1
|
Subati T, Kim K, Yang Z, Murphy MB, Van Amburg JC, Christopher IL, Dougherty OP, Woodall KK, Smart CD, Johnson JE, Fogo AB, Amarnath V, Agrawal V, Barnett JV, Saffitz JE, Murray KT. Oxidative Stress Causes Mitochondrial and Electrophysiologic Dysfunction to Promote Atrial Fibrillation in Pitx2+/-Mice. Circ Arrhythm Electrophysiol 2025:e013199. [PMID: 39989351 DOI: 10.1161/circep.124.013199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND The strongest genetic risk factors for atrial fibrillation (AF) are DNA variants on chromosome 4q25 near the transcription factor gene PITX2. Mice deficient in Pitx2 (Pitx2+/-) have increased AF susceptibility, although the molecular mechanism(s) remains controversial. Pitx2 encodes a transcription factor that activates an antioxidant response to promote cardiac repair. Increased reactive oxygen species causing oxidation of polyunsaturated fatty acids generates reactive lipid dicarbonyl moieties that adduct to proteins and other macromolecules to promote cellular injury. We tested the hypothesis that oxidative stress, and specifically isolevuglandins, the most reactive lipid dicarbonyls identified, are increased in the setting of Pitx2 deficiency to promote proarrhythmic remodeling and AF. METHODS Pitx2+/- and Pitx2+/+ wild-type littermate control mice were treated orally with vehicle, the lipid dicarbonyl scavenger 2-hydroxybenzylamine, or an inactive control compound at weaning, until study at age 16 to 18 weeks. RESULTS Pitx2+/- mice demonstrated increased P wave duration indicative of slowed atrial conduction, as well as increased inducible AF burden and sustained AF, compared with wild type, and these abnormalities were prevented by 2-hydroxybenzylamine. Both reactive oxygen species and isolevuglandin protein adducts were elevated in Pitx2+/- atria with reduced expression of reactive oxygen species-protective genes. High-resolution respirometry demonstrated impaired mitochondrial function in Pitx2+/- atria, with disruption of mitochondrial integrity and cell-cell junctions with connexin lateralization, as well as decreased mitochondrial biogenesis gene expression. Proarrhythmic ionic current remodeling in Pitx2+/- atrial myocytes included elevated resting membrane potential, abbreviated action potential duration, and reduced maximum phase 0 upstroke velocity compared with wild type. Most of these abnormalities were ameliorated or prevented by 2-hydroxybenzylamine. CONCLUSIONS These results demonstrate a critical role for lipid dicarbonyl mediators of oxidative stress in the proarrhythmic remodeling and AF susceptibility that occurs with Pitx2 deficiency, implying the possibility of genotype-specific therapy to prevent AF.
Collapse
Affiliation(s)
- Tuerdi Subati
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Kyungsoo Kim
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Zhenjiang Yang
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Matthew B Murphy
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Joseph C Van Amburg
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Isis L Christopher
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Owen P Dougherty
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Kaylen K Woodall
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Charles D Smart
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Joyce E Johnson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Univ School of Medicine, Nashville, TN. (J.E.J., A.B.F.)
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Univ School of Medicine, Nashville, TN. (J.E.J., A.B.F.)
| | - Venkataraman Amarnath
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Vineet Agrawal
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
| | - Joey V Barnett
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA (J.E.S.)
| | - Katherine T Murray
- Department of Medicine, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, V. Agrawal, J.V.B., K.T.M.)
- Department of Pharmacology, Vanderbilt Univ School of Medicine, Nashville, TN. (T.S., K.K., Z.Y., M.B.M., J.C.V.A., I.L.C., O.P.D., K.K.W., C.D.S., V. Amarnath, J.V.B., K.T.M.)
| |
Collapse
|
2
|
Leblanc FJA, Jin X, Kang K, Lee CJM, Xu J, Xuan L, Ma W, Belhaj H, Benzaki M, Mehta N, Foo RSY, Reilly S, Anene-Nzelu CG, Pan Z, Nattel S, Yang B, Lettre G. Atrial fibrillation variant-to-gene prioritization through cross-ancestry eQTL and single-nucleus multiomic analyses. iScience 2024; 27:110660. [PMID: 39262787 PMCID: PMC11388022 DOI: 10.1016/j.isci.2024.110660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in the world. Human genetics can provide strong AF therapeutic candidates, but the identification of the causal genes and their functions remains challenging. Here, we applied an AF fine-mapping strategy that leverages results from a previously published cross-ancestry genome-wide association study (GWAS), expression quantitative trait loci (eQTLs) from left atrial appendages (LAAs) obtained from two cohorts with distinct ancestry, and a paired RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) LAA single-nucleus assay (sn-multiome). At nine AF loci, our co-localization and fine-mapping analyses implicated 14 genes. Data integration identified several candidate causal AF variants, including rs7612445 at GNB4 and rs242557 at MAPT. Finally, we showed that the repression of the strongest AF-associated eQTL gene, LINC01629, in human embryonic stem cell-derived cardiomyocytes using CRISPR inhibition results in the dysregulation of pathways linked to genes involved in the development of atrial tissue and the cardiac conduction system.
Collapse
Affiliation(s)
- Francis J A Leblanc
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Xuexin Jin
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chang Jie Mick Lee
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lina Xuan
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wenbo Ma
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | | | - Marouane Benzaki
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Neelam Mehta
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Roger Sik Yin Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Chukwuemeka George Anene-Nzelu
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhenwei Pan
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Stanley Nattel
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Baofeng Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Sönmez MI, Goldack S, Nurkkala E, Schulz C, Klampe B, Schulze T, Hansen A, Eschenhagen T, Koivumäki J, Christ T. Human induced pluripotent stem cell-derived atrial cardiomyocytes recapitulate contribution of the slowly activating delayed rectifier currents IKs to repolarization in the human atrium. Europace 2024; 26:euae140. [PMID: 38788213 PMCID: PMC11167676 DOI: 10.1093/europace/euae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/23/2024] [Indexed: 05/26/2024] Open
Abstract
AIMS Human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCM) could be a helpful tool to study the physiology and diseases of the human atrium. To fulfil this expectation, the electrophysiology of hiPSC-aCM should closely resemble the situation in the human atrium. Data on the contribution of the slowly activating delayed rectifier currents (IKs) to repolarization are lacking for both human atrium and hiPSC-aCM. METHODS AND RESULTS Human atrial tissues were obtained from patients with sinus rhythm (SR) or atrial fibrillation (AF). Currents were measured in human atrial cardiomyocytes (aCM) and compared with hiPSC-aCM and used to model IKs contribution to action potential (AP) shape. Action potential was recorded by sharp microelectrodes. HMR-1556 (1 µM) was used to identify IKs and to estimate IKs contribution to repolarization. Less than 50% of hiPSC-aCM and aCM possessed IKs. Frequency of occurrence, current densities, activation/deactivation kinetics, and voltage dependency of IKs did not differ significantly between hiPSC-aCM and aCM, neither in SR nor AF. β-Adrenoceptor stimulation with isoprenaline did not increase IKs neither in aCM nor in hiPSC-aCM. In tissue from SR, block of IKs with HMR-1556 did not lengthen the action potential duration, even when repolarization reserve was reduced by block of the ultra-rapid repolarizing current with 4-aminopyridine or the rapidly activating delayed rectifier potassium outward current with E-4031. CONCLUSION I Ks exists in hiPSC-aCM with biophysics not different from aCM. As in adult human atrium (SR and AF), IKs does not appear to relevantly contribute to repolarization in hiPSC-aCM.
