1
|
Nukala SB, Jousma J, Yan G, Han Z, Kwon Y, Cho Y, Liu C, Gagnon K, Pinho S, Rehman J, Shao NY, Ong SB, Lee WH, Ong SG. Modulation of lncRNA links endothelial glycocalyx to vascular dysfunction of tyrosine kinase inhibitor. Cardiovasc Res 2023; 119:1997-2013. [PMID: 37267414 PMCID: PMC10439712 DOI: 10.1093/cvr/cvad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 06/04/2023] Open
Abstract
AIMS Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored. METHODS AND RESULTS We performed lncRNA expression profiling to identify potential lncRNAs that are dysregulated in human-induced pluripotent stem cell-derived ECs (iPSC-ECs) treated with sunitinib. We show that the lncRNA hyaluronan synthase 2 antisense 1 (HAS2-AS1) is significantly diminished in sunitinib-treated iPSC-ECs. Sunitinib was found to down-regulate HAS2-AS1 by an epigenetic mechanism involving hypermethylation. Depletion of HAS2-AS1 recapitulated sunitinib-induced detrimental effects on iPSC-ECs, whereas CRISPR-mediated activation of HAS2-AS1 reversed sunitinib-induced dysfunction. We confirmed that HAS2-AS1 stabilizes the expression of its sense gene HAS2 via an RNA/mRNA heteroduplex formation. Knockdown of HAS2-AS1 led to reduced synthesis of hyaluronic acid (HA) and up-regulation of ADAMTS5, an enzyme involved in extracellular matrix degradation, resulting in disruption of the endothelial glycocalyx which is critical for ECs. In vivo, sunitinib-treated mice showed reduced coronary flow reserve, accompanied by a reduction in Has2os and degradation of the endothelial glycocalyx. Finally, we identified that treatment with high molecular-weight HA can prevent the deleterious effects of sunitinib both in vitro and in vivo by preserving the endothelial glycocalyx. CONCLUSIONS Our findings highlight the importance of lncRNA-mediated regulation of the endothelial glycocalyx as an important determinant of sunitinib-induced vascular toxicity and reveal potential novel therapeutic avenues to attenuate sunitinib-induced vascular dysfunction.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Gege Yan
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Zhenbo Han
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Youjeong Kwon
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Chuyu Liu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Keith Gagnon
- Division of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, 1245 Lincoln Drive Carbondale, IL 62901-4413, USA
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale IL 62901, USA
| | - Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Jalees Rehman
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 840 S Wood Street, Chicago, IL 60612, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), 9/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, 10/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children's Hospital (HKCH), 8/F, Tower A,1 Shing Cheong Road, Kowloon Bay, Hong Kong, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 North 5th Street, Phoenix, AZ 85004, USA
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), 9/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
| |
Collapse
|
2
|
Liu Y, Chen S, Liu S, Sun G, Sun Z, Liu H. Association of endothelial glycocalyx shedding and coronary microcirculation assessed by an angiography-derived index of microcirculatory resistance in patients with suspected coronary artery disease. Front Cardiovasc Med 2022; 9:950102. [PMID: 36158787 PMCID: PMC9493183 DOI: 10.3389/fcvm.2022.950102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Background The endothelial glycocalyx (EG) is essential for maintaining microvascular homeostasis. However, the relationship between the EG and coronary microcirculation remains to be elucidated. One of the main components of EG is syndecan-1, and its shedding has been claimed to represent the state of the EG. In this study, we aimed to analyze the association between syndecan-1 and the coronary microcirculation. Methods We enrolled suspected coronary artery disease (CAD) patients who consecutively underwent coronary angiography (CAG) and angiography-based analysis of physiological indices in the left anterior descending artery (LAD). Serum syndecan-1 was measured by enzyme-linked immunosorbent assay (ELISA). The coronary microcirculation was evaluated by the presence of coronary microvascular dysfunction (CMD) and an impaired microvascular vasodilatory capacity (IMVC), which were quantified by an angiography-derived index of microcirculatory resistance (IMRangio) in the maximum hyperemic state (H-IMRangio) induced by adenosine triphosphate and the ratio (RRRangio) of IMRangio in the non-hyperemic phase to H-IMRangio, respectively. Results A total of 528 patients were enrolled in this study. There was no difference in epicardial coronary complexity between patients with high syndecan-1 (HSG) and low syndecan-1 (LSG) levels grouped by the median concentration of syndecan-1 (SYNTAX: 7[3, 10] vs. 9[4, 12], P = 0.15). However, H-IMRangio and RRRangio were different between the LSG and HSG groups (H-IMRangio: 23.64 ± 6.28 vs. 27.67 ± 5.59, P < 0.01; RRRangio: 1.74[1.46, 2.08] vs. 1.55[1.34, 1.72], P < 0.01). Patients with CMD (H-IMRangio > 25) and patients with IMVC (RRRangio below the median value) both had higher syndecan-1 levels (CMD: 86.44 ± 54.15 vs. 55.2 ± 43.72, P < 0.01; IMVC: 83.86 ± 55.41 vs. 59.68 ± 45.06, P < 0.01). After adjustment for confounding factors, HSG remained associated with the presence of CMD and IMVC (CMD: odds ratio [OR]: 2.769, P < 0.01; IMVC: OR: 1.908, P < 0.01). Conclusion High levels of syndecan-1 are independently associated with the presence of CMD and IMVC among patients with suspected CAD.
