1
|
Qin Q, Zhou ZY, Liu Y, Zhou F, Cao C, Teng L. Unraveling the nexus of nesprin in dilated cardiomyopathy: From molecular insights to therapeutic prospects. Life Sci 2024; 358:123126. [PMID: 39396640 DOI: 10.1016/j.lfs.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dilated cardiomyopathy is a complex and debilitating heart disorder characterized by the enlargement and weakening of the cardiac chambers, leading to impaired contractility and heart failure. Nesprins, a family of nuclear envelope spectrin repeat proteins that include isoforms Nesprin-1/-2, are integral components of the LInker of Nucleoskeleton and Cytoskeleton complex. They facilitate the connection between the nuclear envelope and the cytoskeleton, crucial for maintaining nuclear architecture, migration and positioning, and mechanical transduction and signaling. Nesprin-1/-2 are abundantly expressed in cardiac and skeletal muscles.They have emerged as key players in the pathogenesis of dilated cardiomyopathy. Mutations in synaptic nuclear envelope-1/-2 genes encoding Nesprin-1/-2 are associated with dilated cardiomyopathy, underscoring their significance in cardiac health. This review highlights the all known cases of Nesprin-1/-2 related dilated cardiomyopathy, focusing on their interactions with the nuclear envelope, their role in mechanical transduction, and their influence on gene expression. Moreover, it delves into the underlying mechanisms through which Nesprin dysfunction disrupts nuclear-cytoskeletal coupling, leading to abnormal nuclear morphology, impaired mechanotransduction, and altered gene regulation. The exploration of Nesprin's impact on dilated cardiomyopathy offers a promising avenue for therapeutic interventions aimed at ameliorating the disease. This review provides a comprehensive overview of recent advancements in understanding the pivotal role of Nesprins in dilated cardiomyopathy research.
Collapse
Affiliation(s)
- Qin Qin
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Zi-Yi Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Yangyuanzhi Liu
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China
| | - Chunyu Cao
- School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China; College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Lin Teng
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, UK.
| |
Collapse
|
2
|
Mukhopadhyay S, Dixit P, Khanom N, Sanghera G, McGurk KA. The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum. J Cardiovasc Transl Res 2024; 17:1119-1139. [PMID: 38771459 PMCID: PMC11519107 DOI: 10.1007/s12265-024-10520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.
Collapse
Affiliation(s)
- Srinjay Mukhopadhyay
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
- School of Medicine, Cardiff University, Wales, UK
| | - Prithvi Dixit
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Najiyah Khanom
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Gianluca Sanghera
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Iqbal MK, Ambreen A, Mujahid M, Zarlashat Y, Abid M, Yasin A, Ullah MN, Shahzad R, Harlina PW, Khan SU, Alissa M, Algopishi UB, Almubarak HA. Cardiomegaly: Navigating the uncharted territories of heart failure - A multimodal radiological journey through advanced imaging, pathophysiological landscapes, and innovative therapeutic frontiers. Curr Probl Cardiol 2024; 49:102748. [PMID: 39009253 DOI: 10.1016/j.cpcardiol.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Cardiomegaly is among the disorders categorized by a structural enlargement of the heart by any of the situations including pregnancy, resulting in damage to heart muscles and causing trouble in normal heart functioning. Cardiomegaly can be defined in terms of dilatation with an enlarged heart and decreased left or biventricular contraction. The genetic origin of cardiomegaly is becoming more evident due to extensive genomic research opening up new avenues to ensure the use of precision medicine. Cardiomegaly is usually assessed by using an array of radiological modalities, including computed tomography (CT) scans, chest X-rays, and MRIs. These imaging techniques have provided an important opportunity for the physiology and anatomy of the heart. This review aims to highlight the complexity of cardiomegaly, highlighting the contribution of both ecological and genetic variables to its progression. Moreover, we further highlight the worth of precise clinical diagnosis, which comprises blood biomarkers and electrocardiograms (EKG ECG), demonstrating the significance of distinguishing between numerous basic causes. Finally, the analysis highlights the extensive variation of treatment lines, such as lifestyle modifications, prescription drugs, surgery, and implantable devices, although highlighting the critical need for individualized and personalized care.
Collapse
Affiliation(s)
- Muhammad Khalid Iqbal
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China; Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Alia Ambreen
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Mujahid
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Abid
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Ayesha Yasin
- Department of Pathology and Forensic Medicine, Dalian Medical University Liaoning Provence, China
| | | | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Singh A, Irfan H, Ali T, Mughal S, Shaukat A, Jawwad M, Akilimali A. Precision medicine in peripartum cardiomyopathy: advancing diagnosis and management through genomic and phenotypic integration. Ann Med Surg (Lond) 2024; 86:4664-4667. [PMID: 39118717 PMCID: PMC11305805 DOI: 10.1097/ms9.0000000000002329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
Peripartum cardiomyopathy (PPCM) is a rare and life-threatening cardiac condition characterized by heart failure due to left ventricular systolic dysfunction, often developing in late pregnancy or the early postpartum period. Despite being a leading cause of maternal morbidity and mortality, clinical presentation of PPCM frequently overlaps with normal pregnancy-related physiological changes, causing diagnostic delays and increased complications. Current management strategies, primarily derived from general heart failure protocols, are evolving to address the unique aspects of PPCM. This includes the development of personalized medicine approaches that integrate genetic profiling, biomarker evaluation, and clinical phenotyping. Notable genes such as titin (TTN), Bcl2-associated athanogene 3 (BAG3), and lamin A/C (LMNA) are implicated in PPCM, revealing a complex genetic landscape similar to other cardiomyopathies. Biomarkers like N-terminal pro-brain-type natriuretic peptide (NT-proBNP) and cardiac troponin T (cTnT) are under investigation for their diagnostic and prognostic value, indicating that personalized treatments hold the promise of enhancing diagnostic precision and therapeutic outcomes by tailoring interventions to individual patient profiles. This review article aims to highlight how integrating genetic and phenotypic data can establish a novel framework for managing PPCM, potentially transforming treatment paradigms and improving long-term outcomes.
Collapse
Affiliation(s)
- Ajeet Singh
- Department of Internal Medicine, Dow University of Health Sciences, Karachi
| | - Hamza Irfan
- Department of Medicine, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, Lahore, Pakistan
| | - Tooba Ali
- Department of Internal Medicine, Dow University of Health Sciences, Karachi
| | - Sanila Mughal
- Department of Internal Medicine, Dow University of Health Sciences, Karachi
| | - Ayesha Shaukat
- Department of Internal Medicine, Dow University of Health Sciences, Karachi
| | - Mohammad Jawwad
- Department of Internal Medicine, Dow University of Health Sciences, Karachi
| | - Aymar Akilimali
- Department of research, Medical Research Circle (MedReC), Bukavu, Democratic Republic of Congo
| |
Collapse
|
5
|
Chao T, Ge Y, Sun J, Wang C. Research landscape of genetics in dilated cardiomyopathy: insight from a bibliometric analysis. Front Cardiovasc Med 2024; 11:1362551. [PMID: 39070560 PMCID: PMC11272475 DOI: 10.3389/fcvm.2024.1362551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a heterogeneous myocardial disorder with diverse genetic or acquired origins. Notable advances have been achieved in discovering and understanding the genetics of DCM. This study aimed to depict the distribution of the main research forces, hotspots, and frontiers in the genetics of DCM, thus shaping future research directions. Methods Based on the documents published in the Web of Science Core Collection database from 2013 to 2022, co-authorship of authors, institutions, and countries/regions, co-citation of references, and co-occurrence of keywords were conducted respectively to present the distribution of the leading research forces, research hotspots, and emerging trends in the genetics of DCM. Results 4,141 documents were included, and the annual publications have steadily increased. Seidman, Christine E, Meder, Benjamin, Sinagra, Gianfranco were the most productive authors, German Centre for Cardiovascular Research was the most productive institution, and the USA, China, and Germany were the most prolific countries. The co-occurrence of keywords has generated 8 clusters, including DCM, lamin a/c, heart failure, sudden cardiac death, hypertrophic cardiomyopathy, cardiac hypertrophy, arrhythmogenic cardiomyopathy, and next-generation sequencing. Frequent keywords with average publication time after 2019 mainly included arrhythmogenic cardiomyopathy, whole-exome sequencing, RBM 20, phenotype, risk stratification, precision medicine, genotype, and machine learning. Conclusion The research landscape of genetics in DCM is continuously evolving. Deciphering the genetic profiles by next-generation sequencing and illustrating pathogenic mechanisms of gene variants, establishing innovative treatments for heart failure and improved risk stratification for SCD, uncovering the genetic overlaps between DCM and other inherited cardiomyopathies, as well as identifying genotype-phenotype correlations are the main research hotspots and frontiers in this field.
Collapse
Affiliation(s)
- Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaru Ge
- Community Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Goanta EV, Vacarescu C, Tartea G, Ungureanu A, Militaru S, Muraretu A, Faur-Grigori AA, Petrescu L, Vătăsescu R, Cozma D. Unexpected Genetic Twists in Patients with Cardiac Devices. J Clin Med 2024; 13:3801. [PMID: 38999368 PMCID: PMC11242405 DOI: 10.3390/jcm13133801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Objective: To assess the frequency and types of genetic mutations in patients with arrhythmias who underwent cardiac device implantation. Methods: Retrospective observational study, including 38 patients with different arrhythmias and cardiac arrest as a first cardiac event. Treatment modalities encompass pacemakers, transvenous defibrillators, loop recorders, subcutaneous defibrillators, and cardiac resynchronization therapy. All patients underwent genetic testing, using commercially available panels (106-174 genes). Outcome measures include mortality, arrhythmia recurrence, and device-related complications. Results: Clinical parameters revealed a family history of sudden cardiac death in 19 patients (50%), who were predominantly male (58%) and had a mean age of 44.5 years and a mean left ventricle ejection fraction of 40.3%. Genetic testing identified mutations in various genes, predominantly TMEM43 (11%). In two patients (3%) with arrhythmogenic cardiomyopathy, complete subcutaneous defibrillator extraction with de novo transvenous implantable cardioverter-defibrillator implantation was needed. The absence of multiple associations among severe gene mutations was crucial for cardiac resynchronization therapy response. Mortality in this group was around 3% in titin dilated cardiomyopathy patients. Conclusions: Integration of genetic testing into the decision-making process for patients with electronic devices represents a paradigm shift in personalized medicine. By identifying genetic markers associated with arrhythmia susceptibility, heart failure etiology, and cardiac resynchronization therapy response, clinicians can tailor device choices to optimize patient outcomes.
