1
|
Xiao Y, Bi X, Zhang R, Li Y, Sun W, Hao Y. Restoration of vascular dysfunction resulting from maternal high-fat diet via modulation of the NLRP3/IL-1β axis. Clin Exp Hypertens 2025; 47:2440342. [PMID: 39722596 DOI: 10.1080/10641963.2024.2440342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
This study investigated the impact of maternal high-fat diet on vascular function and endothelial homeostasis in offspring. We found that offspring exposed to maternal high-fat diet exhibited elevated blood pressure, impaired abdominal aortic vascular function, and endothelial homeostasis imbalance. These changes were accompanied by increased levels of reactive oxygen species (ROS) and upregulation of pro-inflammatory cytokines (including IL-1β, TNF-α, IL-6, and IL-10). Treatment with NLRP3 or IL-1β inhibitors prevented the deterioration in vascular function, reduced endothelial NO production, and inflammation induced by maternal high-fat diet exposure compared to the control group. The findings suggest that during pregnancy, mitigating the vascular impairments in offspring induced by maternal high-fat diet can be achieved by inhibiting the NLRP3/IL-1β pathway.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xianru Bi
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Rongjie Zhang
- Department of Vascular Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Li
- Department of Vascular Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wei Sun
- Department of Vascular Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Deng X, Luo H, He J, Deng W, Wang D. Omentin-1 ameliorates pulmonary arterial hypertension by inhibiting endoplasmic reticulum stress through AMPKα signaling. Clin Exp Hypertens 2024; 46:2332695. [PMID: 38527024 DOI: 10.1080/10641963.2024.2332695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Endothelial dysfunction of the pulmonary artery contributes to hypoxia-induced pulmonary arterial hypertension (PAH). Omentin-1, as a novel adipocytokine, plays an important protective role against cardiovascular diseases. However, the effect and underlying mechanisms of omentin-1 against PAH remain unclear. METHODS PAH was induced in SD (Sprague & Dawley) rats via a low-oxygen chamber for 4 weeks. Hemodynamic evaluation was undertaken using a PowerLab data acquisition system, and histopathological analysis was stained with hematoxylin and eosin (H&E). Endothelial function of pulmonary artery was assessed using wire myography. RESULTS We found that omentin-1 significantly improved pulmonary endothelial function in rats exposed to hypoxia and attenuated PAH. Mechanistically, we found that omentin-1 increased phosphorylated 5'‑adenosine monophosphate‑activated protein kinase (p‑AMPK) level and reduced endoplasmic reticulum (ER) stress and increased NO production in pulmonary artery from rats exposed to hypoxia. However, the effect of omentin-1 was abolished by treatment with AMPK inhibitor (Compound C). CONCLUSIONS Our results reveal a protective effect of omentin-1 in PAH via inhibiting ER stress through AMPKα signaling and provide an agent with translational potential for the treatment of PAH.
Collapse
Affiliation(s)
- Xinyu Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Ye X, Pei F, Li W, Xue J, Huang X, Huang J, Zhang L. Fibroblast growth factor 21 attenuates pulmonary ischemia/reperfusion injury via inhibiting endoplasmic reticulum stress-induced ferroptosis though FGFR1/PPARδ signaling pathway. Int Immunopharmacol 2024; 143:113307. [PMID: 39366074 DOI: 10.1016/j.intimp.2024.113307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Acute lung injury is a critical life-threatening complication of pulmonary and cardiac surgery with a high rate of morbidity and mortality. Fibroblast growth factor 21 (FGF21) has been reported to play an important role in protecting vital organs from damage. This study aims to investigate the potential protective role and mechanism of FGF21 in pulmonary ischemia/reperfusion (I/R)-induced acute lung injury. METHODS A pulmonary epithelial cell line was treated with hypoxia/regeneration (H/R) in vitro and a mouse model of acute lung injury was induced with pulmonary I/R in vivo. Lung injury after pulmonary I/R was compared between FGF21-konckout (KO) mice and wild-type (WT) mice. Recombinant FGF21 was administrated in vivo and in vitro to determine its therapeutic effect. RESULTS Circulating levels of FGF21 in mice with pulmonary I/R injury were significantly higher than in those without pulmonary I/R injury. Lung injury was aggravated in FGF21-KO mice compared with WT mice and the administration of FGF21 alleviated lung injury in mouse treated with I/R and pulmonary epithelial cell injury treated with H/R. FGF21 treatment decreased endoplasmic reticulum (ER) stress, Fe2+ and lipid reactive oxygen species (ROS) contents and GPX4 expression and increased PTGS2 levels. Mechanistically, FGF21 upregulated the expression of FGFR1 and PPARδ, ameliorated ER stress and ER stress induced-ferroptosis. Furthermore, FGF21 increased the expression level of PPARδ in pulmonary epithelial cell exposed to H/R, which was inhibited by FGFR1 inhibitor (PD173074). The protective effects of FGF21 were abolished by co-treatment with PPARδ inhibitor (GSK0660), indicating FGF21 attenuated ER stress-induced ferroptosis by dependent on FGFR1/PPARδ signaling pathway. CONCLUSION Our study reveals that FGF21 protects against pulmonary I/R injury via inhibiting ER stress-induced ferroptosis though FGFR1/PPARδ signaling pathway. Boosting endogenous FGF21 or the administration of recombinant FGF21 could be promising therapeutic strategies for pulmonary IRI.