Collapse
Affiliation(s)
- Yang Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Cardiology, Second Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Si Chen
- Department of Cardiology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Shaoyan Liu
- Department of Cardiology, Yantai Municipal Laiyang Central Hospital, Yantai, China
| | - Guoqiang Sun
- Department of Cardiology, Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Zhijun Sun
- Department of Cardiology, Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Hongbin Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Cardiology, Second Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing, China
- *Correspondence: Hongbin Liu,
| |
Collapse
|
3
|
Shevchenko IL, Stoĭko IM, Gudymovich VG, Cherniago TI. [Glycocalyx as a determining factor in development of endothelial venous dysfunction and possibilities of correction thereof]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:71-77. [PMID: 33332308 DOI: 10.33529/angio2020404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Modern vascular surgery has the data on a substantial role of the endothelium in pathogenesis of vascular diseases. Endothelial dysfunction is associated with a wide range of pathological processes including those in chronic diseases of lower-limb veins. The discovery of the endothelial glycocalyx made it possible to evaluate its role in the development of endothelial dysfunction as a trigger mechanism in impairment of venous blood flow. The understanding of the unifying role of endothelial dysfunction in pathology in various fields of medicine provides a possibility of predicting the development of serious socially significant diseases such as cardiovascular diseases, diabetes mellitus, obstetrical complications, and to correct the conditions associated therewith. The present study was aimed at carrying out a systematic literature review, thus making it possible to evaluate the role of the endothelial glycocalyx in the development of endothelial dysfunction, as well as to determine therapy with sulodexide capable of decreasing the probability of the onset of endothelial dysfunction at the expense of an anti-inflammatory, antithrombotic, and angioprotective effect on the endothelial wall.
Collapse
Affiliation(s)
- Iu L Shevchenko
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| | - Iu M Stoĭko
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| | - V G Gudymovich
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| | - T Iu Cherniago
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| |
Collapse
|
4
|
Park I, Choe K, Seo H, Hwang Y, Song E, Ahn J, Hwan Jo Y, Kim P. Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model. BIOMEDICAL OPTICS EXPRESS 2018; 9:2383-2393. [PMID: 29760995 PMCID: PMC5946796 DOI: 10.1364/boe.9.002383] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 05/18/2023]
Abstract
Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo, suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Inwon Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kibaek Choe
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Howon Seo
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jinhyo Ahn
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620
- Department of Emergency Medicine, Seoul National University College of Medicine (SNUCM), 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
5
|
Non-invasive assessment of microvascular dysfunction in patients with microvascular angina. Int J Cardiol 2017; 248:433-439. [DOI: 10.1016/j.ijcard.2017.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/11/2017] [Accepted: 05/03/2017] [Indexed: 11/23/2022]
|
6
|
Constantinescu A, Spaan J, Arkenbout EK, Vink H, VanTeeffelen J. Degradation of the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle microcirculation. Thromb Haemost 2017; 105:790-801. [DOI: 10.1160/th10-08-0560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/09/2010] [Indexed: 11/05/2022]
Abstract
