1
|
Ramos M, Enguita FJ, Bonet F, Ayala R, Gómez-Pavón FJ, Campuzano O, Toro R, Quezada-Feijoó M. MicroRNA-143-3p and miR-452-5p: A Fingerprint for the Diagnosis of Aortic Stenosis in the Geriatric Population. Biomedicines 2025; 13:671. [PMID: 40149647 PMCID: PMC11940255 DOI: 10.3390/biomedicines13030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Aortic stenosis (AS) is the most common valvular pathology in the geriatric population and is the primary cause of valve replacement. However, misdiagnoses and delays in treatment are common due to comorbidities, frailty, and sedentary lifestyles among elderly individuals. MicroRNAs (miRNAs) are highly conserved molecular regulators involved in various cellular processes and have gained recognition as reliable biomarkers in cardiovascular diseases. In the present study, we evaluated plasma miRNAs as potential biomarkers for the early diagnosis of AS in the geriatric population to identify early therapeutic strategies. Methods: This prospective, case-control study included 87 individuals over 75 years of age. The participants were divided into AS (n = 58) and control (n = 29) groups. Results: Fifty-four miRNAs were differentially expressed between patients with AS and controls. Among those genes, 29 were upregulated and 25 were downregulated in patients with AS relative to controls. We selected seven candidate genes (miR-185-5p, miR-143-3p, miR-370-3p, let-7d-3p, miR-452-5p, miR-6787-3p, and miR-21-3p) for experimental validation by qRT-PCR. Only miR-143-3p and miR-452-5p were significantly upregulated in the plasma of patients with AS compared with controls. We developed a multiparametric model by combining the two-miRNA signature with echocardiographic parameters (left ventricular ejection fraction, stroke volume, and global longitudinal strain) to increase diagnostic power; this model yielded sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) values of 78.2%, 70.7%, and 0.837, respectively. Conclusions: In clinical practice, the use of a multiparametric model involving this set of miRNAs combined with echocardiographic variables may improve the accuracy of AS diagnosis and risk stratification.
Collapse
Affiliation(s)
- Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (R.A.); (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain;
| | - Francisco Javier Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, Lisbon University, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain;
| | - Rocío Ayala
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (R.A.); (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain;
| | - Francisco Javier Gómez-Pavón
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain;
- Geriatrics Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain
- Centro Investigación Biomèdica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain;
- Medicine Department, School of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Maribel Quezada-Feijoó
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (R.A.); (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain;
| |
Collapse
|
2
|
Hunkler HJ, Pralas AK, Bär C. Non-coding sabotage: How Gadlor lncRNAs hijack heart function. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102365. [PMID: 39554993 PMCID: PMC11566694 DOI: 10.1016/j.omtn.2024.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Affiliation(s)
- Hannah Jill Hunkler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Anita-Koula Pralas
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| |
Collapse
|
3
|
Keles M, Grein S, Froese N, Wirth D, Trogisch FA, Wardman R, Hemanna S, Weinzierl N, Koch PS, Uhlig S, Lomada S, Dittrich GM, Szaroszyk M, Haustein R, Hegermann J, Martin-Garrido A, Bauersachs J, Frank D, Frey N, Bieback K, Cordero J, Dobreva G, Wieland T, Heineke J. Endothelial derived, secreted long non-coding RNAs Gadlor1 and Gadlor2 aggravate cardiac remodeling. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102306. [PMID: 39281699 PMCID: PMC11402397 DOI: 10.1016/j.omtn.2024.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Pathological cardiac remodeling predisposes individuals to developing heart failure. Here, we investigated two co-regulated long non-coding RNAs (lncRNAs), termed Gadlor1 and Gadlor2, which are upregulated in failing hearts of patients and mice. Cardiac overexpression of Gadlor1 and Gadlor2 aggravated myocardial dysfunction and enhanced hypertrophic and fibrotic remodeling in mice exposed to pressure overload. Compound Gadlor1/2 knockout (KO) mice showed markedly reduced myocardial hypertrophy, fibrosis, and dysfunction, while exhibiting increased angiogenesis during short and prolonged periods of pressure overload. Paradoxically, Gadlor1/2 KO mice suffered from sudden death during prolonged overload, possibly due to cardiac arrhythmia. Gadlor1 and Gadlor2, which are mainly expressed in endothelial cells (ECs) in the heart, where they inhibit pro-angiogenic gene expression, are strongly secreted within extracellular vesicles (EVs). These EVs transfer Gadlor lncRNAs to cardiomyocytes, where they bind and activate calmodulin-dependent kinase II, and impact pro-hypertrophic gene expression and calcium homeostasis. Therefore, we reveal a crucial lncRNA-based mechanism of EC-cardiomyocyte crosstalk during heart failure, which could be specifically modified in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Merve Keles
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Steve Grein
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Natali Froese
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Dagmar Wirth
- Helmholtz Center for Infection Research, Model Systems for Infection and Immunity, 38124 Braunschweig, Germany
| | - Felix A Trogisch
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Rhys Wardman
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Shruthi Hemanna
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Nina Weinzierl
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefanie Uhlig
- CFPM, FlowCore, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Santosh Lomada
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- ECAS, Department of Experimental Pharmacology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Gesine M Dittrich
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Malgorzata Szaroszyk
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Ricarda Haustein
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Abel Martin-Garrido
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Derk Frank
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
- DZHK, partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Norbert Frey
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Karen Bieback
- CFPM, FlowCore, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Julio Cordero
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Gergana Dobreva
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Thomas Wieland
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- ECAS, Department of Experimental Pharmacology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Joerg Heineke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Tasdemiroglu Y, Council-Troche M, Chen M, Ledford B, Norris RA, Poelzing S, Gourdie RG, He JQ. Degradation of the α-Carboxyl Terminus 11 Peptide: In Vivo and Ex Vivo Impacts of Time, Temperature, Inhibitors, and Gender in Rat. ACS Pharmacol Transl Sci 2024; 7:1624-1636. [PMID: 38751644 PMCID: PMC11091968 DOI: 10.1021/acsptsci.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
In previous research, a synthetic α-carboxyl terminus 1 (αCT1) peptide derived from connexin 43 (Cx43) and its variant (αCT11) showed beneficial effects in an ex vivo ischemia-reperfusion (I/R) heart injury model in mouse. In an in vivo mouse model of cryo-induced ventricular injury, αCT1 released from adhesive cardiac patches reduced Cx43 remodeling and arrhythmias, as well as maintained cardiac conduction. Whether intravenous injection of αCT1 or αCT11 produces similar outcomes has not been investigated. Given the possibility of peptide degradation in plasma, this study utilized in vivo I/R cardiac injury and ex vivo blood plasma models to examine factors that may limit the therapeutic potential of peptide therapeutics in vivo. Following tail vein administration of αCT11 (100 μM) in blood, no effect on I/R infarct size was observed in adult rat hearts on day 1 (D1) and day 28 (D28) after injury (p > 0.05). There was also no difference in the echocardiographic ejection fraction (EF%) between the control and the αCT11 groups (p > 0.05). Surprisingly, αCT11 in blood plasma collected from these rats was undetectable within ∼10 min after tail vein injection. To investigate factors that may modulate αCT11 degradation in blood, αCT11 was directly added to blood plasma isolated from normal rats without I/R and peptide levels were measured under different experimental conditions. Consistent with in vivo observations, significant αCT11 degradation occurred in plasma within 10 min at 22 and 37 °C and was nearly undetectable by 30 min. These responses were reduced by the addition of protease/phosphatase (PTase/PPTase) inhibitors to the isolated plasma. Interestingly, no significant differences in αCT11 degradation in plasma were noted between male and female rats. We conclude that fast degradation of αCT11 is likely the reason that no beneficial effects were observed in the in vivo I/R model and inhibition or shielding from PTase/PPTase activity may be a strategy that will assist with the viability of peptide therapeutics.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - McAlister Council-Troche
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Miao Chen
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Benjamin Ledford
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Russell A. Norris
- Department
of Medicine, Medical University of South
Carolina, Charleston, South Carolina 29425, United States
| | - Steven Poelzing
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Robert G. Gourdie
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Jia-Qiang He
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Maegdefessel L, Boon RA, Dimmeler S. Noncoding RNAs in the Vasculature: Basic Mechanisms and Therapeutic Perspectives. Arterioscler Thromb Vasc Biol 2024; 44:3-6. [PMID: 38150514 DOI: 10.1161/atvbaha.123.319564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Affiliation(s)
- Lars Maegdefessel
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University Munich, Germany (L.M.)
