1
|
Zhang Y, Zhong L, Zhan J, Yin Z, Pei Y, Cao D, Liu QS, Zhou Q, Liu Q, Jiang G. Unraveling Potential Causative Components for the Deleterious Effect of Atmospheric Fine Particulate Matter on Red Blood Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21954-21965. [PMID: 39601440 DOI: 10.1021/acs.est.4c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) poses threats to the cardiovascular system. Red blood cells (RBCs) are the most abundant cells in blood, which are actively involved in multiple hematological diseases, such as blood clot formation and thrombosis. Exploring how PM2.5 with spatiotemporal heterogeneity influences the hematological system by targeting RBCs would help gain insights into the deleterious effects of PM2.5 and provide clues for finding the causative components therein. Herein, the PM2.5 samples collected from 3 urban sites in Beijing (i.e., Chaoyang, Shunyi, and Yanqing districts) during 4 seasons of 2022 were studied for their toxicities to mouse RBCs, and the main contributing components were further explored through chemical analysis and correlation measure. The results showed that exposure to PM2.5 samples decreased adenosine triphosphate (ATP) levels and increased phosphatidylserine (PS) externalization of RBCs, causing cell morphological deformity. The Pearson correlation analysis showed that the aromaticity of the dissolved organic matter (DOM) in PM2.5 samples was positively correlated with PS exposure of RBCs, showing that the lignin-like compounds were the potential contributors. The negative correlation of zeta potentials of PM2.5 samples with PS exposure of RBCs showed the particle-derived bioactivities of this airborne pollutant. The simulative test based on artificial nanomaterials of carbon black (CB) and oxidized CB (OCB) confirmed the crucial role of particulate carbon in PM2.5-induced effects on RBCs, and soot with a certain oxidation degree was, thus, recognized as another contributor, given its ubiquitous existence in PM2.5 samples. This study, for the first time, revealed PM2.5-induced PS exposure of RBCs, and the causative components of DOM and soot were unraveled. Considering the inevitable contact of airborne PM2.5 with RBCs in the blood circulatory system, the findings obtained herein would help bridge the gap between PM2.5 exposure and the risk of cardiovascular diseases, like thrombogenesis.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laijin Zhong
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jing Zhan
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zhipeng Yin
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Tengbom J, Humoud R, Kontidou E, Jiao T, Yang J, Hedin U, Zhou Z, Jurga J, Collado A, Mahdi A, Pernow J. Red blood cells from patients with ST-elevation myocardial infarction and elevated C-reactive protein levels induce endothelial dysfunction. Am J Physiol Heart Circ Physiol 2024; 327:H1431-H1441. [PMID: 39392478 DOI: 10.1152/ajpheart.00443.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Endothelial dysfunction is an early consequence of vascular inflammation and a driver of coronary atherosclerotic disease leading to myocardial infarction. The red blood cells (RBCs) mediate endothelial dysfunction in patients at cardiovascular risk, but their role in patients with acute myocardial infarction is unknown. This study aimed to investigate if RBCs from patients with ST-elevation myocardial infarction (STEMI) induced endothelial dysfunction and the role of systemic inflammation in this effect. RBCs from patients with STEMI and aged-matched healthy controls were coincubated with rat aortic segments for 18 h followed by evaluation of endothelium-dependent (EDR) and endothelium-independent relaxation (EIDR). RBCs and aortic segments were also analyzed for arginase and oxidative stress. The patients were divided into groups depending on C-reactive protein (CRP) levels at admission. RBCs from patients with STEMI and CRP levels ≥2 mg/L induced impairment of EDR, but not EIDR, compared with RBCs from STEMI and CRP <2 mg/L and healthy controls. Aortic expression of arginase 1 was increased following incubation with RBCs from patients with STEMI and CRP ≥2, and arginase inhibition prevented the RBC-induced endothelial dysfunction. RBCs from patients with STEMI and CRP ≥2 had increased reactive oxygen species compared with RBCs from patients with CRP <2 and healthy controls. Vascular inhibition of NADPH oxidases and increased dismutation of superoxide improved EDR. RBCs from patients with STEMI and low-grade inflammation induce endothelial dysfunction through a mechanism involving arginase 1 as well as increased RBC and vascular superoxide by NADPH oxidases.NEW & NOTEWORTHY Red blood cells from patients with STEMI and systemic inflammation induce endothelial dysfunction ex vivo. The RBC-induced endothelial dysfunction is mediated through increased arginase 1 and a shift in the redox balance toward oxidative stress. Inhibition of arginase or free radicals attenuates the impairment of endothelial function. The study suggests that red blood cells deserve attention as a key player in systemic inflammation and STEMI.
Collapse
Affiliation(s)
- John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rawan Humoud
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tong Jiao
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ulf Hedin
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Juliane Jurga
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Kim EH, Baek SM, Choi S, Cho J, Tahmasebi S, Bae ON. Promoted coagulant activity and disrupted blood-brain barrier depending on phosphatidylserine externalization of red blood cells exposed to ZnO nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124921. [PMID: 39265764 DOI: 10.1016/j.envpol.2024.124921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials mainly produced and used worldwide. They translocate to circulatory systems from various exposure routes. While blood and endothelial cells are persistently exposed to circulating ZnO-NPs, the potential risks posed by ZnO-NPs to the cardiovascular system are largely unknown. Our study identified the potential risk of thrombosis and disturbance of the blood-brain barrier (BBB) by coagulant activity on red blood cells (RBCs) caused by ZnO-NPs. ZnO-NPs promoted the externalization of phosphatidylserine and the generation of microvesicles through an imbalance of intracellular mechanisms regulating procoagulant activity in human RBCs. The coagulation cascade leading to thrombin generation was promoted in ZnO-NPs-treated human RBCs. Combined with human RBCs, ZnO-NPs caused coagulant activity on isolated rat RBCs and rat venous thrombosis models. We identified the erythrophagocytosis of RBCs into brain endothelial cells via increased PS exposure induced by ZnO-NPs. Excessive erythrophagocytosis contributes to disrupting the BBB function of endothelial cells. ZnO-NPs increased the procoagulant activity of RBCs, causing venous thrombosis. Excessive erythrophagocytosis through ZnO-NPs-treated RBCs resulted in the dysfunction of BBB. Our study will help elucidate the potential risk ZnO-NPs exert on the cardiovascular system.
Collapse
Affiliation(s)
- Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea; Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Seung Mi Baek
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sungbin Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Junho Cho
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
4
|
Feng J, Huang Y, Huang L, Zhao X, Li X, Xin A, Wang C, Zhang Y, Zhang J. Association between RDW-SD and prognosis across glycemic status in patients with dilated cardiomyopathy. BMJ Open Diabetes Res Care 2024; 12:e004478. [PMID: 39542527 PMCID: PMC11575278 DOI: 10.1136/bmjdrc-2024-004478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/19/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION The prognostic significance of red cell distribution width-SD (RDW-SD) as a promising inflammatory biomarker in individuals with non-ischemic dilated cardiomyopathy (DCM) and varying glycemic status remains unexplored. RESEARCH DESIGN AND METHODS Patients hospitalized for DCM in Fuwai Hospital from 2006 to 2021 were retrospectively included. The primary outcome encompassed all-cause mortality and heart transplantations. The multivariable Cox regression was used to evaluate the association between RDW-SD and outcomes in the overall DCM population, and among patients with normoglycemia (NG), pre-diabetes mellitus (pre-DM) and DM. RESULTS Among 1,102 patients with DCM, the median age was 48 years and 23.5% were women. In the overall DCM cohort, the RDW-SD was independently associated with the primary outcome (adjusted HR 1.29, 95% CI 1.15 to 1.45, p<0.001, per SD increase). When stratifying patients with glycemic status, the RDW-SD exhibited an independent association with outcome in patients with DCM with pre-DM and DM, the adjusted HRs were 1.48 (95% CI 1.21 to 1.79, p<0.001) and 1.30 (95% CI 1.06 to 1.60, p=0.011) per SD increase, respectively. However, in patients with DCM and NG, the prognostic value of RDW-SD was insignificant, with an adjusted HR of 1.20 per SD increase (95% CI: 0.97 to 1.48, p=0.101). CONCLUSIONS RDW-SD was independently associated with the outcome in patients with DCM with pre-DM and DM, suggesting potential individualized therapeutic targets for this subset of patients with DCM.
Collapse
Affiliation(s)
- Jiayu Feng
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Yani Huang
- Department of Epidemiology, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Liyan Huang
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Xuemei Zhao
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Xinqing Li
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Anran Xin
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Chengyi Wang
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Yuhui Zhang
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Jian Zhang
- Heart Failure Center, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Beijing, China
| |
Collapse
|
5
|
Kontidou E, Humoud R, Chernogubova E, Alvarsson M, Maegdefessel L, Collado A, Pernow J, Zhou Z. Red blood cells as potential materials for microRNA biomarker study: overcoming heparin-related challenges. Am J Physiol Heart Circ Physiol 2024; 327:H1296-H1302. [PMID: 39422364 DOI: 10.1152/ajpheart.00609.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
microRNAs (miRNAs) have been intensively studied as valuable biomarkers in cardiometabolic disease. Typically, miRNAs are detected in plasma or serum, but the use of samples collected in heparinized tubes is problematic for miRNA studies using quantitative PCR (qPCR). Heparin and its derivatives interfere with qPCR-based analysis, leading to a substantial reduction or even complete loss of detectable miRNA levels. Given that red blood cells (RBCs) express abundant miRNAs, whose expression is altered in cardiometabolic disease, RBCs could serve as an attractive alternative in biomarker studies. Here, we aim to explore the stability of miRNAs in RBCs collected from whole blood with different anticoagulants and thereby the potential of RBCs as alternative materials for miRNA biomarker studies. miRNA profiling was performed in human RBCs via RNA sequencing, followed by qPCR validation of selected miRNAs in RBCs and plasma in both heparinized and EDTA tubes. RNA sequencing revealed abundant miRNA presence in RBCs isolated from blood collected in EDTA tubes. miR-210-3p, miR-21-5p, miR-16-5p, and miR-451a were detected at comparable levels in RBCs isolated from both heparinized and EDTA tubes but not in plasma from heparinized tubes. Of note, miR-210-3p levels were consistently lower in RBCs from individuals with type 2 diabetes compared with healthy controls, regardless of anticoagulant type, supporting their potential as biomarker materials. In conclusion, RBCs offer a promising alternative for miRNA biomarker studies, overcoming heparin-related challenges.NEW & NOTEWORTHY microRNAs are valuable biomarkers in cardiometabolic disease, but heparinized tubes hinder their detection because of qPCR interference. RBCs, which express abundant microRNAs like miR-210-3p, may serve as an alternative. microRNAs, including miR-210-3p, are consistently detectable in RBCs at comparable levels between heparinized and EDTA tubes. miR-210-3p levels in RBCs are similarly reduced in heparinized tubes of patients with type 2 diabetes. Thus, RBCs offer a promising solution for miRNA biomarker studies, overcoming heparin-related challenges.
