1
|
Xie B, Tian LW, Liu C, Li J, Tian X, Zhang R, Zhang F, Liu Z, Cheng Y. Disruption of the eEF1A1/ARID3A/PKC-δ Complex by Neferine Inhibits Macrophage Glycolytic Reprogramming in Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416158. [PMID: 39973763 DOI: 10.1002/advs.202416158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Indexed: 02/21/2025]
Abstract
Glycolytic reprogramming of macrophages is a decisive factor in atherosclerosis (AS) plaque formation. Eukaryotic elongation factor 1A1 (eEF1A1) plays an important role in protein synthesis, ubiquitination degradation, and nuclear translocation. However, the potential function of eEF1A1 in AS has not yet been fully understood. Here, the natural small molecule neferine (Nef), which targets eEF1A1 to suppress macrophage glycolytic reprogramming is discovered. In this work, chemical genetics and non-modified target confirmation assays are used to confirm that eEF1A1 is a direct target of Nef. Mechanically, Nef disrupted the formation of the eEF1A1/ARID3A/PKC-δ complex, inhibits phosphorylation of ARID3A at Thr491, and consequently prevents its nuclear translocation. Meanwhile, it is verified that ARID3A is a transcriptional regulator of enolase 2 (ENO2), an important enzyme in the glycolytic process. Nef suppresses ENO2 transcription activation by affecting ARID3A binding to the promoter region of ENO2, which results in macrophage glycolytic reprogramming inhibition and transformation of macrophages from M1 to M2. Collectively, these findings provide an attractive future direction for AS therapy by inhibiting ARID3A/ENO2-mediated macrophage glycolytic reprogramming by targeting eEF1A1.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Li-Wen Tian
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chenxu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoyu Tian
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Fan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
2
|
Olkowicz M, Karas A, Berkowicz P, Kaczara P, Jasztal A, Kurylowicz Z, Fedak F, Rosales-Solano H, Roy KS, Kij A, Buczek E, Pawliszyn J, Chlopicki S. Upregulation of ALOX12-12-HETE pathway impairs AMPK-dependent modulation of vascular metabolism in ApoE/LDLR -/- mice. Pharmacol Res 2024; 210:107478. [PMID: 39448044 DOI: 10.1016/j.phrs.2024.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Mitochondrial dysfunction and 12-lipoxygenase (ALOX12)-derived 12(S)-HETE production have been associated with vascular inflammation and the pathogenesis of atherosclerosis. However, the role of ALOX12 in regulating vascular energy metabolism in vascular inflammation has not been studied to date. Using mitochondrial and glycolysis functional profiling with the Seahorse extracellular flux analyzer, metabolipidomics, and proteomic analysis (LC-MS/MS), we characterized alterations in vascular energy metabolism in 2- and 6-month-old ApoE/LDLR-/- vs. control C57BL/6 mice. We identified that aorta of 6-month-old ApoE/LDLR-/- mice displayed compromised mitochondrial metabolism manifested by the reduced expression of mitochondrial enzymes, impaired mitochondrial respiration, and consequently diminished respiratory reserve capacity. An increased flux through the glycolysis/lactate shuttle, the hexosamine biosynthetic pathway (HBP), and the pentose phosphate pathway (PPP) was also recognized. Interestingly, ALOX12-12-HETE was the most upregulated axis in eicosanoid metabolism and histological examinations indicated that ApoE/LDLR-/- mice showed increased aortic expression of ALOX12, particularly in early atherosclerotic plaque areas. Remarkably, the joint blocking of ALOX12 and activation of AMPK, but not AMPK activation alone, resulted in the reprogramming of vascular metabolism, with improved mitochondrial respiration and suppressed auxiliary pathways (HBP, PPP, itaconate shunt). In conclusion, excessive activation of the ALOX12-12-HETE pathway in vascular inflammation in early atherosclerosis inhibits AMPK-dependent regulation of vascular metabolism. Consequently, ALOX12 may represent a novel target to boost impaired vascular mitochondrial function in pro-atherosclerotic vascular inflammation.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland.
| | - Agnieszka Karas
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Piotr Berkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Filip Fedak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Hernando Rosales-Solano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Kanchan Sinha Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, Krakow 31-531, Poland
| |
Collapse
|
3
|
Certo M, Rahimzadeh M, Mauro C. Immunometabolism in atherosclerosis: a new understanding of an old disease. Trends Biochem Sci 2024; 49:791-803. [PMID: 38937222 DOI: 10.1016/j.tibs.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Atherosclerosis, a chronic inflammatory condition, remains a leading cause of death globally, necessitating innovative approaches to target pro-atherogenic pathways. Recent advancements in the field of immunometabolism have highlighted the crucial interplay between metabolic pathways and immune cell function in atherogenic milieus. Macrophages and T cells undergo dynamic metabolic reprogramming to meet the demands of activation and differentiation, influencing plaque progression. Furthermore, metabolic intermediates intricately regulate immune cell responses and atherosclerosis development. Understanding the metabolic control of immune responses in atherosclerosis, known as athero-immunometabolism, offers new avenues for preventive and therapeutic interventions. This review elucidates the emerging intricate interplay between metabolism and immunity in atherosclerosis, underscoring the significance of metabolic enzymes and metabolites as key regulators of disease pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Mahsa Rahimzadeh
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
5
|
Haddad J, Demirdelen S, Barnes CE, Leers SA, Tavakoli S. In Situ Mapping of the Glucose Metabolism Heterogeneity in Atherosclerosis: Correlation With 2-Deoxyglucose Uptake. Mol Imaging 2024; 23:15353508241280573. [PMID: 39568960 PMCID: PMC11577107 DOI: 10.1177/15353508241280573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 11/22/2024] Open
Abstract
Objective 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is widely used for noninvasive imaging of atherosclerosis. However, knowledge about metabolic processes underlying [18F]FDG uptake is mostly derived from in vitro cell culture studies, which cannot recapitulate the complexities of the plaque microenvironment. Here, we sought to address this gap by in situ mapping of the activity of selected major dehydrogenases involved in glucose metabolism in atherosclerotic plaques. Methods In situ activity of lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G6PD), succinate dehydrogenase (SDH), and isocitrate dehydrogenase (IDH) was assessed in plaques from murine aortic root and brachiocephalic arteries and human carotid arteries. High-resolution 2-deoxy-D-[1,2-3H]glucose ([3H]2-deoxyglucose) autoradiography of murine brachiocephalic plaques was performed. Results LDH activity was heterogeneous throughout the plaques with the highest activity in medial smooth muscle cells (SMCs). G6PD activity was mostly confined to the medial layer and to a lesser extent to SMCs along the fibrous cap. SDH and IDH activities were minimal in plaques. Plaque regions with increased [3H]2-deoxyglucose uptake were associated with a modestly higher LDH, but not G6PD, activity. Conclusions Our study reveals a novel aspect of the metabolic heterogeneity of the atherosclerotic plaques, enhancing our understanding of the complex immunometabolic biology that underlies [18F]FDG uptake in atherosclerosis.
Collapse
Affiliation(s)
- Joseph Haddad
- Departments of Radiology, Division of Cardiothoracic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Selim Demirdelen
- Departments of Radiology, Division of Cardiothoracic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clayton E Barnes
- Departments of Radiology, Division of Cardiothoracic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven A Leers
- Departments of Surgery, Division of Vascular Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Departments of Radiology, Division of Cardiothoracic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Departments of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, Blood, and Vascular Medicine Institute, UPMC Department of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Zhu M, Jin T, Wu D, Zhang S, Wang A. Transcriptomics Analysis Revealed Key Genes Associated with Macrophage Autophagolysosome in Male ApoE -/- Mice Aortic Atherosclerosis. J Inflamm Res 2023; 16:5125-5144. [PMID: 37965353 PMCID: PMC10642550 DOI: 10.2147/jir.s426155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023] Open
Abstract
Purpose Atherosclerosis (AS) is the most common cause of cardiovascular and cerebrovascular diseases. However, the mechanisms underlying atherosclerotic plaque progression remain unclear. This study aimed to investigate the genes associated with the development of atherosclerosis in the aorta of ApoE-/- male mice, which could serve as novel biomarkers and therapeutic targets in interventions to halt plaque progression. Methods Eight-week-old ApoE-/- mice were fed a normal purified laboratory diet or a Western Diet (WD) for 6 or 22 weeks. High-throughput sequencing technology was used to analyze the transcriptomes of the aortas of four groups of mice that were exposed to different dietary conditions. We retrieved and downloaded the human Arteriosclerosis Disease Chip dataset GSE100927 from the Gene Expression Omnibus (GEO) database and selected 29 cases of carotid atherosclerotic lesions and 12 cases of normal carotid tissues as the experimental and control groups, respectively, to further verify our dataset. In addition, we used quantitative reverse transcription polymerase chain reaction (QT-PCR) to verify the expression levels of the core genes in an atherosclerosis mouse model. Results There were 265 differentially expressed genes (DEGs) between the ApoE-/- Male mice AS22W group and Sham22W group. In addition to the well-known activation of inflammation and immune response, t the autophagy-lysosome system is also an important factor that affects the development of atherosclerosis. We identified five core genes (Atp6ap2, Atp6v0b, Atp6v0d2, Atp6v1a, and Atp6v1d) in the protein-protein interaction (PPI) network that were closely related to autophagosomes. Hub genes were highly expressed in the carotid atherosclerosis group in the GSE100927 dataset (P < 0.001). QT-PCR showed that the RNA level of Atp6v0d2 increased significantly during the development of atherosclerotic plaque in ApoE-/- male mice. Conclusion Five core genes which affect the development of aortic atherosclerosis through the autophagy-lysosome system, especially Atp6v0d2, were screened and identified using bioinformatic techniques.