Collapse
Affiliation(s)
- Xinqiao Ye
- Department of Thoracic Surgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou 341009, Jiangxi, China
| | - Fang Pei
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou 341009, Jiangxi, China.
| | - Wei Li
- People's Hospital of Ningdu County, Ganzhou 342899, Jiangxi, China
| | - Jinping Xue
- Xinfeng Hospital of Traditional Chinese Midicine, Ganzhou 341699, Jiangxi, China
| | - Xiuyun Huang
- Dingnan Second Hospital, Ganzhou 341999, Jiangxi, China
| | - Jianming Huang
- Department of Thoracic Surgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou 341009, Jiangxi, China
| | - Liyan Zhang
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 519041, Guangdong, China
| |
Collapse
|
4
|
Kuai L, Huang F, Mao L, Ru Y, Jiang J, Song J, Chen S, Li K, Li Y, Dong H, Lu X, Li B, Shi J. Single-Atom Catalysts with Isolated Cu 1-N 4 Sites for Atopic Dermatitis Cascade Catalytic Therapy via Activating PPAR Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407365. [PMID: 39363827 DOI: 10.1002/smll.202407365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Atopic dermatitis (AD) is one of the most common allergic skin disorders affecting over 230 million people worldwide, while safe and efficient therapeutic options for AD are currently rarely available. Reactive oxygen species (ROS) accumulation plays a key role in AD's disease progression. Therefore, a novel single-atom catalyst is designed with isolated Cu1-N4 sites anchored on carbon support (Cu1-N4 ISAC), featuring triple antioxidant enzyme-mimicking activities, for efficient AD cascade catalytic therapy (CCT). The excellent superoxide dismutase (SOD)-, glutathione peroxidase (GPx)-, and ascorbate peroxidase (APx)-like activities of Cu1-N4 ISACs enable the sequential conversion of O2•- to H2O2 and then to harmless H2O, thereby protecting keratinocytes from oxidative stress damage. Notably, two novel experimental methods are developed to directly prove the SOD-GPx and SOD-APx cascade catalytic activities for the first time. In vivo experiments show that Cu1-N4 ISACs are more potent than a recommended typical medicine (halcinonide solution). Additionally, RNA sequencing and bioinformatic analysis reveal that Cu1-N4 ISACs reduce inflammation and inhibit ROS production by activating PPAR signaling, which is aberrantly reduced in AD. Therefore, the synthesized catalytic medicine offers an alternative to alleviate AD and has the potential to serve as PPAR agonists for treating similar diseases.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Fang Huang
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Lijie Mao
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Yi Ru
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Si Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Ke Li
- School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiangyu Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
5
|
Chen S, Xie JD, Xie MT, Yang LN, Lin YF, Chen JB, Chen TF, Zeng KF, Tan ZB, Lu SM, Wang HJ, Yang B, Jiang WH, Zhang SW, Deng B, Liu B, Zhang J. Przewaquinone A inhibits Angiotensin II-induced endothelial diastolic dysfunction activation of AMPK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155885. [PMID: 39096544 DOI: 10.1016/j.phymed.2024.155885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Endothelial dysfunction (ED), characterized by markedly reduced nitric oxide (NO) bioavailability, vasoconstriction, and a shift toward a proinflammatory and prothrombotic state, is an important contributor to hypertension, atherosclerosis, and other cardiovascular diseases. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is widely involved in cardiovascular development. Przewaquinone A (PA), a lipophilic diterpene quinone extracted from Salvia przewalskii Maxim, inhibits vascular contraction. PURPOSE Herein, the goal was to explore the protective effect of PA on ED in vivo and in vitro, as well as the underlying mechanisms. METHODS A human umbilical vein endothelial cell (HUVEC) model of ED induced by angiotensin II (AngII) was used for in vitro observations. Levels of AMPK, endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO), and endothelin-1 (ET-1) were detected by western blotting and ELISA. A mouse model of hypertension was established by continuous infusion of AngII (1000 ng/kg/min) for 4 weeks using osmotic pumps. Following PA and/or valsartan administration, NO and ET-1 levels were measured. The levels of AMPK signaling-related proteins in the thoracic aorta were evaluated by immunohistochemistry. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were measured using the tail cuff method. Isolated aortic vascular tone measurements were used to evaluate the vasodilatory function in mice. Molecular docking, molecular dynamics, and surface plasmon resonance imaging (SPRi) were used to confirm AMPK and PA interactions. RESULTS PA inhibited AngII-induced vasoconstriction and vascular adhesion as well as activated AMPK signaling in a dose-dependent manner. Moreover, PA markedly suppressed blood pressure, activated vasodilation in mice following AngII stimulation, and promoted the activation of AMPK signaling. Furthermore, molecular simulations and SPRi revealed that PA directly targeted AMPK. AMPK inhibition partly abolished the protective effects of PA against endothelial dysfunction. CONCLUSION PA activates AMPK and ameliorates endothelial dysfunction during hypertension.
Collapse
Affiliation(s)
- Si Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China; School of Chinese medicine, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, PR China
| | - Jun-di Xie
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Meng-Ting Xie
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Li-Ning Yang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yu-Fang Lin
- The Second Clinical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Jun-Bang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ting-Fang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ke-Feng Zeng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Si-Min Lu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Hui-Juan Wang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Bo Yang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Wei-Hao Jiang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Jingzhi Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| |
Collapse
|
6
|
Yang Y, Yuan F, Xiang D, Wang P, Yang R, Li X. Spotlight on endoplasmic reticulum stress in acute kidney injury: A bibliometric analysis and visualization from 1997 to 2024. Medicine (Baltimore) 2024; 103:e39567. [PMID: 39252224 PMCID: PMC11384828 DOI: 10.1097/md.0000000000039567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, a protective stress response of body and play important role in maintain ER stability. Acute kidney injury (AKI) is a severe syndrome, and the molecular mechanisms of AKI has not been fully elucidated. With an increasing understanding of ER stress, ER stress has been investigated and considered a potential and novel therapeutic target in AKI. This study aims to employ a bibliometric approach to analyze research trends and focal points in ER stress associated with AKI over 3 decades. METHODS Data were retrieved from the Web of Science Core Collection on April 15, 2024. CiteSpace and VOSviewer bibliometric software were mainly used to measure bibliometrics and analyze knowledge graphs to predict the latest research trends in the field. RESULTS There were 452 "ER stress in AKI" articles in the Web of Science Core Collection. According to the report, China and the United States were the leading research drivers in this field. Central South University was the most active academic institution, contributing the most documents. In this field, Dong Zheng was the most prolific author. The American Journal of Physiology-Renal Physiology was the journal with the most records among all journals. The keywords "NLRP3 inflammasome," "redox signaling," and novel forms of cell death such as "ferroptosis" may represent current research trends and directions. CONCLUSION The bibliometric analysis comprehensively examines the trends and hotspots on "ER stress and AKI." Studies on AKI related to stress in the ER are still in their infancy. Research should focus on understanding the relationship between ER stress and inflammasome, redox signal pathways and new forms of cell death such as ferroptosis.