SummaryA thick endothelial glycocalyx contributes to the barrier function of vascular endothelium in macro- and microcirculation. We hypothesised in the current study that diet-induced hyperlipidaemia perturbs the glycocalyx, resulting in decreased dimensions of this layer and increased transendothelial lipoprotein leakage in capillaries. Glycocalyx thickness was measured in mouse cremaster muscle capillaries by intravital microscopy from the distance between flowing red blood cells and the endothelial surface. In control C57BL/6 mice on standard chow, glycocalyx thickness measured 0.58 ± 0.01 (mean ± SEM) μm, and no lipo-proteins were observed in the tissue. After three months administration of an either mild or severe high-fat / high-cholesterol diet (HFC) to C57BL/6 and ApoE3-Leiden mice, circulating large lipoproteins appeared into the subendothelial space in an increasing proportion of cre-master capillaries, and these capillaries displayed reduced glycocalyx dimensions of 0.40 ± 0.02 and 0.30 ± 0.01 μm (C57BL/6 mice), and 0.37 ± 0.01 and 0.28 ± 0.01 μm (ApoE3-Leiden mice), after the mild and severe HFC diet, respectively. The chylomicron nature of the accumulated lipoproteins was confirmed by observations of subendothelial deposition of DiI-labeled chylomicrons in capillaries after inducing acute glycocalyx degradation by heparitinase in normolipidaemic C57BL/6 mice. It is concluded that while under control conditions the endothelial glycocalyx contributes to the vascular barrier against transvascular lipoprotein leakage in the microcirculation, diet-induced hyperlipidaemia reduces the thickness of the glycocalyx, thereby facilitating leakage of chylomicrons across the capillary wall.
Collapse
|
7
|
Klinger M. A role for macromolecular crowding in off-target binding of therapeutic antibodies. Protein Eng Des Sel 2017; 30:489-494. [PMID: 28873984 DOI: 10.1093/protein/gzx035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
The nonspecific binding of certain therapeutic antibodies to tissues or to soluble biomolecules can accelerate their clearance from the circulation and undermine their benefit to patients. This article proposes that tandem amino acid repeat sequences in antibody hypervariable segments, particularly the complementarity determining regions (CDRs), can enhance this off-target binding. This hypothesis is based on two sets of observations. First, in a limited number of cases, antibodies with clusters of amino acid repeats in their CDRs have significantly higher clearance rates in experimental animals than otherwise identical antibodies without the repeats. Second, tandem amino acid repeats are abundant in intracellular hub proteins where they appear to promote the promiscuous binding of these proteins to a wide variety of other molecules. These nonspecific hub protein interactions are highly favored by the intense macromolecular crowding that permeates the cytoplasm. A survey of the variable region sequences of 137 antibodies in various stages of development revealed that 26 have at least one CDR containing a cluster of three closely spaced amino acid repeats. If the overall hypothesis is valid, then it suggests strategies for site-directed mutagenesis to improve pharmacokinetic behavior and for the design of more reliable in vitro binding assays to predict off-target binding in vivo.
Collapse
Affiliation(s)
- Martin Klinger
- Hawk BioDiscovery, 7465 Highway 51, Sterrett, AL 35147, USA
| |
Collapse
|
8
|
Pillinger NL, Kam P. Endothelial glycocalyx: basic science and clinical implications. Anaesth Intensive Care 2017; 45:295-307. [PMID: 28486888 DOI: 10.1177/0310057x1704500305] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The classic Starling principle proposed that microvascular fluid exchange was determined by a balance of hydrostatic and oncotic pressures relative to the vascular wall and this movement of water was regulated by gaps in the intercellular spaces. However, current literature on the endothelial glycocalyx (a jelly-like protective layer covering the luminal surface of the endothelium) has revised Starling's traditional concepts. This article aims to summarise the literature on the glycocalyx related to its basic science, clinical settings inciting injury, protective strategies and clinical perspectives. Perioperative damage to the glycocalyx structure can increase vascular permeability leading to interstitial fluid shifts, oedema, and increased surgical morbidity. Pathological shedding of the glycocalyx occurs in response to mechanical cellular stress, endotoxins, inflammatory mediators, atrial natriuretic peptide, ischaemia-reperfusion injury, free oxygen radicals and hyperglycaemia. Increased understanding of the endothelial glycocalyx may change perioperative fluid management, and therapeutic strategies aimed at its preservation may improve patient outcomes.