Collapse
Affiliation(s)
- Meirong Zhu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of China
- Department of Critical Medicine, Jinan Central Hospital, Jinan, People’s Republic of China
| | - Tongyu Jin
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of China
| | - Ding Wu
- Vascular Surgery, Jinan Central Hospital, Jinan, People’s Republic of China
| | - Shanchao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
| | - Aihua Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
8
|
Li W, Xiang B, Yang F, Rong Y, Yin Y, Yao J, Zhang H. scMHNN: a novel hypergraph neural network for integrative analysis of single-cell epigenomic, transcriptomic and proteomic data. Brief Bioinform 2023; 24:bbad391. [PMID: 37930028 DOI: 10.1093/bib/bbad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/09/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Technological advances have now made it possible to simultaneously profile the changes of epigenomic, transcriptomic and proteomic at the single cell level, allowing a more unified view of cellular phenotypes and heterogeneities. However, current computational tools for single-cell multi-omics data integration are mainly tailored for bi-modality data, so new tools are urgently needed to integrate tri-modality data with complex associations. To this end, we develop scMHNN to integrate single-cell multi-omics data based on hypergraph neural network. After modeling the complex data associations among various modalities, scMHNN performs message passing process on the multi-omics hypergraph, which can capture the high-order data relationships and integrate the multiple heterogeneous features. Followingly, scMHNN learns discriminative cell representation via a dual-contrastive loss in self-supervised manner. Based on the pretrained hypergraph encoder, we further introduce the pre-training and fine-tuning paradigm, which allows more accurate cell-type annotation with only a small number of labeled cells as reference. Benchmarking results on real and simulated single-cell tri-modality datasets indicate that scMHNN outperforms other competing methods on both cell clustering and cell-type annotation tasks. In addition, we also demonstrate scMHNN facilitates various downstream tasks, such as cell marker detection and enrichment analysis.
Collapse
Affiliation(s)
- Wei Li
- College of Artificial Intelligence, Nankai University, Tongyan Road, 300350 Tianjin, China
- AI Lab, Tencent, Gaoxin 9th South Road, 518000 Shenzhen, China
| | - Bin Xiang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Yueyang Road, 200031 Shanghai, China
| | - Fan Yang
- AI Lab, Tencent, Gaoxin 9th South Road, 518000 Shenzhen, China
| | - Yu Rong
- AI Lab, Tencent, Gaoxin 9th South Road, 518000 Shenzhen, China
| | - Yanbin Yin
- Department of Food Science and Technology, University of Nebraska - Lincoln, 1400 R Street, 68588 Nebraska, USA
| | - Jianhua Yao
- AI Lab, Tencent, Gaoxin 9th South Road, 518000 Shenzhen, China
| | - Han Zhang
- College of Artificial Intelligence, Nankai University, Tongyan Road, 300350 Tianjin, China
| |
Collapse
|
9
|
Xue S, Su Z, Liu D. Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Res Rev 2023; 90:101993. [PMID: 37379970 DOI: 10.1016/j.arr.2023.101993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Macrophages are crucial in the progression of atherosclerotic cardiovascular disease (ASCVD). In the atherosclerotic lesions, macrophages play a central role in maintaining inflammatory response, promoting plaque development, and facilitating thrombosis. Increasing studies indicate that metabolic reprogramming and immune response mediate macrophage functional changes in all stages of atherosclerosis. In this review article, we explain how metabolic changes in glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, fatty acid synthesis, fatty acid oxidation, and cholesterol metabolism regulate macrophage function in atherosclerosis. We discuss how immune response to oxidized lipids regulate macrophage function in atherosclerosis. Additionally, we explore how abnormal metabolism leads to macrophage mitochondrial dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Sheng Xue
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China.
| | - Zhe Su
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| | - Dacheng Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| |
Collapse
|
10
|
Coppin E, Zhang X, Ohayon L, Johny E, Dasari A, Zheng KH, Stiekema L, Cifuentes-Pagano E, Pagano PJ, Chaparala S, Stroes ES, Dutta P. Peripheral Ischemia Imprints Epigenetic Changes in Hematopoietic Stem Cells to Propagate Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2023; 43:889-906. [PMID: 36891902 PMCID: PMC10213134 DOI: 10.1161/atvbaha.123.318956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Peripheral ischemia caused by peripheral artery disease is associated with systemic inflammation, which may aggravate underlying comorbidities such as atherosclerosis and heart failure. However, the mechanisms of increased inflammation and inflammatory cell production in patients with peripheral artery disease remain poorly understood. METHODS We used peripheral blood collected from patients with peripheral artery disease and performed hind limb ischemia (HI) in Apoe-/- mice fed a Western diet and C57BL/6J mice with a standard laboratory diet. Bulk and single-cell RNA sequencing analysis, whole-mount microscopy, and flow cytometry were performed to analyze hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and relocation. RESULTS We observed augmented numbers of leukocytes in the blood of patients with peripheral artery disease and Apoe-/- mice with HI. RNA sequencing and whole-mount imaging of the bone marrow revealed HSPC migration into the vascular niche from the osteoblastic niche and their exaggerated proliferation and differentiation. Single-cell RNA sequencing demonstrated alterations in the genes responsible for inflammation, myeloid cell mobilization, and HSPC differentiation after HI. Heightened inflammation in Apoe-/- mice after HI aggravated atherosclerosis. Surprisingly, bone marrow HSPCs expressed higher amounts of the receptors for IL (interleukin)-1 and IL-3 after HI. Concomitantly, the promoters of Il1r1 and Il3rb had augmented H3K4me3 and H3K27ac marks after HI. Genetic and pharmacological inhibition of these receptors resulted in suppressed HSPC proliferation, reduced leukocyte production, and ameliorated atherosclerosis. CONCLUSIONS Our findings demonstrate increased inflammation, HSPC abundance in the vascular niches of the bone marrow, and elevated IL-3Rb and IL-1R1 (IL-1 receptor 1) expression in HSPC following HI. Furthermore, the IL-3Rb and IL-1R1 signaling plays a pivotal role in HSPC proliferation, leukocyte abundance, and atherosclerosis aggravation after HI.
Collapse
Affiliation(s)
- Emilie Coppin
- Regeneration in Hematopoiesis, Institute for Immunology, TU Dresden, Dresden, Germany
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Xinyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lee Ohayon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ankush Dasari
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kang H. Zheng
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lotte Stiekema
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Srilakshmi Chaparala
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erik S. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, 15213
| |
Collapse
|
11
|
Liu C, Tang L, Zhou Y, Tang X, Zhang G, Zhu Q, Zhou Y. Immune-associated biomarkers identification for diagnosing carotid plaque progression with uremia through systematical bioinformatics and machine learning analysis. Eur J Med Res 2023; 28:92. [PMID: 36823662 PMCID: PMC9948329 DOI: 10.1186/s40001-023-01043-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/04/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Uremia is one of the most challenging problems in medicine and an increasing public health issue worldwide. Patients with uremia suffer from accelerated atherosclerosis, and atherosclerosis progression may trigger plaque instability and clinical events. As a result, cardiovascular and cerebrovascular complications are more likely to occur. This study aimed to identify diagnostic biomarkers in uremic patients with unstable carotid plaques (USCPs). METHODS Four microarray datasets (GSE37171, GSE41571, GSE163154, and GSE28829) were downloaded from the NCBI Gene Expression Omnibus database. The Limma package was used to identify differentially expressed genes (DEGs) in uremia and USCP. Weighted gene co-expression network analysis (WGCNA) was used to determine the respective significant module genes associated with uremia and USCP. Moreover, a protein-protein interaction (PPI) network and three machine learning algorithms were applied to detect potential diagnostic genes. Subsequently, a nomogram and a receiver operating characteristic curve (ROC) were plotted to diagnose USCP with uremia. Finally, immune cell infiltrations were further analyzed. RESULTS Using the Limma package and WGCNA, the intersection of 2795 uremia-related DEGs and 1127 USCP-related DEGs yielded 99 uremia-related DEGs in USCP. 20 genes were selected as candidate hub genes via PPI network construction. Based on the intersection of genes from the three machine learning algorithms, three hub genes (FGR, LCP1, and C5AR1) were identified and used to establish a nomogram that displayed a high diagnostic performance (AUC: 0.989, 95% CI 0.971-1.000). Dysregulated immune cell infiltrations were observed in USCP, showing positive correlations with the three hub genes. CONCLUSION The current study systematically identified three candidate hub genes (FGR, LCP1, and C5AR1) and established a nomogram to assist in diagnosing USCP with uremia using various bioinformatic analyses and machine learning algorithms. Herein, the findings provide a foothold for future studies on potential diagnostic candidate genes for USCP in uremic patients. Additionally, immune cell infiltration analysis revealed that the dysregulated immune cell proportions were identified, and macrophages could have a critical role in USCP pathogenesis.