Collapse
Affiliation(s)
- Yuan Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Pengkai Wang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Rui Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| |
Collapse
|
7
|
Jiang D, Yue H, Liang WT, Wu Z. Developmental endothelial locus 1: the present and future of an endogenous factor in vessels. Front Physiol 2024; 15:1347888. [PMID: 39206385 PMCID: PMC11350114 DOI: 10.3389/fphys.2024.1347888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Developmental Endothelial Locus-1 (DEL-1), also known as EGF-like repeat and discoidin I-like domain-3 (EDIL3), is increasingly recognized for its multifaceted roles in immunoregulation and vascular biology. DEL-1 is a protein that is mainly produced by endothelial cells. It interacts with various integrins to regulate the behavior of immune cells, such as preventing unnecessary recruitment and inflammation. DEL-1 also helps in resolving inflammation by promoting efferocytosis, which is the process of clearing apoptotic cells. Its potential as a therapeutic target in immune-mediated blood disorders, cardiovascular diseases, and cancer metastasis has been spotlighted due to its wide-ranging implications in vascular integrity and pathology. However, there are still unanswered questions about DEL-1's precise functions and mechanisms. This review provides a comprehensive examination of DEL-1's activity across different vascular contexts and explores its potential clinical applications. It underscores the need for further research to resolve existing controversies and establish the therapeutic viability of DEL-1 modulation.
Collapse
Affiliation(s)
| | | | - Wei-Tao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhang J, Tu R, Guan F, Feng J, Jia J, Zhou J, Wang X, Liu L. Irisin attenuates ventilator-induced diaphragmatic dysfunction by inhibiting endoplasmic reticulum stress through activation of AMPK. J Cell Mol Med 2024; 28:e18259. [PMID: 38676364 PMCID: PMC11053354 DOI: 10.1111/jcmm.18259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanical ventilation (MV) is an essential life-saving technique, but prolonged MV can cause significant diaphragmatic dysfunction due to atrophy and decreased contractility of the diaphragm fibres, called ventilator-induced diaphragmatic dysfunction (VIDD). It is not clear about the mechanism of occurrence and prevention measures of VIDD. Irisin is a newly discovered muscle factor that regulates energy metabolism. Studies have shown that irisin can exhibit protective effects by downregulating endoplasmic reticulum (ER) stress in a variety of diseases; whether irisin plays a protective role in VIDD has not been reported. Sprague-Dawley rats were mechanically ventilated to construct a VIDD model, and intervention was performed by intravenous administration of irisin. Diaphragm contractility, degree of atrophy, cross-sectional areas (CSAs), ER stress markers, AMPK protein expression, oxidative stress indicators and apoptotic cell levels were measured at the end of the experiment.Our findings showed that as the duration of ventilation increased, the more severe the VIDD was, the degree of ER stress increased, and the expression of irisin decreased.ER stress may be one of the causes of VIDD. Intervention with irisin ameliorated VIDD by reducing the degree of ER stress, attenuating oxidative stress, and decreasing the apoptotic index. MV decreases the expression of phosphorylated AMPK in the diaphragm, whereas the use of irisin increases the expression of phosphorylated AMPK. Irisin may exert its protective effect by activating the phosphorylated AMPK pathway.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Rui Tu
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Fasheng Guan
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of LuzhouSouthwest Medical UniversityLuzhouChina
| | - Jun Zhou
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaobin Wang
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Li Liu
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
9
|
Yin X, Guo Z, Song C. AMPK, a key molecule regulating aging-related myocardial ischemia-reperfusion injury. Mol Biol Rep 2024; 51:257. [PMID: 38302614 DOI: 10.1007/s11033-023-09050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/10/2023] [Indexed: 02/03/2024]
Abstract
Aging leads to the threat of more diseases to the biological anatomical structure and the decline of disease resistance, increasing the incidence and mortality of myocardial ischemia-reperfusion injury (MI/RI). Moreover, MI/RI promotes damage to an aging heart. Notably, 5'-adenosine monophosphate-activated protein kinase (AMPK) regulates cellular energy metabolism, stress response, and protein metabolism, participates in aging-related signaling pathways, and plays an essential role in ischemia-reperfusion (I/R) injury diseases. This study aims to introduce the aging theory, summarize the interaction between aging and MI/RI, and describe the crosstalk of AMPK in aging and MI/RI. We show how AMPK can offer protective effects against age-related stressors, lifestyle factors such as alcohol consumption and smoking, and hypertension. We also review some of the clinical prospects for the development of interventions that harness the effect of AMPK to treat MI/RI and other age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaorui Yin
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China
| | - Ziyuan Guo
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China
| | - Chunli Song
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
10
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
11
|