Collapse
Affiliation(s)
- Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Rawan Humoud
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Chernogubova
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Michael Alvarsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Health Care Services Stockholm County, Stockholm, Sweden
| | - Lars Maegdefessel
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department for Vascular and Endovascular Surgery, Technical University of Munich, Munich, Germany
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Pernow J, Yang J. Red blood cells: a new target to prevent cardiovascular disease? Eur Heart J 2024; 45:4249-4251. [PMID: 39258963 DOI: 10.1093/eurheartj/ehae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Affiliation(s)
- John Pernow
- Department of Medicine, Division of Cardiology, Karolinska Inistitutet, 171 76 Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jiangning Yang
- Department of Medicine, Division of Cardiology, Karolinska Inistitutet, 171 76 Stockholm, Sweden
| |
Collapse
|
7
|
López-Yerena A, Muñoz-García N, de Santisteban Villaplana V, Padro T, Badimon L. Effect of Moderate Beer Intake on the Lipid Composition of Human Red Blood Cell Membranes. Nutrients 2024; 16:3541. [PMID: 39458535 PMCID: PMC11510343 DOI: 10.3390/nu16203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Growing evidence suggests that erythrocyte membrane lipids are subject to changes during their lifespan. Factors such as the type of dietary intake and its composition contribute to the changes in red blood cell (RBC) membranes. Due to the high antioxidant content of beer, we aimed to investigate the effect of moderate beer consumption on the lipid composition of RBCs membranes from healthy overweight individuals. Methods: We conducted a four-weeks, prospective two-arm longitudinal crossed-over study, where participants (n = 36) were randomly assigned to alcohol-free beer group or traditional beer group. The lipids of RBCs membranes were assessed at the beginning and the end of the intervention by thin-layer chromatography. Results: Four-weeks of alcohol-free beer promoted changes in fatty acids (FA), free cholesterol (FC), phosphatidylethanolamine (PE) and phosphatidylcholine (PC) (p < 0.05). Meanwhile, traditional beer intake led to changes in FA, FC, phospholipids (PL), PE and PC (p < 0.05). The observed alterations in membrane lipids were found to be independent of sex and BMI as influencing factors. Conclusions: The lipid composition of erythrocyte membranes is distinctly but mildly influenced by the consumption of both non-alcoholic and conventional beer, with no effects on RBC membrane fluidity.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
| | - Natalia Muñoz-García
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
| | - Victoria de Santisteban Villaplana
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
- School of Pharmacy and Food Sciences, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Teresa Padro
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
8
|
Ali DS, Sofela SO, Deliorman M, Sukumar P, Abdulhamid MS, Yakubu S, Rooney C, Garrod R, Menachery A, Hijazi R, Saadi H, Qasaimeh MA. OMEF biochip for evaluating red blood cell deformability using dielectrophoresis as a diagnostic tool for type 2 diabetes mellitus. LAB ON A CHIP 2024; 24:2906-2919. [PMID: 38721867 DOI: 10.1039/d3lc01016c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent and debilitating disease with numerous health risks, including cardiovascular diseases, kidney dysfunction, and nerve damage. One important aspect of T2DM is its association with the abnormal morphology of red blood cells (RBCs), which leads to increased blood viscosity and impaired blood flow. Therefore, evaluating the mechanical properties of RBCs is crucial for understanding the role of T2DM in cellular deformability. This provides valuable insights into disease progression and potential diagnostic applications. In this study, we developed an open micro-electro-fluidic (OMEF) biochip technology based on dielectrophoresis (DEP) to assess the deformability of RBCs in T2DM. The biochip facilitates high-throughput single-cell RBC stretching experiments, enabling quantitative measurements of the cell size, strain, stretch factor, and post-stretching relaxation time. Our results confirm the significant impact of T2DM on the deformability of RBCs. Compared to their healthy counterparts, diabetic RBCs exhibit ∼27% increased size and ∼29% reduced stretch factor, suggesting potential biomarkers for monitoring T2DM. The observed dynamic behaviors emphasize the contrast between the mechanical characteristics, where healthy RBCs demonstrate notable elasticity and diabetic RBCs exhibit plastic behavior. These differences highlight the significance of mechanical characteristics in understanding the implications for RBCs in T2DM. With its ∼90% sensitivity and rapid readout (ultimately within a few minutes), the OMEF biochip holds potential as an effective point-of-care diagnostic tool for evaluating the deformability of RBCs in individuals with T2DM and tracking disease progression.
Collapse
Affiliation(s)
- Dima Samer Ali
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
- Department of Mechanical and Aerospace Engineering, New York University, New York, USA
| | - Samuel O Sofela
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
| | - Muhammedin Deliorman
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
| | - Pavithra Sukumar
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
| | - Ma-Sum Abdulhamid
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
| | - Sherifa Yakubu
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
| | - Ciara Rooney
- Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, United Arab Emirates
| | - Ryan Garrod
- Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, United Arab Emirates
| | - Anoop Menachery
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
- The Malta College of Arts, Science & Technology, Paola, Malta
| | - Rabih Hijazi
- Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, United Arab Emirates
| | - Hussein Saadi
- Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, United Arab Emirates
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
- Department of Mechanical and Aerospace Engineering, New York University, New York, USA
- Department of Biomedical Engineering, New York University, New York, USA
| |
Collapse
|
9
|
Liu H, Li J, Wu N, She Y, Luo Y, Huang Y, Quan H, Fu W, Li X, Zeng D, Jia Y. Supplementing Glucose Intake Reverses the Inflammation Induced by a High-Fat Diet by Increasing the Expression of Siglec-E Ligands on Erythrocytes. Inflammation 2024; 47:609-625. [PMID: 38448631 DOI: 10.1007/s10753-023-01932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 03/08/2024]
Abstract
Siglec-9/E is a cell surface receptor expressed on immune cells and can be activated by sialoglycan ligands to play an immunosuppressive role. Our previous study showed that increasing the expression of Siglec-9 (the human paralog of mouse Siglec-E) ligands maintains functionally quiescent immune cells in the bloodstream, but the biological effects of Siglec-9 ligand alteration on atherogenesis were not further explored. In the present study, we demonstrated that the atherosclerosis risk factor ox-LDL or a high-fat diet could decrease the expression of Siglec-9/E ligands on erythrocytes. Increased expression of Siglec-E ligands on erythrocytes caused by dietary supplementation with glucose (20% glucose) had anti-inflammatory effects, and the mechanism was associated with glucose intake. In high-fat diet-fed apoE-/- mice, glucose supplementation decreased the area of atherosclerotic lesions and peripheral inflammation. These data suggested that increased systemic inflammation is attenuated by increasing the expression of Siglec-9/E ligands on erythrocytes. Therefore, Siglec-9/E ligands might be valuable targets for atherosclerosis therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Jin Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Niting Wu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yuanting She
- Department of Haematology, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Yadan Luo
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yan Huang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Hongyu Quan
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Wenying Fu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Dongfeng Zeng
- Department of Haematology, Daping Hospital of Army Medical University, Chongqing, 400042, China.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
11
|
Obeagu EI. Red blood cells as biomarkers and mediators in complications of diabetes mellitus: A review. Medicine (Baltimore) 2024; 103:e37265. [PMID: 38394525 PMCID: PMC11309633 DOI: 10.1097/md.0000000000037265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Red blood cells (RBCs), traditionally recognized for their oxygen transport role, have garnered increasing attention for their significance as crucial contributors to the pathophysiology of diabetes mellitus. In this comprehensive review, we elucidate the multifaceted roles of RBCs as both biomarkers and mediators in diabetes mellitus. Amidst the intricate interplay of altered metabolic pathways and the diabetic milieu, RBCs manifest distinct alterations in their structure, function, and lifespan. The chronic exposure to hyperglycemia induces oxidative stress, leading to modifications in RBC physiology and membrane integrity. These modifications, including glycation of hemoglobin (HbA1c), establish RBCs as invaluable biomarkers for assessing glycemic control over extended periods. Moreover, RBCs serve as mediators in the progression of diabetic complications. Their involvement in vascular dysfunction, hemorheological changes, and inflammatory pathways contributes significantly to diabetic microangiopathy and associated complications. Exploring the therapeutic implications, this review addresses potential interventions targeting RBC abnormalities to ameliorate diabetic complications. In conclusion, comprehending the nuanced roles of RBCs as biomarkers and mediators in diabetes mellitus offers promising avenues for enhanced diagnostic precision, therapeutic interventions, and improved patient outcomes. This review consolidates the current understanding and emphasizes the imperative need for further research to harness the full potential of RBC-related insights in the realm of diabetes mellitus.
Collapse
|
12
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
13
|
Takeda T, Azumi J, Masaki M, Nagasawa T, Shimada Y, Aso H, Nakamura T. Organogermanium, Ge-132, promotes the clearance of senescent red blood cells via macrophage-mediated phagocyte activation. Heliyon 2024; 10:e23296. [PMID: 38163191 PMCID: PMC10754881 DOI: 10.1016/j.heliyon.2023.e23296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Red blood cells (RBCs) are renewed in a cyclic manner. Aging RBCs are captured and degraded by phagocytic cells, and heme metabolic pigments are subsequently excreted in feces. We evaluated the effect of an organogermanium compound on RBC metabolism and found that the phagocytosis of RAW264.7 macrophage-like cells was increased by treatment with 3-(trihydroxygermyl)propanoic acid (THGP). Additionally, consumption of Ge-132 (a dehydrate polymer of THGP) changed the fecal color to bright yellow and increased the erythrocyte metabolic pigment levels and antioxidant activity in feces. These data suggest that Ge-132 may activate macrophages in the body and promote the degradation of aged RBCs. Furthermore, Ge-132 intake promoted not only increases in RBC degradation but also the induction of erythroblast differentiation in bone marrow cells. The normal hematocrit levels were maintained due to the maintenance of homeostasis, even though Ge-132 ingestion increased erythrocyte degradation. Therefore, Ge-132 enhances the degradation of senescent RBCs by macrophages. In turn, RBC production is increased to compensate for the amount of degradation, and RBC metabolism is increased.
