1
|
Maga P, Wachsmann-Maga A, Włodarczyk A, Maga M, Batko K, Bogucka K, Kapusta M, Terlecki P. Leukotrienes E4 and B4 and vascular endothelium - New insight into the link between vascular inflammation and peripheral arterial. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 23:200343. [PMID: 39498361 PMCID: PMC11532441 DOI: 10.1016/j.ijcrp.2024.200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Leukotrienes are proinflammatory mediators that participate in the process of atherogenesis and contribute to the development of symptomatic peripheral arterial disease. The aim was to evaluate the relationship between leukotriene E4 (LTE4) and B4 (LTB4) with parameters reflecting endothelial vascular function in patients with chronic lower limb ischemia. This prospective observational study enrolled 50 consecutive patients undergoing endovascular treatment due to chronic lower limb ischemia (Rutherford 3). All participants were followed-up for one year (after 1, 3, 6 and 12 months), with a sequential assessment of urinary LTE4 and LTB4, as well as measures of endothelial and vascular function: Flow-Mediated Dilatation (FMD), Intima-Media Thickness (IMT), corrected Augmentation Index (AI75), Shear Rate (SR), Ankle-Brachial Index (ABI), Toe-Brachial Index (TBI). There was a significant relationship between LTE4 and measures of vascular function: FMD (R2 = 0.69, P < 0.001), IMT (R2 = 0.12, P < 0.01), AI75 (R2 = 0.43, P < 0.001), SR (R2 = 0.48, P < 0.001). Similar findings were noted for LTB4: FMD (R2 = 0.47, p < 0.001), IMT (R2 = 0.23, P < 0.001), AI75 (R2 = 0.61, P < 0.001) and SR (R2 = 0.33, P < 0.001). Alterations in parameters were significantly related: ΔLTE4 vs ΔFMD(R2 = 0.63, P < 0.001), ΔSR (R2 = 0.42, P < 0.001) and ΔLTB4 vs AI75(R2 = 0.40, P < 0.001), SR(R2 = 0. 29, P < 0.001). We conclude, that increasing concentrations of LTE4 and LTB4 are associated with impairment of vascular and endothelial function, which may lead to worse endovascular treatment clinical outcomes.
Collapse
Affiliation(s)
- Paweł Maga
- Department of Angiology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
- Clinical Department of Angiology, University Hospital in Krakow, Poland
| | - Agnieszka Wachsmann-Maga
- Department of Angiology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
- Clinical Department of Angiology, University Hospital in Krakow, Poland
| | - Aleksandra Włodarczyk
- Department of Angiology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Mikołaj Maga
- Clinical Department of Angiology, University Hospital in Krakow, Poland
| | - Krzysztof Batko
- Department of Research and Design, Medicine Economy Law Society (MELS) Foundation, Krakow, Poland
| | - Katarzyna Bogucka
- Clinical Department of Angiology, University Hospital in Krakow, Poland
| | - Maria Kapusta
- Department of Diagnostics, Chair of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Poland
| |
Collapse
|
2
|
Brenna JT, Sergeeva MG, Pestov NB, Korneenko TV, Shchepinov MS. Arachidonic acid: reconciling the dichotomy of its oxidative cascade through specific deuteration. Free Radic Res 2024; 58:583-593. [PMID: 37897398 DOI: 10.1080/10715762.2023.2277145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
A new approach to attenuating pathological inflammatory reactions by buffering the eicosanoid pathways with oxidation-resistant hexadeuterated arachidonic acid (D-ARA) is discussed. Enzymatic processing of ARA, released by phospholipase A2, by lipoxygenases, cyclooxygenases, and cytochromes yields a wide range of bioactive eicosanoids, including pro-inflammation, pro-angiogenesis and pro-thrombosis species that, when produced in excess, are an underlying cause of pathology. Conversely, some products of ARA oxidation possess pro-resolving properties. Non-enzymatic free radical oxidation of ARA generates another large group of products such as isoprostanes and their metabolites, associated with inflammation, ischemia-reperfusion stress, and atherosclerosis. A separate group comprises reactive carbonyl derivatives that irreversibly damage diverse biomolecules. Being resistant to both enzymatic and non-enzymatic oxidation pathways due to large kinetic isotope effects, D-ARA may play a role in mitigating inflammation-related disorders and conditions, including inflammaging.