Collapse
Affiliation(s)
- Emilia-Violeta Goanta
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
| | - Cristina Vacarescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.P.); (D.C.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Georgica Tartea
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Adrian Ungureanu
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
| | - Sebastian Militaru
- Department of Cardiology, Craiova University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Alexandra Muraretu
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
| | | | - Lucian Petrescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.P.); (D.C.)
| | - Radu Vătăsescu
- Cardiology Department, Clinical Emergency Hospital, 014461 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Dragos Cozma
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.P.); (D.C.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
7
|
Arts T, Lyon A, Delhaas T, Kuster DWD, van der Velden J, Lumens J. Translating myosin-binding protein C and titin abnormalities to whole-heart function using a novel calcium-contraction coupling model. J Mol Cell Cardiol 2024; 190:13-23. [PMID: 38462126 DOI: 10.1016/j.yjmcc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.
Collapse
Affiliation(s)
- Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands.
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam University Medical Center, 1081HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center, 1081HZ Amsterdam, the Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| |
Collapse
|
8
|
de Frutos F, Diez-Lopez C, García-Romero E, Gondra L, Madariaga L, Ariceta G, García-Castaño A, Melilli E, Herrador L, Triguero-Llonch L, Gran F, Rosenfeld L, Llatjos R, Comin-Colet J, González-Costello J. Dilated Cardiomyopathy With Concomitant Salt-Losing Renal Tubulopathy Caused by Heterozygous RRAGD Gene Variant. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004336. [PMID: 38372174 DOI: 10.1161/circgen.123.004336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Affiliation(s)
- Fernando de Frutos
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., L.R., J.C.-C., J.G.-C.)
- Bioheart Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., J.C.-C., J.G.-C.)
| | - Carles Diez-Lopez
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., L.R., J.C.-C., J.G.-C.)
- Bioheart Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., J.C.-C., J.G.-C.)
| | - Elena García-Romero
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., L.R., J.C.-C., J.G.-C.)
- Bioheart Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., J.C.-C., J.G.-C.)
| | - Leire Gondra
- Pediatric Nephrology Department, Cruces University Hospital, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (L.G., L.M.)
- Biocruces Health Research Institute, Barakaldo (L.G., L.M., A.G.-C.)
| | - Leire Madariaga
- Pediatric Nephrology Department, Cruces University Hospital, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (L.G., L.M.)
- Biocruces Health Research Institute, Barakaldo (L.G., L.M., A.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (L.M., A.G.-C.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid (L.M., A.G.-C.)
| | | | - Alejandro García-Castaño
- Biocruces Health Research Institute, Barakaldo (L.G., L.M., A.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (L.M., A.G.-C.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid (L.M., A.G.-C.)
| | - Edoardo Melilli
- Renal Transplant Unit, Department of Nephrology (E.M.), Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat
| | - Lorena Herrador
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., L.R., J.C.-C., J.G.-C.)
- Bioheart Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., J.C.-C., J.G.-C.)
| | - Laura Triguero-Llonch
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., L.R., J.C.-C., J.G.-C.)
- Bioheart Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., J.C.-C., J.G.-C.)
| | - Ferran Gran
- Department of Pediatric Cardiology, University Hospital Vall d'Hebron (F.G.)
| | - Laia Rosenfeld
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., L.R., J.C.-C., J.G.-C.)
| | - Roger Llatjos
- Department of Pathology (R.L.), Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat
| | - Josep Comin-Colet
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., L.R., J.C.-C., J.G.-C.)
- Bioheart Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., J.C.-C., J.G.-C.)
- Department of Clinical Sciences, School of Medicine, University of Barcelona (J.C.-C., J.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (J.C.-C., J.G.-C.)
| | - José González-Costello
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., L.R., J.C.-C., J.G.-C.)
- Bioheart Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona (F.d.F., C.D.-L., E.G.-R., L.H., L.T.-L., J.C.-C., J.G.-C.)
- Department of Clinical Sciences, School of Medicine, University of Barcelona (J.C.-C., J.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (J.C.-C., J.G.-C.)
| |
Collapse
|
9
|
Keil L, Berisha F, Ritter S, Skibowski J, Subramanian H, Nikolaev VO, Kubisch C, Woitschach R, Fabritz L, Twerenbold R, Blankenberg S, Weidemann S, Zeller T, Kirchhof P, Reichart D, Magnussen C. Multimodal characterization of dilated cardiomyopathy: Geno- And Phenotyping of PrImary Cardiomyopathy (GrAPHIC). ESC Heart Fail 2024; 11:541-549. [PMID: 37964758 PMCID: PMC10804161 DOI: 10.1002/ehf2.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 11/16/2023] Open
Abstract
AIMS Cardiomyopathies (CMPs) are a heterogeneous group of diseases that are defined by structural and functional abnormalities of the cardiac muscle. Dilated cardiomyopathy (DCM), the most common CMP, is defined by left ventricular dilation and impaired contractility and represents a common cause of heart failure. Different phenotypes result from various underlying genetic and acquired causes with variable effects on disease development and progression, prognosis, and response to medical treatment. Current treatment algorithms do not consider these different aetiologies, due to lack of insights into treatable drivers of cardiac failure in patients with DCM. Our study aims to precisely phenotype and genotype the various subtypes of DCM and hereby lay the foundation for individualized therapy. METHODS AND RESULTS The Geno- And Phenotyping of PrImary Cardiomyopathy (GrAPHIC) is a currently ongoing prospective observational monocentric cohort study that recruits patients with DCM after exclusion of other causes such as coronary artery disease, valvular dysfunction, myocarditis, exposure to toxins, and peripartum CMP. Patients are enrolled at our heart failure outpatient clinic or during hospitalization at the University Hospital Hamburg. Clinical parameters, multimodal imaging and functional assessment, cardiac biopsies, and blood samples are obtained to enable an integrated genomic, functional, and biomarker analysis. CONCLUSIONS The GrAPHIC will contribute to a better understanding of the heterogeneous nature of primary CMPs focusing on DCM and provide improved prognostic approaches and more individualized therapies.
Collapse
Affiliation(s)
- Laura Keil
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Filip Berisha
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stella Ritter
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johanna Skibowski
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Hariharan Subramanian
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Viacheslav O. Nikolaev
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Kubisch
- Institute of Human GeneticsUniversity Hospital Hamburg‐EppendorfHamburgGermany
| | - Rixa Woitschach
- Institute of Human GeneticsUniversity Hospital Hamburg‐EppendorfHamburgGermany
| | - Larissa Fabritz
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Centre of Cardiovascular Science, UKE HamburgHamburgGermany
| | - Raphael Twerenbold
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Centre of Cardiovascular Science, UKE HamburgHamburgGermany
| | - Stefan Blankenberg
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
| | - Sören Weidemann
- Department of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tanja Zeller
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
- University Centre of Cardiovascular Science, UKE HamburgHamburgGermany
| | - Paulus Kirchhof
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
| | - Daniel Reichart
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
| | - Christina Magnussen
- Department of CardiologyUniversity Heart and Vascular Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/LuebeckHamburgGermany
| |
Collapse
|
10
|
Ciccarelli M, Pires IF, Bauersachs J, Bertrand L, Beauloye C, Dawson D, Hamdani N, Hilfiker-Kleiner D, van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Rispoli A, Visco V, Carrizzo A, Ferro MD, Stolfo D, van der Velden J, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Acute heart failure: mechanisms and pre-clinical models-a Scientific Statement of the ESC Working Group on Myocardial Function. Cardiovasc Res 2023; 119:2390-2404. [PMID: 37967390 DOI: 10.1093/cvr/cvad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 11/17/2023] Open
Abstract
While chronic heart failure (CHF) treatment has considerably improved patient prognosis and survival, the therapeutic management of acute heart failure (AHF) has remained virtually unchanged in the last decades. This is partly due to the scarcity of pre-clinical models for the pathophysiological assessment and, consequently, the limited knowledge of molecular mechanisms involved in the different AHF phenotypes. This scientific statement outlines the different trajectories from acute to CHF originating from the interaction between aetiology, genetic and environmental factors, and comorbidities. Furthermore, we discuss the potential molecular targets capable of unveiling new therapeutic perspectives to improve the outcome of the acute phase and counteracting the evolution towards CHF.
