1
|
Liu L, Huang R, Fan C, Chen X. Diagnostic and prognostic utility of plasma thrombospondin-1 levels in traumatic brain injury. Eur J Trauma Emerg Surg 2024; 50:2229-2237. [PMID: 39112761 DOI: 10.1007/s00068-024-02605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/09/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE Thrombospondin-1 (TSP-1), a powerful antiangiogenic agent, is increasingly expressed in mice brain tissues after traumatic brain injury (TBI). However, in the peripheral blood of TBI patients, TSP-1 concentrations have not been identified. This study aimed to determine if TSP-1 measured in the plasma of patients relates to TBI diagnosis and injury severity. METHODS Plasma TSP-1 levels were assessed in 75 patients with mild to severe TBI and 60 healthy volunteers. Glasgow Coma Scale (GCS) score was recorded to assess traumatic severity. Other relevant clinical characters and laboratory tests were collected to evaluate the diagnostic efficiency of TSP-1. Glasgow outcome scale (GOSE) 3 months after trauma was dichotomized into unfavorable (GOSE1-4) and favorable (GOSE5-8) outcomes. RESULTS TSP-1 levels were significantly higher in TBI patients than in controls (median 530.4 ng/l, the upper- lower quartiles 373.2-782.1 vs. median 201.5 mg/l, the upper - lower quartiles 83.1-351.4, P < 0.001). Plasma TSP-1 was able to differentiate patients with mild, moderate, and severe TBI from healthy controls with Area Under the Receiver-Operating Characteristic Curve (AUROC) of 0.8089, 0.9312, and 0.9189, respectively. TSP-1 levels were closely and negatively correlated with GCS score (r = -0.41). TSP-1 levels > 624.4 ng/ml independently predicted a 3-month unfavorable outcome with an odds ratio value of 9.666 (95% confidence interval (CI),1.393-69.072). TSP-1 levels significantly discriminated 3-month unfavorable outcome with AUROC of 0.7445 (95%CI, 0.6152-0.8739). CONCLUSION The results of this study indicate that plasma TSP-1 should be further investigated as a diagnostic and prognostic marker for patients with TBI.
Collapse
Affiliation(s)
- Lei Liu
- Department of Laboratory Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Rongfu Huang
- Department of Laboratory Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunmei Fan
- Department of Laboratory Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| | - Xiangrong Chen
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
2
|
Meng LB, Hu GF, Lv T, Lv C, Liu L, Zhang P. Higher expression of TSR2 aggravating hypertension via the PPAR signaling pathway. Aging (Albany NY) 2024; 16:8980-8997. [PMID: 38814181 PMCID: PMC11164513 DOI: 10.18632/aging.205852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/07/2023] [Indexed: 05/31/2024]
Abstract
Hypertension is a complex disease with unknown causes. Therefore, it's crucial to deeply study its molecular mechanism. The hypertension dataset was obtained from Gene Expression Omnibus data base (GEO), and miRNA regulating central hub genes was screened via weighted gene co-expression network (DEGs) and gene set enrichment (GSEA). Cell experiments validated TSR2's role and the PPAR signaling pathway through western blotting. 500 DEGs were identified for hypertension, mainly enriched in actin cross-linking, insulin signaling, PPAR signaling, and protein localization. Eight hub genes (SEC61G, SRP14, Liy AR, NIP7, SDAD1, POLR1D, DYNLL2, TSR2) were identified. Four hub genes (LYAR, SDAD1, POLR1D, TSR2) exhibited high expression levels in the hypertensive tissue samples, while showing low expression levels in the normal tissue samples. This led us to speculate that they may have relevant regulatory effects on hypertension. When TSR2 was knocked down in the hypertension peripheral blood mononuclear cells (PBMC) model, the critical proteins in the PPAR signaling pathway (FABP, PPAR, PLTP, ME1, SCD1, CYP27, FABP1, OLR1, CPT-1, PGAR, CAP, ADIPO, MMP1, UCP1, ILK, PDK1 UBC AQP7) were downregulated. This also occurred in the hypertension peripheral blood mononuclear cells (PBMC) + TSR2_ OV model. TSR2 is highly expressed in individuals with hypertension and may play a significant role in the development of hypertension through the PPAR signaling pathway. TSR2 could serve as a molecular target for the early diagnosis and precise treatment of hypertension, providing a valuable direction for the mechanism research of this condition.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Gai-Feng Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Chaoyang 100029, Beijing, China
| | - Tingting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Changhua Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lianfeng Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Xu FF, Zheng F, Chen Y, Wang Y, Ma SB, Ding W, Zhang LS, Guo JZ, Zheng CB, Shen B. Role of thrombospondin-1 in high-salt-induced mesenteric artery endothelial impairment in rats. Acta Pharmacol Sin 2024; 45:545-557. [PMID: 37932403 PMCID: PMC10834453 DOI: 10.1038/s41401-023-01181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023] Open
Abstract
The matrix glycoprotein thrombospondin-1 (THBS1) modulates nitric oxide (NO) signaling in endothelial cells. A high-salt diet induces deficiencies of NO production and bioavailability, thereby leading to endothelial dysfunction. In this study we investigated the changes of THBS1 expression and its pathological role in the dysfunction of mesenteric artery endothelial cells (MAECs) induced by a high-salt diet. Wild-type rats, and wild-type and Thbs1-/- mice were fed chow containing 8% w/w NaCl for 4 weeks. We showed that a high salt diet significantly increased THBS1 expression and secretion in plasma and MAECs, and damaged endothelium-dependent vasodilation of mesenteric resistance arteries in wild-type animals, but not in Thbs1-/- mice. In rat MAECs, we demonstrated that a high salt environment (10-40 mM) dose-dependently increased THBS1 expression accompanied by suppressed endothelial nitric oxide synthase (eNOS) and phospho-eNOS S1177 production as well as NO release. Blockade of transforming growth factor-β1 (TGF-β1) activity by a TGF-β1 inhibitor SB 431542 reversed THBS1 up-regulation, rescued the eNOS decrease, enhanced phospho-eNOS S1177 expression, and inhibited Smad4 translocation to the nucleus. By conducting dual-luciferase reporter experiments in HEK293T cells, we demonstrated that Smad4, a transcription promoter, upregulated Thbs1 transcription. We conclude that THBS1 contributes to endothelial dysfunction in a high-salt environment and may be a potential target for treatment of high-salt-induced endothelium dysfunction.