Collapse
Affiliation(s)
- Chunjiang Liu
- grid.415644.60000 0004 1798 6662Department of General Surgery, Division of Vascular Surgery, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000 China
| | - Liming Tang
- grid.415644.60000 0004 1798 6662Department of General Surgery, Division of Vascular Surgery, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000 China
| | - Yue Zhou
- grid.415644.60000 0004 1798 6662Department of General Surgery, Division of Vascular Surgery, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000 China
| | - Xiaoqi Tang
- grid.415644.60000 0004 1798 6662Department of General Surgery, Division of Vascular Surgery, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000 China
| | - Gang Zhang
- grid.412679.f0000 0004 1771 3402Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000 Anhui China
| | - Qin Zhu
- Hepatobiliary CenterKey Laboratory of Liver TransplantationNHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical UniversityChinese Academy of Medical SciencesNanjing Medical University), Nanjing, 210000, Jiangsu, China.
| | - Yufei Zhou
- Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
13
|
Owen AM, Luan L, Burelbach KR, McBride MA, Stothers CL, Boykin OA, Sivanesam K, Schaedel JF, Patil TK, Wang J, Hernandez A, Patil NK, Sherwood ER, Bohannon JK. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages. Front Immunol 2022; 13:1044662. [PMID: 36439136 PMCID: PMC9692127 DOI: 10.3389/fimmu.2022.1044662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2023] Open
Abstract
Immunocompromised populations are highly vulnerable to developing life-threatening infections. Strategies to protect patients with weak immune responses are urgently needed. Employing trained immunity, whereby innate leukocytes undergo reprogramming upon exposure to a microbial product and respond more robustly to subsequent infection, is a promising approach. Previously, we demonstrated that the TLR4 agonist monophosphoryl lipid A (MPLA) induces trained immunity and confers broad resistance to infection. TLR4 signals through both MyD88- and TRIF-dependent cascades, but the relative contribution of each pathway to induction of trained immunity is unknown. Here, we show that MPLA-induced resistance to Staphylococcus aureus infection is lost in MyD88-KO, but not TRIF-KO, mice. The MyD88-activating agonist CpG (TLR9 agonist), but not TRIF-activating Poly I:C (TLR3 agonist), protects against infection in a macrophage-dependent manner. MPLA- and CpG-induced augmentation of macrophage metabolism and antimicrobial functions is blunted in MyD88-, but not TRIF-KO, macrophages. Augmentation of antimicrobial functions occurs in parallel to metabolic reprogramming and is dependent, in part, on mTOR activation. Splenic macrophages from CpG-treated mice confirmed that TLR/MyD88-induced reprogramming occurs in vivo. TLR/MyD88-triggered metabolic and functional reprogramming was reproduced in human monocyte-derived macrophages. These data show that MyD88-dependent signaling is critical in TLR-mediated trained immunity.
Collapse
Affiliation(s)
- Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine R. Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Margaret A. McBride
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Cody L. Stothers
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Olivia A. Boykin
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kalkena Sivanesam
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Washington State University Elson S. Floyd College of Medicine, Spokane, WA, United States
| | - Jessica F. Schaedel
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jingbin Wang
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
Zhang XH, Li Y, Zhou L, Tian GP. Interleukin-38 in atherosclerosis. Clin Chim Acta 2022; 536:86-93. [PMID: 36150521 DOI: 10.1016/j.cca.2022.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Chronic inflammation caused by immune cells and their mediators is a characteristic of atherosclerosis. Interleukin-38 (IL-38), a member of the IL-1 family, exerts multiple anti-inflammatory effects via specific ligand-receptor interactions. Upon recognizing a specific receptor, IL-38 restrains mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NK-κB), or other inflammation-related signaling pathways in inflammatory disease. Further research has shown that IL-38 also displays anti-atherosclerotic effects and reduces the occurrence and risk of cardiovascular events. On the one hand, IL-38 can regulate innate and adaptive immunity to inhibit inflammation, reduce pathological neovascularization, and inhibit apoptosis. On the other hand, it can curb obesity, reduce hyperlipidemia, and restrain insulin resistance to reduce cardiovascular disease risk. Therefore, this article expounds on the vital function of IL-38 in the development of atherosclerosis to provide a theoretical basis for further in-depth studies of IL-38 and insights on the prophylaxis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Li
- Department of Orthopaedics, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China.
| | - Guo-Ping Tian
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
15
|
Xu R, Yuan W, Wang Z. Advances in Glycolysis Metabolism of Atherosclerosis. J Cardiovasc Transl Res 2022; 16:476-490. [PMID: 36068370 DOI: 10.1007/s12265-022-10311-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Glycolysis is an important way for various cells such as vascular wall endothelial cells, smooth muscle cells, macrophages, and other cells to obtain energy. In pathological conditions, it can participate in the process of AS by regulating lipid deposition, calcification, angiogenesis in plaques, etc., together with its metabolite lactic acid. Recent studies have shown that lactate-related lactylation modifications are ubiquitous in the human proteome and are involved in the regulation of various inflammatory diseases. Combined with the distribution and metabolic characteristics of cells in the plaque in the process of AS, glycolysis-lactate-lactylation modification may be a new entry point for targeted intervention in atherosclerosis in the future. Therefore, this article intends to elaborate on the role and mechanism of glycolysis-lactate-lactylation modification in AS, as well as the opportunities and challenges in targeted therapy, hoping to bring some help to relevant scholars in this field. In atherosclerosis, glycolysis, lactate, and lactylation modification as a metabolic sequence affect the functions of macrophages, smooth muscle cells, endothelial cells, lymphocytes, and other cells and interfere with processes such as vascular calcification and intraplaque neovascularization to influence the progression of atherosclerosis.
Collapse
Affiliation(s)
- Ruhan Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
16
|
Wang K, Cao Q, Yang Q, Wei Q, Zhao J, Wang Y, Hou J, Song S. Study on the regulatory effect of leech peptide HE-D on macrophages in atherosclerosis by transcriptome sequencing. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115380. [PMID: 35589020 DOI: 10.1016/j.jep.2022.115380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of atherosclerotic cardiovascular disease is a serious threat to human health. Leeches are used in traditional Chinese medicine to treat cardiovascular diseases. HE-D is an active peptide extracted and isolated from leeches, which can inhibit the migration of RAW264.7 macrophages. AIM This study shows the effects of HE-D on macrophages in atherosclerosis and the mechanism of inhibition on the migration of macrophages based on transcriptome sequencing (RNA-Seq). MATERIALS AND METHODS The transwell method was used to detect the activity of HE-D in inhibiting the migration of macrophages. Macrophages were divided into control group, lipopolysaccharide group, and HE-D group. Samples were collected and RNA-Seq performed. The DEseq2 method detected significantly differentially expressed genes (DEGs), GO and KEGG Pathway databases were used to analyze the functions and pathway enrichment of DEGs. Finally, qRT-PCR and Western blotting were used to verify the genes screened by RNA-Seq analyses. RESULTS Cell experiments showed that HE-D can inhibit the migration of RAW264.7 macrophages induced by LPS. DEseq2 analyses showed that there were 363 DEGs after HE-D administration in the result of RNA-Seq. The GO function of DEGs was significantly enriched in cell migration and inflammation, and the DEGs related to cell migration were significantly enriched in the NF-κB signaling pathway. qRT-PCR and Western blot analyses, showed that when compared with the LPS group, the related genes IKKα, IKKγ, TRAF6, TLR4, and TRAF5 in the NF-κB pathway were significantly down-regulated in the HE-D group. In addition, it was found that the inflammatory factors iNOS and TNF-α were significantly down-regulated, and Arg-1 and IL-10 were up-regulated. CONCLUSION HE-D can inhibit the migration of macrophages by inhibiting IKKα and IKKγ in the NF-κB signaling pathway, and promote the transformation of macrophages from M1to M2 subtypes. Therefore, HE-D can potentially be used as a drug for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University, Weihai, 264209, China; Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| | - Qi Cao
- Marine College, Shandong University, Weihai, 264209, China.
| | - Qiong Yang
- Marine College, Shandong University, Weihai, 264209, China.
| | - Qiang Wei
- Marine College, Shandong University, Weihai, 264209, China.