Collapse
Affiliation(s)
- Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Inês Falcão Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St.Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Linda W van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster 48149, Germany
| | - Ida G Lunde
- Division of Diagnostics and Technology (DDT), Akershus University Hospital, and KG Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz - University of Graz, 8036 Graz, Austria
| | - Antonella Rispoli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Albino Carrizzo
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
- Laboratory of Vascular Physiopathology-I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy
| | - Matteo Dal Ferro
- Cardiothoracovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
- Laboratory of Cardiovascular Biology, The International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Serena Zacchigna
- Laboratory of Cardiovascular Biology, The International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental medicine, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
11
|
Fan X, Yang G, Duru F, Grilli M, Akin I, Zhou X, Saguner AM, Ei-Battrawy I. Arrhythmogenic Cardiomyopathy: from Preclinical Models to Genotype-phenotype Correlation and Pathophysiology. Stem Cell Rev Rep 2023; 19:2683-2708. [PMID: 37731079 PMCID: PMC10661732 DOI: 10.1007/s12015-023-10615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a hereditary myocardial disease characterized by the replacement of the ventricular myocardium with fibrous fatty deposits. ACM is usually inherited in an autosomal dominant pattern with variable penetrance and expressivity, which is mainly related to ventricular tachyarrhythmia and sudden cardiac death (SCD). Importantly, significant progress has been made in determining the genetic background of ACM due to the development of new techniques for genetic analysis. The exact molecular pathomechanism of ACM, however, is not completely clear and the genotype-phenotype correlations have not been fully elucidated, which are useful to predict the prognosis and treatment of ACM patients. Different gene-targeted and transgenic animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models, and heterologous expression systems have been developed. Here, this review aims to summarize preclinical ACM models and platforms promoting our understanding of the pathogenesis of ACM and assess their value in elucidating the ACM genotype-phenotype relationship.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Guoqiang Yang
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Acupuncture and Rehabilitation, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Grilli
- Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- First Department of Medicine, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Ei-Battrawy
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- Department of Cardiology and Angiology, Ruhr University, Bochum, Germany; Institute of Physiology, Department of Cellular and Translational Physiology and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr- University Bochum, Bochum, Germany.
| |
Collapse
|
12
|
Palmieri G, D’Ambrosio MF, Correale M, Brunetti ND, Santacroce R, Iacoviello M, Margaglione M. The Role of Genetics in the Management of Heart Failure Patients. Int J Mol Sci 2023; 24:15221. [PMID: 37894902 PMCID: PMC10607512 DOI: 10.3390/ijms242015221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Over the last decades, the relevance of genetics in cardiovascular diseases has expanded, especially in the context of cardiomyopathies. Its relevance extends to the management of patients diagnosed with heart failure (HF), given its capacity to provide invaluable insights into the etiology of cardiomyopathies and identify individuals at a heightened risk of poor outcomes. Notably, the identification of an etiological genetic variant necessitates a comprehensive evaluation of the family lineage of the affected patients. In the future, these genetic variants hold potential as therapeutic targets with the capability to modify gene expression. In this complex setting, collaboration among cardiologists, specifically those specializing in cardiomyopathies and HF, and geneticists becomes paramount to improving individual and family health outcomes, as well as therapeutic clinical results. This review is intended to offer geneticists and cardiologists an updated perspective on the value of genetic research in HF and its implications in clinical practice.
Collapse
Affiliation(s)
- Gianpaolo Palmieri
- School of Cardiology, Department of Medical and Surgical Sciences, University of Foggia, 70122 Foggia, Italy; (G.P.); (M.C.); (N.D.B.)
| | - Maria Francesca D’Ambrosio
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.F.D.); (R.S.); (M.M.)
| | - Michele Correale
- School of Cardiology, Department of Medical and Surgical Sciences, University of Foggia, 70122 Foggia, Italy; (G.P.); (M.C.); (N.D.B.)
| | - Natale Daniele Brunetti
- School of Cardiology, Department of Medical and Surgical Sciences, University of Foggia, 70122 Foggia, Italy; (G.P.); (M.C.); (N.D.B.)
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.F.D.); (R.S.); (M.M.)
| | - Massimo Iacoviello
- University Cardiology Unit, Polyclinic Hospital of Bari, 70124 Bari, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.F.D.); (R.S.); (M.M.)
| |
Collapse
|
13
|
Li M, Huang H. Anesthetic Management of Patients with Dilated Cardiomyopathy Undergoing Noncardiac Surgery. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1567. [PMID: 37763685 PMCID: PMC10533037 DOI: 10.3390/medicina59091567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Dilated cardiomyopathy (DCM), a primary myocardial disease, is characterized by dilation of the left or both ventricles and systolic dysfunction with or without congestive heart failure. DCM per se is a well-recognized risk factor for sudden cardiac death and poor surgical outcomes following noncardiac surgery. Surgical trauma/stress represents unique challenges for DCM patient management. Unfortunately, there is a big knowledge gap in managing DCM patients undergoing non-cardiac surgery. Therefore, the aim of our review is to provide basic facts and current advances in DCM, as well as a practical guideline to perioperative care providers, for the management of surgical patients with DCM, who are quite rare compared with the general surgical population. This review summarizes recent advances in the medical management of DCM as well as perioperative assessment and management strategies for DCM patients undergoing noncardiac surgery. Optimal surgical outcomes depend on multiple-disciplinary care to minimize perioperative cardiovascular disturbances.
Collapse
Affiliation(s)
| | - Han Huang
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
14
|
Zhou L, Peng F, Li J, Gong H. Exploring novel biomarkers in dilated cardiomyopathy‑induced heart failure by integrated analysis and in vitro experiments. Exp Ther Med 2023; 26:325. [PMID: 37346398 PMCID: PMC10280324 DOI: 10.3892/etm.2023.12024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 06/23/2023] Open
Abstract
Despite the availability of several effective and promising treatment methods, heart failure (HF) remains a significant public health concern that requires advanced therapeutic strategies and techniques. Dilated cardiomyopathy (DCM) is a crucial factor that contributes to the development and deterioration of HF. The aim of the present study was to identify novel biomarkers and biological pathways to enhance the diagnosis and treatment of patients with DCM-induced HF using weighted gene co-expression network analysis (WGCNA). A total of 24 co-expressed gene modules connected with DCM-induced HF were obtained by WGCNA. Among these, the blue module had the highest correlation with DCM-induced HF (r=0.91; P<0.001) and was enriched in the AGE-RAGE signaling pathway in diabetic complications, the p53 and MAPK signaling pathway, adrenergic signaling in cardiomyocytes, the Janus kinase-STAT signaling pathway and cGMP/PKG signaling. Eight key genes, including secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2), serpin family A member 3 (SERPINA3), myosin heavy chain 6 (MYH6), S100 calcium binding protein A9 (S100A9), tubulin α (TUBA)3E, TUBA3D, lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE1) and phospholipase C ε1 (PLCE1), were selected as the therapeutic targets of DCM-induced HF based on WGCNA and differentially expressed gene analysis. Immune cell infiltration analysis revealed that the proportion of naive B cells and CD4-activated memory T cells was markedly upregulated in DCM-induced HF tissues compared with tissues from healthy controls. Furthermore, reverse transcription-quantitative PCR in AC16 human cardiomyocyte cells treated with doxorubicin showed that among the eight key genes, only SERPINA3, MYH6, S100A9, LYVE1 and PLCE1 exhibited expression levels identical to those revealed by bioinformatics analysis, suggesting that these genes may be involved in the development of DCM-induced HF.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fei Peng
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
15
|
Zhou Y, Gao S, Ding L, Yan H, Pang S, Yan B. Correlation Analysis of CTSB Promoter Polymorphism and Function in Patients with Dilated Cardiomyopathy. DNA Cell Biol 2023; 42:203-211. [PMID: 36976816 DOI: 10.1089/dna.2022.0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is caused by a combination of genetic susceptibility and environmental factors. Cathepsin B affects the pathogenesis of DCM; however, its molecular mechanism is still unclear. In this study, we examined the association of rare CTSB variants with the occurrence of DCM. This case-control study involved 394 participants: 142 patients with DCM and 252 healthy controls. DNA was extracted from the peripheral leukocytes of all participants, and CTSB variants were analyzed and identified using polymerase chain reaction amplification. Functional analysis was performed using the dual-luciferase reporter assay, and the ability of genetic CTSB variants to bind to transcription factors (TFs) was analyzed and validated using the electrophoretic mobility shift assay (EMSA). Two single-nucleotide polymorphisms (SNPs) were identified in the study population. One SNP, g.4803 T > C (rs1293312), was more common in patients with DCM. A second SNP, g.4954 T > A (rs942670850), was identified in two patients with DCM. Both SNPs significantly enhanced the transcriptional activity of CTSB promoters. An analysis using the TRANSFAC database revealed that these SNPs affect TF binding, which was confirmed using the EMSA. Our results demonstrate that within the CTSB promoter, the genetic variants g.4803T>C (rs1293312) and g.4954 T > A (rs942670850) are rare risk factors for DCM development.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shuang Gao
- Department of Critical Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangcai Ding
- Center for Molecular Medicine, Jining Third People's Hospital, Jining, China
| | - Han Yan
- Center for Molecular Medicine, Jining Third People's Hospital, Jining, China
| | - Shuchao Pang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Bo Yan
- Center for Molecular Medicine, Jining Third People's Hospital, Jining, China
- Institute of Precision Medicine, Jining Medical University, Jining, China
| |
Collapse
|
16
|
Vadrot N, Ader F, Moulin M, Merlant M, Chapon F, Gandjbakhch E, Labombarda F, Maragnes P, Réant P, Rooryck C, Probst V, Donal E, Richard P, Ferreiro A, Buendia B. Abnormal Cellular Phenotypes Induced by Three TMPO/LAP2 Variants Identified in Men with Cardiomyopathies. Cells 2023; 12:337. [PMID: 36672271 PMCID: PMC9857342 DOI: 10.3390/cells12020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
A single missense variant of the TMPO/LAP2α gene, encoding LAP2 proteins, has been associated with cardiomyopathy in two brothers. To further evaluate its role in cardiac muscle, we included TMPO in our cardiomyopathy diagnostic gene panel. A screening of ~5000 patients revealed three novel rare TMPO heterozygous variants in six males diagnosed with hypertrophic or dilated cardiomypathy. We identified in different cellular models that (1) the frameshift variant LAP2α p.(Gly395Glufs*11) induced haploinsufficiency, impeding cell proliferation and/or producing a truncated protein mislocalized in the cytoplasm; (2) the C-ter missense variant LAP2α p.(Ala240Thr) led to a reduced proximity events between LAP2α and the nucleosome binding protein HMGN5; and (3) the LEM-domain missense variant p.(Leu124Phe) decreased both associations of LAP2α/β with the chromatin-associated protein BAF and inhibition of the E2F1 transcription factor activity which is known to be dependent on Rb, partner of LAP2α. Additionally, the LAP2α expression was lower in the left ventricles of male mice compared to females. In conclusion, our study reveals distinct altered properties of LAP2 induced by these TMPO/LAP2 variants, leading to altered cell proliferation, chromatin structure or gene expression-regulation pathways, and suggests a potential sex-dependent role of LAP2 in myocardial function and disease.