Collapse
Affiliation(s)
- Fang-Fang Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Fan Zheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ye Chen
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yang Wang
- Department of Otolaryngology-Head and Neck Surgery, Lu'an People's Hospital, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, 237000, China
| | - Shao-Bo Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weng Ding
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Le-Sha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ji-Zheng Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science, Kunming Medical University, Kunming, 650500, China.
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Zhao W, Shen B, Cheng Q, Zhou Y, Chen K. Roles of TSP1-CD47 signaling pathway in senescence of endothelial cells: cell cycle, inflammation and metabolism. Mol Biol Rep 2023; 50:4579-4585. [PMID: 36897523 DOI: 10.1007/s11033-023-08357-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Endothelial cells (ECs) serve as a barrier with forming a monolayer lining in the surface of vascular system. Many mature cell types are post-mitotic like neurons, but ECs have the ability to grow during angiogenesis. Vascular endothelial growth factor (VEGF) stimulates growth of vascular ECs derived from arteries, veins, and lymphatics and induces angiogenesis. Senescence of ECs is regarded as a key contributor in aging-induced vascular dysfunction via evoking increase of ECs permeability, impairment of angiogenesis and vascular repair. Several genomics and proteomics studies on ECs senescence reported changes in gene and protein expression that directly correlate with vascular systemic disorder. CD47 functions as a signaling receptor for secreted matricellular protein thrombospondin-1 (TSP1) and plays an important role in several fundamental cellular functions, including proliferation, apoptosis, inflammation, and atherosclerotic response. TSP1-CD47 signaling is upregulated with age in ECs, concurrent with suppression of key self-renewal genes. Recent studies indicate that CD47 is involved in regulation of senescence, self-renewal and inflammation. In this review, we highlight the functions of CD47 in senescent ECs, including modulation of cell cycle, mediation of inflammation and metabolism by the experimental studies, which may provide CD47 as a potential therapeutic target for aging-associated vascular dysfunction.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Quanli Cheng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyang Zhou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Kexin Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Wang W, Chen Y, Yin Y, Wang X, Ye X, Jiang K, Zhang Y, Zhang J, Zhang W, Zhuge Y, Chen L, Peng C, Xiong A, Yang L, Wang Z. A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch Toxicol 2022; 96:2003-2019. [PMID: 35357534 PMCID: PMC9151551 DOI: 10.1007/s00204-022-03281-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Hepatic sinusoidal obstruction disease (HSOS) is a rare but life-threatening vascular liver disease. However, its underlying mechanism and molecular changes in HSOS are largely unknown, thus greatly hindering the development of its effective treatment. Hepatic sinusoidal endothelial cells (HSECs) are the primary and essential target for HSOS. A tandem mass tag-based shotgun proteomics study was performed using primary cultured HSECs from mice with HSOS induced by senecionine, a representative toxic pyrrolizidine alkaloid (PA). Dynamic changes in proteome were found at the initial period of damage and the essential role of thrombospondin 1 (TSP1) was highlighted in PA-induced HSOS. TSP1 over-expression was further confirmed in human HSECs and liver samples from patients with PA-induced HSOS. LSKL peptide, a known TSP1 inhibitor, protected mice from senecionine-induced HSOS. In addition, TSP1 was found to be covalently modified by dehydropyrrolizidine alkaloids in human HSECs and mouse livers upon senecionine treatment, thus to form the pyrrole-protein adduct. These findings provide useful information on early changes in HSECs upon PA treatment and uncover TSP1 overexpression as a contributor in PA-induced HSOS.
Collapse
Affiliation(s)
- Weiqian Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Yan Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Xunjiang Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xuanling Ye
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Kaiyuan Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yi Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Jiwei Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wei Zhang
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Li Chen
- Department of Gastroenterology, School of Medicine, Ruijin Hospital, Shanghai JiaoTong University, Shanghai, 201801, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China.
| | - Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| |
Collapse
|
7
|
Chung EYM, Trinh K, Li J, Hahn SH, Endre ZH, Rogers NM, Alexander SI. Biomarkers in Cardiorenal Syndrome and Potential Insights Into Novel Therapeutics. Front Cardiovasc Med 2022; 9:868658. [PMID: 35669475 PMCID: PMC9163439 DOI: 10.3389/fcvm.2022.868658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Heart and kidney failure often co-exist and confer high morbidity and mortality. The complex bi-directional nature of heart and kidney dysfunction is referred to as cardiorenal syndrome, and can be induced by acute or chronic dysfunction of either organ or secondary to systemic diseases. The five clinical subtypes of cardiorenal syndrome are categorized by the perceived primary precipitant of organ injury but lack precision. Traditional biomarkers such as serum creatinine are also limited in their ability to provide an early and accurate diagnosis of cardiorenal syndrome. Novel biomarkers have the potential to assist in the diagnosis of cardiorenal syndrome and guide treatment by evaluating the relative roles of implicated pathophysiological pathways such as hemodynamic dysfunction, neurohormonal activation, endothelial dysfunction, inflammation and oxidative stress, and fibrosis. In this review, we assess the utility of biomarkers that correlate with kidney and cardiac (dys)function, inflammation/oxidative stress, fibrosis, and cell cycle arrest, as well as emerging novel biomarkers (thrombospondin-1/CD47, glycocalyx and interleukin-1β) that may provide prediction and prognostication of cardiorenal syndrome, and guide potential development of targeted therapeutics.
Collapse
Affiliation(s)
- Edmund Y. M. Chung
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- *Correspondence: Edmund Y. M. Chung,
| | - Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | | | - Zoltan H. Endre
- Department of Nephrology, Prince of Wales Hospital, Randwick, NSW, Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
8
|
Veith C, Vartürk-Özcan I, Wujak M, Hadzic S, Wu CY, Knoepp F, Kraut S, Petrovic A, Gredic M, Pak O, Brosien M, Heimbrodt M, Wilhelm J, Weisel FC, Malkmus K, Schäfer K, Gall H, Tello K, Kosanovic D, Sydykov A, Sarybaev A, Günther A, Brandes RP, Seeger W, Grimminger F, Ghofrani HA, Schermuly RT, Kwapiszewska G, Sommer N, Weissmann N. SPARC, a Novel Regulator of Vascular Cell Function in Pulmonary Hypertension. Circulation 2022; 145:916-933. [PMID: 35175782 DOI: 10.1161/circulationaha.121.057001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and right heart hypertrophy. PH can be caused by chronic hypoxia, leading to hyper-proliferation of pulmonary arterial smooth muscle cells (PASMCs) and apoptosis-resistant pulmonary microvascular endothelial cells (PMVECs). On reexposure to normoxia, chronic hypoxia-induced PH in mice is reversible. In this study, the authors aim to identify novel candidate genes involved in pulmonary vascular remodeling specifically in the pulmonary vasculature. METHODS After microarray analysis, the authors assessed the role of SPARC (secreted protein acidic and rich in cysteine) in PH using lung tissue from idiopathic pulmonary arterial hypertension (IPAH) patients, as well as from chronically hypoxic mice. In vitro studies were conducted in primary human PASMCs and PMVECs. In vivo function of SPARC was proven in chronic hypoxia-induced PH in mice by using an adeno-associated virus-mediated Sparc knockdown approach. RESULTS C57BL/6J mice were exposed to normoxia, chronic hypoxia, or chronic hypoxia with subsequent reexposure to normoxia for different time points. Microarray analysis of the pulmonary vascular compartment after laser microdissection identified Sparc as one of the genes downregulated at all reoxygenation time points investigated. Intriguingly, SPARC was vice versa upregulated in lungs during development of hypoxia-induced PH in mice as well as in IPAH, although SPARC plasma levels were not elevated in PH. TGF-β1 (transforming growth factor β1) or HIF2A (hypoxia-inducible factor 2A) signaling pathways induced SPARC expression in human PASMCs. In loss of function studies, SPARC silencing enhanced apoptosis and reduced proliferation. In gain of function studies, elevated SPARC levels induced PASMCs, but not PMVECs, proliferation. Coculture and conditioned medium experiments revealed that PMVECs-secreted SPARC acts as a paracrine factor triggering PASMCs proliferation. Contrary to the authors' expectations, in vivo congenital Sparc knockout mice were not protected from hypoxia-induced PH, most probably because of counter-regulatory proproliferative signaling. However, adeno-associated virus-mediated Sparc knockdown in adult mice significantly improved hemodynamic and cardiac function in PH mice. CONCLUSIONS This study provides evidence for the involvement of SPARC in the pathogenesis of human PH and chronic hypoxia-induced PH in mice, most likely by affecting vascular cell function.
Collapse
Affiliation(s)
- Christine Veith
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Ipek Vartürk-Özcan
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Magdalena Wujak
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany.,Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland (M.W.)
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Cheng-Yu Wu
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Fenja Knoepp
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Aleksandar Petrovic
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Marija Gredic
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Monika Brosien
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Marie Heimbrodt
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany.,Institute for Lung Health (J.W., W.S., G.K.), Justus-Liebig-University, Giessen, Germany
| | - Friederike C Weisel
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Kathrin Malkmus
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Katharina Schäfer
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Henning Gall
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Khodr Tello
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia (D.K.)
| | - Akylbek Sydykov
- Kyrgyz National Center for Cardiology and Internal Medicine and Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyz Republic (A.Sarybaev)
| | - Akpay Sarybaev
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany (R.P.B.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany.,Institute for Lung Health (J.W., W.S., G.K.), Justus-Liebig-University, Giessen, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Grazyna Kwapiszewska
- Institute for Lung Health (J.W., W.S., G.K.), Justus-Liebig-University, Giessen, Germany.,Ludwig Boltzmann Institute for Lung Vascular Research and Otto Loewi Center, Physiology, Medical University of Graz, Graz, Austria (G.K.)