Shreya S, Alam MJ, Anupriya, Jaiswal S, Rani V, Jain BP. Lipotoxicity, ER Stress, and Cardiovascular Disease: Current Understanding and Future Directions. Cardiovasc Hematol Agents Med Chem 2024; 22:319-335. [PMID: 37859305 DOI: 10.2174/0118715257262366230928051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The endoplasmic reticulum (ER) is a sub-cellular organelle that is responsible for the correct folding of proteins, lipid biosynthesis, calcium storage, and various post-translational modifications. In the disturbance of ER functioning, unfolded or misfolded proteins accumulate inside the ER lumen and initiate downstream signaling called unfolded protein response (UPR). The UPR signaling pathway is involved in lipolysis, triacylglycerol synthesis, lipogenesis, the mevalonate pathway, and low-density lipoprotein receptor recycling. ER stress also affects lipid metabolism by changing the levels of enzymes that are involved in the synthesis or modifications of lipids and causing lipotoxicity. Lipid metabolism and cardiac diseases are in close association as the deregulation of lipid metabolism leads to the development of various cardiovascular diseases (CVDs). Several studies have suggested that lipotoxicity is one of the important factors for cardiovascular disorders. In this review, we will discuss how ER stress affects lipid metabolism and their interplay in the development of cardiovascular disorders. Further, the current therapeutics available to target ER stress and lipid metabolism in various CVDs will be summarized.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Md Jahangir Alam
- Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupriya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Saumya Jaiswal
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
12
|
Zhu J, Shao A, Wang C, Zeng C, Wang H. Inhibition of endoplasmic reticulum stress restores the balance of renal RAS components and lowers blood pressure in the spontaneously hypertensive rats. Clin Exp Hypertens 2023; 45:2202367. [PMID: 37144334 DOI: 10.1080/10641963.2023.2202367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of hypertension. However, the underlying mechanisms for lowering blood pressure (BP) by suppressing ER stress remain unclear. Here, we hypothesized that inhibition of ER stress could restore the balance between RAS components and lower BP in spontaneously hypertensive rats (SHRs). METHODS Wistar-Kyoto (WKY) rats and SHRs received vehicle or 4-PBA, an ER stress inhibitor, in the drinking water for 4 weeks. BP was measured by tail-cuff plethysmography, and the expression of RAS components was examined by Western blot. RESULTS Compared with vehicle-treated WKY rats, vehicle-treated SHRs exhibited higher blood pressure and increased renal ER stress and oxidative stress, accompanied by impaired diuresis and natriuresis. Moreover, SHRs had higher ACE and AT1R and lower AT2R, ACE2, and MasR expressions in the kidney. Interestingly, 4-PBA treatment improved impaired diuresis and natriuresis and lowered blood pressure in SHRs, accompanied by reducing ACE and AT1R protein expression and increasing AT2R, ACE2, and MasR expression in the kidneys of SHRs. In addition, these changes were associated with the reduction of ER stress and oxidative stress. CONCLUSIONS These results suggest that the imbalance of renal RAS components was associated with increased ER stress in SHRs. Inhibition of ER stress with 4-PBA reversed the imbalance of renal RAS components and restored the impaired diuresis and natriuresis, which, at least in part, explains the blood pressure-lowering effects of 4-PBA in hypertension.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, Shanghai Hospital Wanzhou District, Chongqing, China
| | - Anjing Shao
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Wang
- Department of Surgery, Third People's Hospital, Kaizhou District, Chongqing, China
| | - Chensi Zeng
- Department of Hematology, Chongqing Cancer Hospital, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
13
|
Deng J, Hu Y, Zhang Y, Yu F. Ghrelin improves endothelial function and reduces blood pressure in Ang II-induced hypertensive mice: Role of AMPK. Clin Exp Hypertens 2023; 45:2208774. [PMID: 37149883 DOI: 10.1080/10641963.2023.2208774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Endothelial dysfunction is a major pathophysiology observed in hypertension. Ghrelin, a key regulator of metabolism, has been shown to play protective roles in cardiovascular system. However, whether it has the effect of improving endothelial function and lowering blood pressure in Ang II-induced hypertensive mice remains unclear. METHODS In this study, hypertension was induced by continuous infusion of Ang II with a subcutaneous osmotic pumps and ghrelin (30 μg/kg/day) was intraperitoneal injection for 4 weeks. Acetylcholine-induced endothelium-dependent relaxation in aortae was measured on wire myograph and superoxide production in mouse aortae was assessed by fluorescence imaging. RESULTS We found that ghrelin had protective effects on Ang II-induced hypertension by inhibiting oxidative stress, increasing NO production, improving endothelial function, and lowering blood pressure. Furthermore, ghrelin activated AMPK signaling in Ang II-induced hypertension, leading to inhibition of oxidative stress. Compound C, a specific inhibitor of AMPK, reversed the protective effects of ghrelin on the reduction of oxidative stress, the improvement of endothelial function and the reduction of blood pressure. CONCLUSIONS our findings indicated that ghrelin protected against Ang II-induced hypertension by improving endothelial function and lowering blood pressure partly through activating AMPK signaling. Thus, ghrelin may be a valuable therapeutic strategy for hypertension.