Collapse
Affiliation(s)
- Nathalie Vadrot
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Flavie Ader
- APHP—Sorbonne Université, Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Service de Biochimie Métabolique, HU Pitié Salpêtrière—Charles Foix, F-75013 Paris, France
- INSERM, UMR_S 1166, Sorbonne Université, F-75005 Paris, France
- Faculté de Pharmacie Paris Descartes, Département 3, Université Paris Cité, F-75006 Paris, France
| | - Maryline Moulin
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Marie Merlant
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | - Estelle Gandjbakhch
- INSERM, UMR_S 1166, Sorbonne Université, F-75005 Paris, France
- Département de cardiologie, APHP—Sorbonne Université, HU Pitié Salpêtrière- Charles Foix, F-75610 Paris, France
| | - Fabien Labombarda
- Service de Cardiologie, CHU de Caen, Université de Caen Normandie, F-14000 Caen, France
| | - Pascale Maragnes
- Cardiologie pédiatrique, Service de pédiatrie, CHU de Caen, F-14000 Caen, France
| | - Patricia Réant
- Service de Cardiologie, Hôpital Haut Lévêque, CHU de Bordeaux, INSERM 1045, Université de Bordeaux, F-33000 Bordeaux, France
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU Bordeaux, F-33000 Bordeaux, France
| | - Vincent Probst
- Centre de référence des maladies rythmiques cardiaques, CHU de Nantes, F-44000 Nantes, France
| | - Erwan Donal
- Centre Cardio-Pneumologique, CHU de Rennes Hôpital de Pontchaillou, F-35000 Rennes, France
| | - Pascale Richard
- APHP—Sorbonne Université, Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Service de Biochimie Métabolique, HU Pitié Salpêtrière—Charles Foix, F-75013 Paris, France
- INSERM, UMR_S 1166, Sorbonne Université, F-75005 Paris, France
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
- APHP, Centre de référence des Maladies Neuromusculaires, Institut de Myologie, Neuromyology Department, CHU Pitié Salpêtrière—Charles Foix, F-75013 Paris, France
| | - Brigitte Buendia
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| |
Collapse
|
17
|
Khalilimeybodi A, Riaz M, Campbell SG, Omens JH, McCulloch AD, Qyang Y, Saucerman JJ. Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy. J Mol Cell Cardiol 2023; 174:1-14. [PMID: 36370475 PMCID: PMC10230857 DOI: 10.1016/j.yjmcc.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.
Collapse
Affiliation(s)
- Ali Khalilimeybodi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, New Haven, CT, United States of America; Department of Pathology, Yale University, New Haven, CT, United States of America; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States of America
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
18
|
Fanti S, Stephenson E, Rocha-Vieira E, Protonotarios A, Kanoni S, Shahaj E, Longhi MP, Vyas VS, Dyer C, Pontarini E, Asimaki A, Bueno-Beti C, De Gaspari M, Rizzo S, Basso C, Bombardieri M, Coe D, Wang G, Harding D, Gallagher I, Solito E, Elliott P, Heymans S, Sikking M, Savvatis K, Mohiddin SA, Marelli-Berg FM. Circulating c-Met-Expressing Memory T Cells Define Cardiac Autoimmunity. Circulation 2022; 146:1930-1945. [PMID: 36417924 PMCID: PMC9770129 DOI: 10.1161/circulationaha.121.055610] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.
Collapse
Affiliation(s)
- Silvia Fanti
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Edward Stephenson
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Etel Rocha-Vieira
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil (E.R.-V.)
| | - Alexandros Protonotarios
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
- Institute of Cardiovascular Science, University College London, UK (A.P., P.E.)
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Eriomina Shahaj
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - M. Paula Longhi
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Vishal S. Vyas
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Carlene Dyer
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Elena Pontarini
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Angeliki Asimaki
- Molecular and Clinical Science Institute, St George’s, University of London, UK (A.A., C.B.-B.)
| | - Carlos Bueno-Beti
- Molecular and Clinical Science Institute, St George’s, University of London, UK (A.A., C.B.-B.)
| | - Monica De Gaspari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - David Coe
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Guosu Wang
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Iain Gallagher
- Faculty of Health Sciences & Sport, University of Stirling, UK (I.G.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II,” Italy (E. Solito)
| | - Perry Elliott
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
- Institute of Cardiovascular Science, University College London, UK (A.P., P.E.)
| | - Stephane Heymans
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, the Netherlands (S.H., M.S.)
- Department of Cardiovascular Sciences, Centre for Vascular and Molecular Biology, KU Leuven, Belgium (S.H.)
| | - Maurits Sikking
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, the Netherlands (S.H., M.S.)
| | - Konstantinos Savvatis
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Saidi A. Mohiddin
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Centre for Inflammation and Therapeutic Innovation (F.M.M.-B.), Queen Mary University of London, UK
| |
Collapse
|
19
|
van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, Bot I, Brundel BJJM, Carrier L, Chamuleau S, Ciccarelli M, Dawson D, Davidson SM, Dendorfer A, Duncker DJ, Eschenhagen T, Fabritz L, Falcão-Pires I, Ferdinandy P, Giacca M, Girao H, Gollmann-Tepeköylü C, Gyongyosi M, Guzik TJ, Hamdani N, Heymans S, Hilfiker A, Hilfiker-Kleiner D, Hoekstra AG, Hulot JS, Kuster DWD, van Laake LW, Lecour S, Leiner T, Linke WA, Lumens J, Lutgens E, Madonna R, Maegdefessel L, Mayr M, van der Meer P, Passier R, Perbellini F, Perrino C, Pesce M, Priori S, Remme CA, Rosenhahn B, Schotten U, Schulz R, Sipido KR, Sluijter JPG, van Steenbeek F, Steffens S, Terracciano CM, Tocchetti CG, Vlasman P, Yeung KK, Zacchigna S, Zwaagman D, Thum T. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2022; 118:3016-3051. [PMID: 34999816 PMCID: PMC9732557 DOI: 10.1093/cvr/cvab370] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.
Collapse
Grants
- R01 HL150359 NHLBI NIH HHS
- RG/16/14/32397 British Heart Foundation
- FS/18/37/33642 British Heart Foundation
- PG/17/64/33205 British Heart Foundation
- PG/15/88/31780 British Heart Foundation
- FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, and PG/17/64/33205 British Heart Foundation
- NC/T001488/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- PG/18/44/33790 British Heart Foundation
- CH/16/3/32406 British Heart Foundation
- FS/RTF/20/30009 British Heart Foundation
- NWO-ZonMW
- ZonMW and Heart Foundation for the translational research program
- Dutch Cardiovascular Alliance (DCVA)
- Leducq Foundation
- Dutch Research Council
- Association of Collaborating Health Foundations (SGF)
- UCL Hospitals NIHR Biomedical Research Centre, and the DCVA
- Netherlands CardioVascular Research Initiative CVON
- Stichting Hartekind and the Dutch Research Counsel (NWO) (OCENW.GROOT.2019.029)
- National Fund for Scientific Research, Belgium and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles, Belgium
- Netherlands CardioVascular Research Initiative CVON (PREDICT2 and CONCOR-genes projects), the Leducq Foundation
- ERA PerMed (PROCEED study)
- Netherlands Cardiovascular Research Initiative
- Dutch Heart Foundation
- German Centre of Cardiovascular Research (DZHH)
- Chest Heart and Stroke Scotland
- Tenovus Scotland
- Friends of Anchor and Grampian NHS-Endowments
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- German Centre for Cardiovascular Research
- European Research Council (ERC-AG IndivuHeart), the Deutsche Forschungsgemeinschaft
- European Union Horizon 2020 (REANIMA and TRAINHEART)
- German Ministry of Education and Research (BMBF)
- Centre for Cardiovascular Research (DZHK)
- European Union Horizon 2020
- DFG
- National Research, Development and Innovation Office of Hungary
- Research Excellence Program—TKP; National Heart Program
- Austrian Science Fund
- European Union Commission’s Seventh Framework programme
- CVON2016-Early HFPEF
- CVON She-PREDICTS
- CVON Arena-PRIME
- European Union’s Horizon 2020 research and innovation programme
- Deutsche Forschungsgemeinschaft
- Volkswagenstiftung
- French National Research Agency
- ERA-Net-CVD
- Fédération Française de Cardiologie, the Fondation pour la Recherche Médicale
- French PIA Project
- University Research Federation against heart failure
- Netherlands Heart Foundation
- Dekker Senior Clinical Scientist
- Health Holland TKI-LSH
- TUe/UMCU/UU Alliance Fund
- south African National Foundation
- Cancer Association of South Africa and Winetech
- Netherlands Heart Foundation/Applied & Engineering Sciences
- Dutch Technology Foundation
- Pie Medical Imaging
- Netherlands Organisation for Scientific Research
- Dr. Dekker Program
- Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation
- Dutch Federation of University Medical Centres
- Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS-II project
- Netherlands Organization for Scientific Research (NWO) (VICI grant); the European Research Council
- Incyte s.r.l. and from Ministero dell’Istruzione, Università e Ricerca Scientifica
- German Center for Cardiovascular Research (Junior Research Group & Translational Research Project), the European Research Council (ERC Starting Grant NORVAS),
- Swedish Heart-Lung-Foundation
- Swedish Research Council
- National Institutes of Health
- Bavarian State Ministry of Health and Care through the research project DigiMed Bayern
- ERC
- ERA-CVD
- Dutch Heart Foundation, ZonMw
- the NWO Gravitation project
- Ministero dell'Istruzione, Università e Ricerca Scientifica
- Regione Lombardia
- Netherlands Organisation for Health Research and Development
- ITN Network Personalize AF: Personalized Therapies for Atrial Fibrillation: a translational network