Collapse
Affiliation(s)
- N L Pillinger
- Staff Specialist Anaesthetist, Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney, New South Wales
| | - Pca Kam
- Nuffield Professor of Anaesthetics, University of Sydney, Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney, New South Wales
| |
Collapse
|
9
|
Cui C, Lin H, Shi Y, Pan R. Hypoxic postconditioning attenuates apoptosis via inactivation of adenosine A2a receptor through NDRG3-Raf-ERK pathway. Biochem Biophys Res Commun 2017; 491:277-284. [DOI: 10.1016/j.bbrc.2017.07.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023]
|
10
|
Song JW, Zullo JA, Liveris D, Dragovich M, Zhang XF, Goligorsky MS. Therapeutic Restoration of Endothelial Glycocalyx in Sepsis. J Pharmacol Exp Ther 2017; 361:115-121. [PMID: 28167639 DOI: 10.1124/jpet.116.239509] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/02/2017] [Indexed: 12/29/2022] Open
Abstract
Endothelial glycocalyx (EG) is disintegrated during sepsis. We have previously shown that this occurs very early in the course of sepsis and its prevention improves the survival of mice with sepsis. Here, we sought to investigate the possibility of pharmacologically accelerating the restoration of disintegrated EG in sepsis. We used a soilage injection model to induce polymicrobial sepsis in C57/BL6 mice and measured total body EG. En face aortic preparations were used for staining of markers of EG and atomic force microscopy was used to measure EG in vitro. In vitro studies were conducted in cultured endothelial cells either exposed to a lipopolysaccharide or enzymatically denuded of EG. Sulodexide (SDX), a heparin sulfate-like compound resistant to degradation by heparanase, accelerated EG regeneration in vitro and in vivo. The total volume of EG was drastically reduced in septic mice. Administration of SDX produced a dramatic acceleration of EG restoration. This effect, unrelated to any SDX-induced differences in microbial burden, was associated with better control of vascular permeability. Notably, SDX demonstrated not only a remarkable capacity for EG regeneration in vitro and in vivo but was also associated with improved animal survival, even when instituted 2 hours after induction of severe sepsis. In conclusion, 1) EG is disintegrated in sepsis, the event which contributes to high animal mortality; 2) pharmacologic acceleration of EG restoration can be achieved using SDX; and 3) SDX reduces vascular permeability, which is elevated in septic mice, and improves animal survival.
Collapse
Affiliation(s)
- J W Song
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology (J.A.Z., M.S.G.), and Department of Microbiology (D.L.), New York Medical College, Valhalla, New York; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea (J.W.S.); and Department of Mechanical Engineering and Mechanics, and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania (M.D., X.F.Z.)
| | - J A Zullo
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology (J.A.Z., M.S.G.), and Department of Microbiology (D.L.), New York Medical College, Valhalla, New York; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea (J.W.S.); and Department of Mechanical Engineering and Mechanics, and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania (M.D., X.F.Z.)
| | - D Liveris
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology (J.A.Z., M.S.G.), and Department of Microbiology (D.L.), New York Medical College, Valhalla, New York; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea (J.W.S.); and Department of Mechanical Engineering and Mechanics, and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania (M.D., X.F.Z.)
| | - M Dragovich
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology (J.A.Z., M.S.G.), and Department of Microbiology (D.L.), New York Medical College, Valhalla, New York; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea (J.W.S.); and Department of Mechanical Engineering and Mechanics, and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania (M.D., X.F.Z.)
| | - X F Zhang
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology (J.A.Z., M.S.G.), and Department of Microbiology (D.L.), New York Medical College, Valhalla, New York; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea (J.W.S.); and Department of Mechanical Engineering and Mechanics, and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania (M.D., X.F.Z.)
| | - M S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology (J.A.Z., M.S.G.), and Department of Microbiology (D.L.), New York Medical College, Valhalla, New York; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea (J.W.S.); and Department of Mechanical Engineering and Mechanics, and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania (M.D., X.F.Z.)
