY 2018; 6:coy056. [PMID: 30364036 PMCID: PMC6188536 DOI: 10.1093/conphys/coy056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 05/30/2023]
Abstract
Equatorial fishes, and the critically important fisheries based on them, are thought to be at-risk from climate warming because the fishes have evolved in a relatively aseasonal environment and possess narrow thermal tolerance windows that are close to upper thermal limits. We assessed survival, growth, aerobic performance and critical thermal maxima (CTmax) following acute and 21 d exposures to temperatures up to 4°C higher than current maxima for six species of freshwater fishes indigenous to tropical countries and of importance for human consumption. All six species showed 1.3-1.7°C increases in CTmax with a 4°C rise in acclimation temperature, values which match up well with fishes from other climatic regions, and five species had survival >87% at all temperatures over the treatment period. Specific growth rates varied among and within each species in response to temperature treatments. For all species, the response of resting metabolic rate (RMR) was consistently more dynamic than for maximum metabolic rate, but in general both acute temperature exposure and thermal acclimation had only modest effects on aerobic scope (AS). However, RMR increased after warm acclimation in 5 of 6 species, suggesting incomplete metabolic compensation. Taken in total, our results show that each species had some ability to perform at temperatures up to 4°C above current maxima, yet also displayed certain areas of concern for their long-term welfare. We therefore suggest caution against the overly broad generalization that all tropical freshwater fish species will face severe challenges from warming temperatures in the coming decades and that future vulnerability assessments should integrate multiple performance metrics as opposed to relying on a single response metric. Given the societal significance of inland fisheries in many parts of the tropics, our results clearly demonstrate the need for more species-specific studies of adaptive capacity to climate change-related challenges.
Collapse
Affiliation(s)
- Dominique Lapointe
- St. Lawrence River Institute of Environmental Sciences, Cornwall, ON, Canada
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada
| | - Michael S Cooperman
- Gordon and Betty Moore Center for Science, Conservation International, Arlington, VA, USA
| | | | - Timothy D Clark
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - Adalberto L Val
- Brazilian Institute for Research of the Amazon—INPA, Manaus, AM, Brazil
| | - Marcio S Ferreira
- Brazilian Institute for Research of the Amazon—INPA, Manaus, AM, Brazil
| | - John S Balirwa
- National Fisheries Resources Research Institute—NaFIRRI, Jinja, Uganda
| | - Dismas Mbabazi
- Aquaculture Research and Development Center—ARDC, NaFIRRI (Kajjansi), Kampala, Uganda
| | - Matthew Mwanja
- Aquaculture Research and Development Center—ARDC, NaFIRRI (Kajjansi), Kampala, Uganda
| | | | - Lee Hannah
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| | - Les Kaufman
- Department of Biology, Boston University, Boston, MA, USA
| | - Anthony P Farrell
- Zoology Department and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
26
|
Morash AJ, Neufeld C, MacCormack TJ, Currie S. The importance of incorporating natural thermal variation when evaluating physiological performance in wild species. ACTA ACUST UNITED AC 2018; 221:221/14/jeb164673. [PMID: 30037965 DOI: 10.1242/jeb.164673] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Environmental variability in aquatic ecosystems makes the study of ectotherms complex and challenging. Physiologists have historically overcome this hurdle in the laboratory by using 'average' conditions, representative of the natural environment for any given animal. Temperature, in particular, has widespread impact on the physiology of animals, and it is becoming increasingly important to understand these effects as we face future climate challenges. The majority of research to date has focused on the expected global average increase in temperature; however, increases in climate variability are predicted to affect animals as much or more than climate warming. Physiological responses associated with the acclimation to a new stable temperature are distinct from those in thermally variable environments. Our goal is to highlight these physiological differences as they relate to both thermal acclimation and the 'fallacy of the average' or Jensen's inequality using theoretical models and novel empirical data. We encourage the use of more realistic thermal environments in experimental design to advance our understanding of these physiological responses such that we can better predict how aquatic animals will respond to future changes in our climate.
Collapse
Affiliation(s)
- Andrea J Morash
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1G7
| | - Claire Neufeld
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1G7
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1G8
| | - Suzanne Currie
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1G7.,Acadia University, Wolfville, NS, Canada, B4P 2R6
| |
Collapse
|
27
|
Pörtner HO, Bock C, Mark FC. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol 2017; 220:2685-2696. [DOI: 10.1242/jeb.134585] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Observations of climate impacts on ecosystems highlight the need for an understanding of organismal thermal ranges and their implications at the ecosystem level. Where changes in aquatic animal populations have been observed, the integrative concept of oxygen- and capacity-limited thermal tolerance (OCLTT) has successfully characterised the onset of thermal limits to performance and field abundance. The OCLTT concept addresses the molecular to whole-animal mechanisms that define thermal constraints on the capacity for oxygen supply to the organism in relation to oxygen demand. The resulting ‘total excess aerobic power budget’ supports an animal's performance (e.g. comprising motor activity, reproduction and growth) within an individual's thermal range. The aerobic power budget is often approximated through measurements of aerobic scope for activity (i.e. the maximum difference between resting and the highest exercise-induced rate of oxygen consumption), whereas most animals in the field rely on lower (i.e. routine) modes of activity. At thermal limits, OCLTT also integrates protective mechanisms that extend time-limited tolerance to temperature extremes – mechanisms such as chaperones, anaerobic metabolism and antioxidative defence. Here, we briefly summarise the OCLTT concept and update it by addressing the role of routine metabolism. We highlight potential pitfalls in applying the concept and discuss the variables measured that led to the development of OCLTT. We propose that OCLTT explains why thermal vulnerability is highest at the whole-animal level and lowest at the molecular level. We also discuss how OCLTT captures the thermal constraints on the evolution of aquatic animal life and supports an understanding of the benefits of transitioning from water to land.
Collapse
Affiliation(s)
- Hans-O. Pörtner
- Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany
| | - Christian Bock
- Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany
| | - Felix C. Mark
- Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany
| |
Collapse
|