- MAESTRIA: Machine Learning Artificial Intelligence Early Detection Stroke Atrial Fibrillation
- REPAIR: Restoring cardiac mechanical function by polymeric artificial muscular tissue
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- European Union H2020 program to the project TECHNOBEAT
- EVICARE
- BRAV3
- ZonMw
- German Centre for Cardiovascular Research (DZHK)
- British Heart Foundation Centre for Cardiac Regeneration
- British Heart Foundation studentship
- NC3Rs
- Interreg ITA-AUS project InCARDIO
- Italian Association for Cancer Research
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science and Institute of Health Informatics, University College London, London, UK
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Luc Bertrand
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Connie R Bezzina
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Ilze Bot
- Heart Center, Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Steven Chamuleau
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, Fisciano (SA), Italy
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- University Center of Cardiovascular Sciences and Department of Cardiology, University Heart Center Hamburg, Germany and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Ines Falcão-Pires
- UnIC - Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Henrique Girao
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | | | - Mariann Gyongyosi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tomasz J Guzik
- Instutute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Nazha Hamdani
- Division Cardiology, Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andres Hilfiker
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Comprehensive Cancer Centre, Philipps-Universität Marburg, Germany
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Linda W van Laake
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27B, 48149 Muenster, Germany
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56124 Pisa, Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, TX, USA
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500AE Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Filippo Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, IRCCS, Milan, Italy
| | - Silvia Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Bodo Rosenhahn
- Institute for information Processing, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Steenbeek
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Patricia Vlasman
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Amsterdam UMC, Vrije Universiteit, Surgery, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dayenne Zwaagman
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
20
|
Rootwelt-Norberg C, Skjølsvik ET, Chivulescu M, Bogsrud MP, Ribe MP, Aabel EW, Beitnes JO, Brekke PH, Håland TF, Hasselberg NE, Lie ØH, Haugaa KH. Disease progression rate is a strong predictor of ventricular arrhythmias in patients with cardiac laminopathies: a primary prevention cohort study. Europace 2022; 25:634-642. [PMID: 36352512 PMCID: PMC9934994 DOI: 10.1093/europace/euac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
AIMS Cardiac disease progression prior to first ventricular arrhythmia (VA) in LMNA genotype-positive patients is not described. METHODS AND RESULTS We performed a primary prevention cohort study, including consecutive LMNA genotype-positive patients from our centre. Patients underwent repeated clinical, electrocardiographic, and echocardiographic examinations. Electrocardiographic and echocardiographic disease progression as a predictor of first-time VA was evaluated by generalized estimation equation analyses. Threshold values at transition to an arrhythmic phenotype were assessed by threshold regression analyses. We included 94 LMNA genotype-positive patients without previous VA (age 38 ± 15 years, 32% probands, 53% females). Nineteen (20%) patients experienced VA during 4.6 (interquartile range 2.1-7.3) years follow up, at mean age 50 ± 11 years. We analysed 536 echocardiographic and 261 electrocardiogram examinations. Individual patient disease progression was associated with VA [left ventricular ejection fraction (LVEF) odds ratio (OR) 1.4, 95% confidence interval (CI) 1.2-1.6 per 5% reduction, left ventricular end-diastolic volume index (LVEDVi) OR 1.2 (95% CI 1.1-1.3) per 5 mL/m2 increase, PR interval OR 1.2 (95% CI 1.1-1.4) per 10 ms increase]. Threshold values for transition to an arrhythmic phenotype were LVEF 44%, LVEDVi 77 mL/m2, and PR interval 280 ms. CONCLUSIONS Incidence of first-time VA was 20% during 4.6 years follow up in LMNA genotype-positive patients. Individual patient disease progression by ECG and echocardiography were strong predictors of VA, indicating that disease progression rate may have additional value to absolute measurements when considering primary preventive ICD. Threshold values of LVEF <44%, LVEDVi >77 mL/m2, and PR interval >280 ms indicated transition to a more arrhythmogenic phenotype.
Collapse
Affiliation(s)
- Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eystein T Skjølsvik
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monica Chivulescu
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Ullevål, Norway
| | - Margareth P Ribe
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eivind W Aabel
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan Otto Beitnes
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål H Brekke
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trine F Håland
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nina E Hasselberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind H Lie
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina H Haugaa
- Corresponding author. Tel: +47 92833646; fax: +47 23073530. E-mail address:
| |
Collapse
|
21
|
Tang WW, Naga Prasad SV. Autoantibodies and Cardiomyopathy: Focus on Beta-1 Adrenergic Receptor Autoantibodies. J Cardiovasc Pharmacol 2022; 80:354-363. [PMID: 35323150 PMCID: PMC9452444 DOI: 10.1097/fjc.0000000000001264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
ABSTRACT Antibody response to self-antigens leads to autoimmune response that plays a determinant role in cardiovascular disease outcomes including dilated cardiomyopathy (DCM). Although the origins of the self-reactive endogenous autoantibodies are not well-characterized, it is believed to be triggered by tissue injury or dysregulated humoral response. Autoantibodies that recognize G protein-coupled receptors are considered consequential because they act as modulators of downstream receptor signaling displaying a wide range of unique pharmacological properties. These wide range of pharmacological properties exhibited by autoantibodies has cellular consequences that is associated with progression of disease including DCM. Increase in autoantibodies recognizing beta-1 adrenergic receptor (β1AR), a G protein-coupled receptor critical for cardiac function, is observed in patients with DCM. Cellular and animal model studies have indicated pathological roles for the β1AR autoantibodies but less is understood about the molecular basis of their modulatory effects. Despite the recognition that β1AR autoantibodies could mediate deleterious outcomes, emerging evidence suggests that not all β1AR autoantibodies are deleterious. Recent clinical studies show that β1AR autoantibodies belonging to the IgG3 subclass is associated with beneficial cardiac outcomes in patients. This suggests that our understanding on the roles the β1AR autoantibodies play in mediating outcomes is not well-understood. Technological advances including structural determinants of antibody binding could provide insights on the modulatory capabilities of β1AR autoantibodies in turn, reflecting their diversity in mediating β1AR signaling response. In this study, we discuss the significance of the diversity in signaling and its implications in pathology.
Collapse
Affiliation(s)
- W.H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Sathyamangla V. Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
22
|
Ruchkin DV, Nartova AA, Zaitseva AI, Lutokhina YA, Blagova OV, Alijeva IN, Sarkisova ND, Nedostup AV. Prevalence of myocarditis, genetic cardiomyopathies and their combinations among patients of the Cardiology Hospital of the V.N. Vinogradov Faculty Therapeutic Clinic of the Sechenov University. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To establish the prevalence of myocarditis and primary (genetic) cardiomyopathies (CMP) among patients in a cardiology hospital.Material and methods. Medical records of 671 patients of the cardiology department were analyzed. The diagnosis at admission and at discharge was recorded. The diagnoses were divided into 7 following categories: hypertension, coronary artery disease, heart disease, idiopathic arrhythmias, cardiomyopathy, myocarditis and others. Types of myocarditis and cardiomyopathy, the presence of arrhythmias and heart failure were also recorded.Results. Myocarditis was diagnosed in 194 (28,9%) patients, cardiomyopathy — in 76 (11,3%) patients, combination of cardiomyopathy and myocarditis — in 26 (3,9%) patients. Myocarditis with the development of arrhythmia and heart dilatation prevailed as follows: 47,4 and 41,2%, respectively. The most numerous CMPs were left ventricular noncompaction (n=30), non-inflammatory dilated CMP (n=13), hypertrophic CMP (n=10) and arrhythmogenic CMP of the right ventricle (n=9). In the group with idiopathic arrhythmias, 64,3% of patients were diagnosed with myocarditis, and 19,4% — with cardiomyopathy.Conclusion. The prevalence of non-coronary myocardial diseases among patients in a cardiology hospital is high and amounts to 40,2%. The presence of arrhythmias, heart failure or dilated cardiomyopathy may be a manifestation of non-coronary myocardial diseases, and requires a comprehensive examination aimed, in particular, at ruling out or verifying the diagnosis of myocarditis.