| |
Collapse
|
11
|
Zullo JA, Fan J, Azar TT, Yen W, Zeng M, Chen J, Ratliff BB, Song J, Tarbell JM, Goligorsky MS, Fu BM. Exocytosis of Endothelial Lysosome-Related Organelles Hair-Triggers a Patchy Loss of Glycocalyx at the Onset of Sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:248-58. [PMID: 26683662 DOI: 10.1016/j.ajpath.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 10/03/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Sepsis is a systemic inflammatory syndrome induced by bacterial infection that can lead to multiorgan failure. Endothelial surface glycocalyx (ESG) decorating the inner wall of blood vessels is a regulator of multiple vascular functions. Here, we tested a hypothesis that patchy degradation of ESG occurs early in sepsis and is a result of exocytosis of lysosome-related organelles. Time-lapse video microscopy revealed that exocytosis of Weibel-Palade bodies and secretory lysosomes occurred a few minutes after application of lipopolysaccharides to endothelial cells. Two therapeutic maneuvers, a nitric oxide intermediate, NG-hydroxy-l-arginine, and culture media conditioned by endothelial progenitor cells reduced the motility of lysosome-related organelles. Confocal and stochastic optical reconstruction microscopy confirmed the patchy loss of ESG simultaneously with the exocytosis of lysosome-related organelles and Weibel-Palade bodies in cultured endothelial cells and mouse aorta. The loss of ESG was blunted by pretreatment with NG-hydroxy-l-arginine or culture media conditioned by endothelial progenitor cells. Moreover, these treatments resulted in a significant reduction in deaths of septic mice. Our data support the hypothesis assigning to stress-induced exocytosis of these organelles the role of a hair-trigger for local degradation of ESG that initiates leukocyte infiltration, increase in vascular permeability, and partially accounts for the later rates of morbidity and mortality.
Collapse
Affiliation(s)
- Joseph A Zullo
- Department of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Jie Fan
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Tala T Azar
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Wanyi Yen
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Min Zeng
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Jun Chen
- Department of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Brian B Ratliff
- Department of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Jun Song
- Department of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York; Department of Anesthesiology, Ulsan Medical College, Seoul, Republic of Korea
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Michael S Goligorsky
- Department of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York.
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York.
| |
Collapse
|
12
|
Yen W, Cai B, Yang J, Zhang L, Zeng M, Tarbell JM, Fu BM. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo. PLoS One 2015; 10:e0117133. [PMID: 25575016 PMCID: PMC4289188 DOI: 10.1371/journal.pone.0117133] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022] Open
Abstract
Due to its unique location, the endothelial surface glycocalyx (ESG) at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO) production in post-capillary venules and arterioles of rat mesentery under reduced (low) and normal (high) flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS) of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA). Rats (SD, 250–300g) were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s) and for ~60 min under a high flow (~1000 μm/s). In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.
Collapse
Affiliation(s)
- Wanyi Yen
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York, United States of America
| | - Bin Cai
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York, United States of America
| | - Jinlin Yang
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York, United States of America
| | - Lin Zhang
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York, United States of America
| | - Min Zeng
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York, United States of America
| | - John M. Tarbell
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York, United States of America
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS One 2014; 9:e96477. [PMID: 24816787 PMCID: PMC4015985 DOI: 10.1371/journal.pone.0096477] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/07/2014] [Indexed: 11/25/2022] Open
Abstract
Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43–2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: −0.034; 95% confidence interval: −0.037 to −0.031). We conclude that microvascular beds with a thick (“healthy”) glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin (“risk”) glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion.
Collapse
|
14
|
Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm 2014; 2014:694312. [PMID: 24803742 PMCID: PMC3997148 DOI: 10.1155/2014/694312] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/03/2014] [Indexed: 01/08/2023] Open
Abstract
The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis) are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed.