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
9
|
Dieffenbach PB, Mallarino Haeger C, Rehman R, Corcoran AM, Coronata AMF, Vellarikkal SK, Chrobak I, Waxman AB, Vitali SH, Sholl LM, Padera RF, Lagares D, Polverino F, Owen CA, Fredenburgh LE. A Novel Protective Role for Matrix Metalloproteinase-8 in the Pulmonary Vasculature. Am J Respir Crit Care Med 2021; 204:1433-1451. [PMID: 34550870 PMCID: PMC8865706 DOI: 10.1164/rccm.202108-1863oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Mechanical signaling through cell-matrix interactions plays a major role in progressive vascular remodeling in pulmonary arterial hypertension (PAH). MMP-8 (matrix metalloproteinase-8) is an interstitial collagenase involved in regulating inflammation and fibrosis of the lung and systemic vasculature, but its role in PAH pathogenesis remains unexplored. Objectives: To evaluate MMP-8 as a modulator of pathogenic mechanical signaling in PAH. Methods: MMP-8 levels were measured in plasma from patients with pulmonary hypertension (PH) and controls by ELISA. MMP-8 vascular expression was examined in lung tissue from patients with PAH and rodent models of PH. MMP-8-/- and MMP-8+/+ mice were exposed to normobaric hypoxia or normoxia for 4-8 weeks. PH severity was evaluated by right ventricular systolic pressure, echocardiography, pulmonary artery morphometry, and immunostaining. Proliferation, migration, matrix component expression, and mechanical signaling were assessed in MMP-8-/- and MMP-8+/+ pulmonary artery smooth muscle cells (PASMCs). Measurements and Main Results: MMP-8 expression was significantly increased in plasma and pulmonary arteries of patients with PH compared with controls and induced in the pulmonary vasculature in rodent PH models. Hypoxia-exposed MMP-8-/- mice had significant mortality, increased right ventricular systolic pressure, severe right ventricular dysfunction, and exaggerated vascular remodeling compared with MMP-8+/+ mice. MMP-8-/- PASMCs demonstrated exaggerated proliferation and migration mediated by altered matrix protein expression, elevated integrin-β3 levels, and induction of FAK (focal adhesion kinase) and downstream YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif) activity. Conclusions: MMP-8 is a novel protective factor upregulated in the pulmonary vasculature during PAH pathogenesis. MMP-8 opposes pathologic mechanobiological feedback by altering matrix composition and disrupting integrin-β3/FAK and YAP/TAZ-dependent mechanical signaling in PASMCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Izabela Chrobak
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Sally H. Vitali
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Robert F. Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
10
|
A Potential Role of the CD47/SIRPalpha Axis in COVID-19 Pathogenesis. Curr Issues Mol Biol 2021; 43:1212-1225. [PMID: 34698067 PMCID: PMC8929144 DOI: 10.3390/cimb43030086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.
Collapse
|
11
|
Dylag AM, Haak J, Warren R, Yee M, Pryhuber GS, O'Reilly MA. Low Dose Hyperoxia Primes Airways for Fibrosis in Mice after Influenza A Infection. Am J Physiol Lung Cell Mol Physiol 2021; 321:L750-L763. [PMID: 34323115 DOI: 10.1152/ajplung.00289.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It is well known that supplemental oxygen used to treat preterm infants in respiratory distress is associated with permanently disrupting lung development and the host response to influenza A virus (IAV). However, many infants who go home with normally functioning lungs are also at risk for hyperreactivity after a respiratory viral infection. We recently reported a new, low-dose hyperoxia mouse model (40% for 8 days; 40x8) that causes a transient change in lung function that resolves, rendering 40x8 adult animals functionally indistinguishable from room air controls. Here we reported that when infected with IAV, 40x8 mice display an early transient activation of TGFβ signaling and later airway hyperreactivity associated with peribronchial inflammation (profibrotic macrophages) and fibrosis compared to infected room air controls, suggesting neonatal oxygen induced hidden molecular changes that prime the lung for hyperreactive airways disease. While searching for potential activators of TGFβ signaling, we discovered that thrombospondin-1 (TSP-1) is elevated in naïve 40x8 mice compared to controls and localized to lung megakaryocytes and platelets before and during IAV infection. Elevated TSP-1 was also identified in human autopsy samples of former preterm infants with bronchopulmonary dysplasia. These findings reveal how low doses of oxygen that do not durably change lung function may prime it for hyperreactive airways disease by changing expression of genes, such as TSP-1, thus helping to explain why former preterm infants who have normal lung function are susceptible to airway obstruction and increased morbidity after viral infection.