- Department of Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden (L.M.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (L.M.)
| | - Reinier A Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, the Netherlands (R.A.B.)
- Amsterdam Cardiovascular Sciences, Microcirculation, the Netherlands (R.A.B.)
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Germany (R.A.B., S.D.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Frankfurt Rhein/Main, Germany (R.A.B., S.D.)
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Germany (R.A.B., S.D.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Frankfurt Rhein/Main, Germany (R.A.B., S.D.)
| |
Collapse
|
6
|
Dos Santos JM, Joiakim A, Putt DA, Scherrer-Crosbie M, Kim H. 14,15-Dihydroxyeicosatrienoic acid, a soluble epoxide hydrolase metabolite in blood, is a predictor of anthracycline-induced cardiotoxicity - a hypothesis generating study. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:47. [PMID: 38102716 PMCID: PMC10722875 DOI: 10.1186/s40959-023-00198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Early identification of patients susceptible to chemotherapy-induced cardiotoxicity could lead to targeted treatment to reduce cardiac dysfunction. Rats treated with doxorubicin (DOX), a chemotherapeutic agent, have increased cardiac expression of 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), a bioactive lipid implicated in hypertension and coronary artery disease. However, the utility of 14,15-DHET as plasma biomarkers was not defined. The aim of this study is to investigate if levels of 14,15-DHET are an early blood biomarker to predict the subsequent occurrence of cardiotoxicity in cancer patients after chemotherapy. METHODS H9c2 rat cardiomyocytes were treated with DOX (1 μM) for 2 h and levels of 14,15-DHET in cell media was quantified at 2, 6 or 24 h in media after DOX treatment. Similarly, female Sprague-Dawley rats were treated with DOX for two weeks and levels of 14,15-DHET was assessed in plasma at 48 h and 2 weeks after DOX treatment. Changes in brain natriuretic peptide (BNP) mRNA, an early cardiac hypertrophy process, were determined in the H9c2 cells and rat cardiac tissue. Results were confirmed in human subjects by assessment of levels of 14,15-DHET in plasma of breast cancer patients before and after DOX treatment and left ventricular ejection fraction (LVEF), a clinical marker of cardiotoxicity. RESULTS Levels of 14,15-DHET in cell media and rat plasma increased ~ 3-fold and was accompanied with increase in BNP mRNA in H9c2 cells and rat cardiac tissue after DOX treatment. In matched plasma samples from breast cancer patients, levels of 14,15-DHET were increased in patients that developed cardiotoxicity at 3 months before occurrence of LVEF decrease. CONCLUSIONS Together, these results indicate that levels of 14,15-DHET are elevated prior to major changes in cardiac structure and function after exposure to anthracyclines. Increased levels of 14,15-DHET in plasma may be an important clinical biomarker for early detection of anthracycline-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Julia Matzenbacher Dos Santos
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Aby Joiakim
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA
| | - David A Putt
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA
| | - Marielle Scherrer-Crosbie
- Cardiac Ultrasound Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyesook Kim
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA.
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
7
|
Sluijter JPG, Xiao J. Post-translational modifications upon mitochondrial dysfunction in heart failure. Eur Heart J 2023; 44:4713-4714. [PMID: 37939789 DOI: 10.1093/eurheartj/ehad710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Affiliation(s)
- Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht 3508GA, The Netherlands
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht 3508GA, The Netherlands
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Mittal R, Krishnan M P S, Saxena R, Sampath A, Goyal B. Non-coding RNAs, cancer treatment and cardiotoxicity: A triad of new hope. Cancer Treat Res Commun 2023; 36:100750. [PMID: 37531735 DOI: 10.1016/j.ctarc.2023.100750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The global health landscape has experienced a shift towards non-communicable diseases, with cardiovascular diseases and cancer as leading causes of mortality. Although advancements in healthcare have led to an increase in life expectancy, they have concurrently resulted in a greater burden of chronic health conditions. Unintended consequences of anticancer therapies on various tissues, particularly the cardiovascular system, contribute to elevated morbidity and mortality rates that are not directly attributable to cancer. Consequently, the field of cardio-oncology has emerged to address the prevalence of CVD in cancer survivors and the cardiovascular toxicity associated with cancer therapies. Non-coding RNAs (ncRNAs) have been found to play a crucial role in early diagnosis, prognosis, and therapeutics within the realm of cardio-oncology. This comprehensive review evaluates the risk assessment of cancer survivors concerning the acquisition of adverse cardiovascular consequences, investigates the association of ncRNAs with CVD in patients undergoing cancer treatment, and delves into the role of ncRNAs in the diagnosis, treatment, and prevention of CVD in patients with a history of anti-cancer therapy. A thorough understanding of the pathogenesis of cancer therapy-related cardiovascular disease and the involvement of ncRNAs in cardio-oncology will enable healthcare professionals to provide anticancer treatment with minimized cardiovascular side effects, thereby improving patient outcomes. Ultimately, this comprehensive analysis aims to provide valuable insights into the complex interplay between cancer and cardiovascular diseases, facilitating the development of more effective diagnostic, therapeutic, and preventive strategies in the burgeoning field of cardio-oncology.