Collapse
|
23
|
Kucher AN, Sleptcov AA, Nazarenko MS. Genetic Landscape of Dilated Cardiomyopathy. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JG, Coats AJ, Crespo-Leiro MG, Farmakis D, Gilard M, Heyman S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CS, Lyon AR, McMurray JJ, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GM, Ruschitzka F, Skibelund AK. Guía ESC 2021 sobre el diagnóstico y tratamiento de la insuficiencia cardiaca aguda y crónica. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2022; 24:4-131. [PMID: 35083827 DOI: 10.1002/ejhf.2333] [Citation(s) in RCA: 1044] [Impact Index Per Article: 348.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Document Reviewers: Rudolf A. de Boer (CPG Review Coordinator) (Netherlands), P. Christian Schulze (CPG Review Coordinator) (Germany), Magdy Abdelhamid (Egypt), Victor Aboyans (France), Stamatis Adamopoulos (Greece), Stefan D. Anker (Germany), Elena Arbelo (Spain), Riccardo Asteggiano (Italy), Johann Bauersachs (Germany), Antoni Bayes-Genis (Spain), Michael A. Borger (Germany), Werner Budts (Belgium), Maja Cikes (Croatia), Kevin Damman (Netherlands), Victoria Delgado (Netherlands), Paul Dendale (Belgium), Polychronis Dilaveris (Greece), Heinz Drexel (Austria), Justin Ezekowitz (Canada), Volkmar Falk (Germany), Laurent Fauchier (France), Gerasimos Filippatos (Greece), Alan Fraser (United Kingdom), Norbert Frey (Germany), Chris P. Gale (United Kingdom), Finn Gustafsson (Denmark), Julie Harris (United Kingdom), Bernard Iung (France), Stefan Janssens (Belgium), Mariell Jessup (United States of America), Aleksandra Konradi (Russia), Dipak Kotecha (United Kingdom), Ekaterini Lambrinou (Cyprus), Patrizio Lancellotti (Belgium), Ulf Landmesser (Germany), Christophe Leclercq (France), Basil S. Lewis (Israel), Francisco Leyva (United Kingdom), AleVs Linhart (Czech Republic), Maja-Lisa Løchen (Norway), Lars H. Lund (Sweden), Donna Mancini (United States of America), Josep Masip (Spain), Davor Milicic (Croatia), Christian Mueller (Switzerland), Holger Nef (Germany), Jens-Cosedis Nielsen (Denmark), Lis Neubeck (United Kingdom), Michel Noutsias (Germany), Steffen E. Petersen (United Kingdom), Anna Sonia Petronio (Italy), Piotr Ponikowski (Poland), Eva Prescott (Denmark), Amina Rakisheva (Kazakhstan), Dimitrios J. Richter (Greece), Evgeny Schlyakhto (Russia), Petar Seferovic (Serbia), Michele Senni (Italy), Marta Sitges (Spain), Miguel Sousa-Uva (Portugal), Carlo G. Tocchetti (Italy), Rhian M. Touyz (United Kingdom), Carsten Tschoepe (Germany), Johannes Waltenberger (Germany/Switzerland) All experts involved in the development of these guidelines have submitted declarations of interest. These have been compiled in a report and published in a supplementary document simultaneously to the guidelines. The report is also available on the ESC website www.escardio.org/guidelines For the Supplementary Data which include background information and detailed discussion of the data that have provided the basis for the guidelines see European Heart Journal online.
Collapse
|
26
|
New therapies to treat inherited cardiomyopathies are on the way. Neth Heart J 2022; 30:63-64. [PMID: 35060106 PMCID: PMC8799817 DOI: 10.1007/s12471-021-01657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
|
27
|
de Boer RA, Heymans S, Backs J, Carrier L, Coats AJS, Dimmeler S, Eschenhagen T, Filippatos G, Gepstein L, Hulot JS, Knöll R, Kupatt C, Linke WA, Seidman CE, Tocchetti CG, van der Velden J, Walsh R, Seferovic PM, Thum T. Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: From molecular mechanisms to therapeutic targets. Eur J Heart Fail 2021; 24:406-420. [PMID: 34969177 PMCID: PMC9305112 DOI: 10.1002/ejhf.2414] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022] Open
Abstract
Genetic cardiomyopathies are disorders of the cardiac muscle, most often explained by pathogenic mutations in genes encoding sarcomere, cytoskeleton, or ion channel proteins. Clinical phenotypes such as heart failure and arrhythmia are classically treated with generic drugs, but aetiology‐specific and targeted treatments are lacking. As a result, cardiomyopathies still present a major burden to society, and affect many young and older patients. The Translational Committee of the Heart Failure Association (HFA) and the Working Group of Myocardial Function of the European Society of Cardiology (ESC) organized a workshop to discuss recent advances in molecular and physiological studies of various forms of cardiomyopathies. The study of cardiomyopathies has intensified after several new study setups became available, such as induced pluripotent stem cells, three‐dimensional printing of cells, use of scaffolds and engineered heart tissue, with convincing human validation studies. Furthermore, our knowledge on the consequences of mutated proteins has deepened, with relevance for cellular homeostasis, protein quality control and toxicity, often specific to particular cardiomyopathies, with precise effects explaining the aberrations. This has opened up new avenues to treat cardiomyopathies, using contemporary techniques from the molecular toolbox, such as gene editing and repair using CRISPR‐Cas9 techniques, antisense therapies, novel designer drugs, and RNA therapies. In this article, we discuss the connection between biology and diverse clinical presentation, as well as promising new medications and therapeutic avenues, which may be instrumental to come to precision medicine of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Center (MUMC+), PO Box 5800, 6202, AZ, Maastricht, the Netherlands.,Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | | | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Lior Gepstein
- Department of Cardiology, Rambam Health Care Campus, Haaliya Street, 31096, Haifa, Israel
| | - Jean-Sebastien Hulot
- Université de Paris, INSERM, PARCC, F-75006, Paris, France.,CIC1418 and DMU CARTE, AP- HP, Hôpital Européen Georges-Pompidou, F-75015, Paris, France
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm, SE-171 77, Sweden.,Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Kupatt
- Department of Cardiology, University Clinic rechts der Isar, Technical University of Munich, Germany and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Muenster, Robert-Koch-Str. 27B, 48149, Muenster, Germany
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard University, Boston, MA, USA
| | - C Gabriele Tocchetti
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI); Interdepartmental Center for Clinical and Translational Research (CIRCET); Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Heart Center, Amsterdam, The Netherlands
| | - Petar M Seferovic
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
28
|
Titin-Related Dilated Cardiomyopathy: The Clinical Trajectory and the Role of Circulating Biomarkers in the Clinical Assessment. Diagnostics (Basel) 2021; 12:diagnostics12010013. [PMID: 35054181 PMCID: PMC8775078 DOI: 10.3390/diagnostics12010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022] Open
Abstract
Titin truncating variants (TTNtv) are known as the leading cause of inherited dilated cardiomyopathy (DCM). Nevertheless, it is unclear whether circulating cardiac biomarkers are helpful in detection and risk assessment. We sought to assess 1) early indicators of cardiotitinopathy including the serum biomarkers high-sensitivity cardiac troponin T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) in clinically stable patients, and 2) predictors of outcome among TTNtv carriers. Our single-center cohort consisted of 108 TTNtv carriers (including 70 DCM patients) from 43 families. Clinical, laboratory and follow-up data were analyzed. The earliest abnormality was left ventricular dysfunction, present in 8, 26 and 47% of patients in the second, third and fourth decade of life, respectively. It was followed by symptoms of heart failure, linked to NT-proBNP elevation and severe left ventricular systolic dysfunction, and later by arrhythmias. Hs-cTnT serum levels were increased in the late stage of the disease only. During the median follow-up of 5.2 years, both malignant ventricular arrhythmia (MVA) and end-stage heart failure (esHF) occurred in 12% of TTNtv carriers. In multivariable analysis, NT-proBNP level ≥650 pg/mL was the best predictor of both composite endpoints (MVA and esHF) and of MVA alone. In conclusion, echocardiographic abnormalities are the first detectable anomalies in the course of cardiotitinopathies. The assessment of circulating cardiac biomarkers is not useful in the detection of the disease onset but may be helpful in risk assessment.
Collapse
|
29
|
Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, Lugenbiel P, Thomas D. Electrical Ventricular Remodeling in Dilated Cardiomyopathy. Cells 2021; 10:2767. [PMID: 34685747 PMCID: PMC8534398 DOI: 10.3390/cells10102767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmias contribute significantly to morbidity and mortality in patients with heart failure (HF). Pathomechanisms underlying arrhythmogenicity in patients with structural heart disease and impaired cardiac function include myocardial fibrosis and the remodeling of ion channels, affecting electrophysiologic properties of ventricular cardiomyocytes. The dysregulation of ion channel expression has been associated with cardiomyopathy and with the development of arrhythmias. However, the underlying molecular signaling pathways are increasingly recognized. This review summarizes clinical and cellular electrophysiologic characteristics observed in dilated cardiomyopathy (DCM) with ionic and structural alterations at the ventricular level. Furthermore, potential translational strategies and therapeutic options are highlighted.
Collapse
Affiliation(s)
- Christine Mages
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Heike Gampp
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Pascal Syren
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Florian André
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
31
|
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
32
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
33
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
34
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42:3599-3726. [PMID: 34447992 DOI: 10.1093/eurheartj/ehab368] [Citation(s) in RCA: 6032] [Impact Index Per Article: 1508.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
35
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
36
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
37
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
38
|
Li X, Pan F, He B, Fang C. Inhibition of ADAM10 ameliorates doxorubicin-induced cardiac remodeling by suppressing N-cadherin cleavage. Open Life Sci 2021; 16:856-866. [PMID: 34522779 PMCID: PMC8402944 DOI: 10.1515/biol-2021-0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022] Open
Abstract
The present research was designed to examine the effects of disintegrin metalloproteinases 10 (ADAM10) on the doxorubicin (DOX)-induced dilated cardiomyopathy (DCM) and the mechanisms involved, with a focus on ADAM10-dependent cleavage of N-cadherin. The present study constructed recombinant lentiviral vectors expressing short hairpin RNA (shRNA) targeting the ADAM10 gene. H9C2 cells were treated with the recombinant lentivirus or GI254023 (an ADAM10 inhibitor). The expression level of N-cadherin and its C-terminal fragment1 (CTF1) was tested by western blotting and flow cytometry. The adhesion ability was analyzed using a plate adhesion model. Cardiac function and morphology were assessed in control and lentivirus-transfected rats with or without DOX treatment. The inhibition of ADAM10 activity significantly increased the expression of full-length N-cadherin on the cellular surface and reduced CTF1 generation in vivo and in vitro. The adhesion ability was also increased in ADAM10-knockdown H9C2 cells. Furthermore, DOX-induced myocardial dysfunction was ameliorated in rats transfected with ADAM10-shRNA lentivirus. These findings demonstrated that ADAM10 specifically cleaves N-cadherin in cardiomyocytes. ADAM10-induced N-cadherin cleavage results in changes in the adhesive behavior of cells. Therefore, ADAM10 may serve as a therapeutic target to reverse cardiac remodeling in DCM.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Neonatology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Feng Pan
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Bing He
- Department of Pediatrics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Chengzhi Fang
- Department of Neonatology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
39
|
Manca P, Nuzzi V, Cannatà A, Merlo M, Sinagra G. Contemporary etiology and prognosis of dilated non-ischemic cardiomyopathy. Minerva Cardiol Angiol 2021; 70:171-188. [PMID: 34338487 DOI: 10.23736/s2724-5683.21.05736-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Non-ischemic dilated cardiomyopathy (NI-DCM) represents a specific etiology of systolic heart failure that usually affect young individuals with a genetic background in up to 40% of cases. Behind the term NI-DCM there is a spectrum of different diseases, and an accurate etiological classification appears pivotal for the clinical management and prognostic stratification of these patients. EVIDENCE ACQUISITION In the last years the prognosis of NI-DCM patients dramatically improved thanks to the progresses in medical treatment/ device therapy and earlier diagnosis especially in familial context. In this review we summarize the actual state of art in the management of these patients. EVIDENCE SYNTHESIS In the era of precision medicine, a lot of progresses have been made to expand our knowledge on the management of NI-DCM patients. A complex interaction between genotype and external triggers is the main determinant of the clinical phenotype in NI-DCM, and a lot of efforts must be done by clinicians to systematically rule out all the possible causes involved in the pathogenesis. Progresses in cardiac imaging and familial screening led us to detect subtle abnormalities in the initial phase of the disease and also helped us to furtherly stratify the prognosis and arrhythmic risk of these patients. It is plausible that a more precise etiological classification will be needed in the near future. CONCLUSIONS NI-DCM contains a spectrum of different diseases. Proper etiological classification, early diagnosis and strict follow-up are essential to tailor care of these patients.