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai, 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, 264209, China.
| | - Junfeng Hou
- Marine College, Shandong University, Weihai, 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, 264209, China; Shandong University Weihai Research Institute of Industrial Technology, Weihai, 264209, China.
| |
Collapse
|
17
|
Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages. Atherosclerosis 2022; 352:35-45. [DOI: 10.1016/j.atherosclerosis.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
|
18
|
Seyres D, Cabassi A, Lambourne JJ, Burden F, Farrow S, McKinney H, Batista J, Kempster C, Pietzner M, Slingsby O, Cao TH, Quinn PA, Stefanucci L, Sims MC, Rehnstrom K, Adams CL, Frary A, Ergüener B, Kreuzhuber R, Mocciaro G, D’Amore S, Koulman A, Grassi L, Griffin JL, Ng LL, Park A, Savage DB, Langenberg C, Bock C, Downes K, Wareham NJ, Allison M, Vacca M, Kirk PDW, Frontini M. Transcriptional, epigenetic and metabolic signatures in cardiometabolic syndrome defined by extreme phenotypes. Clin Epigenetics 2022; 14:39. [PMID: 35279219 PMCID: PMC8917653 DOI: 10.1186/s13148-022-01257-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This work is aimed at improving the understanding of cardiometabolic syndrome pathophysiology and its relationship with thrombosis by generating a multi-omic disease signature. METHODS/RESULTS We combined classic plasma biochemistry and plasma biomarkers with the transcriptional and epigenetic characterisation of cell types involved in thrombosis, obtained from two extreme phenotype groups (morbidly obese and lipodystrophy) and lean individuals to identify the molecular mechanisms at play, highlighting patterns of abnormal activation in innate immune phagocytic cells. Our analyses showed that extreme phenotype groups could be distinguished from lean individuals, and from each other, across all data layers. The characterisation of the same obese group, 6 months after bariatric surgery, revealed the loss of the abnormal activation of innate immune cells previously observed. However, rather than reverting to the gene expression landscape of lean individuals, this occurred via the establishment of novel gene expression landscapes. NETosis and its control mechanisms emerge amongst the pathways that show an improvement after surgical intervention. CONCLUSIONS We showed that the morbidly obese and lipodystrophy groups, despite some differences, shared a common cardiometabolic syndrome signature. We also showed that this could be used to discriminate, amongst the normal population, those individuals with a higher likelihood of presenting with the disease, even when not displaying the classic features.
Collapse
Affiliation(s)
- Denis Seyres
- National Institute for Health Research BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK. .,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. .,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.
| | - Alessandra Cabassi
- grid.5335.00000000121885934MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John J. Lambourne
- grid.24029.3d0000 0004 0383 8386National Institute for Health Research BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK ,grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Frances Burden
- grid.24029.3d0000 0004 0383 8386National Institute for Health Research BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK ,grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Samantha Farrow
- grid.24029.3d0000 0004 0383 8386National Institute for Health Research BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK ,grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Harriet McKinney
- grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Joana Batista
- grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Carly Kempster
- grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Maik Pietzner
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Oliver Slingsby
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Thong Huy Cao
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Paulene A. Quinn
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Luca Stefanucci
- grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK ,British Heart Foundation Centre of Excellence, Cambridge Biomedical Campus, Cambridge, UK
| | - Matthew C. Sims
- grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK ,grid.454382.c0000 0004 7871 7212Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Karola Rehnstrom
- grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Claire L. Adams
- grid.5335.00000000121885934Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Amy Frary
- grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Bekir Ergüener
- grid.418729.10000 0004 0392 6802CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Roman Kreuzhuber
- grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.225360.00000 0000 9709 7726European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Gabriele Mocciaro
- grid.5335.00000000121885934Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, The Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Simona D’Amore
- grid.24029.3d0000 0004 0383 8386Addenbrooke’s Hospital, NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK ,grid.7644.10000 0001 0120 3326Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy ,National Cancer Research Center, IRCCS Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco, 65, 70124 Bari, Italy
| | - Albert Koulman
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK ,grid.415055.00000 0004 0606 2472MRC Elsie Widdowson Laboratory, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Biomedical Research Centres Core Nutritional Biomarker Laboratory, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Biomedical Research Centres Core Metabolomics and Lipidomics Laboratory, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Luigi Grassi
- grid.24029.3d0000 0004 0383 8386National Institute for Health Research BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK ,grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Julian L. Griffin
- grid.5335.00000000121885934Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, The Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Leong Loke Ng
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Adrian Park
- grid.24029.3d0000 0004 0383 8386Addenbrooke’s Hospital, NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David B. Savage
- grid.5335.00000000121885934Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Claudia Langenberg
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Christoph Bock
- grid.418729.10000 0004 0392 6802CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria ,grid.511293.d0000 0004 6104 8403Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Kate Downes
- grid.24029.3d0000 0004 0383 8386National Institute for Health Research BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK ,grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.24029.3d0000 0004 0383 8386East Midlands and East of England Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nicholas J. Wareham
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Michael Allison
- grid.24029.3d0000 0004 0383 8386Addenbrooke’s Hospital, NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Michele Vacca
- grid.5335.00000000121885934Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ UK ,grid.5335.00000000121885934Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, The Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Paul D. W. Kirk
- grid.5335.00000000121885934MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.5335.00000000121885934Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, CB2 0AW UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. .,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK. .,British Heart Foundation Centre of Excellence, Cambridge Biomedical Campus, Cambridge, UK. .,Institute of Biomedical & Clinical Science, College of Medicine and Health, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
19
|
Palano MT, Cucchiara M, Gallazzi M, Riccio F, Mortara L, Gensini GF, Spinetti G, Ambrosio G, Bruno A. When a Friend Becomes Your Enemy: Natural Killer Cells in Atherosclerosis and Atherosclerosis-Associated Risk Factors. Front Immunol 2022; 12:798155. [PMID: 35095876 PMCID: PMC8793801 DOI: 10.3389/fimmu.2021.798155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis (ATS), the change in structure and function of arteries with associated lesion formation and altered blood flow, is the leading cause of cardiovascular disease, the number one killer worldwide. Beyond dyslipidemia, chronic inflammation, together with aberrant phenotype and function of cells of both the innate and adaptive immune system, are now recognized as relevant contributors to atherosclerosis onset and progression. While the role of macrophages and T cells in atherosclerosis has been addressed in several studies, Natural Killer cells (NKs) represent a poorly explored immune cell type, that deserves attention, due to NKs’ emerging contribution to vascular homeostasis. Furthermore, the possibility to re-polarize the immune system has emerged as a relevant tool to design new therapies, with some succesfull exmples in the field of cancer immunotherapy. Thus, a deeper knowledge of NK cell pathophysiology in the context of atherosclerosis and atherosclerosis-associated risk factors could help developing new preventive and treatment strategies, and decipher the complex scenario/history from “the risk factors for atherosclerosis” Here, we review the current knowledge about NK cell phenotype and activities in atherosclerosis and selected atherosclerosis risk factors, namely type-2 diabetes and obesity, and discuss the related NK-cell oriented environmental signals.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gian Franco Gensini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | | | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| |
Collapse
|
20
|
Falero-Diaz G, Barboza CDA, Pires F, Fanchin M, Ling J, Zigmond ZM, Griswold AJ, Martinez L, Vazquez-Padron RI, Velazquez OC, Lassance-Soares RM. Ischemic-Trained Monocytes Improve Arteriogenesis in a Mouse Model of Hindlimb Ischemia. Arterioscler Thromb Vasc Biol 2022; 42:175-188. [PMID: 34879707 PMCID: PMC8792358 DOI: 10.1161/atvbaha.121.317197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Monocytes, which play an important role in arteriogenesis, can build immunologic memory by a functional reprogramming that modifies their response to a second challenge. This process, called trained immunity, is evoked by insults that shift monocyte metabolism, increasing HIF (hypoxia-inducible factor)-1α levels. Since ischemia enhances HIF-1α, we evaluate whether ischemia can lead to a functional reprogramming of monocytes, which would contribute to arteriogenesis after hindlimb ischemia. METHODS AND RESULTS Mice exposed to ischemia by 24 hours (24h) of femoral artery occlusion (24h trained) or sham were subjected to hindlimb ischemia one week later; the 24h trained mice showed significant improvement in blood flow recovery and arteriogenesis after hindlimb ischemia. Adoptive transfer using bone marrow-derived monocytes (BM-Mono) from 24h trained or sham donor mice, demonstrated that recipients subjected to hindlimb ischemia who received 24h ischemic-trained monocytes had remarkable blood flow recovery and arteriogenesis. Further, ischemic-trained BM-Mono had increased HIF-1α and GLUT-1 (glucose transporter-1) gene expression during femoral artery occlusion. Circulating cytokines and GLUT-1 were also upregulated during femoral artery occlusion.Transcriptomic analysis and confirmatory qPCR performed in 24h trained and sham BM-Mono revealed that among the 15 top differentially expressed genes, 4 were involved in lipid metabolism in the ischemic-trained monocytes. Lipidomic analysis confirmed that ischemia training altered the cholesterol metabolism of these monocytes. Further, several histone-modifying epigenetic enzymes measured by qPCR were altered in mouse BM-Mono exposed to 24h hypoxia. CONCLUSIONS Ischemia training in BM-Mono leads to a unique gene profile and improves blood flow and arteriogenesis after hindlimb ischemia.