Collapse
Affiliation(s)
- Rishabh Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Sarath Krishnan M P
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Rahul Saxena
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Ananyan Sampath
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India; Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India
| | - Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India.
| |
Collapse
|
9
|
Kankuri E, Finckenberg P, Leinonen J, Tarkia M, Björk S, Purhonen J, Kallijärvi J, Kankainen M, Soliymani R, Lalowski M, Mervaala E. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med 2023; 55:806-817. [PMID: 37009793 PMCID: PMC10167339 DOI: 10.1038/s12276-023-00967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Myocardial regeneration capacity declines during the first week after birth, and this decline is linked to adaptation to oxidative metabolism. Utilizing this regenerative window, we characterized the metabolic changes in myocardial injury in 1-day-old regeneration-competent and 7-day-old regeneration-compromised mice. The mice were either sham-operated or received left anterior descending coronary artery ligation to induce myocardial infarction (MI) and acute ischemic heart failure. Myocardial samples were collected 21 days after operations for metabolomic, transcriptomic and proteomic analyses. Phenotypic characterizations were carried out using echocardiography, histology and mitochondrial structural and functional assessments. In both groups, MI induced an early decline in cardiac function that persisted in the regeneration-compromised mice over time. By integrating the findings from metabolomic, transcriptomic and proteomic examinations, we linked regeneration failure to the accumulation of long-chain acylcarnitines and insufficient metabolic capacity for fatty acid beta-oxidation. Decreased expression of the redox-sensitive mitochondrial Slc25a20 carnitine-acylcarnitine translocase together with a decreased reduced:oxidized glutathione ratio in the myocardium in the regeneration-compromised mice pointed to a defect in the redox-sensitive acylcarnitine transport to the mitochondrial matrix. Rather than a forced shift from the preferred adult myocardial oxidative fuel source, our results suggest the facilitation of mitochondrial fatty acid transport and improvement of the beta-oxidation pathway as a means to overcome the metabolic barrier for repair and regeneration in adult mammals after MI and heart failure.
Collapse
Affiliation(s)
- E Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - P Finckenberg
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Leinonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Tarkia
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Björk
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Kankainen
- Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Soliymani
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023; 13:biom13030568. [PMID: 36979503 PMCID: PMC10046787 DOI: 10.3390/biom13030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is widely applied to the treatment of cancer; however, DOX-induced cardiotoxicity (DIC) limits its clinical therapeutic utility. However, it is difficult to monitor and detect DIC at an early stage using conventional detection methods. Thus, sensitive, accurate, and specific methods of diagnosis and treatment are important in clinical practice. MicroRNAs (miRNAs) belong to non-coding RNAs (ncRNAs) and are stable and easy to detect. Moreover, miRNAs are expected to become biomarkers and therapeutic targets for DIC; thus, there are currently many studies focusing on the role of miRNAs in DIC. In this review, we list the prominent studies on the diagnosis and treatment of miRNAs in DIC, explore the feasibility and difficulties of using miRNAs as diagnostic biomarkers and therapeutic targets, and provide recommendations for future research.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Wu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Tan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
11
|
Liu Q, Yuan W, Yan Y, Jin B, You M, Liu T, Gao M, Li J, Gokulnath P, Vulugundam G, Li G, Xu B, Xiao J. Identification of a novel small-molecule inhibitor of miR-29b attenuates muscle atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:527-540. [PMID: 36891498 PMCID: PMC9988425 DOI: 10.1016/j.omtn.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Muscle atrophy is debilitating and can be induced by several stressors. Unfortunately, there are no effective pharmacological treatment until now. MicroRNA (miR)-29b is an important target that we identified to be commonly involved in multiple types of muscle atrophy. Although sequence-specific inhibition of miR-29b has been developed, in this study, we report a novel small-molecule miR-29b inhibitor that targets miR-29b hairpin precursor (pre-miR-29b) (Targapremir-29b-066 [TGP-29b-066]) considering both its three-dimensional structure and the thermodynamics of interaction between pre-miR-29b and the small molecule. This novel small-molecule inhibitor has been demonstrated to attenuate muscle atrophy induced by angiotensin II (Ang II), dexamethasone (Dex), and tumor necrosis factor α (TNF-α) in C2C12 myotubes, as evidenced by increase in the diameter of myotube and decrease in the expression of Atrogin-1 and MuRF-1. Moreover, it can also attenuate Ang II-induced muscle atrophy in mice, as evidenced by a similar increase in the diameter of myotube, reduced Atrogin-1 and MuRF-1 expression, AKT-FOXO3A-mTOR signaling activation, and decreased apoptosis and autophagy. In summary, we experimentally identified and demonstrated a novel small-molecule inhibitor of miR-29b that could act as a potential therapeutic agent for muscle atrophy.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weilin Yuan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuwei Yan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Bing Jin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mengke You
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Tianqi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Mingchun Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bin Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- Corresponding author Bin Xu, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Corresponding author Junjie Xiao, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.
| |
Collapse
|
12
|
Small Extracellular Vesicles Derived from Induced Pluripotent Stem Cells in the Treatment of Myocardial Injury. Int J Mol Sci 2023; 24:ijms24054577. [PMID: 36902008 PMCID: PMC10003569 DOI: 10.3390/ijms24054577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction between iPSCs and target cells. In recent years, more and more studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial ischemia-reperfusion injury, coronary heart disease, and heart failure. In the current research on myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifugation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection and intraductal administration are the most widely used routes of iPSCs-sEV administration. The characteristics of sEVs derived from iPSCs which were induced from different species and organs, including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the abundance and expression diversity of them. This review focused on the strategies and mechanisms of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research and the application of iPSCs-sEVs.
Collapse
|
13
|
McKinsey TA, Foo R, Anene-Nzelu CG, Travers JG, Vagnozzi RJ, Weber N, Thum T. Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: from basic mechanisms to early clinical development. Cardiovasc Res 2023; 118:3482-3498. [PMID: 36004821 DOI: 10.1093/cvr/cvac142] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases and specifically heart failure (HF) impact global health and impose a significant economic burden on society. Despite current advances in standard of care, the risks for death and readmission of HF patients remain unacceptably high and new therapeutic strategies to limit HF progression are highly sought. In disease settings, persistent mechanical or neurohormonal stress to the myocardium triggers maladaptive cardiac remodelling, which alters cardiac function and structure at both the molecular and cellular levels. The progression and magnitude of maladaptive cardiac remodelling ultimately leads to the development of HF. Classical therapies for HF are largely protein-based and mostly are targeted to ameliorate the dysregulation of neuroendocrine pathways and halt adverse remodelling. More recently, investigation of novel molecular targets and the application of cellular therapies, epigenetic modifications, and regulatory RNAs has uncovered promising new avenues to address HF. In this review, we summarize the current knowledge on novel cellular and epigenetic therapies and focus on two non-coding RNA-based strategies that reached the phase of early clinical development to counteract cardiac remodelling and HF. The current status of the development of translating those novel therapies to clinical practice, limitations, and future perspectives are additionally discussed.