Collapse
Affiliation(s)
- Tomoya Takeda
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Junya Azumi
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Mika Masaki
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Takae Nagasawa
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Yasuhiro Shimada
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Hisashi Aso
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki aza, Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Takashi Nakamura
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| |
Collapse
|
14
|
Fomukong HA, Kalu M, Aimola IA, Sallau AB, Bello-Manga H, Gouegni FE, Ameloko JU, Bello ZK, David AU, Baba RS. Single-cell RNA seq analysis of erythroid cells reveals a specific sub-population of stress erythroid progenitors. Hematology 2023; 28:2261802. [PMID: 37791839 DOI: 10.1080/16078454.2023.2261802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND : Erythroid cells play important roles in hemostasis and disease. However, there is still significant knowledge gap regarding stress erythropoiesis. METHODS : Two single-cell RNAseq datasets of erythroid cells on GEO with accession numbers GSE149938 and GSE184916 were obtained. The datasets from two sources, bone marrow and peripheral blood were analyzed using Seurat v4.1.1, and other tools in R. QC metrics were performed, data were normalized and scaled. Principal components that capture the variation of the data were determined. In clustering the cells, KNN graph was constructed and Louvain algorithm was applied to optimize the standard modularity function. Clusters were defined via differential expression of features. RESULTS We identified 9 different cell types, with a particular cluster representing the stress erythroids. The clusters showed differentially expressed genes as observed from the gene signature plot. The stress erythroid cluster differentially expressed some genes including ALAS2, HEMGN, and GUK1. CONCLUSION The erythroid population was found to be heterogeneous, with a distinct sub-cell type constituting the stress erythroids; this may have important implications for our knowledge of steady-state and stress erythropoiesis, and the markers found in this cluster may prove useful for future research into the dynamics of stress erythroid progenitor cell differentiation.
Collapse
Affiliation(s)
- Hanneda A Fomukong
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Mayen Kalu
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Idowu A Aimola
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Abdullahi B Sallau
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | | | - Flore E Gouegni
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Joy U Ameloko
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Zeenat K Bello
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Alfa U David
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Reuben S Baba
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
| |
Collapse
|
15
|
Lu Z, Li Y. New Clues to Cardiovascular Disease: Erythrocyte Lifespan. Aging Dis 2023; 14:2003-2014. [PMID: 37199588 PMCID: PMC10676783 DOI: 10.14336/ad.2023.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023] Open
Abstract
Determination of erythrocyte lifespan is an important part of the diagnosis of hemolytic diseases. Recent studies have revealed alterations in erythrocyte lifespan among patients with various cardiovascular diseases, including atherosclerotic coronary heart disease, hypertension, and heart failure. This review summarizes the progress of research on erythrocyte lifespan in cardiovascular diseases.
Collapse
Affiliation(s)
- Ziyu Lu
- Department of Cardiology, the Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yuanmin Li
- Department of Cardiology, the Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
16
|
Zhang Q, Zhou B, Li X, Cong H. In-hospital changes in the red blood cell distribution width and mortality in critically ill patients with heart failure. ESC Heart Fail 2023; 10:3287-3298. [PMID: 37671738 PMCID: PMC10682898 DOI: 10.1002/ehf2.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/11/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
AIMS A high red blood cell distribution width (RDW) at admission or discharge is associated with a worse prognosis in hospitalized patients with heart failure (HF), and the prognostic value of the in-hospital change in RDW (∆RDW) remains debatable. METHODS AND RESULTS We included 5514 patients with critical illness and HF from the MIMIC-IV database. The ΔRDW was calculated by the RDW at discharge minus that at admission. Clinical outcomes included all-cause mortality at 90 day, 180 day, and 1 year after discharge. The median age of the patients was 73.91 years, and 46.37% were women. Kaplan-Meier curve and Cox regression analyses were used to examine the association between the ΔRDW and all-cause mortality at different time points. A multivariable Cox proportional hazard model showed that the ΔRDW (per 1% increase) was independently associated with all-cause mortality at 90 day, 180 day, and 1 year after adjusting for confounding factors (hazard ratio [HR] = 1.17, 95% confidence interval [CI] = 1.13-1.21, P < 0.001; HR = 1.17, 95% CI = 1.14-1.20, P < 0.001; and HR = 1.18, 95% CI = 1.15-1.20, P < 0.001, respectively). Restricted cubic splines showed a non-linear relationship between the ΔRDW and the risk of clinical outcomes. High ΔRDW was associated with a high risk of mortality at different time points. A subgroup analysis showed that this positive association remained consistent in pre-specified subgroups. CONCLUSIONS Our study suggests that an increased RDW during hospitalization is independently associated with short- or long-term all-cause mortality in critical-ill patients with HF.
Collapse
Affiliation(s)
- Qi Zhang
- Department of CardiologyTianjin Chest HospitalTianjinChina
| | - Bingyang Zhou
- Department of CardiologyTianjin Chest HospitalTianjinChina
| | - Ximing Li
- Department of CardiologyTianjin Chest HospitalTianjinChina
- Tianjin Medical UniversityTianjinChina
- Tianjin UniversityTianjinChina
| | - Hongliang Cong
- Department of CardiologyTianjin Chest HospitalTianjinChina
- Tianjin Medical UniversityTianjinChina
- Tianjin UniversityTianjinChina
| |
Collapse
|
17
|
Ko Y, Kim EH, Kim D, Choi S, Gil J, Park HJ, Shin Y, Kim W, Bae ON. Butylparaben promotes phosphatidylserine exposure and procoagulant activity of human red blood cells via increase of intracellular calcium levels. Food Chem Toxicol 2023; 181:114084. [PMID: 37816477 DOI: 10.1016/j.fct.2023.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
Parabens are widely used as preservatives, added to products commonly used by humans, and to which individuals are exposed orally or dermally. Once absorbed into the body, parabens move into the bloodstream and travel through the systemic circulation. We investigated the potential impact of parabens on the enhanced generation of thrombin by red blood cells (RBCs), which are the principal cellular components of blood. We tested the effects of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP), and p-hydroxybenzoic acid on freshly isolated human RBCs. BuP and simultaneous exposure to BuP and PrP significantly increased phosphatidylserine (PS) externalization to the outer membranes of RBCs. PS externalization by BuP was found to be mediated by increasing intracellular Ca2+ levels in RBCs. The morphological changes in BuP-treated RBCs were observed under an electron microscope. The BuP-exposed RBCs showed increased thrombin generation and adhesion to endothelial cells. Additionally, the externalization of PS exposure and thrombin generation in BuP-treated RBCs were more susceptible to high shear stress, which mimics blood turbulence under pathological conditions. Collectively, we observed that BuP induced morphological and functional changes in RBCs, especially under high shear stress, suggesting that BuP may contribute to the thrombotic risk via procoagulant activity in RBCs.
Collapse
Affiliation(s)
- Yeonju Ko
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sungbin Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Junkyung Gil
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Yusun Shin
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Wondong Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
18
|
Yin K, Qiao T, Zhang Y, Liu J, Wang Y, Qi F, Deng J, Zhao C, Xu Y, Cao Y. Unraveling shared risk factors for diabetic foot ulcer: a comprehensive Mendelian randomization analysis. BMJ Open Diabetes Res Care 2023; 11:e003523. [PMID: 37989345 PMCID: PMC10660165 DOI: 10.1136/bmjdrc-2023-003523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION Diabetic foot ulcer (DFU) stands as a severe diabetic lower extremity complication, characterized by high amputation rates, mortality, and economic burden. We propose using Mendelian randomization studies to explore shared and distinct risk factors for diabetic lower extremity complications. RESEARCH DESIGN AND METHODS We selected uncorrelated genetic variants associated with 85 phenotypes in five categories at the genome-wide significance level as instrumental variables. Genetic associations with DFU, diabetic polyneuropathy (DPN), and diabetic peripheral artery disease (DPAD) were obtained from the FinnGen and UK Biobank studies. RESULTS Body mass index (BMI) emerged as the only significant risk factor for DPAD, DPN, and DFU, independent of type 2 diabetes, fasting glucose, fasting insulin, and HbA1c. Educational attainment stood out as the sole significant protective factor against DPAD, DPN, and DFU. Glycemic traits below the type 2 diabetes diagnosis threshold showed associations with DPAD and DPN. While smoking history exhibited suggestive associations with DFU, indicators of poor nutrition, particularly total protein, mean corpuscular hemoglobin, and mean corpuscular volume, may also signal potential DFU occurrence. CONCLUSIONS Enhanced glycemic control and foot care are essential for the diabetic population with high BMI, limited education, smoking history, and indicators of poor nutrition. By focusing on these specific risk factors, healthcare interventions can be better tailored to prevent and manage DFU effectively.
Collapse
Affiliation(s)
- Kangli Yin
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Peripheral Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Tianci Qiao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongkang Zhang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Peripheral Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Jiarui Liu
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Peripheral Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Yuzhen Wang
- Second Department of Vascular Anomalies Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Fei Qi
- Second Department of Vascular Anomalies Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Junlin Deng
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Peripheral Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Cheng Zhao
- Second Department of Vascular Anomalies Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Yongcheng Xu
- Second Department of Vascular Anomalies Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Yemin Cao
- Diagnosis and Treatment Center of Peripheral Vascular Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Yan Q, Wei J, Song J, Li M, Guan X, Song J. Study on the Properties and Synergistic Antioxidant Effects of Novel Bifunctional Fusion Proteins Expressed Using the UTuT6 System. Antioxidants (Basel) 2023; 12:1766. [PMID: 37760069 PMCID: PMC10526088 DOI: 10.3390/antiox12091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Important antioxidant enzymes, glutathione peroxidase (GPx) and superoxide dismutase (SOD), are involved in maintaining redox balance. They can protect each other and result in more efficiently removing excessive reactive oxygen species (ROS), protecting cells against injury, and maintaining the normal metabolism of ROS. In this study, human cytosolic GPx (hGPx1) and human phospholipid hydroperoxide GPx (hGPx4) genes were integrated into the same open reading frame with human extracellular SOD active site (SOD3-72P) genes, respectively, and several novel fusion proteins were obtained by using the UTuT6 expression system for the first time. Among them, Se-hGPx1UAG-L4-SOD3-72P is the bifunctional fusion protein with the highest GPx activity and the best anti-hydrogen peroxide inactivation ability thus far. The Se-hGPx4UAG-L3-SOD3-72P fusion protein exhibits the strongest alkali and high temperature resistance and a greater protective effect against lipoprotein peroxidation damage. Se-hGPx1UAG-L4-SOD3-72P and Se-hGPx4UAG-L3-SOD3-72P fusion proteins both have good synergistic and antioxidant abilities in H2O2-induced RBCs and liver damage models. We believe that this research will help with the development of novel bifunctional fusion proteins and the investigation of the synergistic and catalytic mechanisms of GPx and SOD, which are important in creating novel protein therapeutics.