Collapse
Affiliation(s)
- Gustavo Falero-Diaz
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Catarina de A. Barboza
- Department of Adapted Physical Activity, School of Physical Education (FEF), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Felipe Pires
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Maeva Fanchin
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Jingjing Ling
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Zachary M. Zigmond
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Roberta M. Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
21
|
Cui HR, Zhang JY, Cheng XH, Zheng JX, Zhang Q, Zheng R, You LZ, Han DR, Shang HC. Immunometabolism at the service of traditional Chinese medicine. Pharmacol Res 2022; 176:106081. [PMID: 35033650 DOI: 10.1016/j.phrs.2022.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
To enhance therapeutic efficacy and reduce adverse effects, ancient practitioners of traditional Chinese medicine (TCM) prescribe combinations of plant species/animal species and minerals designated "TCM formulae" developed based on TCM theory and clinical experience. TCM formulae have been shown to exert curative effects on complex diseases via immune regulation but the underlying mechanisms remain unknown at present. Considerable progress in the field of immunometabolism, referring to alterations in the intracellular metabolism of immune cells that regulate their function, has been made over the past decade. The core context of immunometabolism is regulation of the allocation of metabolic resources supporting host defense and survival, which provides a critical additional dimension and emerging insights into how the immune system and metabolism influence each other during disease progression. This review summarizes research findings on the significant association between the immune function and metabolic remodeling in health and disease as well as the therapeutic modulatory effects of TCM formulae on immunometabolism. Progressive elucidation of the immunometabolic mechanisms involved during the course of TCM treatment continues to aid in the identification of novel potential targets against pathogenicity. In this report, we have provided a comprehensive overview of the benefits of TCM based on regulation of immunometabolism that are potentially applicable for the treatment of modern diseases.
Collapse
Affiliation(s)
- He-Rong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia-Xin Zheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Liang-Zhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dong-Ran Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
22
|
Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proc Natl Acad Sci U S A 2021; 118:2107682118. [PMID: 34782454 DOI: 10.1073/pnas.2107682118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3β-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.
Collapse
|
23
|
Coronary atherosclerosis severity is closely associated with decreased GLP-1R positivity among CD16 + pro-inflammatory and patrolling monocyte subsets. ATHEROSCLEROSIS PLUS 2021; 46:15-19. [PMID: 36643724 PMCID: PMC9833237 DOI: 10.1016/j.athplu.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023]
Abstract
Background and aims Glucagon Like Peptide-1 Receptor (GLP-1R) activation reduces pro-inflammatory responses of human monocytes, their accumulation in the vascular wall and foam cell formation inhibiting atherosclerogenesis. This suggests that reduction of circulating GLP-1-1R positive monocytes may have pro-atherogenic effects. It is unknown whether different CD14/CD16 monocytes subsets display GLP-1R and whether their relative proportions correlate with atherosclerosis severity. We evaluated the association between GLP-1R positivity in different CD14/CD16 monocyte subsets and coronary atherosclerosis severity. Methods Relative amounts of classical (CD14+/CD16-), intermediate pro-inflammatory (CD14+/CD16+) and non-classical patrolling (CD14-/CD16+) subsets of total circulating monocytes and the proportions of GLP-1R positive monocytes in these subsets were determined in 13 control subjects and 10 dyslipidemic ischemic heart disease (IHD) patients with severe angiographic proven coronary atherosclerosis using flow cytometry analysis. Atherosclerosis severity was calculated by SYNTAX score. Results In univariable analysis, severe atherosclerosis was associated with decreased proportion of classical monocytes and two fold increased CD16+ pro-inflammatory and patrolling subsets as compared with controls (p = 0.01, p = 0.02 and p = 0.01, respectively). Frequency of GLP-1R positive monocytes was decreased in both CD16+ subsets (p = 0.02 and p = 0.05, respectively) and negatively correlated with atherosclerosis severity (r = -0.65, p = 0.005 and r = -0.44, p = 0.05, respectively). Conclusions Increased skewing of the classical monocyte population toward CD16+ pro-inflammatory and patrolling subsets accompanied by decreased in GLP-1R positivity are associated with coronary atherosclerosis severity in IHD patients with dyslipidemia. Although the effect of potential confounders cannot be ruled out, our data suggest that failure of GLP-1R-dependent anti-inflammatory/anti-atherogenic control results in innate immune system dysfunction and can promote atherosclerogenesis.
Collapse
|
24
|
Finamore F, Nieddu G, Rocchiccioli S, Spirito R, Guarino A, Formato M, Lepedda AJ. Apolipoprotein Signature of HDL and LDL from Atherosclerotic Patients in Relation with Carotid Plaque Typology: A Preliminary Report. Biomedicines 2021; 9:biomedicines9091156. [PMID: 34572342 PMCID: PMC8465382 DOI: 10.3390/biomedicines9091156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
In the past years, it has become increasingly clear that the protein cargo of the different lipoprotein classes is largely responsible for carrying out their various functions, also in relation to pathological conditions, including atherosclerosis. Accordingly, detailed information about their apolipoprotein composition and structure may contribute to the revelation of their role in atherogenesis and the understanding of the mechanisms that lead to atherosclerotic degeneration and toward vulnerable plaque formation. With this aim, shotgun proteomics was applied to identify the apolipoprotein signatures of both high-density and low-density lipoproteins (HDL and LDL) plasma fractions purified from healthy volunteers and atherosclerotic patients with different plaque typologies who underwent carotid endarterectomy. By this approach, two proteins with potential implications in inflammatory, immune, and hemostatic pathways, namely, integrin beta-2 (P05107) and secretoglobin family 3A member 2 (Q96PL1), have been confirmed to belong to the HDL proteome. Similarly, the list of LDL-associated proteins has been enriched with 21 proteins involved in complement and coagulation cascades and the acute-phase response, which potentially double the protein species of LDL cargo. Moreover, differential expression analysis has shown protein signatures specific for patients with “hard” or “soft” plaques.
Collapse
Affiliation(s)
- Francesco Finamore
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.F.); (S.R.)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (G.N.); (M.F.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.F.); (S.R.)
| | - Rita Spirito
- Centro Cardiologico Monzino, IRCCS, via Parea 4, 20138 Milano, Italy; (R.S.); (A.G.)
| | - Anna Guarino
- Centro Cardiologico Monzino, IRCCS, via Parea 4, 20138 Milano, Italy; (R.S.); (A.G.)
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (G.N.); (M.F.)
| | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (G.N.); (M.F.)
- Correspondence:
| |
Collapse
|
25
|
Chen XN, Ge QH, Zhao YX, Guo XC, Zhang JP. Effect of Si-Miao-Yong-An decoction on the differentiation of monocytes, macrophages, and regulatory T cells in ApoE -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114178. [PMID: 33945857 DOI: 10.1016/j.jep.2021.114178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Miao-Yong-An decoction (SMYAD) is a renowned traditional Chinese medicinal formula. SMYAD was originally recorded in the "Shi Shi Mi Lu", which was edited by medical scientist Chen Shi'duo during the Qing Dynasty. SMYAD has been traditionally used to treat thromboangiitis obliterans. At present, it is mainly used in clinical applications and research of cardiovascular diseases. AIM OF THE STUDY To explore the effects of SMYAD on the pathological changes of atherosclerosis (AS) and the differentiation of monocytes, macrophages, and regulatory T (Treg) cells in apolipoprotein E knockout (ApoE-/-) mice. MATERIALS AND METHODS Eight C57BL/6J mice, which were fed with normal diet for 16 weeks, were used as control group. Forty ApoE-/- mice were randomly divided into model group, atorvastatin group, SMYAD low-dose (SMYAD-LD) group, SMYAD medium-dose (SMYAD-MD) group, and SMYAD high-dose (SMYAD-HD) group. ApoE-/- mice were fed with western diet (WD) for 8 weeks, and the drugs were continuously administered for 8 weeks. The levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured by the esterase method. Morphological changes of the aortic sinus in mice were observed by hematoxylin-eosin (HE) staining, the lipid infiltration of the aorta and aortic sinus were observed by oil red O staining, and the spleen index was calculated. The proportion of Ly6Chigh and Ly6Clow monocyte subsets, macrophages, and their M1 phenotype, as well as Treg cells in spleen were measured by flow cytometry. The expressions of cluster of differentiation 36 (CD36), scavenger receptor A1 (SRA1), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), F4/80, and fork head frame protein 3 (FOXP3) in aortic sinus were assessed by immunohistochemical staining. The serum levels of oxidized low density lipoprotein (ox-LDL), interleukin-1β (IL-1β), IL-18, transforming growth factor-β (TGF-β), and IL-10 were measured by enzyme-linked immunosorbent assays (ELISA). RESULTS Compared with the model group, the level of serum TC and LDL-C decreased in the SMYAD group, the pathological changes of aortic sinus decreased, and lipid infiltration of aorta and aortic sinus also decreased. These decreases were accompanied by a significant downregulation of CD36, SRA1, and LOX-1. Furthermore, the proportions of Ly6Chigh pro-inflammatory monocyte subsets, macrophages, and their M1 phenotypes in spleen decreased significantly, while the proportion of Treg cells increased. In addition, while the expression of F4/80 decreased, the expression of FOXP3 increased in the aorta sinus. The levels of serum pro-inflammatory factors IL-1β and IL-18 decreased. CONCLUSIONS SMYAD can improve the pathological changes associated with AS and can inhibit lipid deposition in ApoE-/- mice induced by WD diet. The likely mechanism is the inhibition of the differentiation and recruitment of monocytes and macrophages, the promotion of the differentiation and recruitment of Treg cells, as well as the reduction of the secretion of pro-inflammatory factors.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/genetics