Collapse
Affiliation(s)
- Timothy A McKinsey
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E.19th Ave, Aurora, CO, 80045-2507, USA
| | - Roger Foo
- NUHS Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, 117599 Singapore, Singapore.,Cardiovascular Research Institute, National University Heart Centre, 14 Medical Drive, Level 8, 117599 Singapore, Singapore
| | - Chukwuemeka George Anene-Nzelu
- NUHS Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, 117599 Singapore, Singapore.,Cardiovascular Research Institute, National University Heart Centre, 14 Medical Drive, Level 8, 117599 Singapore, Singapore.,Montreal Heart Institute, 5000 Rue Belanger, H1T 1C8, Montreal, Canada
| | - Joshua G Travers
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E.19th Ave, Aurora, CO, 80045-2507, USA
| | - Ronald J Vagnozzi
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E.19th Ave, Aurora, CO, 80045-2507, USA
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.,REBIRTH Center for Translational Regenerative Therapies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Mathur P, Rani V. Investigating microRNAs in diabetic cardiomyopathy as tools for early detection and therapeutics. Mol Cell Biochem 2023; 478:229-240. [PMID: 35779226 DOI: 10.1007/s11010-022-04473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/04/2022] [Indexed: 02/02/2023]
Abstract
To profile microRNAs population of glucose-induced cardiomyoblast cell line and identify the differentially expressed microRNAs and their role under pre-diabetes and diabetes condition in vitro. Rat fetal ventricular cardiomyoblast cell line H9c2 was treated with D-glucose to mimic pre-diabetic, diabetic, and high-glucose conditions. Alteration in cellular, nuclear morphology, and change in ROS generation was analyzed through fluorescent staining. Small RNA sequencing was performed using Illumina NextSeq 550 sequencer and was validated using stem-loop qRT-PCR. A large number (~ 100) differential miRNAs were detected in each treated samples as compared to control; however, a similar expression pattern was observed between pre-diabetes and diabetes conditions with the exception for miR-429, miR-101b-5p, miR-503-3p, miR-384-5p, miR-412-5p, miR-672-5p, and miR-532-3p. Functional annotation of differential expressed target genes revealed their involvement in significantly enriched key pathways associated with diabetic cardiomyopathy. For the first time, we report the differential expression of miRNAs (miR-1249, miR-3596d, miR- 3586-3p, miR-7b-3p, miR-191, miR-330-3p, miR-328a, let7i-5p, miR-146-3p, miR-26a-3p) in diabetes-induced cardiac cells. Hyperglycemia threatens the cell homeostasis by dysregulation of miRNAs that begins at a glucose level 10 mM and remains undetected. Analysis of differential expressed miRNAs in pre-diabetes and diabetes conditions and their role in regulatory mechanisms of diabetic cardiomyopathy holds high potential in the direction of using miRNAs as minimally invasive diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Priyanka Mathur
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh, 210309, India
| | - Vibha Rani
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh, 210309, India.
| |
Collapse
|
15
|
Laura Francés J, Musolino E, Papait R, Pagiatakis C. Non-Coding RNAs in Cell-to-Cell Communication: Exploiting Physiological Mechanisms as Therapeutic Targets in Cardiovascular Pathologies. Int J Mol Sci 2023; 24:ijms24032205. [PMID: 36768528 PMCID: PMC9916956 DOI: 10.3390/ijms24032205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Cardiovascular disease, the leading cause of death worldwide, has been characterized at the molecular level by alterations in gene expression that contribute to the etiology of the disease. Such alterations have been shown to play a critical role in the development of atherosclerosis, cardiac remodeling, and age-related heart failure. Although much is now known about the cellular and molecular mechanisms in this context, the role of epigenetics in the onset of cardiovascular disease remains unclear. Epigenetics, a complex network of mechanisms that regulate gene expression independently of changes to the DNA sequence, has been highly implicated in the loss of homeostasis and the aberrant activation of a myriad of cellular pathways. More specifically, non-coding RNAs have been gaining much attention as epigenetic regulators of various pathologies. In this review, we will provide an overview of the ncRNAs involved in cell-to-cell communication in cardiovascular disease, namely atherosclerosis, cardiac remodeling, and cardiac ageing, and the potential use of epigenetic drugs as novel therapeutic targets.
Collapse
Affiliation(s)
| | - Elettra Musolino
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Roberto Papait
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | | |
Collapse
|
16
|
Insights into research on myocardial ischemia/reperfusion injury from 2012 to 2021: a bibliometric analysis. Eur J Med Res 2023; 28:17. [PMID: 36624514 PMCID: PMC9827672 DOI: 10.1186/s40001-022-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Numerous studies on myocardial ischemia/reperfusion (MI/R) injury have been undertaken in recent years. Hotspots and developmental trends in MI/R research are being rapidly updated. However, there has been no bibliometric analysis that systematically evaluates existing literature on MI/R injury. Our study explores developments in MI/R research over the past decade, and provides a reference for future research. MATERIALS AND METHODS Both experimental and clinical publications on MI/R injury from 2012 to 2021 were retrieved from the Web of Science Core Collection database. The CiteSpace and VOSviewer tools were used to perform a bibliometric analysis. RESULTS A total of 8419 papers were analyzed. The number of annual publications demonstrated an overall upward trend, rising from 629 publications in 2012 to 1024 publications in 2021. China, the USA, Germany, England, and Italy were the top five contributors to MI/R studies. The Fourth Military Medical University in China contributed the most publications (188, 2.23%), while the University College London in England cooperated the most with relevant research institutions. Derek J Hausenloy (University College London), Derek M Yellon (University College London), and Gerd Heusch (University of Essen Medical School) were the top three most active and influential scholars according to the H-index. Among the top 10 journals with the most publications, Basic Research in Cardiology had the highest impact factors. The top three co-cited journals were Circulation, Circulation Research, and Cardiovascular Research. According to a co-cited reference analysis, MI/R research can be divided across 10 major subfields of mitophagy, cardioprotection, inflammation, remote ischemic preconditioning, long non-coding RNA, melatonin, postconditioning, mitochondria, microvascular obstruction, and ferroptosis. After 2018, the keywords with strongest citation bursts included extracellular vesicles, long non-coding RNA, cell proliferation, microRNA, mitochondrial quality control, mitophagy, biomarker, and mitochondrial biogenesis. CONCLUSIONS The present study reveals the influential authors, cooperating institutions, and main research foci in the field of MI/R injury in the past decade. The latest hotspots are a more in-depth insight into the molecular mechanisms underlying MI/R injury, such as mitochondrial quality control, non-coding RNAs, cell proliferation, and extracellular vesicles.
Collapse
|
17
|
Innate Immunity in Cardiovascular Diseases-Identification of Novel Molecular Players and Targets. J Clin Med 2023; 12:jcm12010335. [PMID: 36615135 PMCID: PMC9821340 DOI: 10.3390/jcm12010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
During the past few years, unexpected developments have driven studies in the field of clinical immunology. One driver of immense impact was the outbreak of a pandemic caused by the novel virus SARS-CoV-2. Excellent recent reviews address diverse aspects of immunological re-search into cardiovascular diseases. Here, we specifically focus on selected studies taking advantage of advanced state-of-the-art molecular genetic methods ranging from genome-wide epi/transcriptome mapping and variant scanning to optogenetics and chemogenetics. First, we discuss the emerging clinical relevance of advanced diagnostics for cardiovascular diseases, including those associated with COVID-19-with a focus on the role of inflammation in cardiomyopathies and arrhythmias. Second, we consider newly identified immunological interactions at organ and system levels which affect cardiovascular pathogenesis. Thus, studies into immune influences arising from the intestinal system are moving towards therapeutic exploitation. Further, powerful new research tools have enabled novel insight into brain-immune system interactions at unprecedented resolution. This latter line of investigation emphasizes the strength of influence of emotional stress-acting through defined brain regions-upon viral and cardiovascular disorders. Several challenges need to be overcome before the full impact of these far-reaching new findings will hit the clinical arena.