Collapse
Affiliation(s)
- Andrew M Dylag
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Jeannie Haak
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Rachel Warren
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Min Yee
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Michael A O'Reilly
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| |
Collapse
|
12
|
Wu F, Zhang H, Zhou J, Wu J, Tong D, Chen X, Huang Y, Shi H, Yang Y, Ma G, Yao C, Du A. The trypsin inhibitor-like domain is required for a serine protease inhibitor of Haemonchus contortus to inhibit host coagulation. Int J Parasitol 2021; 51:1015-1026. [PMID: 34126100 DOI: 10.1016/j.ijpara.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Haemonchus contortus, a blood-feeding nematode, inhibits blood coagulation at the site of infection to facilitate blood-sucking and digesting for successful parasitism. However, the mechanism underlying anti-coagulation at the host-parasite interface is largely unknown. In the current study, Hc-spi-i8, which has two greatly different transcripts named Hc-spi-i8a and Hc-spi-i8b, respectively, was described. Hc-SPI-I8A was a serine protease inhibitor containing a trypsin inhibitor-like cysteine rich (TIL) domain, while Hc-SPI-I8B was not. Hc-SPI-I8A/B were primarily expressed in the hypodermis, intestines and gonads in the parasitic stages of H. contortus. Hc-SPI-I8A interacted with Ovis aries TSP1-containing protein (OaTSP1CP), which was determined by yeast two-hybrid, co-immunoprecipitation (Co-IP), pull down and co-localization experiments. The blood clotting time contributed by the TIL domain was prolonged by Hc-SPI-I8A. Hc-SPI-I8A is most likely interfering in the extrinsic coagulation cascade by interacting with OaTSP1CP through its TIL domain and intrinsic coagulation cascade by an unknown mechanism. These findings depict a crucial point in the host-parasite interaction during H. contortus colonization, which should contribute to drug discovery and vaccine development in fighting against this important parasite worldwide.
Collapse
Affiliation(s)
- Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Huang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hengzhi Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaoqun Yao
- Ross University School of Veterinary Medicine and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, Trinidad and Tobago
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Roberts DD, Isenberg JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am J Physiol Cell Physiol 2021; 321:C201-C213. [PMID: 34106789 DOI: 10.1152/ajpcell.00175.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thrombospondin-1 (TSP1) is the prototypical member of a family of secreted proteins that modulate cell behavior by engaging with molecules in the extracellular matrix and with receptors on the cell surface. CD47 is widely displayed on many, if not all, cell types and is a high-affinity TSP1 receptor. CD47 is a marker of self that limits innate immune cell activities, a feature recently exploited to enhance cancer immunotherapy. Another major role for CD47 in health and disease is to mediate TSP1 signaling. TSP1 acting through CD47 contributes to mitochondrial, metabolic, and endocrine dysfunction. Studies in animal models found that elevated TSP1 expression, acting in part through CD47, causes mitochondrial and metabolic dysfunction. Clinical studies established that abnormal TSP1 expression positively correlates with obesity, fatty liver disease, and diabetes. The unabated increase in these conditions worldwide and the availability of CD47 targeting drugs justify a closer look into how TSP1 and CD47 disrupt metabolic balance and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
14
|
Thrombospondin-1 CD47 Signalling: From Mechanisms to Medicine. Int J Mol Sci 2021; 22:ijms22084062. [PMID: 33920030 PMCID: PMC8071034 DOI: 10.3390/ijms22084062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances provide evidence that the cellular signalling pathway comprising the ligand-receptor duo of thrombospondin-1 (TSP1) and CD47 is involved in mediating a range of diseases affecting renal, vascular, and metabolic function, as well as cancer. In several instances, research has barely progressed past pre-clinical animal models of disease and early phase 1 clinical trials, while for cancers, anti-CD47 therapy has emerged from phase 2 clinical trials in humans as a crucial adjuvant therapeutic agent. This has important implications for interventions that seek to capitalize on targeting this pathway in diseases where TSP1 and/or CD47 play a role. Despite substantial progress made in our understanding of this pathway in malignant and cardiovascular disease, knowledge and translational gaps remain regarding the role of this pathway in kidney and metabolic diseases, limiting identification of putative drug targets and development of effective treatments. This review considers recent advances reported in the field of TSP1-CD47 signalling, focusing on several aspects including enzymatic production, receptor function, interacting partners, localization of signalling, matrix-cellular and cell-to-cell cross talk. The potential impact that these newly described mechanisms have on health, with a particular focus on renal and metabolic disease, is also discussed.