Collapse
Affiliation(s)
- J Thomas Brenna
- University of TX at Austin, Departments of Pediatrics, of Chemistry, and of Nutrition, Dell Pediatric Research Institute, Austin, TX, USA
| | - Marina G Sergeeva
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Laboratory of Tick-Borne Encephalitis and other Encephalitides, Moscow, Russia
- Institute of Biomedical Chemistry, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Group of Cross-Linking Enzymes, Moscow, Russia
| | - Tatyana V Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Group of Cross-Linking Enzymes, Moscow, Russia
| | | |
Collapse
|
3
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
4
|
Ait-Oufella H, Libby P. Inflammation and Atherosclerosis: Prospects for Clinical Trials. Arterioscler Thromb Vasc Biol 2024; 44:1899-1905. [PMID: 39167675 PMCID: PMC11343092 DOI: 10.1161/atvbaha.124.320155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Affiliation(s)
- Hafid Ait-Oufella
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Sorbonne Université, Paris, France
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Cui J, Zhang Y, Zhang W, Li D, Hong Z, Zhao L, Sun J, Chen Y, Zhang N. Research Hotspots and Development Trends on Apolipoprotein B in the Field of Atherosclerosis: A Bibliometric Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01218-2. [PMID: 38963531 DOI: 10.1007/s12033-024-01218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Cardiovascular diseases caused by atherosclerosis (AS) are the leading causes of disability and death worldwide. Apolipoprotein B (ApoB), the core protein of low-density lipoproteins, is a major contributor to cardiovascular disease-related morbidity and mortality, with apolipoprotein B (ApoB) playing a critical role in its pathogenesis. However, no bibliometric studies on the involvement of ApoB in AS have been published. This study aimed to conduct a comprehensive bibliometric analysis to explore the current and future trends regarding the role of ApoB in AS. METHODS Utilizing the Web of Science Core Collection, a thorough search was conducted for ApoB in AS-related papers related to research on ApoB in the field of AS during 1991-2023. The analysis focused on annual publication trends, leading countries/regions and institutions, influential authors, journal and key journals. CiteSpace and VOSviewer were employed to visualize reference co-citations, and keyword co-occurrences, offering insights into the research landscape and emerging trends. RESULTS This bibliometric analysis employed network diagrams for cluster analysis of a total of 2105 articles and reviews, evidencing a discernible upward trend in annual publication volume. This corpus of research emanates from 76 countries/regions and 2343 organizations, illustrating the widespread international engagement in ApoB-related AS studies. Notably, the United States and the University of California emerge as the most prolific contributors, which underscores their pivotal roles in advancing this research domain. The thematic investigation has increasingly focused on elucidating the mechanistic involvement of ApoB in atherosclerosis, its potential as a diagnostic biomarker, and its implications for therapeutic strategies. CONCLUSION This bibliometric analysis provides the first comprehensive perspective on the evolving promise of ApoB in AS-related research, emphasizing the importance of this molecule in opening up new diagnostic and therapeutic avenues. This study emphasizes the need for continued research and interdisciplinary efforts to strengthen the fight against AS. Furthermore, it emphasizes the critical role of international collaboration and interdisciplinary exploration in leveraging new insights to achieve clinical breakthroughs, thereby addressing the complexities of AS by focusing on ApoB.
Collapse
Affiliation(s)
- Jing Cui
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Yan Zhang
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wenhong Zhang
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Dongtao Li
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhibo Hong
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Li Zhao
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yu Chen
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China.
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China.
| | - Ningkun Zhang
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Lauc G. Can we suppress chronic systemic inflammation and postpone age-related diseases by targeting the IgG glycome? Expert Opin Ther Targets 2024; 28:491-499. [PMID: 37897176 DOI: 10.1080/14728222.2023.2277218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION Glycans attached to immunoglobulin G are an important regulator of chronic systemic inflammation, one of the key drivers of aging. As people age, glycans that suppress inflammation are being replaced with inflammation-promoting glycans, but the rate of this conversion is highly individual and is affected by genetic, epigenetic, and environmental factors. AREAS COVERED This review summarizes key studies of IgG glycosylation changes in aging and disease, effects of lifestyle and pharmacological interventions, and mechanisms that regulate IgG glycosylation. EXPERT OPINION IgG glycome is an important contributor to the process of aging that can be modulated by both lifestyle and pharmacological interventions. Small molecule drugs that would suppress chronic systemic inflammation by modulation of the IgG glycome are still not available, but since gene network regulating IgG glycosylation has been identified and a high-throughput in vitro screening system is available, it is likely that this highly innovative approach to manage chronic systemic inflammation will be developed soon.