Collapse
|
15
|
Curry FRE, Adamson RH. Tonic regulation of vascular permeability. Acta Physiol (Oxf) 2013; 207:628-49. [PMID: 23374222 PMCID: PMC4054936 DOI: 10.1111/apha.12076] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 12/30/2022]
Abstract
Our major theme is that the layered structure of the endothelial barrier requires continuous activation of signalling pathways regulated by sphingosine-1-phosphate (S1P) and intracellular cAMP. These pathways modulate the adherens junction, continuity of tight junction strands, and the balance of synthesis and degradation of glycocalyx components. We evaluate recent evidence that baseline permeability is maintained by constant activity of mechanisms involving the small GTPases Rap1 and Rac1. In the basal state, the barrier is compromised when activities of the small GTPases are reduced by low S1P supply or delivery. With inflammatory stimulus, increased permeability can be understood in part as the action of signalling to reduce Rap1 and Rac1 activation. With the hypothesis that microvessel permeability and selectivity under both normal and inflammatory conditions are regulated by mechanisms that are continuously active, it follows that when S1P or intracellular cAMP are elevated at the time of inflammatory stimulus, they can buffer changes induced by inflammatory agents and maintain normal barrier stability. When endothelium is exposed to inflammatory conditions and subsequently exposed to elevated S1P or intracellular cAMP, the same processes restore the functional barrier by first re-establishing the adherens junction, then modulating tight junctions and glycocalyx. In more extreme inflammatory conditions, loss of the inhibitory actions of Rac1-dependent mechanisms may promote expression of more inflammatory endothelial phenotypes by contributing to the up-regulation of RhoA-dependent contractile mechanisms and the sustained loss of surface glycocalyx allowing access of inflammatory cells to the endothelium.
Collapse
Affiliation(s)
- F-R E Curry
- Department of Physiology & Membrane Biology, School of Medicine, University of California at Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
16
|
Eskens BJM, Mooij HL, Cleutjens JPM, Roos JMA, Cobelens JE, Vink H, Vanteeffelen JWGE. Rapid insulin-mediated increase in microvascular glycocalyx accessibility in skeletal muscle may contribute to insulin-mediated glucose disposal in rats. PLoS One 2013; 8:e55399. [PMID: 23383178 PMCID: PMC3561231 DOI: 10.1371/journal.pone.0055399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/24/2012] [Indexed: 11/29/2022] Open
Abstract
It has been demonstrated that insulin-mediated recruitment of microvascular blood volume is associated with insulin sensitivity. We hypothesize that insulin rapidly stimulates penetration of red blood cells (RBC) and plasma into the glycocalyx and thereby promotes insulin-mediated glucose uptake by increasing intracapillary blood volume. Experiments were performed in rats; the role of the glycocalyx was assessed by enzymatic degradation using a bolus of hyaluronidase. First, the effect of insulin on glycocalyx accessibility was assessed by measuring the depth of penetration of RBCs into the glycocalyx in microvessels of the gastrocnemius muscle with Sidestream Dark-field imaging. Secondly, peripheral insulin sensitivity was determined using intravenous insulin tolerance tests (IVITT). In addition, in a smaller set of experiments, intravital microscopy of capillary hemodynamics in cremaster muscle and histological analysis of the distribution of fluorescently labeled 40 kDa dextrans (D40) in hindlimb muscle was used to evaluate insulin-mediated increases in capillary blood volume. Insulin increased glycocalyx penetration of RBCs by 0.34±0.44 µm (P<0.05) within 10 minutes, and this effect of insulin was greatly impaired in hyaluronidase treated rats. Further, hyaluronidase treated rats showed a 35±25% reduction in whole-body insulin-mediated glucose disposal compared to control rats. Insulin-mediated increases in capillary blood volume were reflected by a rapid increase in capillary tube hematocrit from 21.1±10.1% to 29.0±9.8% (P<0.05), and an increase in D40 intensity in individual capillaries of 134±138% compared to baseline at the end of the IVITT. These effects of insulin were virtually abolished in hyaluronidase treated animals. In conclusion, insulin rapidly increases glycocalyx accessibility for circulating blood in muscle, and this is associated with an increased blood volume in individual capillaries. Hyaluronidase treatment of the glycocalyx abolishes the effects of insulin on capillary blood volume and impairs insulin-mediated glucose disposal.