Collapse
|
18
|
Mercurio V, Ambrosio G, Correale M, Dini FL, Ghio S, Nodari S, Palazzuoli A, Ruocco G, Pedrinelli R, Mercuro G, Filardi PP, Indolfi C, Agostoni P, Tocchetti CG, Paolillo S. Innovations in medical therapy of heart failure with reduced ejection fraction. J Cardiovasc Med (Hagerstown) 2022; 24:e47-e54. [PMID: 36729606 DOI: 10.2459/jcm.0000000000001413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a pathological condition still characterized by high rates of mortality and disease exacerbation frequently leading to hospitalization, thus there is a continuous need for pharmacological treatments impacting on disease stability and long-term prognosis. Moreover, the phenotype of heart failure patients is continuously changing over time, and the development of new heart failure drugs is crucial to promote a personalized and targeted approach. In recent years, several therapeutic innovations have emerged in the landscape of acute and chronic HFrEF, largely changing and improving our approach to the disease. Various studies on new drugs and experimental therapeutic approaches are ongoing. The present review discusses the latest data on both recently approved drugs and developing therapeutic targets, in order to provide a critical overview for an informed and optimal approach to such a complex disease.
Collapse
Affiliation(s)
- Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples.,Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University
| | | | | | - Frank L Dini
- Cardiac, Thoracic and Vascular Department, University of Pisa, Pisa
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico S.Matteo, Pavia
| | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Alberto Palazzuoli
- Cardiovascular Disease Unit, Department of Internal Medicine, University of Siena, Siena
| | - Gaetano Ruocco
- Cardiology Unit, Riuniti of Valdichiana Hospitals, USL Sud Est Toscana, Montepulciano
| | - Roberto Pedrinelli
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Federico II University, Naples.,Mediterranea Cardiocentro, Naples
| | - Ciro Indolfi
- Cardiology Unit, University Magna Graecia of Catanzaro, Catanza
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples.,Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University.,Interdepartmental Hypertension Research Center (CIRIAPA).,Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, Federico II University, Naples.,Mediterranea Cardiocentro, Naples
| |
Collapse
|
19
|
Affiliation(s)
- Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
20
|
Bikomeye JC, Terwoord JD, Santos JH, Beyer AM. Emerging mitochondrial signaling mechanisms in cardio-oncology: beyond oxidative stress. Am J Physiol Heart Circ Physiol 2022; 323:H702-H720. [PMID: 35930448 PMCID: PMC9529263 DOI: 10.1152/ajpheart.00231.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022]
Abstract
Many anticancer therapies (CTx) have cardiotoxic side effects that limit their therapeutic potential and cause long-term cardiovascular complications in cancer survivors. This has given rise to the field of cardio-oncology, which recognizes the need for basic, translational, and clinical research focused on understanding the complex signaling events that drive CTx-induced cardiovascular toxicity. Several CTx agents cause mitochondrial damage in the form of mitochondrial DNA deletions, mutations, and suppression of respiratory function and ATP production. In this review, we provide a brief overview of the cardiovascular complications of clinically used CTx agents and discuss current knowledge of local and systemic secondary signaling events that arise in response to mitochondrial stress/damage. Mitochondrial oxidative stress has long been recognized as a contributor to CTx-induced cardiotoxicity; thus, we focus on emerging roles for mitochondria in epigenetic regulation, innate immunity, and signaling via noncoding RNAs and mitochondrial hormones. Because data exploring mitochondrial secondary signaling in the context of cardio-oncology are limited, we also draw upon clinical and preclinical studies, which have examined these pathways in other relevant pathologies.
Collapse
Affiliation(s)
- Jean C Bikomeye
- Doctorate Program in Public and Community Health, Division of Epidemiology and Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janée D Terwoord
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Sciences Department, Rocky Vista University, Ivins, Utah
| | - Janine H Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
21
|
miR-142 Targets TIM-1 in Human Endothelial Cells: Potential Implications for Stroke, COVID-19, Zika, Ebola, Dengue, and Other Viral Infections. Int J Mol Sci 2022; 23:ijms231810242. [PMID: 36142146 PMCID: PMC9499484 DOI: 10.3390/ijms231810242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.
Collapse
|
22
|
The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin Sci (Lond) 2022; 136:1157-1178. [PMID: 35946958 PMCID: PMC9366862 DOI: 10.1042/cs20210994] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of death and debility worldwide. Various molecular mechanisms have been studied to better understand the development and progression of cardiovascular pathologies with hope to eradicate these diseases. With the advancement of the sequencing technology, it is revealed that the majority of our genome is non-coding. A growing body of literature demonstrates the critical role of long non-coding RNAs (lncRNAs) as epigenetic regulators of gene expression. LncRNAs can regulate cellular biological processes through various distinct molecular mechanisms. The abundance of lncRNAs in the cardiovascular system indicates their significance in cardiovascular physiology and pathology. LncRNA H19, in particular, is a highly evolutionarily conserved lncRNA that is enriched in cardiac and vascular tissue, underlining its importance in maintaining homeostasis of the cardiovascular system. In this review, we discuss the versatile function of H19 in various types of cardiovascular diseases. We highlight the current literature on H19 in the cardiovascular system and demonstrate how dysregulation of H19 induces the development of cardiovascular pathophysiology.
Collapse
|
23
|
Ciucci G, Colliva A, Vuerich R, Pompilio G, Zacchigna S. Biologics and cardiac disease: challenges and opportunities. Trends Pharmacol Sci 2022; 43:894-905. [PMID: 35779965 DOI: 10.1016/j.tips.2022.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
Biologics are revolutionizing the treatment of chronic diseases, such as cancer and monogenic disorders, by overcoming the limits of classic therapeutic approaches using small molecules. However, the clinical use of biologics is limited for cardiovascular diseases (CVDs) , which are the primary cause of morbidity and mortality worldwide. Here, we review the state-of-the-art use of biologics for cardiac disorders and provide a framework for understanding why they still struggle to enter the field. Some limitations are common and intrinsic to all biological drugs, whereas others depend on the complexity of cardiac disease. In our opinion, delineating these struggles will be valuable in developing and accelerating the approval of a new generation of biologics for CVDs.