- CD36 Antigens/metabolism
- Calcium-Binding Proteins/metabolism
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cholesterol/blood
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Cytokines/blood
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Forkhead Transcription Factors/metabolism
- Lipoproteins, LDL/blood
- Macrophages/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, G-Protein-Coupled/metabolism
- Scavenger Receptors, Class E/metabolism
- Spleen/drug effects
- Spleen/metabolism
- T-Lymphocytes, Regulatory/drug effects
- Triglycerides/blood
- Mice
Collapse
Affiliation(s)
- Xin-Nong Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi-Hui Ge
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi-Xuan Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Chen Guo
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun-Ping Zhang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
26
|
ten Cate H, Guzik TJ, Eikelboom J, Spronk HMH. Pleiotropic actions of factor Xa inhibition in cardiovascular prevention: mechanistic insights and implications for anti-thrombotic treatment. Cardiovasc Res 2021; 117:2030-2044. [PMID: 32931586 PMCID: PMC8318102 DOI: 10.1093/cvr/cvaa263] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which atherothrombotic complications lead to cardiovascular morbidity and mortality. At advanced stages, myocardial infarction, ischaemic stroke, and peripheral artery disease, including major adverse limb events, are caused either by acute occlusive atherothrombosis or by thromboembolism. Endothelial dysfunction, vascular smooth muscle cell activation, and vascular inflammation are essential in the development of acute cardiovascular events. Effects of the coagulation system on vascular biology extend beyond thrombosis. Under physiological conditions, coagulation proteases in blood are pivotal in maintaining haemostasis and vascular integrity. Under pathological conditions, including atherosclerosis, the same coagulation proteases (including factor Xa, factor VIIa, and thrombin) become drivers of atherothrombosis, working in concert with platelets and vessel wall components. While initially atherothrombosis was attributed primarily to platelets, recent advances indicate the critical role of fibrin clot and plasma coagulation factors. Mechanisms of atherothrombosis and hypercoagulability vary depending on plaque erosion or plaque rupture. In addition to contributing to thrombus formation, factor Xa and thrombin can affect endothelial dysfunction, oxidative stress, vascular smooth muscle cell function as well as immune cell activation and vascular inflammation. By these mechanisms, they promote atherosclerosis and contribute to plaque instability. In this review, we first discuss the postulated vasoprotective mechanisms of protease-activated receptor signalling induced by coagulation enzymes under physiological conditions. Next, we discuss preclinical studies linking coagulation with endothelial cell dysfunction, thromboinflammation, and atherogenesis. Understanding these mechanisms is pivotal for the introduction of novel strategies in cardiovascular prevention and therapy. We therefore translate these findings to clinical studies of direct oral anticoagulant drugs and discuss the potential relevance of dual pathway inhibition for atherothrombosis prevention and vascular protection.
Collapse
Affiliation(s)
- Hugo ten Cate
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tomasz J Guzik
- Institute of Cardiovascular & Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - John Eikelboom
- Population Health Research Institute, Hamilton General Hospital and McMaster University, Hamilton, L8L 2x2, ON, Canada
| | - Henri M H Spronk
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
27
|
oxLDL-Induced Trained Immunity Is Dependent on Mitochondrial Metabolic Reprogramming. IMMUNOMETABOLISM 2021; 3:e210025. [PMID: 34267957 PMCID: PMC7611242 DOI: 10.20900/immunometab20210025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Following brief exposure to endogenous atherogenic particles, such as oxidized low-density lipoprotein (oxLDL), monocytes/macrophages can adopt a long-term pro-inflammatory phenotype, which is called trained immunity. This mechanism might contribute to the chronic low-grade inflammation that characterizes atherosclerosis. In this study, we aim to elucidate immunometabolic pathways that drive oxLDL-induced trained immunity. Primary isolated human monocytes were exposed to oxLDL for 24 h, and after five days stimulated with LPS to measure the cytokine production capacity. RNA-sequencing revealed broad increases in genes enriched in mitochondrial pathways after 24 h of oxLDL exposure. Further omics profiling of oxLDL-trained macrophages via intracellular metabolomics showed an enrichment for tricarboxylic acid (TCA) cycle metabolites. Single cell analysis revealed that oxLDL-trained macrophages contain larger mitochondria, potentially likely linked to increased oxidative phosphorylation (OXPHOS) activity. Co-incubation with pharmacological blockers of OXPHOS inhibited oxLDL-induced trained immunity. The relevance of OXPHOS was confirmed in a cohort of 243 healthy subjects showing that genetic variation in genes coding for enzymes relevant to OXPHOS correlated with the capacity of monocytes to be trained with oxLDL. Interestingly, OXPHOS appears to play an important role in the increased cytokine hyperresponsiveness by oxLDL-trained macrophages. The TCA-cycle can also be fuelled by glutamine and free fatty acids, and pharmacological blockade of these pathways could prevent oxLDL-induced trained immunity. This study demonstrates that the mitochondria of oxLDL-trained macrophages undergo changes to their function and form with OXPHOS being an important mechanism for trained immunity, which could unveil novel pharmacological targets to prevent atherogenesis.
Collapse
|
28
|
Zago G, Saavedra PHV, Keshari KR, Perry JSA. Immunometabolism of Tissue-Resident Macrophages - An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Front Immunol 2021; 12:665782. [PMID: 34025667 PMCID: PMC8138590 DOI: 10.3389/fimmu.2021.665782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages exist in unique environments, or niches, that inform their identity and function. There is an emerging body of literature suggesting that the qualities of this environment, such as the types of cells and debris they eat, the intercellular interactions they form, and the length of time spent in residence, collectively what we call habitare, directly inform their metabolic state. In turn, a tissue-resident macrophage’s metabolic state can inform their function, including whether they resolve inflammation and protect the host from excessive perturbations of homeostasis. In this review, we summarize recent work that seeks to understand the metabolic requirements for tissue-resident macrophage identity and maintenance, for how they respond to inflammatory challenges, and for how they perform homeostatic functions or resolve inflammatory insults. We end with a discussion of the emerging technologies that are enabling, or will enable, in situ study of tissue-resident macrophage metabolism.
Collapse
Affiliation(s)
- Giulia Zago
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pedro H V Saavedra
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
29
|
Genetic factors affect the susceptibility to bacterial infections in diabetes. Sci Rep 2021; 11:9464. [PMID: 33947878 PMCID: PMC8096814 DOI: 10.1038/s41598-021-88273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes increases the risk of bacterial infections. We investigated whether common genetic variants associate with infection susceptibility in Finnish diabetic individuals. We performed genome-wide association studies and pathway analysis for bacterial infection frequency in Finnish adult diabetic individuals (FinnDiane Study; N = 5092, Diabetes Registry Vaasa; N = 4247) using national register data on antibiotic prescription purchases. Replication analyses were performed in a Swedish diabetic population (ANDIS; N = 9602) and in a Finnish non-diabetic population (FinnGen; N = 159,166). Genome-wide data indicated moderate but significant narrow-sense heritability for infection susceptibility (h2 = 16%, P = 0.02). Variants on chromosome 2 were associated with reduced infection susceptibility (rs62192851, P = 2.23 × 10–7). Homozygotic carriers of the rs62192851 effect allele (N = 44) had a 37% lower median annual antibiotic purchase rate, compared to homozygotic carriers of the reference allele (N = 4231): 0.38 [IQR 0.22–0.90] and 0.60 [0.30–1.20] respectively, P = 0.01). Variants rs6727834 and rs10188087, in linkage disequilibrium with rs62192851, replicated in the FinnGen-cohort (P < 0.05), but no variants replicated in the ANDIS-cohort. Pathway analysis suggested the IRAK1 mediated NF-κB activation through IKK complex recruitment-pathway to be a mediator of the phenotype. Common genetic variants on chromosome 2 may associate with reduced risk of bacterial infections in Finnish individuals with diabetes.