Collapse
Affiliation(s)
- Qi Yan
- College of Pharmaceutical Science, Jilin University, Changchun 130021, China; (Q.Y.)
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun 130021, China; (Q.Y.)
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130000, China
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Junxia Song
- College of Pharmaceutical Science, Jilin University, Changchun 130021, China; (Q.Y.)
| | - Mengna Li
- College of Pharmaceutical Science, Jilin University, Changchun 130021, China; (Q.Y.)
| | - Xin Guan
- College of Pharmaceutical Science, Jilin University, Changchun 130021, China; (Q.Y.)
| | - Jian Song
- School of Microelectronics, Shanghai University, Shanghai 201800, China
| |
Collapse
|
20
|
Leo JA, Sabapathy S, Kuck L, Simmonds MJ. Modulation of red blood cell nitric oxide synthase phosphorylation in the quiescent and exercising human forearm. Am J Physiol Regul Integr Comp Physiol 2023; 325:R260-R268. [PMID: 37424398 DOI: 10.1152/ajpregu.00017.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
In vitro investigations demonstrate that human erythrocytes synthesize nitric oxide via a functional isoform of endothelial nitric oxide synthase (NOS) (RBC-NOS). We tested the hypothesis that phosphorylation of RBC-NOS at serine residue 1177 (RBC-NOS1177) would be amplified in blood draining-active skeletal muscle. Furthermore, given hypoxemia modulates local blood flow and thus shear stress, and nitric oxide availability, we performed duplicate experiments under normoxia and hypoxia. Nine healthy volunteers performed rhythmic handgrip exercise at 60% of individualized maximal workload for 3.5 min while breathing room air (normoxia) and after being titrated to an arterial oxygen saturation ≈80% (hypoxemia). We measured brachial artery blood flow by high-resolution duplex ultrasound, while continuously monitoring vascular conductance and mean arterial pressure using finger photoplethysmography. Blood was sampled during the final 30 s of each stage from an indwelling cannula. Blood viscosity was measured to facilitate calculation of accurate shear stresses. Erythrocytes were assessed for levels of phosphorylated RBC-NOS1177 and cellular deformability from blood collected at rest and during exercise. Forearm exercise increased blood flow, vascular conductance, and vascular shear stress, which coincided with a 2.7 ± 0.6-fold increase in RBC-NOS1177 phosphorylation (P < 0.0001) and increased cellular deformability (P < 0.0001) under normoxia. When compared with normoxia, hypoxemia elevated vascular conductance and shear stress (P < 0.05) at rest, while cellular deformability (P < 0.01) and RBC-NOS1177 phosphorylation (P < 0.01) increased. Hypoxemic exercise elicited further increases in vascular conductance, shear stress, and cell deformability (P < 0.0001), although a subject-specific response in RBC-NOS1177 phosphorylation was observed. Our data yield novel insights into the manner that hemodynamic force and oxygen tension modulate RBC-NOS in vivo.
Collapse
Affiliation(s)
- Jeffrey A Leo
- Exercise and Sport, School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
| | - Surendran Sabapathy
- Exercise and Sport, School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
| | - Lennart Kuck
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
21
|
Charostad J, Rezaei Zadeh Rukerd M, Shahrokhi A, Aghda FA, ghelmani Y, Pourzand P, Pourshaikhali S, Dabiri S, dehghani A, Astani A, Nakhaie M, Kakavand E. Evaluation of hematological parameters alterations in different waves of COVID-19 pandemic: A cross-sectional study. PLoS One 2023; 18:e0290242. [PMID: 37624800 PMCID: PMC10456189 DOI: 10.1371/journal.pone.0290242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The occurrence of variations in routine hematological parameters is closely associated with disease progression, the development of severe illness, and the mortality rate among COVID-19 patients. This study aimed to investigate hematological parameters in COVID-19 hospitalized patients from the 1st to the 5th waves of the current pandemic. METHODS This cross-sectional study included a total of 1501 hospitalized patients with laboratory-confirmed COVID-19 based on WHO criteria, who were admitted to Shahid Sadoughi Hospital (SSH) in Yazd, Iran, from February 2020 to September 2021. Throughout, we encountered five COVID-19 surge waves. In each wave, we randomly selected approximately 300 patients and categorized them based on infection severity during their hospitalization, including partial recovery, full recovery, and death. Finally, hematological parameters were compared based on age, gender, pandemic waves, and outcomes using the Mann-Whitney U and Kruskal-Wallis tests. RESULTS The mean age of patients (n = 1501) was 61.1±21.88, with 816 (54.3%) of them being men. The highest mortality in this study was related to the third wave of COVID-19 with 21.3%. There was a significant difference in all of the hematological parameters, except PDW, PLT, and RDW-CV, among pandemic waves of COVID-19 in our population. The highest rise in the levels of MCV and RDW-CV occurred in the 1st wave, in the 2nd wave for lymphocyte count, MCHC, PLT count, and RDW-SD, in the 3rd wave for WBC, RBC, neutrophil count, MCH, and PDW, and in the 4th wave for Hb, Hct, and ESR (p < 0.01). The median level of Hct, Hb, RBC, and ESR parameters were significantly higher, while the mean level of lymphocyte and were lower in men than in women (p < 0.001). Also, the mean neutrophil in deceased patients significantly was higher than in those with full recovered or partial recovery (p < 0.001). CONCLUSION The findings of our study unveiled notable variations in hematological parameters across different pandemic waves, gender, and clinical outcomes. These findings indicate that the behavior of different strains of the COVID-19 may differ across various stages of the pandemic.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Shahrokhi
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Faezeh Afkhami Aghda
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaser ghelmani
- Department of Internal Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Clinical Research Development Center of Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Pouria Pourzand
- Department of Emergency Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Pourshaikhali
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam dehghani
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Kakavand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Papapetropoulos A, Lefer DJ. sGC Stimulation Saves the Diabetic Heart: Red Blood Cells to the Rescue. JACC Basic Transl Sci 2023; 8:919-921. [PMID: 37719422 PMCID: PMC10504393 DOI: 10.1016/j.jacbts.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Affiliation(s)
- Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - David J. Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
23
|
Jiao T, Collado A, Mahdi A, Tengbom J, Tratsiakovich Y, Milne GT, Alvarsson M, Lundberg JO, Zhou Z, Yang J, Pernow J. Stimulation of Erythrocyte Soluble Guanylyl Cyclase Induces cGMP Export and Cardioprotection in Type 2 Diabetes. JACC Basic Transl Sci 2023; 8:907-918. [PMID: 37719424 PMCID: PMC10504399 DOI: 10.1016/j.jacbts.2023.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 09/19/2023]
Abstract
Reduced nitric oxide (NO) bioactivity in red blood cells (RBCs) is critical for augmented myocardial ischemia-reperfusion injury in type 2 diabetes. This study identified the nature of "NO bioactivity" by stimulating the intracellular NO receptor soluble guanylyl cyclase (sGC) in RBCs. sGC stimulation in RBCs from patients with type 2 diabetes increased export of cyclic guanosine monophosphate from RBCs and activated cardiac protein kinase G, thereby attenuating ischemia-reperfusion injury. These results provide novel insight into RBC signaling by identifying cyclic guanosine monophosphate from RBC as a mediator of protection against cardiac ischemia-reperfusion injury induced by sGC stimulation in RBCs.
Collapse
Affiliation(s)
- Tong Jiao
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aida Collado
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Tengbom
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yahor Tratsiakovich
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Michael Alvarsson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiology, Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev 2023; 60:101075. [PMID: 36963989 PMCID: PMC10027292 DOI: 10.1016/j.blre.2023.101075] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.
Collapse
Affiliation(s)
- Jean M Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK.
| |
Collapse
|
25
|
Liu X, You Z, Luo W, Xiong J, Wang G. Blood cells and hematological parameters of Chiala Mountain Salamander, Batrachuperus karlschmidti (Urodela, Hynobiidae). PeerJ 2023; 11:e15446. [PMID: 37223119 PMCID: PMC10202104 DOI: 10.7717/peerj.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
Hematological parameters are essential indices for assessing the function of blood and reflecting not only the health status of animal but also their physiological adaptation to the environment. Herein, the composition of blood cells and the hematological parameters of wild Batrachuperus karlschmidti were examined for the first time, and the effects of sex, body size, body mass, and age on the hematological parameters were explored. The morphology and morphometric data of the blood cells, as well as the hematological parameters, of B. karlschmidti were slightly differ from those of its congener. However, hematological differences between sexes were only found in erythrocyte and leukocyte count, and mean cell volume (MCV), which possibly reflecting the need for better oxygen distribution and stronger immune protection for reproduction. Hematocrit (Hct) and mean cell hemoglobin (MCH) were strongly dependent on body mass. These also might have been attributed to higher oxygen requirements with larger body masses. This is a pilot project exploring the hematology of this species that may help establish hematological parameters in future for supporting species protection and monitoring studies, as well as help understanding the physiological adaptation of this species.
Collapse
Affiliation(s)
- Xiuying Liu
- School of Resources and Environmental Engineering, Mianyang Normal University, Mianyang, Sichuan, China
| | - Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyanng, Sichuan, China
| | - Wei Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyanng, Sichuan, China
| | - Jianli Xiong
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyanng, Sichuan, China
| | | |
Collapse
|
26
|
Yao H, Lian L, Zheng R, Chen C. Red blood cell distribution width/platelet ratio on admission as a predictor for in-hospital mortality in patients with acute myocardial infarction: a retrospective analysis from MIMIC-IV Database. BMC Anesthesiol 2023; 23:113. [PMID: 37016294 PMCID: PMC10071654 DOI: 10.1186/s12871-023-02071-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Red blood cell distribution width (RDW) to platelet ratio (RPR) is a novel inflammatory indicator. It integrates the risk prediction of RDW and platelet, which is associated with adverse outcomes. However, the predictive power of RPR in mortality for patients with acute myocardial infarction (AMI) remains uncertain. Thus, we aimed to explore the association between RPR and 180-day in-hospital mortality in patients with AMI. METHODS Data on patients with AMI were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Patients were divided into two groups according to the optimal RPR cut-off value. The survival curve between high and low RPR groups was plotted via the Kaplan-Meier (KM) method. Univariate and multivariate Cox regression analyses were performed to determine the association between RPR on admission and 180-day in-hospital mortality. RESULTS A total of 1266 patients were enrolled, of which 83 (6.8%) died within 180 days during the hospitalization. Compared with the survivor group, the non-survivor group had higher RPR on admission (0.11 ± 0.07 vs. 0.08 ± 0.06, P < 0.001). The KM curve indicated that the survival probability of low RPR group was higher than that of high RPR group. Multivariate Cox regression analysis demonstrated that higher RPR on admission was an independent and effective predictor of 180-day mortality in patients with AMI (hazard ratio [HR]: 2.677, 95% confidence interval [CI]: 1.159-6.188, P = 0.021). CONCLUSION Higher RPR was associated with higher in-hospital 180-day mortality in patients with AMI.