Collapse
Affiliation(s)
- Giulio Ciucci
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy; University of Trieste, Department of Life Sciences, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy.
| |
Collapse
|
24
|
Lu D, Chatterjee S, Xiao K, Riedel I, Huang CK, Costa A, Cushman S, Neufeldt D, Rode L, Schmidt A, Juchem M, Leonardy J, Büchler G, Blume J, Gern OL, Kalinke U, Wen Tan WL, Foo R, Vink A, van Laake LW, van der Meer P, Bär C, Thum T. A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. Eur Heart J 2022; 43:4496-4511. [PMID: 35758064 PMCID: PMC9637424 DOI: 10.1093/eurheartj/ehac337] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS Cardiotoxicity leading to heart failure (HF) is a growing problem in many cancer survivors. As specific treatment strategies are not available, RNA discovery pipelines were employed and a new and powerful circular RNA (circRNA)-based therapy was developed for the treatment of doxorubicin-induced HF. METHODS AND RESULTS The circRNA sequencing was applied and the highly species-conserved circRNA insulin receptor (Circ-INSR) was identified, which participates in HF processes, including those provoked by cardiotoxic anti-cancer treatments. Chemotherapy-provoked cardiotoxicity leads to the down-regulation of Circ-INSR in rodents and patients, which mechanistically contributes to cardiomyocyte cell death, cardiac dysfunction, and mitochondrial damage. In contrast, Circ-INSR overexpression prevented doxorubicin-mediated cardiotoxicity in both rodent and human cardiomyocytes in vitro and in a mouse model of chronic doxorubicin cardiotoxicity. Breast cancer type 1 susceptibility protein (Brca1) was identified as a regulator of Circ-INSR expression. Detailed transcriptomic and proteomic analyses revealed that Circ-INSR regulates apoptotic and metabolic pathways in cardiomyocytes. Circ-INSR physically interacts with the single-stranded DNA-binding protein (SSBP1) mediating its cardioprotective effects under doxorubicin stress. Importantly, in vitro transcribed and circularized Circ-INSR mimics also protected against doxorubicin-induced cardiotoxicity. CONCLUSION Circ-INSR is a highly conserved non-coding RNA which is down-regulated during cardiotoxicity and cardiac remodelling. Adeno-associated virus and circRNA mimics-based Circ-INSR overexpression prevent and reverse doxorubicin-mediated cardiomyocyte death and improve cardiac function. The results of this study highlight a novel and translationally important Circ-INSR-based therapeutic approach for doxorubicin-induced cardiac dysfunction.
Collapse
Affiliation(s)
| | | | | | - Isabelle Riedel
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Dimyana Neufeldt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Laura Rode
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Arne Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Julia Leonardy
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Gwen Büchler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Jonas Blume
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Olivia-Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, Hannover 30625, Germany,Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, Hannover 30559, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, Hannover 30625, Germany,Cluster of Excellence—Resolving Infection Susceptibility (RESIST), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Wilson Lek Wen Tan
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Level 8, Singapore 117599, Republic of Singapore
| | - Roger Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Level 8, Singapore 117599, Republic of Singapore
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584, The Netherlands
| | - Linda W van Laake
- Department of Cardiology and Regenerative Medicine Center, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713, The Netherlands
| | - Christian Bär
- Corresponding authors. Tel: +49 511 532 5272, (T.T.); Tel: +49 511 532 2883, (C.B.)
| | - Thomas Thum
- Corresponding authors. Tel: +49 511 532 5272, (T.T.); Tel: +49 511 532 2883, (C.B.)
| |
Collapse
|
25
|
Long X, Qiu Z, Li C, Wang Y, Li J, Zhao R, Rong J, Gu N, Yuan J, Ge J, Shi B. CircERBB2IP promotes post-infarction revascularization via the miR-145a-5p/Smad5 axis. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:573-586. [PMID: 35592503 PMCID: PMC9096260 DOI: 10.1016/j.omtn.2022.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/15/2022] [Indexed: 10/27/2022]
|
26
|
Marinescu MC, Lazar AL, Marta MM, Cozma A, Catana CS. Non-Coding RNAs: Prevention, Diagnosis, and Treatment in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23052728. [PMID: 35269870 PMCID: PMC8911068 DOI: 10.3390/ijms23052728] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/17/2022] Open
Abstract
Recent knowledge concerning the role of non-coding RNAs (ncRNAs) in myocardial ischemia/reperfusion (I/R) injury provides new insight into their possible roles as specific biomarkers for early diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) have fewer than 200 nucleotides, while long ncRNAs (lncRNAs) have more than 200 nucleotides. The three types of ncRNAs (miRNAs, lncRNAs, and circRNAs) act as signaling molecules strongly involved in cardiovascular disorders (CVD). I/R injury of the heart is the main CVD correlated with acute myocardial infarction (AMI), cardiac surgery, and transplantation. The expression levels of many ncRNAs and miRNAs are highly modified in the plasma of MI patients, and thus they have the potential to diagnose and treat MI. Cardiomyocyte and endothelial cell death is the major trigger for myocardial ischemia–reperfusion syndrome (MIRS). The cardioprotective effect of inflammasome activation in MIRS and the therapeutics targeting the reparative response could prevent progressive post-infarction heart failure. Moreover, the pharmacological and genetic modulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.
Collapse
Affiliation(s)
- Mihnea-Cosmin Marinescu
- County Clinical Emergency Hospital of Brasov Romania, 500326 Brașov, Romania;
- Department of Vascular Surgery, Second Surgical Clinic, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrada-Luciana Lazar
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Angela Cozma
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Cristina-Sorina Catana
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
27
|
Yang C, Zhang Y, Yang B. MIAT, a potent CVD-promoting lncRNA. Cell Mol Life Sci 2021; 79:43. [PMID: 34921634 PMCID: PMC11072732 DOI: 10.1007/s00018-021-04046-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
The initial identification of long non-coding RNA myocardial infarction associated transcript (MIAT) as a genetic risk factor of myocardial infarction has made this lncRNA (designated as lncR-MIAT here) a focus of intensive studies worldwide. Emerging evidence supports that lncR-MIAT is susceptible in its expression to multiple deleterious factors like angiotensin II, isoproterenol, hypoxia, and infection and is anomaly overexpressed in serum, plasma, blood cells and myocardial tissues under a variety of cardiovascular conditions including myocardial infarction, cardiac hypertrophy, diabetic cardiomyopathy, dilated cardiomyopathy, sepsis cardiomyopathy, atrial fibrillation and microvascular dysfunction. Experimental results consistently demonstrated that upregulation of lncR-MIAT plays active roles in the pathological processes of the cardiovascular system and knockdown of this lncRNA effectively ameliorates the adverse conditions. The available data revealed that lncR-MIAT acts through multiple mechanisms such as competitive endogenous RNA, natural antisense RNA and RNA/protein interactions. Moreover, the functional domains of lncR-MIAT accounting for certain specific cellular functions of the full-length transcript have been identified and characterized. These insights will not only tremendously advance our understanding of lncRNA biology and pathophysiology, but also offer good opportunities for more innovative and precise design of agents that have the potential to be developed into new drugs for better therapy of cardiovascular diseases (CVDs) in the future. Herein, we provide an overview of lncR-MIAT, focusing on its roles in cardiovascular diseases, underline the unique cellular/molecular mechanisms for its actions, and speculate the perspectives about the translational studies on the potential diagnostic and therapeutic applications of lncR-MIAT.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, People's Republic of China
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang, People's Republic of China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, People's Republic of China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, People's Republic of China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
28
|
Chen L, Xu Y. MicroRNAs as Biomarkers and Therapeutic Targets in Doxorubicin-Induced Cardiomyopathy: A Review. Front Cardiovasc Med 2021; 8:740515. [PMID: 34901206 PMCID: PMC8653425 DOI: 10.3389/fcvm.2021.740515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin is a broad-spectrum chemotherapy drug applied in antitumor therapy. However, its clinical utility is limited by its fatal cardiotoxicity. Doxorubicin (DOX)-induced cardiomyopathy (DIC) begins with the first DOX dose and is characterized by being cumulative dose-dependent, and its early diagnosis using common detection methods is very difficult. Therefore, it is urgent to determine the underlying mechanism of DIC to construct treatment strategies for the early intervention before irreversible damage to the myocardium occurs. Growing evidence suggests that microRNAs (miRNAs) play regulatory roles in the cardiovascular system. miRNAs may be involved in DIC by acting through multiple pathways to induce cardiomyocyte injury. Recent studies have shown that the dysregulation of miRNA expression can aggravate the pathological process of DIC, including the induction of oxidative stress, apoptosis, ion channel dysfunction and microvascular dysfunction. Current findings on the roles of miRNAs in DIC have led to a wide range of studies exploring candidate miRNAs to be utilized as diagnostic biomarkers and potential therapeutic targets for DIC. In this review, we discuss frontier studies on the roles of miRNAs in DIC to better understand their functions, develop relevant applications in DIC, discuss possible reasons for the limitations of their use and speculate on innovative treatment strategies.