Collapse
Affiliation(s)
- Muhammed Ikbal Sönmez
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Silvana Goldack
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Elina Nurkkala
- Tech Unit and Centre of Excellence in Body-on-Chip Research (CoEBoC), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finnland
| | - Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jussi Koivumäki
- Tech Unit and Centre of Excellence in Body-on-Chip Research (CoEBoC), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finnland
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Vinciguerra M, Dobrev D, Nattel S. Atrial fibrillation: pathophysiology, genetic and epigenetic mechanisms. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100785. [PMID: 38362554 PMCID: PMC10866930 DOI: 10.1016/j.lanepe.2023.100785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 02/17/2024]
Abstract
Atrial fibrillation (AF) is the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence dramatically increases with age and could reach up to ∼10% in the elderly. The management of AF is a complex issue that is object of extensive ongoing basic and clinical research, it depends on its genetic and epigenetic causes, and it varies considerably geographically and also according to the ethnicity. Mechanistically, over the last decade, Genome Wide Association Studies have uncovered over 100 genetic loci associated with AF, and have shown that European ancestry is associated with elevated risk of AF. These AF-associated loci revolve around different types of disturbances, including inflammation, electrical abnormalities, and structural remodeling. Moreover, the discovery of epigenetic regulatory mechanisms, involving non-coding RNAs, DNA methylation and histone modification, has allowed unravelling what modifications reshape the processes leading to arrhythmias. Our review provides a current state of the field regarding the identification and functional characterization of AF-related genetic and epigenetic regulatory networks, including ethnic differences. We discuss clear and emerging connections between genetic regulation and pathophysiological mechanisms of AF.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Liverpool Centre for Cardiovascular Science, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Benzoni P, Da Dalt L, Elia N, Popolizio V, Cospito A, Giannetti F, Dell’Era P, Olesen MS, Bucchi A, Baruscotti M, Norata GD, Barbuti A. PITX2 gain-of-function mutation associated with atrial fibrillation alters mitochondrial activity in human iPSC atrial-like cardiomyocytes. Front Physiol 2023; 14:1250951. [PMID: 38028792 PMCID: PMC10679737 DOI: 10.3389/fphys.2023.1250951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide; however, the underlying causes of AF initiation are still poorly understood, particularly because currently available models do not allow in distinguishing the initial causes from maladaptive remodeling that induces and perpetuates AF. Lately, the genetic background has been proven to be important in the AF onset. iPSC-derived cardiomyocytes, being patient- and mutation-specific, may help solve this diatribe by showing the initial cell-autonomous changes underlying the development of the disease. Transcription factor paired-like homeodomain 2 (PITX2) has been identified as a key regulator of atrial development/differentiation, and the PITX2 genomic locus has the highest association with paroxysmal AF. PITX2 influences mitochondrial activity, and alterations in either its expression or function have been widely associated with AF. In this work, we investigate the activity of mitochondria in iPSC-derived atrial cardiomyocytes (aCMs) obtained from a young patient (24 years old) with paroxysmal AF, carrying a gain-of-function mutation in PITX2 (rs138163892) and from its isogenic control (CTRL) in which the heterozygous point mutation has been reverted to WT. PITX2 aCMs show a higher mitochondrial content, increased mitochondrial activity, and superoxide production under basal conditions when compared to CTRL aCMs. However, increasing mitochondrial workload by FCCP or β-adrenergic stimulation allows us to unmask mitochondrial defects in PITX2 aCMs, which are incapable of responding efficiently to the higher energy demand, determining ATP deficiency.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Noemi Elia
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
- Cell Factory, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vera Popolizio
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Cospito
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Milano, Italy
| | - Patrizia Dell’Era
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Morten S. Olesen
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Department of Cardiology, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
6
|
Tarifa C, Serra SA, Herraiz-Martínez A, Lozano-Velasco E, Benítez R, Aranega A, Franco D, Hove-Madsen L. Pitx2c deficiency confers cellular electrophysiological hallmarks of atrial fibrillation to isolated atrial myocytes. Biomed Pharmacother 2023; 162:114577. [PMID: 37001181 DOI: 10.1016/j.biopha.2023.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
AIMS Atrial fibrillation (AF) has been associated with altered expression of the transcription factor Pitx2c and a high incidence of calcium release-induced afterdepolarizations. However, the relationship between Pitx2c expression and defective calcium homeostasis remains unclear and we here aimed to determine how Pitx2c expression affects calcium release from the sarcoplasmic reticulum (SR) and its impact on electrical activity in isolated atrial myocytes. METHODS To address this issue, we applied confocal calcium imaging and patch-clamp techniques to atrial myocytes isolated from a mouse model with conditional atrial-specific deletion of Pitx2c. RESULTS Our findings demonstrate that heterozygous deletion of Pitx2c doubles the calcium spark frequency, increases the frequency of sparks/site 1.5-fold, the calcium spark decay constant from 36 to 42 ms and the wave frequency from none to 3.2 min-1. Additionally, the cell capacitance increased by 30% and both the SR calcium load and the transient inward current (ITI) frequency were doubled. Furthermore, the fraction of cells with spontaneous action potentials increased from none to 44%. These effects of Pitx2c deficiency were comparable in right and left atrial myocytes, and homozygous deletion of Pitx2c did not induce any further effects on sparks, SR calcium load, ITI frequency or spontaneous action potentials. CONCLUSION Our findings demonstrate that heterozygous Pitx2c deletion induces defects in calcium homeostasis and electrical activity that mimic derangements observed in right atrial myocytes from patients with AF and suggest that Pitx2c deficiency confers cellular electrophysiological hallmarks of AF to isolated atrial myocytes.
Collapse
Affiliation(s)
- Carmen Tarifa
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | - Selma A Serra
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | - Adela Herraiz-Martínez
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | | | - Raul Benítez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaén, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaén, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain; CIBERCV, Spain.
| |
Collapse
|
7
|
Delisle BP, Aromolaran AS. New Insights into Cardiac Ion Channel Regulation 2.0. Int J Mol Sci 2023; 24:4999. [PMID: 36902430 PMCID: PMC10002907 DOI: 10.3390/ijms24054999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Sudden cardiac death (SCD) and arrhythmias represent a global public health problem, accounting for 15-20% of all deaths [...].
Collapse
Affiliation(s)
- Brian P. Delisle
- Department of Physiology, 741 S Limestone Street BBSRB B353, Lexington, KY 40536, USA
| | - Ademuyiwa S. Aromolaran
- Department of Surgery, Division of Cardiothoracic Surgery, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, Nutrition and Integrative Physiology, Biochemistry and Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Macías Á, González-Guerra A, Moreno-Manuel AI, Cruz FM, Gutiérrez LK, García-Quintáns N, Roche-Molina M, Bermúdez-Jiménez F, Andrés V, Vera-Pedrosa ML, Martínez-Carrascoso I, Bernal JA, Jalife J. Kir2.1 dysfunction at the sarcolemma and the sarcoplasmic reticulum causes arrhythmias in a mouse model of Andersen-Tawil syndrome type 1. NATURE CARDIOVASCULAR RESEARCH 2022; 1:900-917. [PMID: 39195979 PMCID: PMC11358039 DOI: 10.1038/s44161-022-00145-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/02/2022] [Indexed: 08/29/2024]
Abstract
Andersen-Tawil syndrome type 1 (ATS1) is associated with life-threatening arrhythmias of unknown mechanism. In this study, we generated and characterized a mouse model of ATS1 carrying the trafficking-deficient mutant Kir2.1Δ314-315 channel. The mutant mouse recapitulates the electrophysiological phenotype of ATS1, with QT prolongation exacerbated by flecainide or isoproterenol, drug-induced QRS prolongation, increased vulnerability to reentrant arrhythmias and multifocal discharges resembling catecholaminergic polymorphic ventricular tachycardia (CPVT). Kir2.1Δ314-315 cardiomyocytes display significantly reduced inward rectifier K+ and Na+ currents, depolarized resting membrane potential and prolonged action potentials. We show that, in wild-type mouse cardiomyocytes and skeletal muscle cells, Kir2.1 channels localize to sarcoplasmic reticulum (SR) microdomains, contributing to intracellular Ca2+ homeostasis. Kir2.1Δ314-315 cardiomyocytes exhibit defective SR Kir2.1 localization and function, as intact and permeabilized Kir2.1Δ314-315 cardiomyocytes display abnormal spontaneous Ca2+ release events. Overall, defective Kir2.1 channel function at the sarcolemma and the SR explain the life-threatening arrhythmias in ATS1 and its overlap with CPVT.
Collapse
Affiliation(s)
- Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
10
|
Fang Y, Li Q, Li X, Luo GH, Kuang SJ, Luo XS, Li QQ, Yang H, Liu Y, Deng CY, Xue YM, Wu SL, Rao F. Piezo1 Participated in Decreased L-Type Calcium Current Induced by High Hydrostatic Pressure via. CaM/Src/Pitx2 Activation in Atrial Myocytes. Front Cardiovasc Med 2022; 9:842885. [PMID: 35252406 PMCID: PMC8891577 DOI: 10.3389/fcvm.2022.842885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypertension is a major cardiovascular risk factor for atrial fibrillation (AF) worldwide. However, the role of mechanical stress caused by hypertension on downregulating the L-type calcium current (ICa,L), which is vital for AF occurrence, remains unclear. Therefore, the aim of the present study was to investigate the role of Piezo1, a mechanically activated ion channel, in the decrease of ICa,L in response to high hydrostatic pressure (HHP, one of the principal mechanical stresses) at 40 mmHg, and to elucidate the underlying pathways. Experiments were conducted using left atrial appendages from patients with AF, spontaneously hypertensive rats (SHRs) treated with valsartan (Val) at 30 mg/kg/day and atrium-derived HL-1 cells exposed to HHP. The protein expression levels of Piezo1, Calmodulin (CaM), and Src increased, while that of the L-type calcium channel a1c subunit protein (Cav1.2) decreased in the left atrial tissue of AF patients and SHRs. SHRs were more vulnerable to AF, with decreased ICa,L and shortened action potential duration, which were ameliorated by Val treatment. Validation of these results in HL-1 cells in the context of HHP also demonstrated that Piezo1 is required for the decrease of ICa,L by regulating Ca2+ transient and activating CaM/Src pathway to increase the expression of paired like homeodomain-2 (Pitx2) in atrial myocytes. Together, these data demonstrate that HHP stimulation increases AF susceptibility through Piezo1 activation, which is required for the decrease of ICa,Lvia. the CaM/Src/Pitx2 pathway in atrial myocytes.