Collapse
Affiliation(s)
- Hongxia Yao
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liyou Lian
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rujie Zheng
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
27
|
Diosmin and Bromelain Stimulate Glutathione and Total Thiols Production in Red Blood Cells. Molecules 2023; 28:molecules28052291. [PMID: 36903535 PMCID: PMC10005239 DOI: 10.3390/molecules28052291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Diosmin and bromelain are bioactive compounds of plant origin with proven beneficial effects on the human cardiovascular system. We found that diosmin and bromelain slightly reduced total carbonyls levels and had no effect on TBARS levels, as well as slightly increased the total non-enzymatic antioxidant capacity in the RBCs at concentrations of 30 and 60 µg/mL. Diosmin and bromelain induced a significant increase in total thiols and glutathione in the RBCs. Examining the rheological properties of RBCs, we found that both compounds slightly reduce the internal viscosity of the RBCs. Using the MSL (maleimide spin label), we revealed that higher concentrations of bromelain led to a significant decrease in the mobility of this spin label attached to cytosolic thiols in the RBCs, as well as attached to hemoglobin at a higher concentration of diosmin, and for both concentrations of bromelain. Both compounds tended to decrease the cell membrane fluidity in the subsurface area, but not in the deeper regions. An increase in the glutathione concentration and the total level of thiol compounds promotes the protection of the RBCs against oxidative stress, suggesting that both compounds have a stabilizing effect on the cell membrane and improve the rheological properties of the RBCs.
Collapse
|
28
|
Mahdi A, Wodaje T, Kövamees O, Tengbom J, Zhao A, Jiao T, Henricsson M, Yang J, Zhou Z, Nieminen AI, Levin M, Collado A, Brinck J, Pernow J. The red blood cell as a mediator of endothelial dysfunction in patients with familial hypercholesterolemia and dyslipidemia. J Intern Med 2023; 293:228-245. [PMID: 36324273 PMCID: PMC10092865 DOI: 10.1111/joim.13580] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Patients with familial hypercholesterolemia (FH) display high levels of low-density lipoprotein cholesterol (LDL-c), endothelial dysfunction, and increased risk of premature atherosclerosis. We have previously shown that red blood cells (RBCs) from patients with type 2 diabetes induce endothelial dysfunction through increased arginase 1 and reactive oxygen species (ROS). OBJECTIVE To test the hypothesis that RBCs from patients with FH (FH-RBCs) and elevated LDL-c induce endothelial dysfunction. METHODS AND RESULTS FH-RBCs and LDL-c >5.0 mM induced endothelial dysfunction following 18-h incubation with isolated aortic rings from healthy rats compared to FH-RBCs and LDL-c <2.5 mM or RBCs from healthy subjects (H-RBCs). Inhibition of vascular but not RBC arginase attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. Furthermore, arginase 1 but not arginase 2 was elevated in the vasculature of aortic segments after incubation with FH-RBCs and LDL-c >5.0 mM. A superoxide scavenger, present throughout the 18-h incubation, attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. ROS production was elevated in these RBCs in comparison with H-RBCs. Scavenging of vascular ROS through various antioxidants also attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. This was corroborated by an increase in the lipid peroxidation product 4-hydroxynonenal. Lipidomic analysis of RBC lysates did not reveal any significant changes across the groups. CONCLUSION FH-RBCs induce endothelial dysfunction dependent on LDL-c levels via arginase 1 and ROS-dependent mechanisms.
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tigist Wodaje
- Division of Cardiology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Oskar Kövamees
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tong Jiao
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Malin Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Brinck
- Division of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Wang H, Li H, Wang Y, Zhao C, Tian QW, Wang Q, He GW, Lun LM, Xuan C. Hematological parameters and early-onset coronary artery disease: a retrospective case-control study based on 3366 participants. Ther Adv Chronic Dis 2023; 14:20406223221142670. [PMID: 36699111 PMCID: PMC9869207 DOI: 10.1177/20406223221142670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Thrombosis and inflammation are crucial elements in the pathogenesis of cardiovascular disease. Hematological parameters elucidate information involving the inflammatory and blood coagulation processes. Objectives The current study explored the association of hematological parameters with EOCAD to identify specific risk factors. Design A single-center retrospective case-control study was conducted with 1693 coronary artery disease patients and 1693 controls. Methods Hematological parameters were examined through an automated analyzer. Results The basophil percentage was significantly reduced in EOCAD (0.43 ± 0.26, p < 0.001) and MI (0.33 ± 0.24, p < 0.001) groups compared with controls (0.54 ± 0.28). The eosinophil percentage was also significantly lower in EOCAD (2.21 ± 1.71, p < 0.001) and MI (1.71 ± 2.44, p < 0.001) groups compared with controls (2.41 ± 1.75). The lymphocyte percentage in patients of EOCAD and MI and controls was 31.65 ± 7.93, 25.48 ± 9.43, and 34.82 ± 7.28, respectively. A significant difference was observed among the groups (p < 0.001). Except for the mean corpuscular hemoglobin (MCH), other red blood cell (RBC) parameters significantly differed between EOCAD patients and controls. The red blood cell distribution width (RDW), hematocrit (HCT), RBC count, mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), and hemoglobin level were associated with EOCAD prevalence after adjusting for baseline differences. Platelet volume distribution width (PDW) also correlated with EOCAD prevalence (ORadjust = 1.087, 95% CI: 1.044-1.131). Conclusions Hematological parameters are closely associated with EOCAD. Moreover, leukocyte parameters correlated with the presence and severity of the disease. In addition, erythrocyte parameters were associated with the disease presence but not with the disease severity. Among the platelet parameters, only PDW was related to the disease presence.
Collapse
Affiliation(s)
- Huan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Health Management Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cong Zhao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing-Wu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Li-Min Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutai Mountain Road, Qingdao 266500, China
| |
Collapse
|
30
|
Zhuge Z, McCann Haworth S, Nihlén C, Carvalho LRR, Heuser SK, Kleschyov AL, Nasiell J, Cortese-Krott MM, Weitzberg E, Lundberg JO, Carlström M. Red blood cells from endothelial nitric oxide synthase-deficient mice induce vascular dysfunction involving oxidative stress and endothelial arginase I. Redox Biol 2023; 60:102612. [PMID: 36681048 PMCID: PMC9868875 DOI: 10.1016/j.redox.2023.102612] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND & AIMS Nitric oxide bioactivity (NO) from endothelial NO synthase (eNOS) importantly contributes to the maintenance of vascular homeostasis, and reduced eNOS activity has been associated with cardiovascular disease. Emerging evidence suggests interaction(s) between red blood cells (RBCs) and the endothelium in vascular control; however, the specific role of RBC eNOS is less clear. We aimed to investigate the hypothesis that a lack of RBC eNOS induces endothelial dysfunction. METHODS & RESULTS RBCs from global eNOS knockout (KO) and wildtype (WT) mice were co-incubated ex vivo overnight with healthy mouse aortic rings, followed by functional and mechanistic analyses of endothelium-dependent and independent relaxations. RBCs from eNOS KO mice induced endothelial dysfunction and vascular oxidative stress, whereas WT RBC did not. No differences were observed for endothelium-independent relaxations. This eNOS KO RBC-induced endothelial dysfunctional phenotype was prevented by concomitant co-incubation with reactive oxygen species scavenger (TEMPOL), arginase inhibitor (nor-NOHA), NO donor (detaNONOate) and NADPH oxidase 4 (NOX4) inhibitor. Moreover, vessels from endothelial cell-specific arginase 1 KO mice were resistant to eNOS KO-RBC-induced endothelial dysfunction. Finally, in mice aortae co-incubated with RBCs from women with preeclampsia, we observed a significant reduction in endothelial function compared to when using RBCs from healthy pregnant women or from women with uncomplicated gestational hypertension. CONCLUSIONS RBCs from mice lacking eNOS, and patients with preeclampsia, induce endothelial dysfunction in adjacent blood vessels. Thus, RBC-derived NO bioactivity acts to prevent induction of vascular oxidative stress occurring via RBC NOX4-derived ROS in a vascular arginase-dependent manner. Our data highlight the intrinsic protective role of RBC-derived NO bioactivity in preventing the damaging potential of RBCs. This provides novel insight into the functional relationship between RBCs and the vasculature in health and cardiovascular disease, including preeclampsia.