Collapse
Affiliation(s)
- Liuying Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Meessen JMTA, Bär C, di Dona FM, Staszewsky LI, Di Giulio P, Di Tano G, Costa A, Leonardy J, Novelli D, Nicolis EB, Masson S, Pinet F, Thum T, Latini R. LIPCAR Is Increased in Chronic Symptomatic HF Patients. A Sub-Study of the GISSI-HF Trial. Clin Chem 2021; 67:1721-1731. [PMID: 34751777 DOI: 10.1093/clinchem/hvab197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The long noncoding RNA LIPCAR (Long Intergenic noncoding RNA Predicting CARdiac remodeling) has emerged as a promising biomarker in cardiac disease and cardiac remodeling. To determine whether LIPCAR levels help for a molecular phenotyping of chronic heart failure (HF) patients, this study assessed the association of LIPCAR with severity of the disease and its progression, and with risk of death or hospitalization in HF patients. METHODS LIPCAR was measured in plasma of 967 HF patients with symptomatic heart failure participating in the Gruppo Italiano per lo Studio della Sopravvivenza nell'Insufficienza Cardiaca - Heart Failure (GISSI-HF) biohumoral sub-study. RESULTS Plasma levels of LIPCAR were significantly associated with functional impairment as assessed by the New York Heart Association (NYHA) class, kidney function as reflected by estimated glomerular filtration rate, and creatinine, hemoglobin and mitral insufficiency. In females, these associations were more marked as compared to males. LIPCAR plasma levels were significantly related to the two cardiac markers, N-terminal pro-B type natriuretic peptide and high-sensitivity cardiac troponin T, but not to inflammatory markers such as high sensitivity C-reactive protein and pentraxin-3, nor to patient reported outcomes such as depression and quality of life. HF patients with high LIPCAR levels univariately showed significantly higher incidence of cardiovascular hospitalizations but not of death; after adjusting for covariates, no significant effects of LIPCAR were found for cardiovascular hospitalizations. CONCLUSION The circulating long noncoding RNA LIPCAR was increased in HF patients with higher NYHA class, impaired kidney function, and lower hemoglobin, which are indicators of patients' overall state.
Collapse
Affiliation(s)
- Jennifer M T A Meessen
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Filippo M di Dona
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Lidia I Staszewsky
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Paola Di Giulio
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | | | - Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Julia Leonardy
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Deborah Novelli
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Enrico B Nicolis
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Serge Masson
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Florence Pinet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Roberto Latini
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|
30
|
Non-coding RNAs in endodontic disease. Semin Cell Dev Biol 2021; 124:82-84. [PMID: 34257038 DOI: 10.1016/j.semcdb.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/27/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
The immunocompetence and regeneration potential of the dental pulp and its surrounding apical tissues have been investigated extensively in the field of endodontics. While research on the role of non-coding RNAs in these tissues is still in its infancy, it is envisioned that improved understanding of the regulatory function of ncRNAs in pulpal and periapical immune response will help prevent or treat endodontic disease. Of particular importance is the role of these RNAs in regenerating the dentin-pulp complex. In this review, we highlight recent progress on the role of non-coding RNAs in the immune response to endodontic infection as well as the repair and regenerative response to injury.
Collapse
|
31
|
Davidson SM, Padró T, Bollini S, Vilahur G, Duncker DJ, Evans PC, Guzik T, Hoefer IE, Waltenberger J, Wojta J, Weber C. Progress in cardiac research - from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc Res 2021; 117:2161-2174. [PMID: 34114614 PMCID: PMC8344830 DOI: 10.1093/cvr/cvab200] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
We review some of the important discoveries and advances made in basic and translational cardiac research in 2020. For example, in the field of myocardial infarction (MI), new aspects of autophagy and the importance of eosinophils were described. Novel approaches such as a glycocalyx mimetic were used to improve cardiac recovery following MI. The strategy of 3D bio-printing was shown to allow the fabrication of a chambered cardiac organoid. The benefit of combining tissue engineering with paracrine therapy to heal injured myocardium is discussed. We highlight the importance of cell-to cell communication, in particular the relevance of extracellular vesicles such as exosomes, which transport proteins, lipids, non-coding RNAs and mRNAs and actively contribute to angiogenesis and myocardial regeneration. In this rapidly growing field, new strategies were developed to stimulate the release of reparative exosomes in ischaemic myocardium. Single-cell sequencing technology is causing a revolution in the study of transcriptional expression at cellular resolution, revealing unanticipated heterogeneity within cardiomyocytes, pericytes and fibroblasts, and revealing a unique subpopulation of cardiac fibroblasts. Several studies demonstrated that exosome- and non-coding RNA-mediated approaches can enhance human induced pluripotent stem cell (iPSC) viability and differentiation into mature cardiomyocytes. Important details of the mitochondrial Ca2+ uniporter and its relevance were elucidated. Novel aspects of cancer therapeutic-induced cardiotoxicity were described, such as the novel circular RNA circITCH, which may lead to novel treatments. Finally, we provide some insights into the effects of SARS-CoV-2 on the heart.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London WC1E 6HX, United Kingdom
| | - Teresa Padró
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute, University of Sheffield, UK
| | - Tomasz Guzik
- British Heart Foundation Centre for Cardiovascular Research, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Imo E Hoefer
- Central Diagnostic Laboratory, University Medical Center Utrecht, Netherlands
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Muenster, Muenster, Germany
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
32
|
Luxán G, Dimmeler S. The vasculature: a therapeutic target in heart failure? Cardiovasc Res 2021; 118:53-64. [PMID: 33620071 PMCID: PMC8752358 DOI: 10.1093/cvr/cvab047] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
It is well established that the vasculature plays a crucial role in maintaining oxygen and nutrients supply to the heart. Increasing evidence further suggest that the microcirculation has additional roles in supporting a healthy microenvironment. Heart failure is well known to be associated with changes and functional impairment of the microvasculature. The specific ablation of protective signals in endothelial cells in experimental models is sufficient to induce heart failure. Therefore, restoring a healthy endothelium and microcirculation may be a valuable therapeutic strategy to treat heart failure. The present review article will summarize the current understanding of the vascular contribution to heart failure with reduced or preserved ejection fraction. Novel therapeutic approaches including next generation pro-angiogenic therapies and non-coding RNA therapeutics, as well as the targeting of metabolites or metabolic signaling, vascular inflammation and senescence will be discussed.