Collapse
Affiliation(s)
- Bart J M Eskens
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yen WY, Cai B, Zeng M, Tarbell JM, Fu BM. Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvasc Res 2012; 83:337-46. [PMID: 22349291 DOI: 10.1016/j.mvr.2012.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 12/19/2022]
Abstract
The glycocalyx on the surface of endothelium lining blood vessel walls modulates vascular barrier function, cell adhesion and also serves as a mechano-sensor for blood flow. Reduction of glycocalyx has been reported in many diseases including atherosclerosis, inflammation, myocardial edema, and diabetes. The surface glycocalyx layer (SGL) is composed of proteoglycans and glycosaminoglycans, of which heparan sulfate is one of the most abundant. To quantify the SGL thickness on the microvessels of rat mesentery and mouse cremaster muscle in situ, we applied a single vessel cannulation and perfusion technique to directly inject FITC-anti-heparan sulfate into a group of microvessels for immuno-labeling the SGL. We also used anti-heparan sulfate for immuno-labeling the SGL on rat and mouse aortas ex vivo. High resolution confocal microscopy revealed that the thickness of the SGL on rat mesenteric capillaries and post-capillary venules is 0.9±0.1 μm and 1.2±0.3 μm, respectively; while the thickness of the SGL on mouse cremaster muscle capillaries and post-capillary venules is 1.5±0.1 μm and 1.5±0.2 μm, respectively. Surprisingly, there was no detectable SGL in either rat mesenteric or mouse cremaster muscle arterioles. The SGL thickness is 2.5±0.1 μm and 2.1±0.2 μm respectively, on rat and mouse aorta. In addition, we observed that the SGL is continuously and evenly distributed on the aorta wall but not on the microvessel wall.
Collapse
Affiliation(s)
- Wan-Yi Yen
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
18
|
Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 2012; 108:384-94. [PMID: 22290457 DOI: 10.1093/bja/aer515] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
I.V. fluid therapy does not result in the extracellular volume distribution expected from Starling's original model of semi-permeable capillaries subject to hydrostatic and oncotic pressure gradients within the extracellular fluid. Fluid therapy to support the circulation relies on applying a physiological paradigm that better explains clinical and research observations. The revised Starling equation based on recent research considers the contributions of the endothelial glycocalyx layer (EGL), the endothelial basement membrane, and the extracellular matrix. The characteristics of capillaries in various tissues are reviewed and some clinical corollaries considered. The oncotic pressure difference across the EGL opposes, but does not reverse, the filtration rate (the 'no absorption' rule) and is an important feature of the revised paradigm and highlights the limitations of attempting to prevent or treat oedema by transfusing colloids. Filtered fluid returns to the circulation as lymph. The EGL excludes larger molecules and occupies a substantial volume of the intravascular space and therefore requires a new interpretation of dilution studies of blood volume and the speculation that protection or restoration of the EGL might be an important therapeutic goal. An explanation for the phenomenon of context sensitivity of fluid volume kinetics is offered, and the proposal that crystalloid resuscitation from low capillary pressures is rational. Any potential advantage of plasma or plasma substitutes over crystalloids for volume expansion only manifests itself at higher capillary pressures.
Collapse
Affiliation(s)
- T E Woodcock
- Critical Care Service, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YD, UK.
| | | |
Collapse
|
19
|
Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2011; 40:828-39. [PMID: 22009311 DOI: 10.1007/s10439-011-0429-8] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/03/2011] [Indexed: 12/16/2022]
Abstract
Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.