Collapse
Affiliation(s)
- Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah McCann Haworth
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carina Nihlén
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Sophia K. Heuser
- Myocardial Infarction Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrei L. Kleschyov
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Nasiell
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden,Department of Obstetrics and Gynecology, Danderyd Hospital, Stockholm, Sweden
| | - Miriam M. Cortese-Krott
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Myocardial Infarction Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Wang S, Zhao Y, Yang J, Liu S, Ni W, Bai X, Yang Z, Zhao D, Liu M. Ginseng polysaccharide attenuates red blood cells oxidative stress injury by regulating red blood cells glycolysis and liver gluconeogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115716. [PMID: 36122792 DOI: 10.1016/j.jep.2022.115716] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Mey (PG) is famous for "Qi-tonifying" effect, which has a medicinal history of more than 2 millennia. Modern pharmacology has confirmed that the "Qi-tonifying" effect of PG may be closely related to its pharmacological properties such as anti-oxidation, antineoplastic and treatment of cardiovascular disease. As one of the earliest cells affected by oxidative stress, RBCs are widely used in the diagnosis of diseases. Ginseng polysaccharide (GPS), is one of the major active components of PG, which plays an important role in resisting oxidative stress, affecting energy metabolism and other effects. However, the molecular mechanism explaining the "Qi-tonifying" effect of GPS from the perspective of RBCs oxidative damage has not been reported. AIM OF THE STUDY This study aimed to investigate the protective effect of GPS on oxidatively damaged RBCs using in vitro and in vivo models and explore the molecular mechanisms from the perspective of glycolysis and gluconeogenesis pathways. To provides a theoretical basis for the future research of antioxidant drugs. MATERIALS AND METHODS Established three different in vitro and in vivo research models: an in vitro model of RBCs exposed to hydrogen peroxide (H2O2) (40 mM), an in vivo model of RBCs from rats subjected to exhaustive swimming, and an in vitro model of BRL-3A cells exposed to H2O2 (25 μM). All three models were also tested in the presence of different concentrations of GPS. RESULTS The findings showed that GPS was the most potent antagonist of H2O2-induced hemolysis and redox inbalance in RBCs. In exhaustive exercise rats, GPS ameliorated RBVs hemolysis, including reducing whole-blood viscosity (WBV), improving deformability, oxygen-carrying and -releasing capacities, which was related to the enhancing of antioxidant capacity. Moreover, GPS promoted RBCs glycolysis in rats with exhaustive exercise by recovering the activities of glycolysis-related enzymes and increasing band 3 protein expression, thereby regulating the imbalance of energy metabolism caused by oxidative stress. Furthermore, we demonstrated that GPS improved antioxidant defense system, enhanced energy metabolism, and regulated gluconeogenesis via activating PPAR gamma co-activator 1 alpha (PGC-1α) pathway in H2O2-exposed BRL-3A cells. Mechanistically, GPS promoted glycolysis and protected RBCs from oxidative injury was partly dependent on the regulation of gluconeogenesis, as inhibition of gluconeogenesis by metformin (Met) attenuates the regulation of antioxidant enzymes and key enzymes of glycolytic by GPS in exhaustive exercise rats. CONCLUSION This study demonstrates that GPS protects RBCs from oxidative stress damage by promoting RBCs glycolysis and liver gluconeogenesis pathways. These results may contribute to the study of new RBCs treatments to boost antioxidant capacity and protect RBCs against oxidative stress.
Collapse
Affiliation(s)
- Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Yuchu Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Junjie Yang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Shichao Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Weifeng Ni
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Xueyuan Bai
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Ze Yang
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Meichen Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| |
Collapse
|
32
|
Laurance S, Marin M, Colin Y. Red Blood Cells: A Newly Described Partner in Central Retinal Vein Occlusion Pathophysiology? Int J Mol Sci 2023; 24:ijms24021072. [PMID: 36674586 PMCID: PMC9864680 DOI: 10.3390/ijms24021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Central retinal vein occlusion (CRVO) is a frequent retinal disorder inducing blindness due to the occlusion of the central vein of the retina. The primary cause of the occlusion remains to be identified leading to the lack of treatment. To date, current treatments mainly target the complications of the disease and do not target the primary dysfunctions. CRVO pathophysiology seems to be a multifactorial disorder; several studies did attempt to decipher the cellular and molecular mechanisms underlying the vessel obstruction, but no consensual mechanism has been found. The aim of the current review is to give an overview of CRVO pathophysiology and more precisely the role of the erythroid lineage. The review presents emerging data on red blood cell (RBC) functions besides their role as an oxygen transporter and how disturbance of RBC function could impact the whole vascular system. We also aim to gather new evidence of RBC involvement in CRVO occurrence.
Collapse
|
33
|
Gu F, Wu H, Jin X, Kong C, Zhao W. Association of red cell distribution width with the risk of 3-month readmission in patients with heart failure: A retrospective cohort study. Front Cardiovasc Med 2023; 10:1123905. [PMID: 36960473 PMCID: PMC10028279 DOI: 10.3389/fcvm.2023.1123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Background In recent years, red cell distribution width (RDW) has been found to be associated with the prognosis of patients with heart failure (HF) in Western countries. However, evidence from Asia is limited. We aimed to investigate the relationship between RDW and the risk of 3-month readmission in hospitalized Chinese HF patients. Methods We retrospectively analyzed HF data from the Fourth Hospital of Zigong, Sichuan, China, involving 1,978 patients admitted for HF between December 2016 and June 2019. The independent variable in our study was RDW, and the endpoint was the risk of readmission within 3 months. This study mainly used a multivariable Cox proportional hazards regression analysis. Smoothed curve fitting was then used to assess the dose-response relationship between RDW and the risk of 3-month readmission. Results In the original cohort of 1,978 patients with HF (42% male and 73.1% aged ≥70 years), 495 patients (25.0%) were readmitted within 3 months after discharge. Smoothed curve fitting showed a linear correlation between RDW and the risk of readmission within 3 months. In the multivariable-adjusted model, every 1% increase in RDW was associated with a 9% increased risk of readmission within 3 months (hazard ratio = 1.09, 95% confidence interval: 1.00-1.15; P < 0.005). Conclusions A higher RDW value was significantly associated with a greater risk of 3-months readmission in hospitalized patients with HF.
Collapse
Affiliation(s)
- Fang Gu
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Han Wu
- Department of Clinical Laboratory Medicine, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Jin
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Cheng Kong
- Department of Neurosurgery, People’s Hospital of Pan’an County, Jinhua, China
- Correspondence: Wenyan Zhao Cheng Kong
| | - Wenyan Zhao
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Correspondence: Wenyan Zhao Cheng Kong
| |
Collapse
|
34
|
Yurinskaya VE, Moshkov AV, Marakhova II, Vereninov AA. Unidirectional fluxes of monovalent ions in human erythrocytes compared with lymphoid U937 cells: Transient processes after stopping the sodium pump and in response to osmotic challenge. PLoS One 2023; 18:e0285185. [PMID: 37141334 PMCID: PMC10159352 DOI: 10.1371/journal.pone.0285185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
Recently, we have developed software that allows, using a minimum of required experimental data, to find the characteristics of ion homeostasis and a list of all unidirectional fluxes of monovalent ions through the main pathways in the cell membrane both in a balanced state and during the transient processes. Our approach has been successfully validated in human proliferating lymphoid U937 cells during transient processes after stopping the Na/K pump by ouabain and for staurosporine-induced apoptosis. In present study, we used this approach to find the characteristics of ion homeostasis and the monovalent ion fluxes through the cell membrane of human erythrocytes in a resting state and during the transient processes after stopping the Na/K pump with ouabain and in response to osmotic challenge. Due to their physiological significance, erythrocytes remain the object of numerous studies, both experimental and computational methods. Calculations showed that, under physiological conditions, the K+ fluxes through electrodiffusion channels in the entire erythrocyte ion balance is small compared to the fluxes through the Na/K pump and cation-chloride cotransporters. The proposed computer program well predicts the dynamics of the erythrocyte ion balance disorders after stopping the Na/K pump with ouabain. In full accordance with predictions, transient processes in human erythrocytes are much slower than in proliferating cells such as lymphoid U937 cells. Comparison of real changes in the distribution of monovalent ions under osmotic challenge with the calculated ones indicates a change in the parameters of the ion transport pathways through the plasma membrane of erythrocytes in this case. The proposed approach may be useful in studying the mechanisms of various erythrocyte dysfunctions.
Collapse
Affiliation(s)
| | - Alexey V Moshkov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Irina I Marakhova
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexey A Vereninov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
35
|
Berezin AA, Obradovic Z, Kopp K, Berezina TA, Lichtenauer M, Wernly B, Berezin AE. The Association of Glucose Control with Circulating Levels of Red Blood Cell-Derived Vesicles in Type 2 Diabetes Mellitus Patients with Atrial Fibrillation. Int J Mol Sci 2022; 24:ijms24010729. [PMID: 36614172 PMCID: PMC9820839 DOI: 10.3390/ijms24010729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Hyperglycemia is a trigger for structural alteration of red blood cells (RBCs) and their ability to release extracellular vesicles (EVs). The aim of the study was to elucidate whether glucose control in T2DM patients with concomitant HF and AF affects a circulating number of RBC-derived EVs. We prospectively included 417 T2DM patients with HF, 51 of them had atrial fibrillation and 25 healthy volunteers and 30 T2DM non-HF individuals. Clinical assessment, echocardiography examination and biomarker measures were performed at the baseline of the study. RBC-derived EVs were determined as CD235a+ PS+ particles by flow cytometry. NT-proBNP levels were measured by ELISA. AF patients with glycosylated hemoglobin (HbA1c) < 6.9% had lower levels of CD235a+ PS+ RBC-derived vesicles than those with HbA1c ≥ 7.0%. There were no significant differences in number of CD235a+ PS+ RBC-derived vesicles between patients in entire cohort and in non-AF sub-cohort with HbA1c < 6.9% and HbA1c ≥ 7.0%, respectively. Multivariate linear regression yielded that CD235a+ PS+ RBC-derived vesicles ≥ 545 particles in µL (OR = 1.06; 95% CI = 1.01−1.11, p = 0.044) independently predicted HbA1c ≥ 7.0%. Elevated levels of CD235a+ PS+ RBC-derived EVs independently predicted poor glycaemia control in T2DM patients with HF and AF.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Zaporozhye Medical Academy of Postgraduate Education, 20 Vinter Av., 69096 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Kristen Kopp