Collapse
Affiliation(s)
- Juan Deng
- Department of Endocrinology, People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Yuan Hu
- Department of Endocrinology, Songshan General Hospital, Chongqing, China
| | - Yindi Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fadong Yu
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Liu H, Li Y, Li M, Xie L, Li F, Pan R, Pei F. Follistatin-like 1 protects endothelial function in the spontaneously hypertensive rat by inhibition of endoplasmic reticulum stress through AMPK-dependent mechanism. Clin Exp Hypertens 2023; 45:2277654. [PMID: 37963199 DOI: 10.1080/10641963.2023.2277654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Endothelial dysfunction is a critical initiating factor in the development of hypertension and related complications. Follistatin-like 1 (FSTL1) can promote endothelial cell function and stimulates revascularization in response to ischemic insult. However, it is unclear whether FSTL1 has an effect on ameliorating endothelial dysfunction in spontaneously hypertensive rats (SHRs). METHODS Wistar Kyoto (WKY) and SHRs were treated with a tail vein injection of vehicle (1 mL/day) or recombinant FSTL1 (100 μg/kg body weight/day) for 4 weeks. Blood pressure was measured by tail-cuff plethysmograph, and vascular reactivity in mesenteric arteries was measured using wire myography. RESULTS We found that treatment with FSTL1 reversed impaired endothelium-dependent relaxation (EDR) in mesenteric arteries and lowered blood pressure of SHRs. Decreased AMP-activated protein kinase (AMPK) phosphorylation, elevated endoplasmic reticulum (ER) stress markers, increased reactive oxygen species (ROS), and reduction of nitric oxide (NO) production in mesenteric arteries of SHRs were also reversed by FSTL1 treatment. Ex vivo treatment with FSTL1 improved the impaired EDR in mesenteric arteries from SHRs and reversed tunicamycin (ER stress inducer)-induced ER stress and the impairment of EDR in mesenteric arteries from WKY rats. The effects of FSTL1 were abolished by cotreatment of compound C (AMPK inhibitor). CONCLUSIONS These results suggest that FSTL1 prevents endothelial dysfunction in mesenteric arteries of SHRs through inhibiting ER stress and ROS and increasing NO production via activation of AMPK signaling.
Collapse
Affiliation(s)
- Hanwen Liu
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Yanwen Li
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Maogang Li
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Linghai Xie
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Feng Li
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Runmei Pan
- Operating room, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Fang Pei
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
15
|
Lin H, Chu J, Yuan D, Wang K, Chen F, Liu X. MiR-206 may regulate mitochondrial ROS contribute to the progression of Myocardial infarction via TREM1. BMC Cardiovasc Disord 2023; 23:470. [PMID: 37730550 PMCID: PMC10512505 DOI: 10.1186/s12872-023-03481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Myocardial infarction (MI) is a leading cause of mortality. To better understand its molecular and cellular mechanisms, we used bioinformatic tools and molecular experiments to explore the pathogenesis and prognostic markers. Differential gene expression analysis was conducted using GSE60993 and GSE66360 datasets. Hub genes were identified through pathway enrichment analysis and PPI network construction, and four hub genes (AQP9, MMP9, FPR1, and TREM1) were evaluated for their predictive performance using AUC and qRT-PCR. miR-206 was identified as a potential regulator of TREM1. Finally, miR-206 was found to induce EC senescence and ER stress through upregulating mitochondrial ROS levels via TREM1. These findings may contribute to understanding the pathogenesis of MI and identifying potential prognostic markers.