Collapse
Affiliation(s)
- GordAn Lauc
- University of Zagreb Faculty of Pharmacy and Biochemistry & Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
7
|
Lv JJ, Wang H, Zhang C, Zhang TJ, Wei HL, Liu ZK, Ma YH, Yang Z, He Q, Wang LJ, Duan LL, Chen ZN, Bian H. CD147 Sparks Atherosclerosis by Driving M1 Phenotype and Impairing Efferocytosis. Circ Res 2024; 134:165-185. [PMID: 38166463 DOI: 10.1161/circresaha.123.323223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.
Collapse
Affiliation(s)
- Jian-Jun Lv
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Hao Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Cong Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Tian-Jiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Hao-Lin Wei
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Ze-Kun Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Yi-Hui Ma
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of Radiation Oncology, Xijing Hospital (Z.Y.), Fourth Military Medical University, Xi'an, China
| | - Qian He
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Li-Juan Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Li-Li Duan
- Department of Gastrointestinal Surgery, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases (L.-L.D.), Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Jha PK, Aikawa M, Aikawa E. Macrophage Heterogeneity and Efferocytosis: Beyond the M1/M2 Dichotomy. Circ Res 2024; 134:186-188. [PMID: 38236949 PMCID: PMC10798221 DOI: 10.1161/circresaha.123.324011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Affiliation(s)
- Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
9
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Li P, Li H, Li X, Li S, Xu H, Cui J, Cheng G, Liu Y, Xu X, Xin Y, Liu A. San Jie Tong Mai Fang Protects Against Atherosclerosis Progression by Regulating Macroautophagy through the PI3K/AKT/mTOR Signaling Pathway. J Cardiovasc Pharmacol 2023; 82:333-343. [PMID: 37506377 PMCID: PMC10545065 DOI: 10.1097/fjc.0000000000001452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
ABSTRACT Many studies have confirmed that macrophage autophagy injury negatively impacts the pathogenesis of atherosclerosis (AS). Meanwhile, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway affects AS progression by regulating macrophage autophagy. We previously reported that the herbal formula San Jie Tong Mai Fang (SJTMF) elicits lipid regulatory and anti-inflammatory properties. Hence, the current study used an ApoE -/- high-fat diet-fed mouse model to determine whether SJTMF elicits protective effects against AS progression by means of the regulation of macrophage autophagy through the PI3K/AKT/mTOR signaling pathway. Our results show that SJTMF reduced the number of atherosclerotic plaques, foam cell formation, and intimal thickness in mouse aorta. In addition, SJTMF improved blood lipid metabolism and inflammatory levels in mice. We also observed that SJTMF caused macrophages to be polarized toward the M2 phenotype through the inhibition of the PI3K/AKT/mTOR signaling pathway. In addition, the abundances of LC3-II/I and beclin1 proteins-key autophagy molecules-were increased, whereas that of p62 was decreased, resulting in the promotion of macrophage autophagy. Taken together, these findings indicate that SJTMF may regulate the polarization of macrophages by inhibiting the PI3K/AKT/mTOR signaling pathway, thereby reducing atherosclerotic plaque damage in ApoE -/- mice, thereby promoting macrophage autophagy and eliciting a significant antiarteriosclerosis effect. Hence, SJTMF may represent a promising new candidate drug for the treatment of AS.