Collapse
|
15
|
Kaur S, Isenberg JS, Roberts DD. CD47 (Cluster of Differentiation 47). ATLAS OF GENETICS AND CYTOGENETICS IN ONCOLOGY AND HAEMATOLOGY 2021; 25:83-102. [PMID: 34707698 PMCID: PMC8547767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CD47, also known as integrin-associated protein, is a constitutively and ubiquitously expressed transmembrane receptor. CD47 is conserved across amniotes including mammals, reptiles, and birds. Expression is increased in many cancers and, in non-malignant cells, by stress and with aging. The up-regulation of CD47 expression is generally epigenetic, whereas gene amplification occurs with low frequency in some cancers. CD47 is a high affinity signaling receptor for the secreted protein thrombospondin-1 (THBS1) and the counter-receptor for signal regulatory protein-α (SIRPA, SIRPα) and SIRPγ (SIRPG). CD47 interaction with SIRPα serves as a marker of self to innate immune cells and thereby protects cancer cells from phagocytic clearance. Consequently, higher CD47 correlates with a poor prognosis in some cancers, and therapeutic blockade can suppress tumor growth by enhancing innate antitumor immunity. CD47 expressed on cytotoxic T cells, dendritic cells, and NK cells mediates inhibitory THBS1 signaling that further limits antitumor immunity. CD47 laterally associates with several integrins and thereby regulates cell adhesion and migration. CD47 has additional lateral binding partners in specific cell types, and ligation of CD47 in some cases modulates their function. THBS1-CD47 signaling in non-malignant cells inhibits nitric oxide/cGMP, calcium, and VEGF signaling, mitochondrial homeostasis, stem cell maintenance, protective autophagy, and DNA damage response, and promotes NADPH oxidase activity. CD47 signaling is a physiological regulator of platelet activation, angiogenesis and blood flow. THBS1/CD47 signaling is frequently dysregulated in chronic diseases.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| | | | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
16
|
Yang H, Zhou T, Sorenson CM, Sheibani N, Liu B. Myeloid-Derived TSP1 (Thrombospondin-1) Contributes to Abdominal Aortic Aneurysm Through Suppressing Tissue Inhibitor of Metalloproteinases-1. Arterioscler Thromb Vasc Biol 2020; 40:e350-e366. [PMID: 33028100 PMCID: PMC7686278 DOI: 10.1161/atvbaha.120.314913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm is characterized by the progressive loss of aortic integrity and accumulation of inflammatory cells primarily macrophages. We previously reported that global deletion of matricellular protein TSP1 (thrombospondin-1) protects mice from aneurysm formation. The objective of the current study is to investigate the cellular and molecular mechanisms underlying TSP1's action in aneurysm. Approach and Results: Using RNA fluorescent in situ hybridization, we identified macrophages being the major source of TSP1 in human and mouse aneurysmal tissues, accounting for over 70% of cells that actively expressed Thbs1 mRNA. Lack of TSP1 in macrophages decreased solution-based gelatinase activities by elevating TIMP1 (tissue inhibitor of metalloproteinases-1) without affecting the major MMPs (matrix metalloproteinases). Knocking down Timp1 restored the ability of Thbs1-/- macrophages to invade matrix. Finally, we generated Thbs1flox/flox mice and crossed them with Lyz2-cre mice. In the CaCl2-induced model of abdominal aortic aneurysm, lacking TSP1 in myeloid cells was sufficient to protect mice from aneurysm by reducing macrophage accumulation and preserving aortic integrity. CONCLUSIONS TSP1 contributes to aneurysm pathogenesis, at least in part, by suppressing TIMP1 expression, which subsequently enables inflammatory macrophages to infiltrate vascular tissues.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Down-Regulation
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Matrix Metalloproteinases/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Signal Transduction
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Tissue Inhibitor of Metalloproteinase-1/genetics
- Tissue Inhibitor of Metalloproteinase-1/metabolism
Collapse
Affiliation(s)
- Huan Yang
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Ting Zhou
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Christine M. Sorenson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Bo Liu
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
17
|
Bissinger R, Petkova-Kirova P, Mykhailova O, Oldenborg PA, Novikova E, Donkor DA, Dietz T, Bhuyan AAM, Sheffield WP, Grau M, Artunc F, Kaestner L, Acker JP, Qadri SM. Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells. Cell Commun Signal 2020; 18:155. [PMID: 32948210 PMCID: PMC7502024 DOI: 10.1186/s12964-020-00651-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Thrombospondin-1 (TSP-1), a Ca2+-binding trimeric glycoprotein secreted by multiple cell types, has been implicated in the pathophysiology of several clinical conditions. Signaling involving TSP-1, through its cognate receptor CD47, orchestrates a wide array of cellular functions including cytoskeletal organization, migration, cell-cell interaction, cell proliferation, autophagy, and apoptosis. In the present study, we investigated the impact of TSP-1/CD47 signaling on Ca2+ dynamics, survival, and deformability of human red blood cells (RBCs). METHODS Whole-cell patch-clamp was employed to examine transmembrane cation conductance. RBC intracellular Ca2+ levels and multiple indices of RBC cell death were determined using cytofluorometry analysis. RBC morphology and microvesiculation were examined using imaging flow cytometry. RBC deformability was measured using laser-assisted optical rotational cell analyzer. RESULTS Exposure of RBCs to recombinant human TSP-1 significantly increased RBC intracellular Ca2+ levels. As judged by electrophysiology experiments, TSP-1 treatment elicited an amiloride-sensitive inward current alluding to a possible Ca2+ influx via non-selective cation channels. Exogenous TSP-1 promoted microparticle shedding as well as enhancing Ca2+- and nitric oxide-mediated RBC cell death. Monoclonal (mouse IgG1) antibody-mediated CD47 ligation using 1F7 recapitulated the cell death-inducing effects of TSP-1. Furthermore, TSP-1 treatment altered RBC cell shape and stiffness (maximum elongation index). CONCLUSIONS Taken together, our data unravel a new role for TSP-1/CD47 signaling in mediating Ca2+ influx into RBCs, a mechanism potentially contributing to their dysfunction in a variety of systemic diseases. Video abstract.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Olga Mykhailova
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Elena Novikova
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - David A Donkor
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Thomas Dietz
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | | | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Marijke Grau
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at Eberhard-Karls University, Tübingen, Germany.,German Center for Diabetes Research (DZD), Eberhard-Karls University, Tübingen, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Jason P Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Syed M Qadri
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada.