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Tetiana A. Berezina
- Department of Internal Medicine, Vita Center, 3 Sedov Str., 69000 Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital of Oberndorf, Paracelsusstraβe 37, 5110 Oberndorf bei Salzburg, Austria
- Center for Public Health and Healthcare Research, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Correspondence:
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 26 Mayakovsky Av., 69035 Zaporozhye, Ukraine
| |
Collapse
|
36
|
Gogiraju R, Renner L, Bochenek ML, Zifkos K, Molitor M, Danckwardt S, Wenzel P, Münzel T, Konstantinides S, Schäfer K. Arginase-1 Deletion in Erythrocytes Promotes Vascular Calcification via Enhanced GSNOR (S-Nitrosoglutathione Reductase) Expression and NO Signaling in Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2022; 42:e291-e310. [PMID: 36252109 DOI: 10.1161/atvbaha.122.318338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Erythrocytes (red blood cells) participate in the control of vascular NO bioavailability. The purpose of this study was to determine whether and how genetic deletion of ARG1 (arginase-1) affects vascular smooth muscle cell NO signaling, osteoblastic differentiation, and atherosclerotic lesion calcification. METHODS Atherosclerosis-prone mice with conditional, erythrocyte-restricted deletion of ARG1 (apoE-/- red blood cell.ARG1 knockout) were generated and vascular calcification studied using molecular imaging of the osteogenic activity agent OsteoSense, Alizarin staining or immunohistochemistry, qPCR of osteogenic markers and ex vivo assays. RESULTS Atherosclerotic lesion size at the aortic root did not differ, but calcification was significantly more pronounced in apoE-/- mice lacking erythrocyte ARG1. Incubation of murine and human VSMCs with lysed erythrocyte membranes from apoE-/- red blood cell. ARG1-knockout mice accelerated their osteogenic differentiation, and mRNA transcripts of osteogenic markers decreased following NO scavenging. In addition to NO signaling via sGC (soluble guanylyl cyclase), overexpression of GSNOR (S-nitrosoglutathione reductase) enhanced degradation of S-nitrosoglutathione to glutathione and reduced protein S-nitrosation of HSP (heat shock protein)-70 were identified as potential mechanisms of vascular smooth muscle cell calcification in mice lacking ARG1 in erythrocytes, and calcium phosphate deposition was enhanced by heat shock and prevented by GSNOR inhibition. Messenger RNA levels of enzymes metabolizing the arginase products L-ornithine and L-proline also were elevated in VSMCs, paralleled by increased proliferation, myofibroblast marker and collagen type 1 expression. CONCLUSIONS Our findings support an important role of erythrocyte ARG1 for NO bioavailability and L-arginine metabolism in VSMCs, which controls atherosclerotic lesion composition and calcification.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Luisa Renner
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany.,Institute for Clinical Chemistry (S.D.), University Medical Center Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Stavros Konstantinides
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| |
Collapse
|
37
|
Moore A, Busch MP, Dziewulska K, Francis RO, Hod EA, Zimring JC, D’Alessandro A, Page GP. Genome-wide metabolite quantitative trait loci analysis (mQTL) in red blood cells from volunteer blood donors. J Biol Chem 2022; 298:102706. [PMID: 36395887 PMCID: PMC9763692 DOI: 10.1016/j.jbc.2022.102706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The red blood cell (RBC)-Omics study, part of the larger NHLBI-funded Recipient Epidemiology and Donor Evaluation Study (REDS-III), aims to understand the genetic contribution to blood donor RBC characteristics. Previous work identified donor demographic, behavioral, genetic, and metabolic underpinnings to blood donation, storage, and (to a lesser extent) transfusion outcomes, but none have yet linked the genetic and metabolic bodies of work. We performed a genome-wide association (GWA) analysis using RBC-Omics study participants with generated untargeted metabolomics data to identify metabolite quantitative trait loci in RBCs. We performed GWA analyses of 382 metabolites in 243 individuals imputed using the 1000 Genomes Project phase 3 all-ancestry reference panel. Analyses were conducted using ProbABEL and adjusted for sex, age, donation center, number of whole blood donations in the past 2 years, and first 10 principal components of ancestry. Our results identified 423 independent genetic loci associated with 132 metabolites (p < 5×10-8). Potentially novel locus-metabolite associations were identified for the region encoding heme transporter FLVCR1 and choline and for lysophosphatidylcholine acetyltransferase LPCAT3 and lysophosphatidylserine 16.0, 18.0, 18.1, and 18.2; these associations are supported by published rare disease and mouse studies. We also confirmed previous metabolite GWA results for associations, including N(6)-methyl-L-lysine and protein PYROXD2 and various carnitines and transporter SLC22A16. Association between pyruvate levels and G6PD polymorphisms was validated in an independent cohort and novel murine models of G6PD deficiency (African and Mediterranean variants). We demonstrate that it is possible to perform metabolomics-scale GWA analyses with a modest, trans-ancestry sample size.
Collapse
Affiliation(s)
- Amy Moore
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA
| | | | - Karolina Dziewulska
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Angelo D’Alessandro
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA,Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA,For correspondence: Grier P. Page; Angelo D’Alessandro
| | - Grier P. Page
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA,For correspondence: Grier P. Page; Angelo D’Alessandro
| |
Collapse
|
38
|
Le Jeune S, Sadoudi S, Charue D, Abid S, Guigner JM, Helley D, Bihan H, Baudry C, Lelong H, Mirault T, Vicaut E, Dhote R, Mourad JJ, Boulanger CM, Blanc-Brude OP. Low grade intravascular hemolysis associates with peripheral nerve injury in type 2 diabetes. PLoS One 2022; 17:e0275337. [PMID: 36251660 PMCID: PMC9576093 DOI: 10.1371/journal.pone.0275337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Type 2 diabetes (T2D) induces hyperglycemia, alters hemoglobin (Hb), red blood cell (RBC) deformability and impairs hemorheology. The question remains whether RBC breakdown and intravascular hemolysis (IVH) occur in T2D patients. We characterized RBC-degradation products and vesiculation in a case-control study of 109 T2D patients and 65 control subjects. We quantified heme-related absorbance by spectrophotometry and circulating extracellular vesicles (EV) by flow cytometry and electron microscopy. Heme-related absorbance was increased in T2D vs. control plasma (+57%) and further elevated in obese T2D plasma (+27%). However, large CD235a+ EV were not increased in T2D plasma. EV from T2D plasma, or shed by isolated T2D RBC, were notably smaller in diameter (-27%) and carried heme-related absorbance. In T2D plasma, higher heme-related absorbance (+30%) was associated to peripheral sensory neuropathy, and no other vascular complication. In vitro, T2D RBC-derived EV triggered endothelial stress and thrombin activation in a phosphatidylserine- and heme-dependent fashion. We concluded that T2D was associated with low-grade IVH. Plasma absorbance may constitute a novel biomarker of peripheral neuropathy in T2D, while flow cytometry focusing on large EV may be maladapted to characterize RBC EV in T2D. Moreover, therapeutics limiting IVH or neutralizing RBC breakdown products might bolster vasculoprotection in T2D.
Collapse
Affiliation(s)
- Sylvain Le Jeune
- Université Paris Cité, INSERM, Paris Center for Cardiovascular Research-ParCC, Paris, France
- Service de Médecine Interne, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Sihem Sadoudi
- Université Paris Cité, INSERM, Paris Center for Cardiovascular Research-ParCC, Paris, France
| | - Dominique Charue
- Université Paris Cité, INSERM, Paris Center for Cardiovascular Research-ParCC, Paris, France
| | - Salwa Abid
- Université Paris Cité, INSERM, Paris Center for Cardiovascular Research-ParCC, Paris, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Dominique Helley
- Université Paris Cité, INSERM, Paris Center for Cardiovascular Research-ParCC, Paris, France
- Service D’hématologie Biologique, Hôpital Européen Georges Pompidou, AH-HP, Paris, France
| | - Hélène Bihan
- Service de Diabétologie, Endocrinologie et Maladies Métaboliques, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Camille Baudry
- Service de Diabétologie, Endocrinologie et Nutrition, Hôpital Paris Saint-Joseph, Paris, France
| | - Hélène Lelong
- Unité HTA, Prévention et Thérapeutiques Cardiovasculaires, Hôtel Dieu, AP-HP, Paris, France
| | - Tristan Mirault
- Université Paris Cité, INSERM, Paris Center for Cardiovascular Research-ParCC, Paris, France
- Service de Médecine Vasculaire, Hôpital Européen Georges Pompidou, AH-HP, Paris, France
| | - Eric Vicaut
- Université Paris Cité, INSERM, Paris Center for Cardiovascular Research-ParCC, Paris, France
- U.R.C. Lariboisière-Saint Louis, AP-HP, Paris, France
| | - Robin Dhote
- Service de Médecine Interne, AP-HP, Hôpital Avicenne, Bobigny, France
| | | | - Chantal M. Boulanger
- Université Paris Cité, INSERM, Paris Center for Cardiovascular Research-ParCC, Paris, France
| | - Olivier P. Blanc-Brude
- Université Paris Cité, INSERM, Paris Center for Cardiovascular Research-ParCC, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Integrated Zeolite Based Carbon Paste Electrode for Sensitive Voltammetric Assay of Ticagrelor. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Yuan S, Mason AM, Burgess S, Larsson SC. Differentiating Associations of Glycemic Traits With Atherosclerotic and Thrombotic Outcomes: Mendelian Randomization Investigation. Diabetes 2022; 71:2222-2232. [PMID: 35499407 PMCID: PMC7613853 DOI: 10.2337/db21-0905] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022]
Abstract
We conducted a Mendelian randomization analysis to differentiate associations of four glycemic indicators with a broad range of atherosclerotic and thrombotic diseases. Independent genetic variants associated with fasting glucose (FG), 2 h glucose after an oral glucose challenge (2hGlu), fasting insulin (FI), and glycated hemoglobin (HbA1c) at the genome-wide significance threshold were used as instrumental variables. Summary-level data for 12 atherosclerotic and 4 thrombotic outcomes were obtained from large genetic consortia and the FinnGen and UK Biobank studies. Higher levels of genetically predicted glycemic traits were consistently associated with increased risk of coronary atherosclerosis-related diseases and symptoms. Genetically predicted glycemic traits except HbA1c showed positive associations with peripheral artery disease risk. Genetically predicted FI levels were positively associated with risk of ischemic stroke and chronic kidney disease. Genetically predicted FG and 2hGlu were positively associated with risk of large artery stroke. Genetically predicted 2hGlu levels showed positive associations with risk of small vessel stroke. Higher levels of genetically predicted glycemic traits were not associated with increased risk of thrombotic outcomes. Most associations for genetically predicted levels of 2hGlu and FI remained after adjustment for other glycemic traits. Increase in glycemic status appears to increase risks of coronary and peripheral artery atherosclerosis but not thrombosis.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Amy M. Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, U.K
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Svirčev Z, Chen L, Sántha K, Drobac Backović D, Šušak S, Vulin A, Palanački Malešević T, Codd GA, Meriluoto J. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch Toxicol 2022; 96:2829-2863. [PMID: 35997789 PMCID: PMC9395816 DOI: 10.1007/s00204-022-03354-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.