Collapse
Affiliation(s)
- Yuan Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qian Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guan-Hao Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Su-Juan Kuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Shan Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiao-Qiao Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yu-Mei Xue
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shu-Lin Wu
| | - Fang Rao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Fang Rao
| |
Collapse
|
11
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
García-Padilla C, Domínguez JN, Lodde V, Munk R, Abdelmohsen K, Gorospe M, Jiménez-Sábado V, Ginel A, Hove-Madsen L, Aránega AE, Franco D. Identification of atrial-enriched lncRNA Walras linked to cardiomyocyte cytoarchitecture and atrial fibrillation. FASEB J 2022; 36:e22051. [PMID: 34861058 PMCID: PMC8684585 DOI: 10.1096/fj.202100844rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway. In silico analyses of annotated lncRNAs in the vicinity of the Pitx2, Wnt8 and Wnt11 chromosomal loci identified five novel lncRNAs with differential expression during cardiac development. Importantly, three of them, Walaa, Walras, and Wallrd, are evolutionarily conserved in humans and displayed preferential atrial expression during embryogenesis. In addition, Walrad displayed moderate expression during embryogenesis but was more abundant in the right atrium. Walaa, Walras and Wallrd were distinctly regulated by Pitx2, Wnt8, and Wnt11, and Wallrd was severely elevated in conditional atrium-specific Pitx2-deficient mice. Furthermore, pro-arrhythmogenic and pro-hypertrophic substrate administration to primary cardiomyocyte cell cultures consistently modulate expression of these lncRNAs, supporting distinct modulatory roles of the AF cardiovascular risk factors in the regulation of these lncRNAs. Walras affinity pulldown assays revealed its association with distinct cytoplasmic and nuclear proteins previously involved in cardiac pathophysiology, while loss-of-function assays further support a pivotal role of this lncRNA in cytoskeletal organization. We propose that lncRNAs Walaa, Walras and Wallrd, distinctly regulated by Pitx2>Wnt>miRNA signaling and pro-arrhythmogenic and pro-hypertrophic factors, are implicated in atrial arrhythmogenesis, and Walras additionally in cardiomyocyte cytoarchitecture.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N. Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Valeria Lodde
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | | | - Antonino Ginel
- Department Cardiac Surgery, Hospital de Sant Pau, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- CIBERCV, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain,Biomedical Research Institute Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Amelia E. Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
13
|
Rubio-Alarcón M, Cámara-Checa A, Dago M, Crespo-García T, Nieto-Marín P, Marín M, Merino JL, Toquero J, Salguero-Bodes R, Tamargo J, Cebrián J, Delpón E, Caballero R. Zfhx3 Transcription Factor Represses the Expression of SCN5A Gene and Decreases Sodium Current Density (I Na). Int J Mol Sci 2021; 22:13031. [PMID: 34884836 PMCID: PMC8657907 DOI: 10.3390/ijms222313031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/02/2023] Open
Abstract
The ZFHX3 and SCN5A genes encode the zinc finger homeobox 3 (Zfhx3) transcription factor (TF) and the human cardiac Na+ channel (Nav1.5), respectively. The effects of Zfhx3 on the expression of the Nav1.5 channel, and in cardiac excitability, are currently unknown. Additionally, we identified three Zfhx3 variants in probands diagnosed with familial atrial fibrillation (p.M1260T) and Brugada Syndrome (p.V949I and p.Q2564R). Here, we analyzed the effects of native (WT) and mutated Zfhx3 on Na+ current (INa) recorded in HL-1 cardiomyocytes. ZFHX3 mRNA can be detected in human atrial and ventricular samples. In HL-1 cardiomyocytes, transfection of Zfhx3 strongly reduced peak INa density, while the silencing of endogenous expression augmented it (from -65.9 ± 8.9 to -104.6 ± 10.8 pA/pF; n ≥ 8, p < 0.05). Zfhx3 significantly reduced the transcriptional activity of human SCN5A, PITX2, TBX5, and NKX25 minimal promoters. Consequently, the mRNA and/or protein expression levels of Nav1.5 and Tbx5 were diminished (n ≥ 6, p < 0.05). Zfhx3 also increased the expression of Nedd4-2 ubiquitin-protein ligase, enhancing Nav1.5 proteasomal degradation. p.V949I, p.M1260T, and p.Q2564R Zfhx3 produced similar effects on INa density and time- and voltage-dependent properties in WT. WT Zfhx3 inhibits INa as a result of a direct repressor effect on the SCN5A promoter, the modulation of Tbx5 increasing on the INa, and the increased expression of Nedd4-2. We propose that this TF participates in the control of cardiac excitability in human adult cardiac tissue.
Collapse
Affiliation(s)
- Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| | - María Dago
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| | - Teresa Crespo-García
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| | - Paloma Nieto-Marín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| | - María Marín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| | - José Luis Merino
- Department of Cardiology, Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz, CIBERCV, 28046 Madrid, Spain;
| | - Jorge Toquero
- Department of Cardiology, Hospital Universitario Puerta de Hierro, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, CIBERCV, Majadahonda, 28222 Madrid, Spain;
| | - Rafael Salguero-Bodes
- Department of Cardiology, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre, CIBERCV, 28041 Madrid, Spain;
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, CIBERCV, 28040 Madrid, Spain; (M.R.-A.); (A.C.-C.);; (T.C.-G.); (P.N.-M.); (M.M.); (J.T.); (E.D.); (R.C.)
| |
Collapse
|
14
|
Zhang L, Wang X, Huang C. A narrative review of non-coding RNAs in atrial fibrillation: potential therapeutic targets and molecular mechanisms. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1486. [PMID: 34734038 PMCID: PMC8506732 DOI: 10.21037/atm-21-4483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Objective This review summarizes the advances in the study of ncRNAs and atrial remodeling mechanisms to explore potential therapeutic targets and strategies for AF. Background Atrial fibrillation (AF) is one of the most common arrhythmias, and its morbidity and mortality rates are gradually increasing. Non-coding ribonucleic acid RNAs (ncRNAs) are transcribed from the genome and do not have the ability to be translated into proteins. A growing body of evidence has shown ncRNAs are extensively involved in the pathophysiological processes underlying AF. However, the precise molecular mechanisms of these associations have not been fully elucidated. Atrial remodeling plays a key role in the occurrence and development of AF, and includes electrical remodeling, structural remodeling, and autonomic nerve remodeling. Research has shown that ncRNA expression is altered in the plasma and tissues of AF patients that mediate cardiac excitation and arrhythmia, and is closely related to atrial remodeling. Methods Literatures about ncRNAs and atrial fibrillation were extensively reviewed to discuss and analyze. Conclusions The biology of ncRNAs represents a relatively new field of research and is still in an emerging stage. Recent studies have laid a foundation for understanding the molecular mechanisms of AF, future studies aimed at identifying how ncRNAs act on atrial fibrillation to provide potentially promising therapeutic targets for the treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
15
|
Bai J, Lu Y, Zhu Y, Wang H, Yin D, Zhang H, Franco D, Zhao J. Understanding PITX2-Dependent Atrial Fibrillation Mechanisms through Computational Models. Int J Mol Sci 2021; 22:7681. [PMID: 34299303 PMCID: PMC8307824 DOI: 10.3390/ijms22147681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.
Collapse
Affiliation(s)
- Jieyun Bai
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Yaosheng Lu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Yijie Zhu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Huijin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Dechun Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150000, China;
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
16
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
17
|
Victorino J, Alvarez-Franco A, Manzanares M. Functional genomics and epigenomics of atrial fibrillation. J Mol Cell Cardiol 2021; 157:45-55. [PMID: 33887329 DOI: 10.1016/j.yjmcc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. Despite years of study, we still do not have a full comprehension of the molecular mechanism responsible for the disease. The recent implementation of large-scale approaches in both patient samples, population studies and animal models has helped us to broaden our knowledge on the molecular drivers responsible for AF and on the mechanisms behind disease progression. Understanding genomic and epigenomic changes that take place during chronification of AF will prove essential to design novel treatments leading to improved patient care.
Collapse
Affiliation(s)
- Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Spain
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
18
|
Disease Modeling and Disease Gene Discovery in Cardiomyopathies: A Molecular Study of Induced Pluripotent Stem Cell Generated Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22073311. [PMID: 33805011 PMCID: PMC8037452 DOI: 10.3390/ijms22073311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
The in vitro modeling of cardiac development and cardiomyopathies in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) provides opportunities to aid the discovery of genetic, molecular, and developmental changes that are causal to, or influence, cardiomyopathies and related diseases. To better understand the functional and disease modeling potential of iPSC-differentiated CMs and to provide a proof of principle for large, epidemiological-scale disease gene discovery approaches into cardiomyopathies, well-characterized CMs, generated from validated iPSCs of 12 individuals who belong to four sibships, and one of whom reported a major adverse cardiac event (MACE), were analyzed by genome-wide mRNA sequencing. The generated CMs expressed CM-specific genes and were highly concordant in their total expressed transcriptome across the 12 samples (correlation coefficient at 95% CI =0.92 ± 0.02). The functional annotation and enrichment analysis of the 2116 genes that were significantly upregulated in CMs suggest that generated CMs have a transcriptomic and functional profile of immature atrial-like CMs; however, the CMs-upregulated transcriptome also showed high overlap and significant enrichment in primary cardiomyocyte (p-value = 4.36 × 10−9), primary heart tissue (p-value = 1.37 × 10−41) and cardiomyopathy (p-value = 1.13 × 10−21) associated gene sets. Modeling the effect of MACE in the generated CMs-upregulated transcriptome identified gene expression phenotypes consistent with the predisposition of the MACE-affected sibship to arrhythmia, prothrombotic, and atherosclerosis risk.