Collapse
Affiliation(s)
- Hao Lin
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Jiapeng Chu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Deqiang Yuan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Kangwei Wang
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China.
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China.
| |
Collapse
|
16
|
Ren Z, Luo S, Cui J, Tang Y, Huang H, Ding G. Research Progress of Maternal Metabolism on Cardiac Development and Function in Offspring. Nutrients 2023; 15:3388. [PMID: 37571325 PMCID: PMC10420869 DOI: 10.3390/nu15153388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The developmental origin of health and disease (DOHaD) hypothesis refers to the adverse effects of suboptimal developmental environments during embryonic and early fetal stages on the long-term health of offspring. Intrauterine metabolic perturbations can profoundly impact organogenesis in offspring, particularly affecting cardiac development and giving rise to potential structural and functional abnormalities. In this discussion, we contemplate the existing understanding regarding the impact of maternal metabolic disorders, such as obesity, diabetes, or undernutrition, on the developmental and functional aspects of the offspring's heart. This influence has the potential to contribute to the susceptibility of offspring to cardiovascular health issues. Alteration in the nutritional milieu can influence mitochondrial function in the developing hearts of offspring, while also serving as signaling molecules that directly modulate gene expression. Moreover, metabolic disorders can exert influence on cardiac development-related genes epigenetically through DNA methylation, levels of histone modifications, microRNA expression, and other factors. However, the comprehensive understanding of the mechanistic underpinnings of these phenomena remains incomplete. Further investigations in this domain hold profound clinical significance, as they can contribute to the enhancement of public health and the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Zhuoran Ren
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Sisi Luo
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- Shanghai First Maternity and Infant Hospital, Shanghai 200126, China
| | - Jiajun Cui
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Yunhui Tang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200001, China (H.H.)
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Zhao Z, Wang X, Lu M, Gao Y. Rosuvastatin Improves Endothelial Dysfunction in Diabetes by Normalizing Endoplasmic Reticulum Stress via Calpain-1 Inhibition. Curr Pharm Des 2023; 29:2579-2590. [PMID: 37881071 DOI: 10.2174/0113816128250494231016065438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Rosuvastatin contributes to the improvement of vascular complications in diabetes, but the protective mechanisms remain unclear. The aim of the present study was to investigate the effect and mechanism of rosuvastatin on endothelial dysfunction induced by diabetes. METHODS Calpain-1 knockout (Capn1 EK684-/-) and C57BL/6 mice were intraperitoneally injected with STZ to induce type 1 diabetes. Human umbilical vein endothelial cells (HUVECs) were incubated with high glucose in this study. The function of isolated vascular rings, apoptosis, and endoplasmic reticulum stress (ERS) indicators were measured in this experiment. RESULTS The results showed that rosuvastatin (5 mg/kg/d) and calpain-1 knockout improved impaired vasodilation in an endothelial-dependent manner, and this effect was abolished by an ERS inducer. Rosuvastatin administration inhibited calpain-1 activation and ERS induced by high glucose, as well as apoptosis and oxidative stress both in vivo and in vitro. In addition, an ERS inducer (tunicamycin) offset the beneficial effect of rosuvastatin on endothelial dysfunction and ERS, which was accompanied by increased calpain-1 expression. The ERS inhibitor showed a similar improvement in endothelial dysfunction with rosuvastatin but could not increase the improvement in endothelial function of rosuvastatin. CONCLUSION These results suggested that rosuvastatin improves endothelial dysfunction by suppressing calpain- 1 and normalizing ERS, subsequently decreasing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Zhao Zhao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xinpeng Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Liaoning Provincial Key Laboratory of Cardiovascular Drugs, Jinzhou Medical University, Jinzhou, China
| | - Yuxia Gao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
18
|
Liu J, Du X, Yao Q, Jiang T, Cui Q, Xie X, Zhao Z, Lai B, Wang N, Xiao L. Procyanidin B2 ameliorates endothelial dysfunction induced by nicotine via the induction of tetrahydrobiopterin synthesis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