Collapse
Affiliation(s)
- F E Curry
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
20
|
Nguyen-Pouplin J, Pouplin T, Van TP, The TD, Thi DN, Farrar J, Tinh HT, Wills B. Dextran fractional clearance studies in acute dengue infection. PLoS Negl Trop Dis 2011; 5:e1282. [PMID: 21886850 PMCID: PMC3160290 DOI: 10.1371/journal.pntd.0001282] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/06/2011] [Indexed: 12/14/2022] Open
Abstract
Background Although increased capillary permeability is the major clinical feature associated with severe dengue infections the mechanisms underlying this phenomenon remain unclear. Dextran clearance methodology has been used to investigate the molecular sieving properties of the microvasculature in clinical situations associated with altered permeability, including during pregnancy and in various renal disorders. In order to better understand the characteristics of the vascular leak associated with dengue we undertook formal dextran clearance studies in Vietnamese dengue patients and healthy volunteers. Methodology/Principal Findings We carried out serial clearance studies in 15 young adult males with acute dengue and evidence of vascular leakage a) during the phase of maximal leakage and b) one and three months later, as well as in 16 healthy control subjects. Interestingly we found no difference in the clearance profiles of neutral dextran solutions among the dengue patients at any time-point or in comparison to the healthy volunteers. Conclusions/Significance The surface glycocalyx layer, a fibre-matrix of proteoglycans, glycosaminoglycans, and plasma proteins, forms a complex with the underlying endothelial cells to regulate plasma volume within circumscribed limits. It is likely that during dengue infections loss of plasma proteins from this layer alters the permeability characteristics of the complex; physical and/or electrostatic interactions between the dextran molecules and the glycocalyx structure may temporarily restore normal function, rendering the technique unsuitable for assessing permeability in these patients. The implications for resuscitation of patients with dengue shock syndrome (DSS) are potentially important. It is possible that continuous low-dose infusions of dextran may help to stabilize the permeability barrier in patients with profound or refractory shock, reducing the need for repeated boluses, limiting the total colloid volume required. Formal clinical studies should help to assess this strategy as an alternative to conventional fluid resuscitation for severe DSS. Dengue is a potentially serious common viral infection with no specific treatment. Plasma leakage from small blood vessels is the major severe problem, but we do not understand how this occurs. Techniques using controlled infusions of carbohydrate solutions, combined with careful measurement of the rate that the different-sized molecules clear from the circulation, have been successfully used to investigate leakage in other situations. We performed carbohydrate clearance studies in 15 Vietnamese adult males with dengue and plasma leakage, comparing results obtained during the acute illness with recovery values, and results from a group of healthy volunteers. However, we found no differences between any of the clearance profiles measured. One possible explanation may be that the carbohydrate molecules interact with blood vessels, temporarily restoring their normal barrier function. Although this means that the technique is unsuitable for investigating leakage in dengue patients, the implications for management of patients with severe leakage resulting in shock are potentially important. Patients with profound shock are usually managed with intermittent large boluses of carbohydrate or similar solutions, sometimes causing severe side-effects; however if continuous low-dose infusions actually stabilized the permeability barrier, this might reduce the need for repeated boluses, thereby minimizing these adverse effects.
Collapse
Affiliation(s)
- Julie Nguyen-Pouplin
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 2010; 105:687-701. [DOI: 10.1007/s00395-010-0118-z] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/11/2022]
|
23
|
Curry FRE, Adamson RH. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res 2010; 87:218-29. [PMID: 20418473 PMCID: PMC2895542 DOI: 10.1093/cvr/cvq115] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/13/2010] [Accepted: 04/19/2010] [Indexed: 01/20/2023] Open
Abstract
Multiple processes modulate net blood-to-tissue exchange in a microvascular unit in normal and pathophysiological conditions. These include mechanisms that control the number and type of microvessels perfused, the balance of adhesion and contractile forces that determine the conductance of the spaces between endothelial cells to water and solutes, the pressure and chemical potential gradients determining the driving forces through these conductive pathways, and the organization of barriers to macromolecules in the endothelial glycocalyx. Powerful methods are available to investigate these mechanisms at the levels of cultured endothelial monolayers, isolated microvessels, and the microvascular units within intact organs. Here we focus on current problems that limit the integration of our knowledge of mechanisms investigated in detail at the cellular level into a more complete understanding of modulation of blood-to-tissue exchange in whole organs when the endothelial barrier is exposed to acute and more long-term inflammatory conditions. First, we review updated methods, applicable in mouse models of vascular permeability regulation, to investigate both acute and long-term changes in permeability. Methods to distinguish tracer accumulation due to change in perfusion from real increases in extravascular accumulation are emphasized. The second part of the review compares normal and increased permeability in individually perfused venular microvessels and endothelial cell monolayers. The heterogeneity of endothelial cell phenotypes in the baseline state and after exposure to injury and inflammatory conditions is emphasized. Lastly, we review new approaches to investigation of the glycocalyx barrier properties in cultured endothelial monolayers and in whole-body investigations.
Collapse
Affiliation(s)
- Fitz-Roy E Curry
- Department of Physiology and Membrane Biology, School of Medicine, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
24
|
|