Collapse
|
30
|
Qi F, Zhang W, Huang J, Fu L, Zhao J. Single-Cell RNA Sequencing Analysis of the Immunometabolic Rewiring and Immunopathogenesis of Coronavirus Disease 2019. Front Immunol 2021; 12:651656. [PMID: 33936072 PMCID: PMC8079812 DOI: 10.3389/fimmu.2021.651656] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Although immune dysfunction is a key feature of coronavirus disease 2019 (COVID-19), the metabolism-related mechanisms remain elusive. Here, by reanalyzing single-cell RNA sequencing data, we delineated metabolic remodeling in peripheral blood mononuclear cells (PBMCs) to elucidate the metabolic mechanisms that may lead to the progression of severe COVID-19. After scoring the metabolism-related biological processes and signaling pathways, we found that mono-CD14+ cells expressed higher levels of glycolysis-related genes (PKM, LDHA and PKM) and PPP-related genes (PGD and TKT) in severe patients than in mild patients. These genes may contribute to the hyperinflammation in mono-CD14+ cells of patients with severe COVID-19. The mono-CD16+ cell population in COVID-19 patients showed reduced transcription levels of genes related to lysine degradation (NSD1, KMT2E, and SETD2) and elevated transcription levels of genes involved in OXPHOS (ATP6V1B2, ATP5A1, ATP5E, and ATP5B), which may inhibit M2-like polarization. Plasma cells also expressed higher levels of the OXPHOS gene ATP13A3 in COVID-19 patients, which was positively associated with antibody secretion and survival of PCs. Moreover, enhanced glycolysis or OXPHOS was positively associated with the differentiation of memory B cells into plasmablasts or plasma cells. This study comprehensively investigated the metabolic features of peripheral immune cells and revealed that metabolic changes exacerbated inflammation in monocytes and promoted antibody secretion and cell survival in PCs in COVID-19 patients, especially those with severe disease.
Collapse
Affiliation(s)
- Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China
| | - Wenbo Zhang
- Trinity School of Durham and Chapel Hill, Durham, NC, United States
| | - Jialu Huang
- Electronic and Computer Engineering, China North Vehicle Research Institute, Beijing, China
| | - Lili Fu
- Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jinfang Zhao
- Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Akiyama M, Ohtsuki S, Berry GJ, Liang DH, Goronzy JJ, Weyand CM. Innate and Adaptive Immunity in Giant Cell Arteritis. Front Immunol 2021; 11:621098. [PMID: 33717054 PMCID: PMC7947610 DOI: 10.3389/fimmu.2020.621098] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Autoimmune diseases can afflict every organ system, including blood vessels that are critically important for host survival. The most frequent autoimmune vasculitis is giant cell arteritis (GCA), which causes aggressive wall inflammation in medium and large arteries and results in vaso-occlusive wall remodeling. GCA shares with other autoimmune diseases that it occurs in genetically predisposed individuals, that females are at higher risk, and that environmental triggers are suspected to beget the loss of immunological tolerance. GCA has features that distinguish it from other autoimmune diseases and predict the need for tailored diagnostic and therapeutic approaches. At the core of GCA pathology are CD4+ T cells that gain access to the protected tissue niche of the vessel wall, differentiate into cytokine producers, attain tissue residency, and enforce macrophages differentiation into tissue-destructive effector cells. Several signaling pathways have been implicated in initiating and sustaining pathogenic CD4+ T cell function, including the NOTCH1-Jagged1 pathway, the CD28 co-stimulatory pathway, the PD-1/PD-L1 co-inhibitory pathway, and the JAK/STAT signaling pathway. Inadequacy of mechanisms that normally dampen immune responses, such as defective expression of the PD-L1 ligand and malfunction of immunosuppressive CD8+ T regulatory cells are a common theme in GCA immunopathology. Recent studies are providing a string of novel mechanisms that will permit more precise pathogenic modeling and therapeutic targeting in GCA and will fundamentally inform how abnormal immune responses in blood vessels lead to disease.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shozo Ohtsuki
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - David H Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
32
|
Yegorov YE, Poznyak AV, Nikiforov NG, Starodubova AV, Orekhov AN. Role of Telomeres Shortening in Atherogenesis: An Overview. Cells 2021; 10:395. [PMID: 33671887 PMCID: PMC7918954 DOI: 10.3390/cells10020395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
It is known that the shortening of the telomeres leads to cell senescence, accompanied by acquiring of pro-inflammatory phenotype. The expression of telomerase can elongate telomeres and resist the onset of senescence. The initiation of atherosclerosis is believed to be associated with local senescence of the endothelial cells of the arteries in places with either low or multidirectional oscillatory wall shear stress. The process of regeneration of the artery surface that has begun does not lead to success for several reasons. Atherosclerotic plaques are formed, which, when developed, lead to fatal consequences, which are the leading causes of death in the modern world. The pronounced age dependence of the manifestations of atherosclerosis pushes scientists to try to link the development of atherosclerosis with telomere length. The study of the role of telomere shortening in atherosclerosis is mainly limited to measuring the telomeres of blood cells, and only in rare cases (surgery or post-mortem examination) are the telomeres of local cells available for measurement. The review discusses the basic issues of cellular aging and the interpretation of telomere measurement data in atherosclerosis, as well as the prospects for the prevention and possible treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow 121552, Russia
- Institute of Gene Biology, Center of Collective Usage, Moscow 119334, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow 109240, Russia;
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- Institute of Human Morphology, Moscow 117418, Russia
| |
Collapse
|
33
|
Bertero E, Dudek J, Cochain C, Delgobo M, Ramos G, Gerull B, Higuchi T, Vaeth M, Zernecke A, Frantz S, Hofmann U, Maack C. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res 2021; 118:37-52. [PMID: 33537710 DOI: 10.1093/cvr/cvab036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between the cardiovascular system, metabolism, and inflammation plays a central role in the pathophysiology of a wide spectrum of cardiovascular diseases, including heart failure. Here, we provide an overview of the fundamental aspects of the interrelation between inflammation and metabolism, ranging from the role of metabolism in immune cell function to the processes how inflammation modulates systemic and cardiac metabolism. Furthermore, we discuss how disruption of this immuno-metabolic interface is involved in the development and progression of cardiovascular disease, with a special focus on heart failure. Finally, we present new technologies and therapeutic approaches that have recently emerged and hold promise for the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Murilo Delgobo
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Gustavo Ramos
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I, University Hospital Würzburg, Germany.,Department of Cardiovascular Genetics, CHFC, University Hospital Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| |
Collapse
|
34
|
Badimon L, Vilahur G, Rocca B, Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc Res 2021; 117:2001-2015. [PMID: 33484117 DOI: 10.1093/cvr/cvab003] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid is one of the most abundant and ubiquitous ω-6 polyunsaturated fatty acid, present in esterified form in the membrane phospholipids of all mammalian cells and released from phospholipids by several phospholipases in response to various activating or inhibitory stimuli. Arachidonic acid is the precursor of a large number of enzymatically and non-enzymatically derived, biologically active autacoids, including prostaglandins (PGs), thromboxane (TX) A2, leukotrienes, and epoxyeicosatetraenoic acids (collectively called eicosanoids), endocannabinoids and isoprostanes, respectively. Eicosanoids are local modulators of the physiological functions and pathophysiological roles of blood vessels and platelets. For example, the importance of cyclooxygenase (COX)-1-derived TXA2 from activated platelets in contributing to primary haemostasis and atherothrombosis is demonstrated in animal and human models by the bleeding complications and cardioprotective effects associated with low-dose aspirin, a selective inhibitor of platelet COX-1. The relevance of vascular COX-2-derived prostacyclin (PGI2) in endothelial thromboresistance and atheroprotection is clearly shown by animal and human models and by the adverse cardiovascular effects exerted by COX-2 inhibitors in humans. A vast array of arachidonic acid-transforming enzymes, downstream synthases and isomerases, transmembrane receptors, and specificity in their tissue expression make arachidonic acid metabolism a fine-tuning system of vascular health and disease. Its pharmacological regulation is central in human cardiovascular diseases, as demonstrated by biochemical measurements and intervention trials.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Bianca Rocca
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| | - Carlo Patrono
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| |
Collapse
|
35
|
Abdellatif M, Zirlik A. Immunometabolism: a key target to improve microcirculation in ageing. Cardiovasc Res 2020; 116:e48-e50. [PMID: 32219374 DOI: 10.1093/cvr/cvaa060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Andreas Zirlik
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| |
Collapse
|
36
|
Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T, Isenovic ER. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol 2020; 11:551758. [PMID: 33117340 PMCID: PMC7549398 DOI: 10.3389/fimmu.2020.551758] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the leading global health concern and responsible for more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic inflammatory disease in the arterial wall, which underpins several types of cardiovascular disease. It has emerged that a strong relationship exists between alterations in amino acid (AA) metabolism and the development of atherosclerosis. Recent studies have reported positive correlations between levels of branched-chain amino acids (BCAAs) such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk. Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic strategy for specific individuals at risk of coronary events. The metabolism of AAs, such as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can improve atherosclerosis by endothelium remodeling. Available data also suggest that the regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and 2 are mediated through various immunological signals and that immunosuppressive AA metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further clinical studies and basic studies that make use of animal models are required. Here we review recent data examining links between AA metabolism and the development of atherosclerosis.