Collapse
Affiliation(s)
- Pengfei Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, People's of Republic of China
| | - Hongyu Li
- Department of Cardiology, the Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, People's of Republic of China
| | - Xiaohui Li
- Department of Cardiology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's of Republic of China
| | - Shuangdi Li
- Department of Cardiology, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, People's of Republic of China
| | - Hanying Xu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, People's of Republic of China
| | - Junfeng Cui
- Office of the Party Committee, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, People's of Republic of China
| | - Guangyu Cheng
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, People's of Republic of China; and
| | - Yinghui Liu
- Department of Basic Teaching and Research of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People's of Republic of China
| | - Xiaolin Xu
- Department of Cardiology, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, People's of Republic of China
| | - Yuning Xin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, People's of Republic of China
| | - Aidong Liu
- Department of Cardiology, the Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, People's of Republic of China
| |
Collapse
|
11
|
Notbohm HL, Moser F, Goh J, Feuerbacher JF, Bloch W, Schumann M. The effects of menstrual cycle phases on immune function and inflammation at rest and after acute exercise: A systematic review and meta-analysis. Acta Physiol (Oxf) 2023; 238:e14013. [PMID: 37309068 DOI: 10.1111/apha.14013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
The immune system plays an important role in mediating exercise responses and adaptations. However, whether fluctuating hormone concentrations across the menstrual cycle may impact these processes remains unknown. The aim of this systematic review with meta-analysis was to compare baseline concentrations as well as exercise-induced changes in immune and inflammatory parameters between menstrual cycle phases. A systematic literature search was conducted according to the PRISMA guidelines using Pubmed/MEDLINE, ISI Web of Science, and SPORTDiscus. Of the 159 studies included in the qualitative synthesis, 110 studies were used for meta-analysis. Due to the designs of the included studies, only the follicular and luteal phase could be compared. The estimated standardized mean differences based on the random-effects model revealed higher numbers of leukocytes (-0.48 [-0.73; -0.23], p < 0.001), monocytes (-0.73 [-1.37; -0.10], p = 0.023), granulocytes (-0.85 [-0.1.48; -0.21], p = 0.009), neutrophils (-0.32 [-0.52; -0.12], p = 0.001), and leptin concentrations (-0.37 [-0.5; -0.23], p = 0.003) in the luteal compared to the follicular phase at rest. Other parameters (adaptive immune cells, cytokines, chemokines, and cell adhesion molecules) showed no systematic baseline differences. Seventeen studies investigated the exercise-induced response of these parameters, providing some indications for a higher pro-inflammatory response in the luteal phase. In conclusion, parameters of innate immunity showed cycle-dependent regulation at rest, while little is known on the exercise responses. Due to a large heterogeneity and a lack of cycle phase standardization among the included studies, future research should focus on comparing at least three distinct hormonal profiles to derive more specific recommendations for exercise prescription.
Collapse
Affiliation(s)
- H L Notbohm
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - F Moser
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - J Goh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - J F Feuerbacher
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - W Bloch
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - M Schumann
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
12
|
Shi J, Qiu Q, Lu X, Zhen D, Liu X, Gu B, Qin C, Mo H, Li P, Zhen H. Spectrum-Effect Relationship between HPLC Fingerprint and Anti-Inflammatory and Analgesic Activities of Chloranthus fortunei (A. Gray) Solms-Laub. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:5697896. [PMID: 37441521 PMCID: PMC10335875 DOI: 10.1155/2023/5697896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
The predominant objective of the research is to establish the anti-inflammatory and analgesic spectrum-effect relationship of Chloranthus fortunei (A. Gray) Solms-Laub (CF), to reveal the pharmacodynamic basis of the anti-inflammatory and analgesic effects of CF. The fingerprints of ten batches of CF from various origins were established by high-performance liquid chromatography (HPLC) and evaluated for similarity, hierarchical cluster analysis (HCA), and principal component analysis (PCA). The anti-inflammatory and analgesic effects of CF were evaluated with the xylene-induced ear swelling in mice and the acetic acid torsion test, while the anti-inflammatory and analgesic spectrum-effect relationship of CF was evaluated by gray relational analysis (GRA) and partial least squares regression analysis (PLSR) to effectively elucidate the anti-inflammatory and analgesic substance basis of CF. The ten batches of CF HPLC fingerprints established in this work successfully identified a total of 13 common peaks that refer to 4 components, with peak 1 being neochlorogenic acid, peak 3 being chlorogenic acid, peak 5 being cryptochlorogenic acid, and peak 10 being rosmarinic acid. The HCA results presented that the ten batches of CF samples were clustered into 3 categories, which was consistent with the PCA results. Simultaneously, the results of the spectrum-effect relationship also indicated that neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, and rosmarinic acid were the possible anti-inflammatory and analgesic substances of CF. In order to better understand the anti-inflammatory and analgesic substance basis of CF, this experiment established the anti-inflammatory and analgesic spectrum-effect relationship of CF, which can provide a scientific foundation for the quality evaluation and further research as well as the usage of CF herbs.