Collapse
|
19
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, largely associated to morbidity and mortality. Over the past decades, research in appearance and progression of this arrhythmia have turned into significant advances in its management. However, the incidence of AF continues to increase with the aging of the population and many important fundamental and translational underlaying mechanisms remain elusive. Here, we review recent advances in molecular and cellular basis for AF initiation, maintenance and progression. We first provide an overview of the basic molecular and electrophysiological mechanisms that lead and characterize AF. Next, we discuss the upstream regulatory factors conducting the underlying mechanisms which drive electrical and structural AF-associated remodeling, including genetic factors (risk variants associated to AF as transcriptional regulators and genetic changes associated to AF), neurohormonal regulation (i.e., cAMP) and oxidative stress imbalance (cGMP and mitochondrial dysfunction). Finally, we discuss the potential therapeutic implications of those findings, the knowledge gaps and consider future approaches to improve clinical management.
Collapse
|
20
|
Bai J, Zhu Y, Lo A, Gao M, Lu Y, Zhao J, Zhang H. In Silico Assessment of Class I Antiarrhythmic Drug Effects on Pitx2-Induced Atrial Fibrillation: Insights from Populations of Electrophysiological Models of Human Atrial Cells and Tissues. Int J Mol Sci 2021; 22:1265. [PMID: 33514068 PMCID: PMC7866025 DOI: 10.3390/ijms22031265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action po-tential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmaco-logical effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax), and decreased AP duration (APD), conduction velocity (CV), and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that disopyramide may be more effective against Pitx2-induced AF than propafenone and quinidine by prolonging WL.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Meng Gao
- Department of Computer Science and Technology, College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
21
|
Zhu Y, Bai J, Lo A, Lu Y, Zhao J. Mechanisms underlying pro-arrhythmic abnormalities arising from Pitx2-induced electrical remodelling: an in silico intersubject variability study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:106. [PMID: 33569408 PMCID: PMC7867875 DOI: 10.21037/atm-20-5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Electrical remodelling as a result of the homeodomain transcription factor 2 (Pitx2)-dependent gene regulation induces atrial fibrillation (AF) with different mechanisms. The purpose of this study was to identify Pitx2-induced changes in ionic currents that cause action potential (AP) shortening and lead to triggered activity. Methods Populations of computational atrial AP models were developed based on AP recordings from sinus rhythm (SR) and AF patients. Models in the AF population were divided into triggered and untriggered AP groups to evaluate the relationship between each ion current regulated by Pitx2 and triggered APs. Untriggered AP models were then divided into shortened and unshortened AP groups to determine which Pitx2-dependent ion currents contribute to AP shortening. Results According to the physiological range of AP biomarkers measured experimentally, populations of 2,885 SR and 4,781 AF models out of the initial pool of 30,000 models were selected. Models in the AF population predicted AP shortening and triggered activity observed in experiments in Pitx2-induced remodelling conditions. The AF models included 925 triggered AP models, 1,412 shortened AP models and 2,444 unshortened AP models. Intersubject variability in IKs and ICaL primarily modulated variability in AP duration (APD) in all shortened and unshortened AP models, whereas intersubject variability in IK1 and SERCA mainly contributed to the variability in AP morphology in all triggered and untriggered AP models. The incidence of shortened AP was positively correlated with IKs and IK1 and was negatively correlated with INa , ICaL and SERCA, whereas the incidence of triggered AP was negatively correlated with IKs and IK1 and was positively correlated with INa , ICaL and SERCA. Conclusions Electrical remodelling due to Pitx2 upregulation may increase the incidence of shortened AP, whereas electrical remodelling arising from Pitx2 downregulation may favor to the genesis of triggered AP.
Collapse
Affiliation(s)
- Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Kuzmin VS, Potekhina VM, Odnoshivkina YG, Chelombitko MA, Fedorov AV, Averina OA, Borodkov AS, Shevtsova AA, Lovat ML, Petrov AM. Proarrhythmic atrial ectopy associated with heart sympathetic innervation dysfunctions is specific for murine B6CBAF1 hybrid strain. Life Sci 2020; 266:118887. [PMID: 33316264 DOI: 10.1016/j.lfs.2020.118887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022]
Abstract
A lot of animal models are developed with aim to advance in atrial fibrillation (AF) understanding. The hybrid B6CBAF1 mice are used extensively as a background to create manifestation of various diseases, however, their atrial electrophysiology, autonomic sympathetic innervation of the heart and potential for AF investigation is poorly characterized. In the present study we used ECG and microelectrode recordings from multicellular atrial preparations to reveal attributes of atrial electrical activity in B6CBAF1. Also, experiments with a fluorescent false monoamine neurotransmitter and glyoxylic acid-based staining were carried out to characterize functionally and morphologically catecholaminergic innervation of the B6CBAF1 atria. Atrial myocardium of B6CBAF1 is highly prone to ectopic automaticity and exhibits abnormal spontaneous action potential accompanied by multiple postdepolarizations that result in proarrhythmic triggered activity unlike two parental C57Bl/6 and CBA strains. In vivo experiments revealed that B6CBAF1 hybrids are more susceptible to the norepinephrine induced AF. Also, sympathetic nerve terminals are partially dysfunctional in B6CBAF1 revealing lower ability to accumulate and release neurotransmitters unlike two parental strains. The analysis of the heart rate variability revealed suppressed sympathetic component of the autonomic heart control in B6CBAF1. The organization of sympathetic innervation is very similar morphologically in all three murine strains however the abundance of non-bifurcated catecholamine-positive fibers in B6CBAF1 was increased. These results suggest that B6CBAF1 mice exhibit enhanced intrinsic atrial proarrhythmicity, while the abnormalities of sympathetic neurotransmitter cycling probably underlie disturbed autonomic heart control.
Collapse
Affiliation(s)
- Vlad S Kuzmin
- Lomonosov Moscow State University, Biological Faculty, Department of Human and Animal Physiology, Leninskie gory 1, building 12, 119991 Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Ostrovitjanova 1, 117997 Moscow, Russia
| | - Viktoriia M Potekhina
- Lomonosov Moscow State University, Biological Faculty, Department of Human and Animal Physiology, Leninskie gory 1, building 12, 119991 Moscow, Russia.
| | | | - Maria A Chelombitko
- The A.N. Belozersky Institute of Physico-Chemical Biology, MSU, Moscow, Russia
| | - Artem V Fedorov
- Lomonosov Moscow State University, Biological Faculty, Department of Human and Animal Physiology, Leninskie gory 1, building 12, 119991 Moscow, Russia
| | - Olga A Averina
- The A.N. Belozersky Institute of Physico-Chemical Biology, MSU, Moscow, Russia; Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey S Borodkov
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences, Moscow, Russia
| | - Anna A Shevtsova
- Lomonosov Moscow State University, Faculty of Biology, Department of Genetics, Moscow, Russia
| | - Maxim L Lovat
- Lomonosov Moscow State University, Biological Faculty, Department of Human and Animal Physiology, Leninskie gory 1, building 12, 119991 Moscow, Russia
| | - Alexey M Petrov
- Institute of Neuroscience, Kazan State Medial University, Kazan, Russia; Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, Russia
| |
Collapse
|
23
|
Pluteanu F, Seidl MD, Hamer S, Scholz B, Müller FU. Inward Rectifier K + Currents Contribute to the Proarrhythmic Electrical Phenotype of Atria Overexpressing Cyclic Adenosine Monophosphate Response Element Modulator Isoform CREM-IbΔC-X. J Am Heart Assoc 2020; 9:e016144. [PMID: 33191843 PMCID: PMC7763782 DOI: 10.1161/jaha.119.016144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transgenic mice (TG) with heart-directed overexpresion of the isoform of the transcription factor cyclic adenosine monophosphate response element modulator (CREM), CREM-IbΔC-X, display spontaneous atrial fibrillation (AF) and action potential prolongation. The remodeling of the underlying ionic currents remains unknown. Here, we investigated the regulatory role of CREM-IbΔC-X on the expression of K+ channel subunits and the corresponding K+ currents in relation to AF onset in TG atrial myocytes. METHODS AND RESULTS ECG recordings documented the absence or presence of AF in 6-week-old (before AF onset) and 12-week-old TG (after AF onset) and wild-type littermate mice before atria removal to perform patch clamp, contractility, and biochemical experiments. In TG atrial myocytes, we found reduced repolarization reserve K+ currents attributed to a decrease of transiently outward current and inward rectifier K+ current with phenotype progression, and of acetylcholine-activated K+ current, age independent. The molecular determinants of these changes were lower mRNA levels of Kcnd2/3, Kcnip2, Kcnj2/4, and Kcnj3/5 and decreased protein levels of K+ channel interacting protein 2 (KChIP2 ), Kir2.1/3, and Kir3.1/4, respectively. After AF onset, inward rectifier K+ current contributed less to action potential repolarization, in line with the absence of outward current component, whereas the acetylcholine-induced action potential shortening before AF onset (6-week-old TG mice) was smaller than in wild-type and 12-week-old TG mice. Atrial force of contraction measured under combined vagal-sympathetic stimulation revealed increased sensitivity to isoprenaline irrespective of AF onset in TG. Moreover, we identified Kcnd2, Kcnd3, Kcnj3, and Kcnh2 as novel CREM-target genes. CONCLUSIONS Our study links the activation of cyclic adenosine monophosphate response element-mediated transcription to the proarrhythmogenic electrical remodeling of atrial inward rectifier K+ currents with a role in action potential duration, resting membrane stability, and vagal control of the electrical activity.