Collapse
Affiliation(s)
- Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena N. Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Faculty of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Belgrade, Serbia
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olaa Motwalli
- College of Computing and Informatics, Saudi Electronic University (SEU), Medina, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Macrophage Immunometabolism and Inflammaging: Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. ACTA ACUST UNITED AC 2020; 2:e200026. [PMID: 32774895 PMCID: PMC7409778 DOI: 10.20900/immunometab20200026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that involves dysfunction on multiple levels, all of which seem to converge on inflammation. Macrophages are intimately involved in initiating and resolving inflammation, and their dysregulation with age is a primary contributor to inflammaging—a state of chronic, low-grade inflammation that develops during aging. Among the age-related changes that occur to macrophages are a heightened state of basal inflammation and diminished or hyperactive inflammatory responses, which seem to be driven by metabolic-dependent epigenetic changes. In this review article we provide a brief overview of mitochondrial functions and age-related changes that occur to macrophages, with an emphasis on how the inflammaging environment, senescence, and NAD decline can affect their metabolism, promote dysregulation, and contribute to inflammaging and age-related pathologies.
Collapse
|
38
|
Caligiuri G, Norata GD. Fuel for thought: immunometabolism is a paradigm shift in understanding immunity in cardiovascular disease. Cardiovasc Res 2020; 115:1383-1384. [PMID: 31199480 DOI: 10.1093/cvr/cvz155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Giuseppina Caligiuri
- Cardiovascular Immunobiology, Université de Paris and UMRS1148, INSERM, Paris, France.,Cardiology, and Physiology Departments, AP-HP, University Hospital Xavier Bichat, 46 rue Henri HUCHARD, Paris, France
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di via Balzaretti 9, Milano, Milan, Italy.,Center for the Study of Atherosclerosis, E. Bassini Hospital, via Gorki 50, Cinisello Balsamo, Milan, Italy
| |
Collapse
|
39
|
Sohrabi Y, Sonntag GVH, Braun LC, Lagache SMM, Liebmann M, Klotz L, Godfrey R, Kahles F, Waltenberger J, Findeisen HM. LXR Activation Induces a Proinflammatory Trained Innate Immunity-Phenotype in Human Monocytes. Front Immunol 2020; 11:353. [PMID: 32210962 PMCID: PMC7077358 DOI: 10.3389/fimmu.2020.00353] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/13/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives The concept of trained innate immunity describes a long-term proinflammatory memory in innate immune cells. Trained innate immunity is regulated through reprogramming of cellular metabolic pathways including cholesterol and fatty acid synthesis. Here, we have analyzed the role of Liver X Receptor (LXR), a key regulator of cholesterol and fatty acid homeostasis, in trained innate immunity. Methods and Results Human monocytes were isolated and incubated with different stimuli for 24 h, including LXR agonists, antagonists and Bacillus Calmette-Guerin (BCG) vaccine. After 5 days resting time, cells were restimulated with the TLR2-agonist Pam3cys. LXR activation did not only increase BCG trained immunity, but also induced a long-term inflammatory activation by itself. This inflammatory activation by LXR agonists was accompanied by characteristic features of trained innate immunity, such as activating histone marks on inflammatory gene promoters and metabolic reprogramming with increased lactate production and decreased oxygen consumption rate. Mechanistically, LXR priming increased cellular acetyl-CoA levels and was dependent on the activation of the mevalonate pathway and IL-1β signaling. In contrast to mevalonate pathway inhibition, blocking fatty acid synthesis further increased proinflammatory priming by LXR. Conclusion We demonstrate that LXR activation induces a proinflammatory trained immunity phenotype in human monocytes through epigenetic and metabolic reprogramming. Our data reveal important novel aspects of LXR signaling in innate immunity.
Collapse
Affiliation(s)
- Yahya Sohrabi
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Glenn V H Sonntag
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Laura C Braun
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Sina M M Lagache
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Marie Liebmann
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luisa Klotz
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Rinesh Godfrey
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Florian Kahles
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Johannes Waltenberger
- Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Hannes M Findeisen
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| |
Collapse
|
40
|
Zhong C, Yang X, Feng Y, Yu J. Trained Immunity: An Underlying Driver of Inflammatory Atherosclerosis. Front Immunol 2020; 11:284. [PMID: 32153588 PMCID: PMC7046758 DOI: 10.3389/fimmu.2020.00284] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/04/2020] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of the arterial wall, is among the leading causes of morbidity and mortality worldwide. The persistence of low-grade vascular inflammation has been considered to fuel the development of atherosclerosis. However, fundamental mechanistic understanding of the establishment of non-resolving low-grade inflammation is lacking, and a large number of atherosclerosis-related cardiovascular complications cannot be prevented by current therapeutic regimens. Trained immunity is an emerging new concept describing a prolonged hyperactivation of the innate immune system after exposure to certain stimuli, leading to an augmented immune response to a secondary stimulus. While it exerts beneficial effects for host defense against invading pathogens, uncontrolled persistent innate immune activation causes chronic inflammatory diseases. In light of the above, the long-term over-activation of the innate immune system conferred by trained immunity has been recently hypothesized to serve as a link between non-resolving vascular inflammation and atherosclerosis. Here, we provide an overview of current knowledge on trained immunity triggered by various exogenous and endogenous inducers, with particular emphasis on its pro-atherogenic effects and the underlying intracellular mechanisms that act at both the cellular level and systems level. We also discuss how trained immunity could be mechanistically linked to atherosclerosis from both preclinical and clinical perspectives. This review details the mechanisms underlying the induction of trained immunity by different stimuli, and highlights that the intracellular training programs can be different, though partly overlapping, depending on the stimulus and the biological system. Thus, clinical investigation of risk factor specific innate immune memory is necessary for future use of trained immunity-based therapy in atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Center for Translational Medicine, School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yulin Feng
- National Pharmaceutical Engineering Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jun Yu
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
41
|
Matarese G, Norata GD. Hormonal control of trained immunity: aldosterone at the crossroad between activation of innate immunity and cardiovascular diseases. Cardiovasc Res 2020; 116:256-257. [PMID: 31346597 DOI: 10.1093/cvr/cvz191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II" and Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli 80131, Italy
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy.,SISA Centre for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo 20092, Italy
| |
Collapse
|
42
|
Chistiakov DA, Kashirskikh DA, Khotina VA, Grechko AV, Orekhov AN. Immune-Inflammatory Responses in Atherosclerosis: The Role of Myeloid Cells. J Clin Med 2019; 8:jcm8111798. [PMID: 31717832 PMCID: PMC6912749 DOI: 10.3390/jcm8111798] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 01/28/2023] Open
Abstract
Inflammation plays a key role in the initiation and progression of atherosclerosis and can be caused by multiple agents, including increased concentration of circulating low-density lipoprotein (LDL) cholesterol. Areas of the arterial wall affected by atherosclerosis are enriched with lymphocytes and dendritic cells (DCs). Atherosclerotic plaques contain a variety of proinflammatory immune cells, such as macrophages, DCs, T cells, natural killer cells, neutrophils and others. Intracellular lipid accumulation in atherosclerotic plaque leads to formation of so-called foam cells, the cytoplasm of which is filled with lipid droplets. According to current understanding, these cells can also derive from the immune cells that engulf lipids by means of phagocytosis. Macrophages play a crucial role in the initial stages of atherogenesis by engulfing oxidized LDL (oxLDL) in the intima that leads to their transformation to foam cells. Dying macrophages inside the plaque form a necrotic core that further aggravates the lesion. Proinflammatory DCs prime differentiation of naïve T cells to proinflammatory Th1 and Th17 subsets. In this review, we discuss the roles of cell types of myeloid origin in atherosclerosis-associated inflammation.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (D.A.C.); (D.A.K.); (V.A.K.)
| | - Dmitry A. Kashirskikh
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (D.A.C.); (D.A.K.); (V.A.K.)
| | - Victoriya A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (D.A.C.); (D.A.K.); (V.A.K.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 109240 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (D.A.C.); (D.A.K.); (V.A.K.)
- Institute of Human Morphology, Tsyrupa st. 3, 117418 Moscow, Russia
- Correspondence: ; Tel.: +7-903-169-08-66
| |
Collapse
|
43
|
Chan MM, Yang X, Wang H, Saaoud F, Sun Y, Fong D. The Microbial Metabolite Trimethylamine N-Oxide Links Vascular Dysfunctions and the Autoimmune Disease Rheumatoid Arthritis. Nutrients 2019; 11:E1821. [PMID: 31394758 PMCID: PMC6723051 DOI: 10.3390/nu11081821] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Diet and microbiota each have a direct impact on many chronic, inflammatory, and metabolic diseases. As the field develops, a new perspective is emerging. The effects of diet may depend on the microbiota composition of the intestine. A diet that is rich in choline, red meat, dairy, or egg may promote the growth, or change the composition, of microbial species. The microbiota, in turn, may produce metabolites that increase the risk of cardiovascular disease. This article reviews our current understanding of the effects of the molecule trimethylamine-N-oxide (TMAO) obtained from food or produced by the microbiota. We review the mechanisms of actions of TMAO, and studies that associate it with cardiovascular and chronic kidney diseases. We introduce a novel concept: TMAO is one among a group of selective uremic toxins that may rise to high levels in the circulation or accumulate in various organs. Based on this information, we evaluate how TMAO may harm, by exacerbating inflammation, or may protect, by attenuating amyloid formation, in autoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Marion M Chan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - Xiaofeng Yang
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dunne Fong
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|