The Potential Role of PPARs in the Fetal Origins of Adult Disease. Cells 2022; 11:cells11213474. [PMID: 36359869 PMCID: PMC9653757 DOI: 10.3390/cells11213474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis holds that events during early development have a profound impact on one’s risk for the development of future adult disease. Studies from humans and animals have demonstrated that many diseases can begin in childhood and are caused by a variety of early life traumas, including maternal malnutrition, maternal disease conditions, lifestyle changes, exposure to toxins/chemicals, improper medication during pregnancy, and so on. Recently, the roles of Peroxisome proliferator-activated receptors (PPARs) in FOAD have been increasingly appreciated due to their wide variety of biological actions. PPARs are members of the nuclear hormone receptor subfamily, consisting of three distinct subtypes: PPARα, β/δ, and γ, highly expressed in the reproductive tissues. By controlling the maturation of the oocyte, ovulation, implantation of the embryo, development of the placenta, and male fertility, the PPARs play a crucial role in the transition from embryo to fetus in developing mammals. Exposure to adverse events in early life exerts a profound influence on the methylation pattern of PPARs in offspring organs, which can affect development and health throughout the life course, and even across generations. In this review, we summarize the latest research on PPARs in the area of FOAD, highlight the important role of PPARs in FOAD, and provide a potential strategy for early prevention of FOAD.
Collapse
|
20
|
Tiwari S, Gupta P, Singh A, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. 4-Phenylbutyrate Mitigates the Motor Impairment and Dopaminergic Neuronal Death During Parkinson's Disease Pathology via Targeting VDAC1 Mediated Mitochondrial Function and Astrocytes Activation. Neurochem Res 2022; 47:3385-3401. [PMID: 35922743 DOI: 10.1007/s11064-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Parul Gupta
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Chaturvedi
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - M Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
21
|
Xiao L, Wang N. PPAR-δ: A key nuclear receptor in vascular function and remodeling. J Mol Cell Cardiol 2022; 169:1-9. [DOI: 10.1016/j.yjmcc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/08/2022]
|
22
|
Cirillo P, Conte S, Pellegrino G, Barra G, De Palma R, Sugraliyev A, Golino P, Cimmino G. Effects of colchicine on tissue factor in oxLDL-activated T-lymphocytes. J Thromb Thrombolysis 2021; 53:739-749. [PMID: 34671897 DOI: 10.1007/s11239-021-02585-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Several studies have shown that T-cells might be involved in pathophysiology of acute coronary syndromes (ACS). Tissue factor (TF) plays a key role in ACS. Many evidences have indicated that some statins reduce TF expression in several cell types. However, literature about rosuvastatin and TF and about statins effects on T-cells is still scanty. Colchicine is an anti-inflammatory drug recently proven to have beneficial effects in ACS via unknown mechanisms. This study investigates the effects of colchicine and rosuvastatin on TF expression in oxLDL-activated T-cells. T-cells, isolated from buffy coats of healthy volunteers, were stimulated with oxLDL (50 µg/dL). T-cells were pre-incubated with colchicine (10 µM) or rosuvastatin (5 µM) for 1 h and then stimulated with oxLDL (50 μg/mL). TF gene (RT-PCR), protein (western blot), surface expression (FACS) and procoagulant activity (FXa generation assay) were measured. NF-κB/IκB axis was examined by western blot analysis and translocation assay. Colchicine and rosuvastatin significantly reduced TF gene, and protein expression and procoagulant activity in oxLDL stimulated T-cells. This effect was associated with a significant reduction in TF surface expression as well as its procoagulant activity. These phenomena appear modulated by drug effects on the transcription factor NF-kB. Rosuvastatin and colchicine prevent TF expression in oxLDL-stimulated T-cells by modulating the NF-κB/IκB axis. Thus, we speculate that this might be another mechanism by which these drugs exert benefic cardiovascular effects.
Collapse
Affiliation(s)
- Plinio Cirillo
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Pellegrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giusi Barra
- Unit of Internal Medicine, Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Raffaele De Palma
- Unit of Internal Medicine, Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Akhmetzhan Sugraliyev
- Department of Internal Disease, Kazakh National Medical University, Almaty, Kazakhstan
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|