Collapse
Affiliation(s)
| | - Matthias D. Seidl
- Institute of Pharmacology and ToxicologyUniversity of MünsterMünsterGermany
| | - Sabine Hamer
- Institute of Pharmacology and ToxicologyUniversity of MünsterMünsterGermany
| | - Beatrix Scholz
- Institute of Pharmacology and ToxicologyUniversity of MünsterMünsterGermany
| | - Frank U. Müller
- Institute of Pharmacology and ToxicologyUniversity of MünsterMünsterGermany
| |
Collapse
|
24
|
Lipovsky CE, Jimenez J, Guo Q, Li G, Yin T, Hicks SC, Bhatnagar S, Takahashi K, Zhang DM, Brumback BD, Goldsztejn U, Nadadur RD, Perez-Cervantez C, Moskowitz IP, Liu S, Zhang B, Rentschler SL. Chamber-specific transcriptional responses in atrial fibrillation. JCI Insight 2020; 5:135319. [PMID: 32841220 PMCID: PMC7526559 DOI: 10.1172/jci.insight.135319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, yet the molecular signature of the vulnerable atrial substrate is not well understood. Here, we delineated a distinct transcriptional signature in right versus left atrial cardiomyocytes (CMs) at baseline and identified chamber-specific gene expression changes in patients with a history of AF in the setting of end-stage heart failure (AF+HF) that are not present in heart failure alone (HF). We observed that human left atrial (LA) CMs exhibited Notch pathway activation and increased ploidy in AF+HF but not in HF alone. Transient activation of Notch signaling within adult CMs in a murine genetic model is sufficient to increase ploidy in both atrial chambers. Notch activation within LA CMs generated a transcriptomic fingerprint resembling AF, with dysregulation of transcription factor and ion channel genes, including Pitx2, Tbx5, Kcnh2, Kcnq1, and Kcnip2. Notch activation also produced distinct cellular electrophysiologic responses in LA versus right atrial CMs, prolonging the action potential duration (APD) without altering the upstroke velocity in the left atrium and reducing the maximal upstroke velocity without altering the APD in the right atrium. Our results support a shared human/murine model of increased Notch pathway activity predisposing to AF. Distinct transcriptional changes occur in human left versus right atrial cardiomyocytes in atrial fibrillation, including Notch pathway activation, which alters electric properties and ploidy in murine models.
Collapse
Affiliation(s)
- Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | - Qiusha Guo
- Department of Medicine, Cardiovascular Division
| | - Gang Li
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division
| | | | - Somya Bhatnagar
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | | | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Uri Goldsztejn
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Carlos Perez-Cervantez
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | | | - Bo Zhang
- Department of Developmental Biology, and
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Nattel S, Heijman J, Zhou L, Dobrev D. Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective. Circ Res 2020; 127:51-72. [PMID: 32717172 PMCID: PMC7398486 DOI: 10.1161/circresaha.120.316363] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is a highly prevalent arrhythmia, with substantial associated morbidity and mortality. There have been significant management advances over the past 2 decades, but the burden of the disease continues to increase and there is certainly plenty of room for improvement in treatment options. A potential key to therapeutic innovation is a better understanding of underlying fundamental mechanisms. This article reviews recent advances in understanding the molecular basis for AF, with a particular emphasis on relating these new insights to opportunities for clinical translation. We first review the evidence relating basic electrophysiological mechanisms to the characteristics of clinical AF. We then discuss the molecular control of factors leading to some of the principal determinants, including abnormalities in impulse conduction (such as tissue fibrosis and other extra-cardiomyocyte alterations, connexin dysregulation and Na+-channel dysfunction), electrical refractoriness, and impulse generation. We then consider the molecular drivers of AF progression, including a range of Ca2+-dependent intracellular processes, microRNA changes, and inflammatory signaling. The concept of key interactome-related nodal points is then evaluated, dealing with systems like those associated with CaMKII (Ca2+/calmodulin-dependent protein kinase-II), NLRP3 (NACHT, LRR, and PYD domains-containing protein-3), and transcription-factors like TBX5 and PitX2c. We conclude with a critical discussion of therapeutic implications, knowledge gaps and future directions, dealing with such aspects as drug repurposing, biologicals, multispecific drugs, the targeting of cardiomyocyte inflammatory signaling and potential considerations in intervening at the level of interactomes and gene-regulation. The area of molecular intervention for AF management presents exciting new opportunities, along with substantial challenges.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Liping Zhou
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Herraiz-Martínez A, Llach A, Tarifa C, Gandía J, Jiménez-Sabado V, Lozano-Velasco E, Serra SA, Vallmitjana A, Vázquez Ruiz de Castroviejo E, Benítez R, Aranega A, Muñoz-Guijosa C, Franco D, Cinca J, Hove-Madsen L. The 4q25 variant rs13143308T links risk of atrial fibrillation to defective calcium homoeostasis. Cardiovasc Res 2020; 115:578-589. [PMID: 30219899 PMCID: PMC6383060 DOI: 10.1093/cvr/cvy215] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/15/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
AIMS Single nucleotide polymorphisms on chromosome 4q25 have been associated with risk of atrial fibrillation (AF) but the exiguous knowledge of the mechanistic links between these risk variants and underlying electrophysiological alterations hampers their clinical utility. Here, we tested the hypothesis that 4q25 risk variants cause alterations in the intracellular calcium homoeostasis that predispose to spontaneous electrical activity. METHODS AND RESULTS Western blotting, confocal calcium imaging, and patch-clamp techniques were used to identify mechanisms linking the 4q25 risk variants rs2200733T and rs13143308T to defects in the calcium homoeostasis in human atrial myocytes. Our findings revealed that the rs13143308T variant was more frequent in patients with AF and that myocytes from carriers of this variant had a significantly higher density of calcium sparks (14.1 ± 4.5 vs. 3.1 ± 1.3 events/min, P = 0.02), frequency of transient inward currents (ITI) (1.33 ± 0.24 vs. 0.26 ± 0.09 events/min, P < 0.001) and incidence of spontaneous membrane depolarizations (1.22 ± 0.26 vs. 0.56 ± 0.17 events/min, P = 0.001) than myocytes from patients with the normal rs13143308G variant. These alterations were linked to higher sarcoplasmic reticulum calcium loading (10.2 ± 1.4 vs. 7.3 ± 0.5 amol/pF, P = 0.01), SERCA2 expression (1.37 ± 0.13 fold, P = 0.03), and RyR2 phosphorylation at ser2808 (0.67 ± 0.08 vs. 0.47 ± 0.03, P = 0.01) but not at ser2814 (0.28 ± 0.14 vs. 0.31 ± 0.14, P = 0.61) in patients carrying the rs13143308T risk variant. Furthermore, the presence of a risk variant or AF independently increased the ITI frequency and the increase in the ITI frequency observed in carriers of the risk variants was exacerbated in those with AF. By contrast, the presence of a risk variant did not affect the amplitude or properties of the L-type calcium current in patients with or without AF. CONCLUSIONS Here, we identify the 4q25 variant rs13143308T as a genetic risk marker for AF, specifically associated with excessive calcium release and spontaneous electrical activity linked to increased SERCA2 expression and RyR2 phosphorylation.