Collapse
Affiliation(s)
- Paolo Manca
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Vincenzo Nuzzi
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Antonio Cannatà
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy.,Department of Cardiovascular Science, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Marco Merlo
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy -
| | - Gianfranco Sinagra
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| |
Collapse
|
40
|
Kim KH, Pereira NL. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ J 2021; 51:797-836. [PMID: 34327881 PMCID: PMC8484993 DOI: 10.4070/kcj.2021.0154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic cardiomyopathies are an important cause of sudden cardiac death across all age groups. Genetic testing in heart failure clinics is useful for family screening and providing individual prognostic insight. Obtaining a family history of at least three generations, including the creation of a pedigree, is recommended for all patients with primary cardiomyopathy. Additionally, when appropriate, consultation with a genetic counsellor can aid in the success of a genetic evaluation. Clinical screening should be performed on all first-degree relatives of patients with genetic cardiomyopathy. Genetics has played an important role in the understanding of different cardiomyopathies, and the field of heart failure (HF) genetics is progressing rapidly. Much research has also focused on distinguishing markers of risk in patients with cardiomyopathy using genetic testing. While these efforts currently remain incomplete, new genomic technologies and analytical strategies provide promising opportunities to further explore the genetic architecture of cardiomyopathies, afford insight into the early manifestations of cardiomyopathy, and help define the molecular pathophysiological basis for cardiac remodeling. Cardiovascular physicians should be fully aware of the utility and potential pitfalls of incorporating genetic test results into pre-emptive treatment strategies for patients in the preliminary stages of HF. Future work will need to be directed towards elucidating the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship. This future research should aim to further our ability to identify, diagnose, and treat disorders that cause HF and sudden cardiac death in young patients, as well as prioritize improving our ability to stratify the risk for these patients prior to the onset of the more severe consequences of their disease.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Division of Cardiology, Incheon Sejong General Hospital, Incheon, Korea.
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
Giri P, Mukhopadhyay A, Gupta M, Mohapatra B. Dilated cardiomyopathy: a new insight into the rare but common cause of heart failure. Heart Fail Rev 2021; 27:431-454. [PMID: 34245424 DOI: 10.1007/s10741-021-10125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
Heart failure is a global health burden responsible for high morbidity and mortality with a prevalence of greater than 60 million individuals worldwide. One of the major causes of heart failure is dilated cardiomyopathy (DCM), characterized by associated systolic dysfunction. During the last few decades, there have been remarkable advances in our understanding about the genetics of dilated cardiomyopathy. The genetic causes were initially thought to be associated with mutations in genes encoding proteins that are localized to cytoskeleton and sarcomere only; however, with the advancement in mechanistic understanding, the roles of ion channels, Z-disc, mitochondria, nuclear proteins, cardiac transcription factors (e.g., NKX-2.5, TBX20, GATA4), and the factors involved in calcium homeostasis have also been identified and found to be implicated in both familial and sporadic DCM cases. During past few years, next-generation sequencing (NGS) has been established as a diagnostic tool for genetic analysis and it has added significantly to the existing candidate gene list for DCM. The animal models have also provided novel insights to develop a better treatment strategy based on phenotype-genotype correlation, epigenetic and phenomic profiling. Most of the DCM biomarkers that are used in routine genetic and clinical testing are structural proteins, but during the last few years, the role of mi-RNA has also emerged as a biomarker due to their accessibility through noninvasive methods. Our increasing genetic knowledge can improve the clinical management of DCM by bringing clinicians and geneticists on one platform, thereby influencing the individualized clinical decision making and leading to precision medicine.
Collapse
Affiliation(s)
- Prerna Giri
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Amrita Mukhopadhyay
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Mohini Gupta
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India.
| |
Collapse
|
42
|
Passaro F, Tocchetti CG, Spinetti G, Paudice F, Ambrosone L, Costagliola C, Cacciatore F, Abete P, Testa G. Targeting fibrosis in the failing heart with nanoparticles. Adv Drug Deliv Rev 2021; 174:461-481. [PMID: 33984409 DOI: 10.1016/j.addr.2021.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a clinical syndrome characterized by typical symptoms and signs caused by a structural and/or functional cardiac abnormality, resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress. Due to increasing incidence, prevalence and, most importantly mortality, HF is a healthcare burden worldwide, despite the improvement of treatment options and effectiveness. Acute and chronic cardiac injuries trigger the activation of neurohormonal, inflammatory, and mechanical pathways ultimately leading to fibrosis, which plays a key role in the development of cardiac dysfunction and HF. The use of nanoparticles for targeted drug delivery would greatly improve therapeutic options to identify, prevent and treat cardiac fibrosis. In this review we will highlight the mechanisms of cardiac fibrosis development to depict the pathophysiological features for passive and active targeting of acute and chronic cardiac fibrosis with nanoparticles. Then we will discuss how cardiomyocytes, immune and inflammatory cells, fibroblasts and extracellular matrix can be targeted with nanoparticles to prevent or restore cardiac dysfunction and to improve the molecular imaging of cardiac fibrosis.
Collapse
|
43
|
CMR-Based Risk Stratification of Sudden Cardiac Death and Use of Implantable Cardioverter-Defibrillator in Non-Ischemic Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22137115. [PMID: 34281168 PMCID: PMC8268120 DOI: 10.3390/ijms22137115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
Non-ischemic cardiomyopathy (NICM) is one of the most important entities for arrhythmias and sudden cardiac death (SCD). Previous studies suggest a lower benefit of implantable cardioverter–defibrillator (ICD) therapy in patients with NICM as compared to ischemic cardiomyopathy (ICM). Nevertheless, current guidelines do not differentiate between the two subgroups in recommending ICD implantation. Hence, risk stratification is required to determine the subgroup of patients with NICM who will likely benefit from ICD therapy. Various predictors have been proposed, among others genetic mutations, left-ventricular ejection fraction (LVEF), left-ventricular end-diastolic volume (LVEDD), and T-wave alternans (TWA). In addition to these parameters, cardiovascular magnetic resonance imaging (CMR) has the potential to further improve risk stratification. CMR allows the comprehensive analysis of cardiac function and myocardial tissue composition. A range of CMR parameters have been associated with SCD. Applicable examples include late gadolinium enhancement (LGE), T1 relaxation times, and myocardial strain. This review evaluates the epidemiological aspects of SCD in NICM, the role of CMR for risk stratification, and resulting indications for ICD implantation.
Collapse
|
44
|
Tayal U, Ware JS, Lakdawala NK, Heymans S, Prasad SK. Understanding the genetics of adult-onset dilated cardiomyopathy: what a clinician needs to know. Eur Heart J 2021; 42:2384-2396. [PMID: 34153989 DOI: 10.1093/eurheartj/ehab286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
There is increasing understanding of the genetic basis to dilated cardiomyopathy and in this review, we offer a practical primer for the practising clinician. We aim to help all clinicians involved in the care of patients with dilated cardiomyopathy to understand the clinical relevance of the genetic basis of dilated cardiomyopathy, introduce key genetic concepts, explain which patients and families may benefit from genetic testing, which genetic tests are commonly performed, how to interpret genetic results, and the clinical applications of results. We conclude by reviewing areas for future research in this dynamic field.