| |
Collapse
|
18
|
Shi Y, Li Q, Sun F, Zhu C, Ma S, Qin D, Li Q, Li T. Lamprey PHB2 maintains mitochondrial stability by tanslocation to the mitochondria under oxidative stress. FISH & SHELLFISH IMMUNOLOGY 2020; 104:613-621. [PMID: 32592929 PMCID: PMC7311904 DOI: 10.1016/j.fsi.2020.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Before we have reported lamprey PHB2 could enhance the cellular oxidative-stressed tolerance, here the aim was to explore its mechanisms. We used flow cytometry analysis to identify a Lampetra morii homologue of PHB2 (Lm-PHB2) that could significantly decrease the levels of ROS generation in HEK293T cells. According to confocal microscopy observations, Lm-PHB2 contributed to maintain the mitochondrial morphology of HEK293T cells, and then both cellular nuclear location and translocation from the nucleus to mitochondria of Lm-PHB2 were also examined in HEK293T cells under oxidative stress. We also examined the expressions and locations of various Lm-PHB2 deletion mutants and the amino acid mutant by confocal microscopy and the results showed that the translocation of Lm-PHB2 into mitochondria was dependent on the Lm-PHB21-50aa region and the 17th, 48th and 57th three arginines (R) of N-terminal were very critical. In addition, the analyses of QRT-PCR and Western blot demonstrated that Lm-PHB2 increased the expression levels of OPA1 and HAX1 in HEK293T cells treated with H2O2. The analyses of immunofluorescence and immunoprecipitation showed that Lm-PHB2 could interact with OPA1 and HAX1, respectively. The above mentioned results indicate that Lm-PHB2 could assist OPA1 and HAX1 to maintain mitochondrial morphology and decrease ROS levels by the translocation from the nucleus to mitochondria under oxidative stress.
Collapse
Affiliation(s)
- Ying Shi
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Qing Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Feng Sun
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Chenyue Zhu
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Sainan Ma
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Di Qin
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Tiesong Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
19
|
Biological Pathways of Long-Term Visit-to-Visit Blood Pressure Variability in the American Population: Cardiovascular Health Study and Women’s Health Initiatives. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/3841945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies reported a positive relationship between visit-to-visit blood pressure variability (VVBPV) and cardiovascular morbidity and mortality independently of the mean arterial blood pressure across clinical visits. The literature is scarce on the genes and biological mechanisms that regulate long-term VVBPV. We sought to identify biological pathways that regulate visit-to-visit blood pressure variability. We used phenotypic and genotype data from the Women’s Health Initiatives and Cardiovascular Health Studies. We defined VVBPV of systolic and diastolic blood pressure phenotypes as the standard deviation about the participant’s regression line with systolic and diastolic blood pressure regressed separately across visits. We imputed missing genotypes and then conducted a genome-wide association analysis to identify genomic variants related to the VVBPV and detect biological pathways. For systolic VVBPV, we identified a neurological pathway, the GABAergic pathway (P values = 1.1E − 2), and a vascular pathway, the RAP1 signaling pathway (P values = 5.8E − 2). For diastolic VVBPV, the hippo signaling (P values = 4.1E − 2), CDO myogenesis (P values = 7.0E − 2), and O-glycosylation of TSR domain-containing protein pathways (P values = 9.0E − 2) were the significant pathways. Future studies are warranted to validate these results. Further understanding of the roles of the genes regulating the identified pathways will help researchers to improve future pharmacological interventions to treat VVBPV in clinical practice.
Collapse
|
20
|
Cheng Q, Gu J, Adhikari BK, Sun L, Sun J. Is CD47 a potentially promising therapeutic target in cardiovascular diseases? - Role of CD47 in cardiovascular diseases. Life Sci 2020; 247:117426. [PMID: 32061866 DOI: 10.1016/j.lfs.2020.117426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 01/03/2023]
Abstract
CD47 (cluster of differentiation 47) is a ubiquitously expressed transmembrane protein that belongs to the immunoglobulin superfamily. CD47 is both a receptor for the matricellular protein thrombospondin-1 (TSP-1) and a ligand for signal-regulatory protein alpha (SIRPα). Suppression of CD47 activity enhances angiogenesis and blood flow, restores phagocytosis by macrophages, improves ischemic tissue survival, attenuates ischemia reperfusion injury, and reverses atherosclerotic plaque formation. In conclusion, these observations suggest a pathogenic role of CD47 in the development of cardiovascular diseases (CVDs) and indicate that CD47 might be a potentially promising molecular target for treating CVDs. Herein, we highlight the role of CD47 in the CVD pathogenesis and discuss the potential clinical application by targeting CD47 for treating CVDs.
Collapse
Affiliation(s)
- Quanli Cheng
- The First Hospital and Center of Cardiovascular Diseases, Jilin University, Changchun, China
| | - Junlian Gu
- The School of Nursing, Shandong University, Jinan, China
| | - Binay Kumar Adhikari
- The First Hospital and Center of Cardiovascular Diseases, Jilin University, Changchun, China
| | - Liguang Sun
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China.
| | - Jian Sun
- The First Hospital and Center of Cardiovascular Diseases, Jilin University, Changchun, China.