Collapse
Affiliation(s)
- Adela Herraiz-Martínez
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain.,IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Anna Llach
- IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carmen Tarifa
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain.,IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jorge Gandía
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain
| | | | | | - Selma A Serra
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain.,IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - Raúl Benítez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaén, Spain
| | | | - Diego Franco
- Department of Experimental Biology, University of Jaén, Spain
| | - Juan Cinca
- IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERCV, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain.,IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERCV, Spain
| |
Collapse
|
27
|
Bai J, Lu Y, Lo A, Zhao J, Zhang H. PITX2 upregulation increases the risk of chronic atrial fibrillation in a dose-dependent manner by modulating IKs and ICaL -insights from human atrial modelling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:191. [PMID: 32309338 PMCID: PMC7154416 DOI: 10.21037/atm.2020.01.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Functional analysis has shown that the paired-like homeodomain transcription factor 2 (PITX2) overexpression associated with atrial fibrillation (AF) leads to the slow delayed rectifier K+ current (IKs) increase and the L-type Ca2+ current (ICaL) reduction observed in isolated right atrial myocytes from chronic AF (CAF) patients. Through multiscale computational models, this study aimed to investigate the functional impact of the PITX2 overexpression on atrial electrical activity. Methods The well-known Courtemanche-Ramirez-Nattel (CRN) model of human atrial action potentials (APs) was updated to incorporate experimental data on alterations in IKs and ICaL due to the PITX2 overexpression. These cell models for sinus rhythm (SR) and CAF were then incorporated into homogeneous multicellular one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) tissue models. The proarrhythmic effects of the PITX2 overexpression were quantified with ion current profiles, AP morphology, AP duration (APD) restitution, conduction velocity restitution (CVR), wavelength (WL), vulnerable window (VW) for unidirectional conduction block, and minimal substrate size required to induce re-entry. Dynamic behaviors of spiral waves were characterized by measuring lifespan (LS), tip patterns and dominant frequencies. Results The IKs increase and the ICaL decrease arising from the PITX2 overexpression abbreviated APD and flattened APD restitution (APDR) curves in single cells. It reduced WL and increased CV at high excitation rates at the 1D tissue level. Although it had no effects on VW for initiating spiral waves, it decreased the minimal substrate size necessary to sustain re-entry. It also stabilized and accelerated spiral waves in 2D and 3D tissue models. Conclusions Electrical remodeling (IKs and ICaL) due to the PITX2 overexpression increases susceptibility to AF due to increased tissue vulnerability, abbreviated APD, shortened WL and altered CV, which, in combination, facilitate initiation and maintenance of spiral waves.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Bai J, Lo A, Gladding PA, Stiles MK, Fedorov VV, Zhao J. In silico investigation of the mechanisms underlying atrial fibrillation due to impaired Pitx2. PLoS Comput Biol 2020; 16:e1007678. [PMID: 32097431 PMCID: PMC7059955 DOI: 10.1371/journal.pcbi.1007678] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/06/2020] [Accepted: 01/22/2020] [Indexed: 01/04/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is a major cause of stroke and morbidity. Recent genome-wide association studies have shown that paired-like homeodomain transcription factor 2 (Pitx2) to be strongly associated with AF. However, the mechanisms underlying Pitx2 modulated arrhythmogenesis and variable effectiveness of antiarrhythmic drugs (AADs) in patients in the presence or absence of impaired Pitx2 expression remain unclear. We have developed multi-scale computer models, ranging from a single cell to tissue level, to mimic control and Pitx2-knockout atria by incorporating recent experimental data on Pitx2-induced electrical and structural remodeling in humans, as well as the effects of AADs. The key findings of this study are twofold. We have demonstrated that shortened action potential duration, slow conduction and triggered activity occur due to electrical and structural remodelling under Pitx2 deficiency conditions. Notably, the elevated function of calcium transport ATPase increases sarcoplasmic reticulum Ca2+ concentration, thereby enhancing susceptibility to triggered activity. Furthermore, heterogeneity is further elevated due to Pitx2 deficiency: 1) Electrical heterogeneity between left and right atria increases; and 2) Increased fibrosis and decreased cell-cell coupling due to structural remodelling slow electrical propagation and provide obstacles to attract re-entry, facilitating the initiation of re-entrant circuits. Secondly, our study suggests that flecainide has antiarrhythmic effects on AF due to impaired Pitx2 by preventing spontaneous calcium release and increasing wavelength. Furthermore, our study suggests that Na+ channel effects alone are insufficient to explain the efficacy of flecainide. Our study may provide the mechanisms underlying Pitx2-induced AF and possible explanation behind the AAD effects of flecainide in patients with Pitx2 deficiency.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Patrick A. Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | - Martin K. Stiles
- Waikato Clinical School, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Vadim V. Fedorov
- Department of Physiology & Cell Biology and Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
High hydrostatic pressure induces atrial electrical remodeling through angiotensin upregulation mediating FAK/Src pathway activation. J Mol Cell Cardiol 2020; 140:10-21. [PMID: 32006532 DOI: 10.1016/j.yjmcc.2020.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
Hypertension is an independent risk factor for atrial fibrillation (AF), although its specific mechanisms remain unclear. Previous research has been focused on cyclic stretch, ignoring the role of high hydrostatic pressure. The present study aimed to explore the effect of high hydrostatic pressure stimulation on electrical remodeling in atrial myocytes and its potential signaling pathways. Experiments were performed on left atrial appendages from patients with chronic AF or sinus rhythm, spontaneously hypertensive rats (SHRs) treated with or without valsartan (10 mg/kg/day) and HL-1 cells were exposed to high hydrostatic pressure using a self-developed device. Whole-cell patch-clamp recordings and western blots demonstrated that the amplitudes of ICa,L, Ito, and IKur were reduced in AF patients with corresponding changes in protein expression. Angiotensin protein levels increased and Ang1-7 decreased, while focal adhesion kinase (FAK) and Src kinase were enhanced in atrial tissue from AF patients and SHRs. After rapid atrial pacing, AF inducibility in SHR was significantly higher, accompanied by a decrease in ICa,L, upregulation of Ito and IKur, and a shortened action potential duration. Angiotensin upregulation and FAK/Src activation in SHR were inhibited by angiotensin type 1 receptor inhibitor valsartan, thus, preventing electrical remodeling and reducing AF susceptibility. These results were verified in HL-1 cells treated with high hydrostatic pressure, and demonstrated that electrical remodeling regulated by the FAK-Src pathway could be modulated by valsartan. The present study indicated that high hydrostatic pressure stimulation increases AF susceptibility by activating the renin-angiotensin system and FAK-Src pathway in atrial myocytes.
Collapse
|
30
|
Schneider-Warme F, Ravens U. Ménage à trois: single-nucleotide polymorphisms, calcium and atrial fibrillation. Cardiovasc Res 2019; 115:479-481. [PMID: 30428015 DOI: 10.1093/cvr/cvy283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Elsässerstr. 2Q, Freiburg Germany.,Faculty of Medicine, University of Freiburg, Hugstetter Str 55, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Elsässerstr. 2Q, Freiburg Germany.,Faculty of Medicine, University of Freiburg, Hugstetter Str 55, Freiburg, Germany
| |
Collapse
|
31
|
Pterostilbene Attenuates Fructose-Induced Myocardial Fibrosis by Inhibiting ROS-Driven Pitx2c/miR-15b Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1243215. [PMID: 31871537 PMCID: PMC6913258 DOI: 10.1155/2019/1243215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
Excessive fructose consumption induces oxidative stress and myocardial fibrosis. Antioxidant compound pterostilbene has cardioprotective effect in experimental animals. This study is aimed at investigating how fructose drove fibrotic responses via oxidative stress in cardiomyocytes and explored the attenuation mechanisms of pterostilbene. We observed fructose-induced myocardial hypertrophy and fibrosis with ROS overproduction in rats. Paired-like homeodomain 2 (Pitx2c) increase, microRNA-15b (miR-15b) low expression, and p53 phosphorylation (p-p53) upregulation, as well as activation of transforming growth factor-β1 (TGF-β1)/drosophila mothers against DPP homolog (Smads) signaling and connective tissue growth factor (CTGF) induction, were also detected in fructose-fed rat hearts and fructose-exposed rat myocardial cell line H9c2 cells. The results from p53 siRNA or TGF-β1 siRNA transfection showed that TGF-β1-induced upregulation of CTGF expression and p-p53 activated TGF-β1/Smads signaling in fructose-exposed H9c2 cells. Of note, Pitx2c negatively modulated miR-15b expression via binding to the upstream of the miR-15b genetic loci by chromatin immunoprecipitation and transfection analysis with pEX1-Pitx2c plasmid and Pitx2c siRNA, respectively. In H9c2 cells pretreated with ROS scavenger N-acetylcysteine, or transfected with miR-15b mimic and inhibitor, fructose-induced cardiac ROS overload could drive Pitx2c-mediated miR-15b low expression, then cause p-p53-activated TGF-β1/Smads signaling and CTGF induction in myocardial fibrosis. We also found that pterostilbene significantly improved myocardial hypertrophy and fibrosis in fructose-fed rats and fructose-exposed H9c2 cells. Pterostilbene reduced cardiac ROS to block Pitx2c-mediated miR-15b low expression and p-p53-dependent TGF-β1/Smads signaling activation and CTGF induction in high fructose-induced myocardial fibrosis. These results firstly demonstrated that the ROS-driven Pitx2c/miR-15b pathway was required for p-p53-dependent TGF-β1/Smads signaling activation in fructose-induced myocardial fibrosis. Pterostilbene protected against high fructose-induced myocardial fibrosis through the inhibition of Pitx2c/miR-15b pathway to suppress p-p53-activated TGF-β1/Smads signaling, warranting the consideration of Pitx2c/miR-15b pathway as a therapeutic target in myocardial fibrosis.