Collapse
Affiliation(s)
- Upasana Tayal
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK
| | - James S Ware
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK.,MRC London Institute of Medical Sciences, London, UK
| | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, KU, Belgium.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| | - Sanjay K Prasad
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK
| |
Collapse
|
45
|
Augusto JB, Eiros R, Nakou E, Moura-Ferreira S, Treibel TA, Captur G, Akhtar MM, Protonotarios A, Gossios TD, Savvatis K, Syrris P, Mohiddin S, Moon JC, Elliott PM, Lopes LR. Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: a comprehensive genotype-imaging phenotype study. Eur Heart J Cardiovasc Imaging 2021; 21:326-336. [PMID: 31317183 DOI: 10.1093/ehjci/jez188] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS Myocardial scar detected by cardiovascular magnetic resonance has been associated with sudden cardiac death in dilated cardiomyopathy (DCM). Certain genetic causes of DCM may cause a malignant arrhythmogenic phenotype. The concepts of arrhythmogenic left ventricular (LV) cardiomyopathy (ALVC) and arrhythmogenic DCM are currently ill-defined. We hypothesized that a distinctive imaging phenotype defines ALVC. METHODS AND RESULTS Eighty-nine patients with DCM-associated mutations [desmoplakin (DSP) n = 25, filamin C (FLNC) n = 7, titin n = 30, lamin A/C n = 12, bcl2-associated athanogene 3 n = 3, RNA binding motif protein 20 n = 3, cardiac sodium channel NAv1.5 n = 2, and sarcomeric genes n = 7] were comprehensively phenotyped. Clustering analysis resulted in two groups: 'DSP/FLNC genotypes' and 'non-DSP/FLNC'. There were no significant differences in age, sex, symptoms, baseline electrocardiography, arrhythmia burden, or ventricular volumes between the two groups. Subepicardial LV late gadolinium enhancement with ring-like pattern (at least three contiguous segments in the same short-axis slice) was observed in 78.1% of DSP/FLNC genotypes but was absent in the other DCM genotypes (P < 0.001). Left ventricular ejection fraction (LVEF) and global longitudinal strain were lower in other DCM genotypes (P = 0.053 and P = 0.015, respectively), but LV regional wall motion abnormalities were more common in DSP/FLNC genotypes (P < 0.001). DSP/FLNC patients with non-sustained ventricular tachycardia (NSVT) had more LV scar (P = 0.010), whereas other DCM genotypes patients with NSVT had lower LVEF (P = 0.001) than patients without NSVT. CONCLUSION DSP/FLNC genotypes cause more regionality in LV impairment. The most defining characteristic is a subepicardial ring-like scar pattern in DSP/FLNC, which should be considered in future diagnostic criteria for ALVC.
Collapse
Affiliation(s)
- João B Augusto
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Rocio Eiros
- Cardiovascular Imaging Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Eleni Nakou
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Sara Moura-Ferreira
- Cardiology Department, Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | - Thomas A Treibel
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Gabriella Captur
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK.,NIHR University College London Hospitals, Biomedical Research Center, Tottenham Court Road, London, UK
| | - Mohammed M Akhtar
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | | | | | - Konstantinos Savvatis
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Saidi Mohiddin
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK.,NIHR University College London Hospitals, Biomedical Research Center, Tottenham Court Road, London, UK
| | - Perry M Elliott
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Luis R Lopes
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
46
|
Landmesser U, Poller W, Tsimikas S, Most P, Paneni F, Lüscher TF. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur Heart J 2021; 41:3884-3899. [PMID: 32350510 DOI: 10.1093/eurheartj/ehaa229] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/17/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid-based therapeutics are currently developed at large scale for prevention and management of cardiovascular diseases (CVDs), since: (i) genetic studies have highlighted novel therapeutic targets suggested to be causal for CVD; (ii) there is a substantial recent progress in delivery, efficacy, and safety of nucleic acid-based therapies; (iii) they enable effective modulation of therapeutic targets that cannot be sufficiently or optimally addressed using traditional small molecule drugs or antibodies. Nucleic acid-based therapeutics include (i) RNA-targeted therapeutics for gene silencing; (ii) microRNA-modulating and epigenetic therapies; (iii) gene therapies; and (iv) genome-editing approaches (e.g. CRISPR-Cas-based): (i) RNA-targeted therapeutics: several large-scale clinical development programmes, using antisense oligonucleotides (ASO) or short interfering RNA (siRNA) therapeutics for prevention and management of CVD have been initiated. These include ASO and/or siRNA molecules to lower apolipoprotein (a) [apo(a)], proprotein convertase subtilisin/kexin type 9 (PCSK9), apoCIII, ANGPTL3, or transthyretin (TTR) for prevention and treatment of patients with atherosclerotic CVD or TTR amyloidosis. (ii) MicroRNA-modulating and epigenetic therapies: novel potential therapeutic targets are continually arising from human non-coding genome and epigenetic research. First microRNA-based therapeutics or therapies targeting epigenetic regulatory pathways are in clinical studies. (iii) Gene therapies: EMA/FDA have approved gene therapies for non-cardiac monogenic diseases and LDL receptor gene therapy is currently being examined in patients with homozygous hypercholesterolaemia. In experimental studies, gene therapy has significantly improved cardiac function in heart failure animal models. (iv) Genome editing approaches: these technologies, such as using CRISPR-Cas, have proven powerful in stem cells, however, important challenges are remaining, e.g. low rates of homology-directed repair in somatic cells such as cardiomyocytes. In summary, RNA-targeted therapies (e.g. apo(a)-ASO and PCSK9-siRNA) are now in large-scale clinical outcome trials and will most likely become a novel effective and safe therapeutic option for CVD in the near future. MicroRNA-modulating, epigenetic, and gene therapies are tested in early clinical studies for CVD. CRISPR-Cas-mediated genome editing is highly effective in stem cells, but major challenges are remaining in somatic cells, however, this field is rapidly advancing.
Collapse
Affiliation(s)
- Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, 9500 Gilman Drive, BSB 1080, La Jolla, CA 92093-0682, USA
| | - Patrick Most
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Center for Translational Medicine, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA.,Molecular and Translational Cardiology, Department of Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, MOU2, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Research, Education and Development, Royal Brompton and Harefield Hospital Trust and Imperial College London, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
47
|
Abstract
Purpose of Review The purpose of this review is to summarize the application of cardiac magnetic resonance (CMR) in the diagnostic and prognostic evaluation of patients with heart failure (HF). Recent Findings CMR is an important non-invasive imaging modality in the assessment of ventricular volumes and function and in the analysis of myocardial tissue characteristics. The information derived from CMR provides a comprehensive evaluation of HF. Its unique ability of tissue characterization not only helps to reveal the underlying etiologies of HF but also offers incremental prognostic information. Summary CMR is a useful non-invasive tool for the diagnosis and assessment of prognosis in patients suffering from heart failure.
Collapse
Affiliation(s)
- Chuanfen Liu
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
| | - Victor A. Ferrari
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| | - Yuchi Han
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
48
|
Bertero E, Dudek J, Cochain C, Delgobo M, Ramos G, Gerull B, Higuchi T, Vaeth M, Zernecke A, Frantz S, Hofmann U, Maack C. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res 2021; 118:37-52. [PMID: 33537710 DOI: 10.1093/cvr/cvab036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between the cardiovascular system, metabolism, and inflammation plays a central role in the pathophysiology of a wide spectrum of cardiovascular diseases, including heart failure. Here, we provide an overview of the fundamental aspects of the interrelation between inflammation and metabolism, ranging from the role of metabolism in immune cell function to the processes how inflammation modulates systemic and cardiac metabolism. Furthermore, we discuss how disruption of this immuno-metabolic interface is involved in the development and progression of cardiovascular disease, with a special focus on heart failure. Finally, we present new technologies and therapeutic approaches that have recently emerged and hold promise for the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Murilo Delgobo
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Gustavo Ramos
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I, University Hospital Würzburg, Germany.,Department of Cardiovascular Genetics, CHFC, University Hospital Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| |
Collapse
|
49
|
Yogasundaram H, Alhumaid W, Dzwiniel T, Christian S, Oudit GY. Cardiomyopathies and Genetic Testing in Heart Failure: Role in Defining Phenotype-Targeted Approaches and Management. Can J Cardiol 2021; 37:547-559. [PMID: 33493662 DOI: 10.1016/j.cjca.2021.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiomyopathies represent an important cause of heart failure, often affecting young individuals, and have important implications for relatives. Genetic testing for cardiomyopathies is an established care pathway in contemporary cardiology practice. The primary cardiomyopathies where genetic testing is indicated are hypertrophic, dilated, arrhythmogenic, and restrictive cardiomyopathies, with left ventricular noncompaction as a variant phenotype. Early identification and initiation of therapies in patients with inherited cardiomyopathies allow for targeting asymptomatic and presymptomatic patients in stages A and B of the American College of Cardiology/American Heart Association classification of heart failure. The current approach for genetic testing uses gene panel-based testing with the ability to extend to whole-exome and whole-genome sequencing in rare instances. The central components of genetic testing include defining the genetic basis of the diagnosis, providing prognostic information, and the ability to screen and risk-stratify relatives. Genetic testing for cardiomyopathies should be coordinated by a multidisciplinary team including adult and pediatric cardiologists, genetic counsellors, and geneticists, with access to expertise in cardiac imaging and electrophysiology. A pragmatic approach for addressing genetic variants of uncertain significance is important. In this review, we highlight the indications for genetic testing in the various cardiomyopathies, the value of early diagnosis and treatment, family screening, and the care process involved in genetic counselling and testing.
Collapse
Affiliation(s)
- Haran Yogasundaram
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Waleed Alhumaid
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tara Dzwiniel
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Christian
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
50
|
Abstract
Paediatric cardiomyopathies are a heterogenous group of rare disorders, characterised by mechanical and electrical abnormalities of the heart muscle. The overall annual incidence of childhood cardiomyopathies is estimated at about 1 per 100,000 children and is significantly higher during the first 2 years of life. Dilated cardiomyopathies account for approximately half of the cases. Hypertrophic cardiomyopathies form the second largest group, followed by the less common left ventricular non-compaction and restrictive phenotypes. Infectious, metabolic, genetic, and syndromic conditions account for the majority of cases. Congestive heart failure is the typical manifestation in children with dilated cardiomyopathy, whereas presenting symptoms are more variable in other phenotypes. The natural history is largely influenced by the type of cardiomyopathy and its underlying aetiology. Results from a national population-based study revealed 10-year transplant-free survival rates of 80, 62, and 48% for hypertrophic, dilated and left ventricular non-compaction cardiomyopathies, respectively. Long-term survival rates of children with a restrictive phenotype have largely been obscured by early listing for heart transplantation. In general, the majority of adverse events, including death and heart transplantation, occur during the first 2 years after the initial presentation. This review provides an overview of childhood cardiomyopathies with a focus on epidemiology, natural history, and outcomes.
Collapse
Affiliation(s)
- Anika Rath
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Robert Weintraub
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia.,Heart Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, Melbourne University, Melbourne, VIC, Australia
| |
Collapse
|