| |
Collapse
|
21
|
Novelli EM, Little-Ihrig L, Knupp HE, Rogers NM, Yao M, Baust JJ, Meijles D, St Croix CM, Ross MA, Pagano PJ, DeVallance ER, Miles G, Potoka KP, Isenberg JS, Gladwin MT. Vascular TSP1-CD47 signaling promotes sickle cell-associated arterial vasculopathy and pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1150-L1164. [PMID: 30892078 PMCID: PMC6620668 DOI: 10.1152/ajplung.00302.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a leading cause of death in sickle cell disease (SCD) patients. Hemolysis and oxidative stress contribute to SCD-associated PH. We have reported that the protein thrombospondin-1 (TSP1) is elevated in the plasma of patients with SCD and, by interacting with its receptor CD47, limits vasodilation of distal pulmonary arteries ex vivo. We hypothesized that the TSP1-CD47 interaction may promote PH in SCD. We found that TSP1 and CD47 are upregulated in the lungs of Berkeley (BERK) sickling (Sickle) mice and patients with SCD-associated PH. We then generated chimeric animals by transplanting BERK bone marrow into C57BL/6J (n = 24) and CD47 knockout (CD47KO, n = 27) mice. Right ventricular (RV) pressure was lower in fully engrafted Sickle-to-CD47KO than Sickle-to-C57BL/6J chimeras, as shown by the reduced maximum RV pressure (P = 0.013) and mean pulmonary artery pressure (P = 0.020). The afterload of the sickle-to-CD47KO chimeras was also lower, as shown by the diminished pulmonary vascular resistance (P = 0.024) and RV effective arterial elastance (P = 0.052). On myography, aortic segments from Sickle-to-CD47KO chimeras showed improved relaxation to acetylcholine. We hypothesized that, in SCD, TSP1-CD47 signaling promotes PH, in part, by increasing reactive oxygen species (ROS) generation. In human pulmonary artery endothelial cells, treatment with TSP1 stimulated ROS generation, which was abrogated by CD47 blockade. Explanted lungs of CD47KO chimeras had less vascular congestion and a smaller oxidative footprint. Our results show that genetic absence of CD47 ameliorates SCD-associated PH, which may be due to decreased ROS levels. Modulation of TSP1-CD47 may provide a new molecular approach to the treatment of SCD-associated PH.
Collapse
Affiliation(s)
- Enrico M Novelli
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Hematology/Oncology, UPMC Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Lynda Little-Ihrig
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Hematology/Oncology, UPMC Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Heather E Knupp
- UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| | - Natasha M Rogers
- Department of Medicine, Westmead Clinical School, University of Sydney , Sydney, New South Wales , Australia
| | - Mingyi Yao
- Department of Pharmaceutical Science, Midwestern University , Glendale, Arizona
| | - Jeffrey J Baust
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Hematology/Oncology, UPMC Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Daniel Meijles
- School of Biological Sciences, University of Reading , Reading , United Kingdom
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark A Ross
- Center for Biologic Imaging, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Patrick J Pagano
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Hematology/Oncology, UPMC Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Evan R DeVallance
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Hematology/Oncology, UPMC Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - George Miles
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, Texas
| | - Karin P Potoka
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Hematology/Oncology, UPMC Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
- UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jeffrey S Isenberg
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Hematology/Oncology, UPMC Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Hematology/Oncology, UPMC Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Li L, Wang H, Liu H, Liu Z, Li L, Ding K, Wang G, Song J, Fu R. Gene mutations associated with thrombosis detected by whole-exome sequencing in paroxysmal nocturnal hemoglobinuria. Int J Lab Hematol 2019; 41:424-432. [PMID: 30970179 DOI: 10.1111/ijlh.13018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thrombosis is a most common and lethal complication of paroxysmal nocturnal hemoglobinuria (PNH), which is a complex progression and its mechanism remains unclear. We tried to explore the possible genetic background of thrombosis in PNH patients and provide potential gene mutations associated with thrombosis in PNH patients. METHODS The CD59- cells of 7 PNH and 6 PNH- aplastic anemia (AA) patients were sorted by flow cytometry and sequenced by whole-exome sequencing (WES). The sequencing results and target mutation genes were analyzed and screened, respectively, and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis was carried out. Finally, the expression of target genes was detected in 22 PNH (including seven cases with thrombus) and 20 normal controls, and the correlation between the expression of mRNA and the clinical thrombus-related indexes was analyzed. RESULTS The mutation genes screened from 4 PNH with thrombus were BMPR2, F8, ITGA2B, THBD, and THBS1. The pathways enriched by these genes included Notch, Wnt, and arachidonic acid metabolism signaling pathways, which may be related to the pathogenesis of thrombosis in PNH. The BMPR2, THBD, and THBS1 gene expression was significantly different between PNH with and without thrombus group, and the THBS1 gene expression was positively correlated with D-Dimer and su-PAR levels. CONCLUSIONS Genetic defects have a non-negligible effect on the incidence of thrombosis, and therefore, gene mutations maybe a genetic risk factor in PNH, which increase the incidence of thrombosis.
Collapse
Affiliation(s)
- Liyan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Honglei Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojin Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
23
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
24
|
Thrombospondin 1 Is Increased in the Aorta and Plasma of Patients With Acute Aortic Dissection. Can J Cardiol 2019; 35:42-50. [DOI: 10.1016/j.cjca.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
|
25
|
O'Dwyer DN, Gurczynski SJ, Moore BB. Pulmonary immunity and extracellular matrix interactions. Matrix Biol 2018; 73:122-134. [PMID: 29649546 PMCID: PMC6177325 DOI: 10.1016/j.matbio.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/18/2022]
Abstract
The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions.
Collapse
Affiliation(s)
- David N O'Dwyer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Stephen J Gurczynski
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA.
| |
Collapse
|
26
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
27
|
Roberts DD, Kaur S, Isenberg JS. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer. Antioxid Redox Signal 2017; 27:874-911. [PMID: 28712304 PMCID: PMC5653149 DOI: 10.1089/ars.2017.7140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. CRITICAL ISSUES Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. FUTURE DIRECTIONS Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|