Collapse
|
32
|
Aromolaran AS. Mechanisms of electrical remodeling in lipotoxic guinea pig heart. Biochem Biophys Res Commun 2019; 519:639-644. [PMID: 31540694 DOI: 10.1016/j.bbrc.2019.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To develop an adult guinea pig model of lipotoxicity and explore the underlying mechanisms associated with changes in the expression of the delayed rectifier potassium current (IK). BACKGROUND Lipotoxicity may represent a common link among metabolic disorders and a higher vulnerability to arrhythmias. METHODS Whole-cell patch clamp, and palmitic acid (PA, a potent inducer of lipotoxicity), were used to assess mechanisms of short-term (∼50 days) high-fat diet (HFD) feeding on atrial electrophysiology in guinea pig hearts and myocytes. RESULTS HFD fed guinea pigs were significantly heavier, displayed hypertriglyceridemia and hypercholesterolemia; but no signs of hyperglycemia or inflammation compared to low-fat diet fed controls. Increasing cardiac PA levels, resulted in shortened atrial action potential duration, and increased IK density. Inhibition of phosphoinositide 3-kinase (PI3K) prevented increases in IK due to PA. Acute (≥1hr) exposure of atrial myocytes to exogenous PA (1 mM) increased the density of the rapid delayed rectifier potassium current IKr, while it was decreased with the unsaturated oleic acid (OA, 1 mM). Serine-threonine protein phosphatase-2 (PP2A) inhibition with cantharidin reversed the effect of OA on IKr. CONCLUSION Our data provide evidence of a novel lipotoxic guinea pig model with signs of vulnerability to arrhythmias. Inhibition of PA/PI3K/IK and/or activation of the OA/PP2A/IKr pathways may be therapeutically beneficial for lipotoxic arrhythmias.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Cardiac Electrophysiology and Metabolism Research Group, VA New York Harbor Healthcare System, Research and Development Office, (151), 800 Poly Place, Brooklyn, NY, 11209, USA; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA; Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
33
|
Bai J, Lu Y, Lo A, Zhao J, Zhang H. Proarrhythmia in the p.Met207Val PITX2c-Linked Familial Atrial Fibrillation-Insights From Modeling. Front Physiol 2019; 10:1314. [PMID: 31695623 PMCID: PMC6818469 DOI: 10.3389/fphys.2019.01314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Functional analysis has shown that the p.Met207Val mutation was linked to atrial fibrillation and caused an increase in transactivation activity of PITX2c, which caused changes in mRNA synthesis related to ionic channels and intercellular electrical coupling. We assumed that these changes were quantitatively translated to the functional level. This study aimed to investigate the potential impact of the PITX2c p.Met207Val mutation on atrial electrical activity through multiscale computational models. The well-known Courtemanche-Ramirez-Nattel (CRN) model of human atrial cell action potentials (APs) was modified to incorporate experimental data on the expected p.Met207Val mutation-induced changes in ionic channel currents (INaL, IKs, and IKr) and intercellular electrical coupling. The cell models for wild-type (WT), heterozygous (Mutant/Wild type, MT/WT), and homozygous (Mutant, MT) PITX2c cases were incorporated into homogeneous multicellular 1D and 2D tissue models. Effects of this mutation-induced remodeling were quantified as changes in AP profile, AP duration (APD) restitution, conduction velocity (CV) restitution and wavelength (WL). Temporal and spatial vulnerabilities of atrial tissue to the genesis of reentry were computed. Dynamic behaviors of re-entrant excitation waves (Life span, tip trajectory and dominant frequency) in a homogeneous 2D tissue model were characterized. Our results suggest that the PITX2c p.Met207Val mutation abbreviated atrial APD and flattened APD restitution curves. It reduced atrial CV and WL that facilitated the conduction of high rate atrial excitation waves. It increased the tissue's temporal vulnerability by increasing the vulnerable window for initiating reentry and increased the tissue spatial vulnerability by reducing the substrate size necessary to sustain reentry. In the 2D models, the mutation also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained reentry. In conclusion, electrical and structural remodeling arising from the PITX2c p.Met207Val mutation may increase atrial susceptibility to arrhythmia due to shortened APD, reduced CV and increased tissue vulnerability, which, in combination, facilitate initiation and maintenance of re-entrant excitation waves.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, United Kingdom.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
34
|
Martinez-Mateu L, Saiz J, Aromolaran AS. Differential Modulation of IK and ICa,L Channels in High-Fat Diet-Induced Obese Guinea Pig Atria. Front Physiol 2019; 10:1212. [PMID: 31607952 PMCID: PMC6773813 DOI: 10.3389/fphys.2019.01212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity mechanisms that make atrial tissue vulnerable to arrhythmia are poorly understood. Voltage-dependent potassium (IK, IKur, and IK1) and L-type calcium currents (ICa,L) are electrically relevant and represent key substrates for modulation in obesity. We investigated whether electrical remodeling produced by high-fat diet (HFD) alone or in concert with acute atrial stimulation were different. Electrophysiology was used to assess atrial electrical function after short-term HFD-feeding in guinea pigs. HFD atria displayed spontaneous beats, increased IK (IKr + IKs) and decreased ICa,L densities. Only with pacing did a reduction in IKur and increased IK1 phenotype emerge, leading to a further shortening of action potential duration. Computer modeling studies further indicate that the measured changes in potassium and calcium current densities contribute prominently to shortened atrial action potential duration in human heart. Our data are the first to show that multiple mechanisms (shortened action potential duration, early afterdepolarizations and increased incidence of spontaneous beats) may underlie initiation of supraventricular arrhythmias in obese guinea pig hearts. These results offer different mechanistic insights with implications for obese patients harboring supraventricular arrhythmias.
Collapse
Affiliation(s)
- Laura Martinez-Mateu
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Ademuyiwa S Aromolaran
- Cardiac Electrophysiology and Metabolism Research Group, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
35
|
Mechakra A, Footz T, Walter M, Aránega A, Hernández-Torres F, Morel E, Millat G, Yang YQ, Chahine M, Chevalier P, Christé G. A Novel PITX2c Gain-of-Function Mutation, p.Met207Val, in Patients With Familial Atrial Fibrillation. Am J Cardiol 2019; 123:787-793. [PMID: 30558760 DOI: 10.1016/j.amjcard.2018.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023]
Abstract
Genome-wide studies have associated several genetic variants upstream of PITX2 on chromosome 4q25 with atrial fibrillation (AF), suggesting a potential role of PITX2 in AF. Our study aimed at identifying rare coding variants in PITX2 predisposing to AF. The Polymerase chain reaction sequencing of PITX2c was performed in 60 unrelated patients with idiopathic AF. The p.Met207Val variant was identified in 1 of 60 French patients with early onset AF and in none of 389 French referents. This variant, located in the inhibitory domain 1 distal to the homeodomain, was evaluated by the software MutationTaster as a disease-causing mutation with a probability of 0.999. Reporter gene assays demonstrated that p.Met207Val caused a 3.1-fold increase in transactivation activity of PITX2c in HeLa cells in comparison with its wild-type counterpart. When the variant was coexpressed with wild-type PITX2c in the HL-1 immortalized mouse atrial cell line, this gain-of-function caused an increase in the mRNA level of KCNH2 (2.6-fold), SCN1B (1.9-fold), GJA5 (3.1-fold), GJA1 (2.1-fold), and KCNQ1 in the homozygous form (1.8-fold). These genes encode for the IKr channel α subunit, the β-1 Na+ channel subunit, connexin 40, connexin 43 and the IKs channel α subunit, respectively. These conditions may contribute to the propensity to AF found in patients carrying the p.Met207Val variant. In conclusion, the present report is the first to associate a gain-of-function mutation of PITX2c with increased vulnerability to AF, therefore, restoration of normal PITX2c function may be a potential therapeutic target in AF patients.
Collapse
Affiliation(s)
- Asma Mechakra
- EA4612 Neurocardiologie, Université Lyon 1, Lyon, France
| | - Tim Footz
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Walter
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Amelia Aránega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | | | - Elodie Morel
- EA4612 Neurocardiologie, Université Lyon 1, Lyon, France
| | - Gilles Millat
- EA4612 Neurocardiologie, Université Lyon 1, Lyon, France
| | - Yi-Qing Yang
- Department of Cardiology, La-boratory of Cardiovascular Research and Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mohamed Chahine
- Institut Universitaire en Santé Mentale, Québec City, Québec, Canada
| | | | | |
Collapse
|
36
|
Orlova E, Yeh A, Shi M, Firek B, Ranganathan S, Whitcomb DC, Finegold DN, Ferrell RE, Barmada MM, Marazita ML, Hinds DA, Shaffer JR, Morowitz MJ. Genetic association and differential expression of PITX2 with acute appendicitis. Hum Genet 2019; 138:37-47. [PMID: 30392061 PMCID: PMC6514078 DOI: 10.1007/s00439-018-1956-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022]
Abstract
Appendicitis affects 9% of Americans and is the most common diagnosis requiring hospitalization of both children and adults. We performed a genome-wide association study of self-reported appendectomy with 18,773 affected adults and 114,907 unaffected adults of European American ancestry. A significant association with appendectomy was observed at 4q25 near the gene PITX2 (rs2129979, p value = 8.82 × 10-14) and was replicated in an independent sample of Caucasians (59 affected, 607 unaffected; p value = 0.005). Meta-analysis of the associated variant across our two cohorts and cohorts from Iceland and the Netherlands (in which this association had previously been reported) showed strong cumulative evidence of association (OR = 1.12; 95% CI 1.09-1.14; p value = 1.81 × 10-23) and some evidence for effect heterogeneity (p value = 0.03). Eight other loci were identified at suggestive significance in the discovery GWAS. Associations were followed up by measuring gene expression across resected appendices with varying levels of inflammation (N = 75). We measured expression of 27 genes based on physical proximity to the GWAS signals, evidence of being targeted by eQTLs near the signals according to RegulomeDB (score = 1), or both. Four of the 27 genes (including PITX2) showed significant evidence (p values < 0.0033) of differential expression across categories of appendix inflammation. An additional ten genes showed nominal evidence (p value < 0.05) of differential expression, which, together with the significant genes, is more than expected by chance (p value = 6.6 × 10-12). PITX2 impacts morphological development of intestinal tissue, promotes an anti-oxidant response, and its expression correlates with levels of intestinal bacteria and colonic inflammation. Further studies of the role of PITX2 in appendicitis are warranted.
Collapse
Affiliation(s)
- Ekaterina Orlova
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, 3131 Parran Hall, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Andrew Yeh
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Min Shi
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Sarangarajan Ranganathan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - David C Whitcomb
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, 3131 Parran Hall, Pittsburgh, PA, 15261, USA
- Department of Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - David N Finegold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, 3131 Parran Hall, Pittsburgh, PA, 15261, USA
| | - Robert E Ferrell
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, 3131 Parran Hall, Pittsburgh, PA, 15261, USA
| | - M Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, 3131 Parran Hall, Pittsburgh, PA, 15261, USA
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, 3131 Parran Hall, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, 3131 Parran Hall, Pittsburgh, PA, 15261, USA.