Collapse
Affiliation(s)
- Junhao Shi
- Guangxi University of Chinese Medical, Nanning 530200, China
| | - Qin Qiu
- Guangxi University of Chinese Medical, Nanning 530200, China
| | - Xianxing Lu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Dandan Zhen
- Guangxi University of Chinese Medical, Nanning 530200, China
| | - Xiaofang Liu
- Guangxi University of Chinese Medical, Nanning 530200, China
| | - Baojun Gu
- Guangxi University of Chinese Medical, Nanning 530200, China
| | - Chunping Qin
- Guangxi University of Chinese Medical, Nanning 530200, China
| | - Huiqing Mo
- Guangxi University of Chinese Medical, Nanning 530200, China
| | - Pengfei Li
- Guangxi University of Chinese Medical, Nanning 530200, China
| | - Hanshen Zhen
- Guangxi University of Chinese Medical, Nanning 530200, China
| |
Collapse
|
13
|
Zhang S, Lv Y, Luo X, Weng X, Qi J, Bai X, Zhao C, Zeng M, Bao X, Dai X, Zhang Y, Chen Y, Liu M, Hu S, Li J, Jia H. Homocysteine promotes atherosclerosis through macrophage pyroptosis via endoplasmic reticulum stress and calcium disorder. Mol Med 2023; 29:73. [PMID: 37308812 DOI: 10.1186/s10020-023-00656-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/19/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Elevated plasma homocysteine levels, known as hyperhomocysteinemia, have been identified as an independent risk factor for atherosclerosis and related cardiovascular diseases. Macrophage pyroptosis-mediated inflammation is crucial in the development of atherosclerosis, but the underlying mechanisms remain unclear. METHODS A hyperhomocysteinemia atherosclerotic model with ApoE-/- mice fed with a high-methionine diet was constructed to investigate the role of plasma homocysteine in atherosclerosis. THP-1-derived macrophages were used to investigate the mechanisms by which Hcy regulates pyroptosis. RESULTS We found that hyperhomocysteinemia resulted in larger atherosclerotic plaques and more secretion of inflammatory cytokines, while these effects were attenuated in Caspase-1 knockdown mice. Likewise, in vitro experiments demonstrated that treatment of macrophages with homocysteine resulted in NLRP3 inflammasome activation and pyroptosis, as evidenced by cleavage of Caspase-1, production of downstream IL-1β, elevation of lactate dehydrogenase activity, and extensive propidium iodide-positive staining of cells. These were all inhibited by Caspase-1 inhibitor. In addition, excessive generation of reactive oxygen species was associated with mitochondrial dysfunction, characterized by loss of mitochondrial membrane potential and ATP synthesis. Moreover, further experiments revealed that homocysteine induced endoplasmic reticulum stress, enhanced communication between the endoplasmic reticulum and mitochondria, and consequently contributed to calcium disorder. Furthermore, the endoplasmic reticulum stress inhibitor, 4PBA, the calcium chelator, BAPTA, and calcium channel inhibitor, 2-APB significantly improved macrophage pyroptosis. CONCLUSION Homocysteine accelerates atherosclerosis progression by enhancing macrophages pyroptosis via promoting endoplasmic reticulum stress, endoplasmic reticulum-mitochondria coupling, and disturbing of calcium disorder.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Ying Lv
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xing Luo
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiuzhu Weng
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Jinyu Qi
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoxuan Bai
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Chen Zhao
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Ming Zeng
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoyi Bao
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xinyu Dai
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Ying Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154007, People's Republic of China
| | - Yuwu Chen
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Minghao Liu
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Sining Hu
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Ji Li
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Haibo Jia
- Department of Cardiology, The 2nd affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
14
|
Al Qarawani OMAS, Kaur P, Vyas M, Sharma S. Atherosclerosis Potential Drug Targets: Current Scenario and Future Perspectives. Cardiovasc Hematol Disord Drug Targets 2023; 23:77-91. [PMID: 37888822 DOI: 10.2174/011871529x262041230922043156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND The global burden of atherosclerosis and its implication to cause coronary heart disease and ischemic cardiac problems is the most prevalent cause of morbidity and hospitalization. In the US, there has been an increase in the number of patients with cardiac problems in the last decade, and still remains the primary cause of death in Europe as well as in the US. OBJECTIVES Even though therapeutic interventions and early diagnosis the formation of the fatty lesion and its subsequent steps are possible, the therapeutic management of the disease remains questionable when clinical data is observed. There is still scope for proper target identification and biomarker recognition, which can serve as a baseline to develop efficient pharmacological agent and delivery systems so that the disease incidence and prevalence can be controlled. The present article highlights the current pathophysiological state of the disease and emerging strategies that are applied to manage the disease. FINDINGS This article gives an insight into the limitations of various conventionally used therapeutic agents for disease treatment. The emerging strategies that could prove efficacious in disease treatment. This article also gives an insight into current discoveries in the field of cellular and molecular biology, such as the genetic role in causing dyslipidemia and the role of immune cells and the role of non-coding small RNA, which can set the future direction to develop therapeutics interventions for atherosclerosis.