Collapse
Affiliation(s)
- Guillermo Luxán
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany, German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany, Cardiopulmonary Institute, Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany, German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany, Cardiopulmonary Institute, Goethe University Frankfurt, Germany
| |
Collapse
|
33
|
Mone P, Gambardella J, Wang X, Jankauskas SS, Matarese A, Santulli G. miR-24 targets SARS-CoV-2 co-factor Neuropilin-1 in human brain microvascular endothelial cells: Insights for COVID-19 neurological manifestations. RESEARCH SQUARE 2021:rs.3.rs-192099. [PMID: 33564755 PMCID: PMC7872362 DOI: 10.21203/rs.3.rs-192099/v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuropilin-1 is a transmembrane glycoprotein that has been implicated in several processes including angiogenesis and immunity. Recent evidence has also shown that it is implied in the cellular internalization of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). We hypothesized that specific microRNAs can target Neuropilin-1. By combining bioinformatic and functional approaches, we identified miR-24 as a regulator of Neuropilin-1 transcription. Since Neuropilin-1 has been shown to play a key role in the endothelium-mediated regulation of the blood-brain barrier, we validated miR-24 as a functional modulator of Neuropilin-1 in human brain microvascular endothelial cells (hBMECs), which are the most suitable cell line for an in vitro bloodâ€"brain barrier model.
Collapse
|
34
|
Mone P, Gambardella J, Wang X, Jankauskas SS, Matarese A, Santulli G. miR-24 Targets the Transmembrane Glycoprotein Neuropilin-1 in Human Brain Microvascular Endothelial Cells. Noncoding RNA 2021; 7:9. [PMID: 33540664 PMCID: PMC7931075 DOI: 10.3390/ncrna7010009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropilin-1 is a transmembrane glycoprotein that has been implicated in several processes including angiogenesis and immunity. Recent evidence has also shown that it is implied in the cellular internalization of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). We hypothesized that specific microRNAs can target Neuropilin-1. By combining bioinformatic and functional approaches, we identified miR-24 as a regulator of Neuropilin-1 transcription. Since Neuropilin-1 has been shown to play a key role in the endothelium-mediated regulation of the blood-brain barrier, we validated miR-24 as a functional modulator of Neuropilin-1 in human brain microvascular endothelial cells (hBMECs), which are the most suitable cell line for an in vitro blood-brain barrier model.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (P.M.); (J.G.); (X.W.); (S.S.J.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| | - Jessica Gambardella
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (P.M.); (J.G.); (X.W.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education (ITME), 80131 Naples, Italy
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (P.M.); (J.G.); (X.W.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (P.M.); (J.G.); (X.W.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (P.M.); (J.G.); (X.W.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education (ITME), 80131 Naples, Italy
| |
Collapse
|
35
|
Karstensen KT, Schein A, Petri A, Bøgsted M, Dybkær K, Uchida S, Kauppinen S. Long Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Noncoding RNA 2020; 7:1. [PMID: 33379241 PMCID: PMC7838888 DOI: 10.3390/ncrna7010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. Although significant progress has been made in recent years to treat DLBCL patients, 30%-40% of the patients eventually relapse or are refractory to first line treatment, calling for better therapeutic strategies for DLBCL. Long non-coding RNAs (lncRNAs) have emerged as a highly diverse group of non-protein coding transcripts with intriguing molecular functions in human disease, including cancer. Here, we review the current understanding of lncRNAs in the pathogenesis and progression of DLBCL to provide an overview of the field. As the current knowledge of lncRNAs in DLBCL is still in its infancy, we provide molecular signatures of lncRNAs in DLBCL cell lines to assist further lncRNA research in DLBCL.
Collapse
Affiliation(s)
- Kasper Thystrup Karstensen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Aleks Schein
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Martin Bøgsted
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Karen Dybkær
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| |
Collapse
|
36
|
Matarese A, Gambardella J, Sardu C, Santulli G. miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19. Biomedicines 2020; 8:biomedicines8110462. [PMID: 33143053 PMCID: PMC7693865 DOI: 10.3390/biomedicines8110462] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.
Collapse
Affiliation(s)
- Alessandro Matarese
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.M.); (J.G.)
- AORN “Antonio Cardarelli”, 80100 Naples, Italy
| | - Jessica Gambardella
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.M.); (J.G.)
- Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Department of Medical Sciences, International University of Health and Medical Sciences “S. Camillo”, 00131 Rome, Italy
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.M.); (J.G.)
- Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
- Correspondence: ; Tel.: +1-718-430-3370
| |
Collapse
|
37
|
Mester-Tonczar J, Hašimbegović E, Spannbauer A, Traxler D, Kastner N, Zlabinger K, Einzinger P, Pavo N, Goliasch G, Gyöngyösi M. Circular RNAs in Cardiac Regeneration: Cardiac Cell Proliferation, Differentiation, Survival, and Reprogramming. Front Physiol 2020; 11:580465. [PMID: 33117197 PMCID: PMC7550749 DOI: 10.3389/fphys.2020.580465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are classified as long non-coding RNAs (lncRNAs) that are characterized by a covalent closed-loop structure. This closed-loop shape is the result of a backsplicing event in which the 3' and 5' splice sites are ligated. Through the lack of 3' poly(A) tails and 5' cap structures, circRNAs are more stable than linear RNAs because these adjustments make the circular loop less susceptible to exonucleases. The majority of identified circRNAs possess cell- and tissue-specific expression patterns. In addition, high-throughput RNA-sequencing combined with novel bioinformatics algorithms revealed that circRNA sequences are often conserved across different species suggesting a positive evolutionary pressure. Implicated as regulators of protein turnover, micro RNA (miRNA) sponges, or broad effectors in cell differentiation, proliferation, and senescence, research of circRNA has increased in recent years. Particularly in cardiovascular research, circRNA-related discoveries have opened the door for the development of potential diagnostic and therapeutic tools. Increasing evidence links deviating circRNA expression patterns to various cardiovascular diseases including ischemic heart failure. In this mini-review, we summarize the current state of knowledge on circRNAs in cardiac regeneration with a focus on cardiac cell proliferation, differentiation, cardiomyocyte survival, and cardiac reprogramming.
Collapse
Affiliation(s)
- Julia Mester-Tonczar
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Ena Hašimbegović
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Andreas Spannbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Nina Kastner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Patrick Einzinger
- Research Unit of Information and Software Engineering, Institute of Information Systems Engineering, Vienna University of Technology, Vienna, Austria
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|