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
- Faculty Pavilion 7th Floor, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
37
|
Lozano-Velasco E, Garcia-Padilla C, Aránega AE, Franco D. Genetics of Atrial Fibrilation: In Search of Novel Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2019; 19:183-194. [PMID: 30727926 DOI: 10.2174/1871529x19666190206150349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic disease in humans, ranging from 2% in the general population and rising up to 10-12% in 80+ years. Genetic analyses of AF familiar cases have identified a series of point mutations in distinct ion channels, supporting a causative link. However, these genetic defects only explain a minority of AF patients. Genomewide association studies identified single nucleotide polymorphisms (SNPs), close to PITX2 on 4q25 chromosome, that are highly associated to AF. Subsequent GWAS studies have identified several new loci, involving additional transcription and growth factors. Furthermore, these risk 4q25 SNPs serve as surrogate biomarkers to identify AF recurrence in distinct surgical and pharmacological interventions. Experimental studies have demonstrated an intricate signalling pathway supporting a key role of the homeobox transcription factor PITX2 as a transcriptional regulator. Furthermore, cardiovascular risk factors such as hyperthyroidism, hypertension and redox homeostasis have been identified to modulate PITX2 driven gene regulatory networks. We provide herein a state-of-the-art review of the genetic bases of atrial fibrillation, our current understanding of the genetic regulatory networks involved in AF and its plausible usage for searching novel therapeutic targets.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
38
|
Affiliation(s)
- Heather Y Small
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, 31-008 Anny 12, Krakow, Poland
| |
Collapse
|
39
|
Bai J, Gladding PA, Stiles MK, Fedorov VV, Zhao J. Ionic and cellular mechanisms underlying TBX5/PITX2 insufficiency-induced atrial fibrillation: Insights from mathematical models of human atrial cells. Sci Rep 2018; 8:15642. [PMID: 30353147 PMCID: PMC6199257 DOI: 10.1038/s41598-018-33958-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Transcription factors TBX5 and PITX2 involve in the regulation of gene expression of ion channels and are closely associated with atrial fibrillation (AF), the most common cardiac arrhythmia in developed countries. The exact cellular and molecular mechanisms underlying the increased susceptibility to AF in patients with TBX5/PITX2 insufficiency remain unclear. In this study, we have developed and validated a novel human left atrial cellular model (TPA) based on the ten Tusscher-Panfilov ventricular cell model to systematically investigate how electrical remodeling induced by TBX5/PITX2 insufficiency leads to AF. Using our TPA model, we have demonstrated that spontaneous diastolic depolarization observed in atrial myocytes with TBX5-deletion can be explained by altered intracellular calcium handling and suppression of inward-rectifier potassium current (IK1). Additionally, our computer simulation results shed new light on the novel cellular mechanism underlying AF by indicating that the imbalance between suppressed outward current IK1 and increased inward sodium-calcium exchanger current (INCX) resulted from SR calcium leak leads to spontaneous depolarizations. Furthermore, our simulation results suggest that these arrhythmogenic triggers can be potentially suppressed by inhibiting sarcoplasmic reticulum (SR) calcium leak and reversing remodeled IK1. More importantly, this study has clinically significant implications on the drugs used for maintaining SR calcium homeostasis, whereby drugs such as dantrolene may confer significant improvement for the treatment of AF patients with TBX5/PITX2 insufficiency.
Collapse
Affiliation(s)
- Jieyun Bai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, China.
| | - Patrick A Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | | | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, United States of America
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
40
|
Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation. J Mol Med (Berl) 2018; 96:601-610. [DOI: 10.1007/s00109-018-1647-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
|
41
|
Affiliation(s)
- Jordi Heijman
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| | - Jean-Baptiste Guichard
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| | - Dobromir Dobrev
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| | - Stanley Nattel
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| |
Collapse
|
42
|
Gal D, Sipido KR, Vandevelde W. Editorial highlights from Cardiovascular Research. Cardiovasc Res 2017; 113:e64-e68. [PMID: 29186440 DOI: 10.1093/cvr/cvx210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Diane Gal
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, Campus Gasthuisberg, KU Leuven, Belgium
| | - Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, Campus Gasthuisberg, KU Leuven, Belgium
| | - Wouter Vandevelde
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, Campus Gasthuisberg, KU Leuven, Belgium
| |
Collapse
|
43
|
Multiple Roles of Pitx2 in Cardiac Development and Disease. J Cardiovasc Dev Dis 2017; 4:jcdd4040016. [PMID: 29367545 PMCID: PMC5753117 DOI: 10.3390/jcdd4040016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is a complex morphogenetic process initiated as bilateral cardiogenic mesoderm is specified at both sides of the gastrulating embryo. Soon thereafter, these cardiogenic cells fuse at the embryonic midline configuring a symmetrical linear cardiac tube. Left/right bilateral asymmetry is first detected in the forming heart as the cardiac tube bends to the right, and subsequently, atrial and ventricular chambers develop. Molecular signals emanating from the node confer distinct left/right signalling pathways that ultimately lead to activation of the homeobox transcription factor Pitx2 in the left side of distinct embryonic organ anlagen, including the developing heart. Asymmetric expression of Pitx2 has therefore been reported during different cardiac developmental stages, and genetic deletion of Pitx2 provided evidence of key regulatory roles of this transcription factor during cardiogenesis and thus congenital heart diseases. More recently, impaired Pitx2 function has also been linked to arrhythmogenic processes, providing novel roles in the adult heart. In this manuscript, we provide a state-of-the-art review of the fundamental roles of Pitx2 during cardiogenesis, arrhythmogenesis and its contribution to congenital heart diseases.
Collapse
|
44
|
McCauley M, Darbar D. Germline versus somatic mutations in genetic atrial fibrillation. Heart Rhythm 2017; 14:1539-1540. [PMID: 28734984 PMCID: PMC5705188 DOI: 10.1016/j.hrthm.2017.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Mark McCauley
- Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
45
|
Syeda F, Kirchhof P, Fabritz L. PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol 2017; 595:4019-4026. [PMID: 28217939 PMCID: PMC5471504 DOI: 10.1113/jp273123] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/17/2017] [Indexed: 01/15/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. There are several major mechanisms that cause AF in patients, including a genetic predisposition to develop AF. Genome-wide association studies have identified genetic variants associated with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription factor PITX2. The effect of these common gene variants on cardiac PITX2 mRNA is currently under study. PITX2 protein regulates right-left differentiation of the embryonic heart, thorax and aorta. PITX2 is expressed in the adult left atrium, but much less so in other heart chambers. Pitx2 deficiency results in electrical and structural remodelling, and impaired repair of the heart in murine models, all of which may influence AF through divergent mechanisms. PITX2 levels and single nucleotide polymorphisms on chromosome 4q25 may also be a predictor of the effectiveness of anti-arrhythmic drug therapy.
Collapse
Affiliation(s)
- Fahima Syeda
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | - Paulus Kirchhof
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUHB NHS TrustBirminghamUK
- Department of CardiologySWBTBirminghamUK
| | - Larissa Fabritz
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUHB NHS TrustBirminghamUK
- Department of Cardiovascular Medicine, Division of RhythmologyUniversity Hospital MünsterMünsterGermany
| |
Collapse
|
46
|
Abstract
Long QT syndrome (LQTS) exhibits great phenotype variability among family members carrying the same mutation, which can be partially attributed to genetic factors. We functionally analyzed the KCNH2 (encoding for Kv11.1 or hERG channels) and TBX20 (encoding for the transcription factor Tbx20) variants found by next-generation sequencing in two siblings with LQTS in a Spanish family of African ancestry. Affected relatives harbor a heterozygous mutation in KCNH2 that encodes for p.T152HfsX180 Kv11.1 (hERG). This peptide, by itself, failed to generate any current when transfected into Chinese hamster ovary (CHO) cells but, surprisingly, exerted "chaperone-like" effects over native hERG channels in both CHO cells and mouse atrial-derived HL-1 cells. Therefore, heterozygous transfection of native (WT) and p.T152HfsX180 hERG channels generated a current that was indistinguishable from that generated by WT channels alone. Some affected relatives also harbor the p.R311C mutation in Tbx20. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Tbx20 enhanced human KCNH2 gene expression and hERG currents (IhERG) and shortened action-potential duration (APD). However, Tbx20 did not modify the expression or activity of any other channel involved in ventricular repolarization. Conversely, p.R311C Tbx20 did not increase KCNH2 expression in hiPSC-CMs, which led to decreased IhERG and increased APD. Our results suggest that Tbx20 controls the expression of hERG channels responsible for the rapid component of the delayed rectifier current. On the contrary, p.R311C Tbx20 specifically disables the Tbx20 protranscriptional activity over KCNH2 Therefore, TBX20 can be considered a KCNH2-modifying gene.
Collapse
|
47
|
Eckhardt LL, Makielski JC. Complexity of AF genetic susceptibility begets complexity of interpretation. Heart Rhythm 2016; 14:292-293. [PMID: 27825974 DOI: 10.1016/j.hrthm.2016.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Lee L Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan C Makielski
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
48
|
Sipido KR. Spotlight on atrial fibrillation in Cardiovascular Research. Cardiovasc Res 2016; 109:463-4. [PMID: 26945072 DOI: 10.1093/cvr/cvw029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, Leuven B-3000, Belgium
| |
Collapse
|
49
|
Li N, Dobrev D, Wehrens XHT. PITX2: a master regulator of cardiac channelopathy in atrial fibrillation? Cardiovasc Res 2016; 109:345-7. [PMID: 26782118 DOI: 10.1093/cvr/cvw008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Na Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM 335, Houston, TX 77030, USA
| |
Collapse
|