Collapse
Affiliation(s)
| | - Palwinder Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144401, India
| | - Manish Vyas
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144401, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab, 144401, India
| |
Collapse
|
15
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Ding Y, Yang X, Han X, Shi M, Sun L, Liu M, Zhang P, Huang Z, Yang X, Li R. Ferroptosis-related gene expression in the pathogenesis of preeclampsia. Front Genet 2022; 13:927869. [PMID: 36061193 PMCID: PMC9428486 DOI: 10.3389/fgene.2022.927869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Preeclampsia (PE) is one of the leading causes of maternal and fetal morbidity and mortality worldwide. Placental oxidative stress has been identified as a major pathway to the development of PE. Ferroptosis is a new form of regulated cell death that is associated with iron metabolism and oxidative stress, and likely mediates PE pathogenesis. The aim of the study was to identify the key molecules involved in ferroptosis to further explore the mechanism of ferroptosis in PE. Methods: Gene expression data and clinical information were downloaded from the GEO database. The limma R package was used to screen differentially expressed genes (DEGs) and intersected with ferroptosis genes. The GO and KEGG pathways were then analyzed. Next, hub genes were identified via weighted gene co-expression network analysis (WGCNA). Receiver operating curves (ROCs) were performed for diagnostic and Pearson’s correlation of hub genes and clinicopathological characteristics. Immunohistochemistry and Western blot analysis were used to verify the expression of hub genes. Results: A total of 3,142 DEGs were identified and 30 ferroptosis-related DEGs were obtained. In addition, ferroptosis-related pathways were enriched by GO and KEGG using DEGs. Two critical modules and six hub genes that were highly related to diagnosis of PE were identified through WGCNA. The analysis of the clinicopathological features showed that NQO1 and SRXN1 were closely correlated with PE characteristics and diagnosis. Finally, Western blot and immunohistochemistry analysis confirmed that the expression of the SRXN1 protein in the placental tissue of patients with PE was significantly elevated, while the expression of NQO1 was significantly decreased. Conclusions: SRXN1 and NQO1 may be key ferroptosis-related proteins in the pathogenesis of PE. The study may provide a theoretical and experimental basis for revealing the pathogenesis of PE and improving the diagnosis of PE.
Collapse
Affiliation(s)
- Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoxue Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mengyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiuli Yang
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
- *Correspondence: Ruiman Li, ; Xiuli Yang,
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ruiman Li, ; Xiuli Yang,
| |
Collapse
|
17
|
Artru F, McPhail MJW, Triantafyllou E, Trovato FM. Lipids in Liver Failure Syndromes: A Focus on Eicosanoids, Specialized Pro-Resolving Lipid Mediators and Lysophospholipids. Front Immunol 2022; 13:867261. [PMID: 35432367 PMCID: PMC9008479 DOI: 10.3389/fimmu.2022.867261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Lipids are organic compounds insoluble in water with a variety of metabolic and non-metabolic functions. They not only represent an efficient energy substrate but can also act as key inflammatory and anti-inflammatory molecules as part of a network of soluble mediators at the interface of metabolism and the immune system. The role of endogenous bioactive lipid mediators has been demonstrated in several inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is unique in providing balanced immunotolerance to the exposure of bacterial components from the gut transiting through the portal vein and the lymphatic system. This balance is abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-chronic liver failure. In these syndromes, researchers have recently focused on bioactive lipid mediators by global metabonomic profiling and uncovered the pivotal role of these mediators in the immune dysfunction observed in liver failure syndromes explaining the high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune pathways will be described.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mark J W McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | |
Collapse
|
18
|
Libby P, Mallat Z, Weyand C. Immune And Inflammatory Mechanisms Mediate Cardiovascular Diseases From Head To Toe. Cardiovasc Res 2021; 117:2503-2505. [PMID: 34698765 DOI: 10.1093/cvr/cvab332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Practitioners have long recognized the involvement of inflammation in certain acute cardiovascular diseases such as endocarditis, myocarditis, and pericarditis. Attention to the participation of immune and inflammatory mechanisms in chronic cardiovascular diseases has generally lagged. Yet, these pathways contribute to a broad swath of clinically important cardiovascular conditions, both acute and chronic. Understanding of these complex mechanisms can aid specialists in cardiovascular research and practice immeasurably by providing new concepts and illuminating new diagnostic and therapeutic strategies. The collection of essays presented in this focused issue of Cardiovascular Research aims to promote this goal.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cornelia Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|