Collapse
Affiliation(s)
- Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Kinga Sántha
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Stamenko Šušak
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Vulin
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Tamara Palanački Malešević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jussi Meriluoto
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
42
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
43
|
Yegutkin GG, Boison D. ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain. Pharmacol Rev 2022; 74:797-822. [PMID: 35738682 DOI: 10.1124/pharmrev.121.000528] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|
44
|
Dynamic Changes in Red Cell Distribution Width Can Predict Major Adverse Cardiovascular Events after PCI in Patients with Unstable Angina Pectoris: A Retrospective Cohort Study. DISEASE MARKERS 2022; 2022:2735717. [PMID: 35722627 PMCID: PMC9200587 DOI: 10.1155/2022/2735717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/03/2022]
Abstract
Background The increased red cell distribution width (RDW) is related to a higher risk for cardiovascular disease (CVD). However, it is yet unclear whether the dynamic change of RDW is associated with the major adverse cardiovascular events (MACEs) for individual with CVD. Methods and Results A cohort study was conducted among 228 patients who had unstable angina (UA) and underwent PCI. RDW was measured preceding PCI and re-measured on the 16th week after PCI. The change of RDW values was defined as ΔRDW. The patients were divided into 3 groups in accordance with ΔRDW: improved, stable, and worsened RDW groups. The patients were followed up for 6 years, and MACE episodes were recorded. The survival analysis showed that the incidence of MACEs in stable RDW group was significantly lower than that in improved and worsened RDW groups. By the COX model, the risk of the occurrence of cardiovascular events in improved RDW group was 1.661 times higher than the risk in stable RDW group (HR =1.661, 95% CI: 1.583-2.880, p < 0.05) and the same situation was 3.307 times higher in worsened RDW group (HR =3.307, 95% CI: 1.830-5.041, p < 0.05). Conclusion The measurement of ΔRDW has potential to predict the MACEs in UA patients underwent PCI. The dynamic changes in RDW are associated with the outcome of CVD.
Collapse
|
45
|
Leiva O, Hobbs G, Ravid K, Libby P. Cardiovascular Disease in Myeloproliferative Neoplasms: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:166-182. [PMID: 35818539 PMCID: PMC9270630 DOI: 10.1016/j.jaccao.2022.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Myeloproliferative neoplasms are associated with increased risk for thrombotic complications. These conditions most commonly involve somatic mutations in genes that lead to constitutive activation of the Janus-associated kinase signaling pathway (eg, Janus kinase 2, calreticulin, myeloproliferative leukemia protein). Acquired gain-of-function mutations in these genes, particularly Janus kinase 2, can cause a spectrum of disorders, ranging from clonal hematopoiesis of indeterminate potential, a recently recognized age-related promoter of cardiovascular disease, to frank hematologic malignancy. Beyond thrombosis, patients with myeloproliferative neoplasms can develop other cardiovascular conditions, including heart failure and pulmonary hypertension. The authors review the pathophysiologic mechanisms of cardiovascular complications of myeloproliferative neoplasms, which involve inflammation, prothrombotic and profibrotic factors (including transforming growth factor-beta and lysyl oxidase), and abnormal function of circulating clones of mutated leukocytes and platelets from affected individuals. Anti-inflammatory therapies may provide cardiovascular benefit in patients with myeloproliferative neoplasms, a hypothesis that requires rigorous evaluation in clinical trials.
Collapse
Key Words
- ASXL1, additional sex Combs-like 1
- CHIP, clonal hematopoiesis of indeterminate potential
- DNMT3a, DNA methyltransferase 3 alpha
- IL, interleukin
- JAK, Janus-associated kinase
- JAK2, Janus kinase 2
- LOX, lysyl oxidase
- MPL, myeloproliferative leukemia protein
- MPN, myeloproliferative neoplasm
- STAT, signal transducer and activator of transcription
- TET2, tet methylcytosine dioxygenase 2
- TGF, transforming growth factor
- atherosclerosis
- cardiovascular complications
- clonal hematopoiesis
- myeloproliferative neoplasms
- thrombosis
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela Hobbs
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Gajecki D, Gawryś J, Szahidewicz-Krupska E, Doroszko A. Role of Erythrocytes in Nitric Oxide Metabolism and Paracrine Regulation of Endothelial Function. Antioxidants (Basel) 2022; 11:antiox11050943. [PMID: 35624807 PMCID: PMC9137828 DOI: 10.3390/antiox11050943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/27/2023] Open
Abstract
Emerging studies provide new data shedding some light on the complex and pivotal role of red blood cells (RBCs) in nitric oxide (NO) metabolism and paracrine regulation of endothelial function. NO is involved in the regulation of vasodilatation, platelet aggregation, inflammation, hypoxic adaptation, and oxidative stress. Even though tremendous knowledge about NO metabolism has been collected, the exact RBCs’ status still requires evaluation. This paper summarizes the actual knowledge regarding the role of erythrocytes as a mobile depot of amino acids necessary for NO biotransformation. Moreover, the complex regulation of RBCs’ translocases is presented with a particular focus on cationic amino acid transporters (CATs) responsible for the NO substrates and derivatives transport. The main part demonstrates the intraerythrocytic metabolism of L-arginine with its regulation by reactive oxygen species and arginase activity. Additionally, the process of nitrite and nitrate turnover was demonstrated to be another stable source of NO, with its reduction by xanthine oxidoreductase or hemoglobin. Additional function of hemoglobin in NO synthesis and its subsequent stabilization in steady intermediates is also discussed. Furthermore, RBCs regulate the vascular tone by releasing ATP, inducing smooth muscle cell relaxation, and decreasing platelet aggregation. Erythrocytes and intraerythrocytic NO metabolism are also responsible for the maintenance of normotension. Hence, RBCs became a promising new therapeutic target in restoring NO homeostasis in cardiovascular disorders.
Collapse
|
47
|
Red Blood Cell Distribution Width in Heart Failure: Pathophysiology, Prognostic Role, Controversies and Dilemmas. J Clin Med 2022; 11:jcm11071951. [PMID: 35407558 PMCID: PMC8999162 DOI: 10.3390/jcm11071951] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Red blood cell distribution width (RDW), an integral parameter of the complete blood count (CBC), has been traditionally used for the classification of several types of anemia. However, over the last decade RDW has been associated with outcome in patients with several cardiovascular diseases including heart failure. The role of RDW in acute, chronic and advanced heart failure is the focus of the present work. Several pathophysiological mechanisms of RDW’s increase in heart failure have been proposed (i.e., inflammation, oxidative stress, adrenergic stimulation, undernutrition, ineffective erythropoiesis, reduced iron mobilization, etc.); however, the exact mechanism remains unknown. Although high RDW values at admission and discharge have been associated with adverse prognosis in hospitalized heart failure patients, the prognostic role of in-hospital RDW changes (ΔRDW) remains debatable. RDW has been incorporated in recent heart failure prognostic models. Utilizing RDW as a treatment target in heart failure may be a promising area of research.
Collapse
|
48
|
Mahdi A, Collado A, Tengbom J, Jiao T, Wodaje T, Johansson N, Farnebo F, Färnert A, Yang J, Lundberg JO, Zhou Z, Pernow J. Erythrocytes Induce Vascular Dysfunction in COVID-19. JACC Basic Transl Sci 2022; 7:193-204. [PMID: 35194565 PMCID: PMC8849181 DOI: 10.1016/j.jacbts.2021.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Patients hospitalized for COVID-19 display marked impairment in endothelial function, which is persistent following recovery from the acute infection. RBCs from patients with COVID-19 impair vascular function through mechanisms involving increased arginase 1, ROS and IFNγ, and reduced NO bioactivity. These data advance our understanding in COVID-19–associated vascular injury with a clear involvement of RBCs. Targeting these mechanisms might provide a novel therapeutic strategy to alleviate vascular injury in patients with COVID-19.
Current knowledge regarding mechanisms underlying cardiovascular complications in patients with COVID-19 is limited and urgently needed. We shed light on a previously unrecognized mechanism and unravel a key role of red blood cells, driving vascular dysfunction in patients with COVID-19 infection. We establish the presence of profound and persistent endothelial dysfunction in vivo in patients with COVID-19. Mechanistically, we show that targeting reactive oxygen species or arginase 1 improves vascular dysfunction mediated by red blood cells. These translational observations hold promise that restoring the redox balance in red blood cells might alleviate the clinical complications of COVID-19–associated vascular dysfunction.
Collapse
Key Words
- ACh, acetylcholine
- C19-RBC, red blood cell from patients with COVID-19
- COVID-19
- EDR, endothelium-dependent relaxation
- EIR, endothelium-independent relaxation
- H-RBC, red blood cell from healthy subjects
- HNE, hydroxynonenal
- IFN, interferon
- RBC, red blood cell
- RHI, reactive hyperemia index
- ROS, reactive oxygen species
- SNP, sodium nitroprusside
- TNF, tumor necrosis factor
- arginase
- endothelial dysfunction
- nitric oxide
- reactive oxygen species
- red blood cells
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tong Jiao
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tigist Wodaje
- Division of Cardiology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Filip Farnebo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Stockholm Craniofacial Center, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Bryzgalov LO, Korbolina EE, Damarov IS, Merkulova TI. The functional insight into the genetics of cardiovascular disease: results from the post-GWAS study. Vavilovskii Zhurnal Genet Selektsii 2022; 26:65-73. [PMID: 35342858 PMCID: PMC8892170 DOI: 10.18699/vjgb-22-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, generally refer to a range of pathological conditions with the involvement of the heart and the blood vessels. A sizable fraction of the susceptibility loci is known, but the underlying mechanisms have been established only for a small proportion. Therefore, there is an increasing need to explore the functional relevance of trait-associated variants and, moreover, to search for novel risk genetic variation. We have reported the bioinformatic approach allowing effective identification of functional non-coding variants by integrated analysis of genome-wide data. Here, the analysis of 1361 previously identified regulatory SNPs (rSNPs) was performed to provide new insights into cardiovascular risk. We found 773,471 coding co-segregating markers for input rSNPs using the 1000 Genomes Project. The intersection of GWAS-derived SNPs with a relevance to cardiovascular traits with these markers was analyzed within a window of 10 Kbp. The effects on the transcription factor (TF) binding sites were explored by DeFine models. Functional pathway enrichment and protein– protein interaction (PPI) network analyses were performed on the targets and the extended genes by STRING and DAVID. Eighteen rSNPs were functionally linked to cardiovascular risk. A significant impact on binding sites of thirteen TFs including those involved in blood cells formation, hematopoiesis, macrophage function, inflammation, and vasoconstriction was found in K562 cells. 21 rSNP gene targets and 5 partners predicted by PPI were enriched for spliceosome and endocytosis KEGG pathways, endosome sorting complex and mRNA splicing REACTOME pathways. Related Gene Ontology terms included mRNA splicing and processing, endosome transport and protein catabolic processes. Together, the findings provide further insight into the biological basis of CVDs and highlight the importance of the precise regulation of splicing and alternative splicing.
Collapse
Affiliation(s)
- L. O. Bryzgalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. E. Korbolina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. S. Damarov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - T. I. Merkulova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| |
Collapse
|
50
|
Cao X, Zhou Z. Purinergic activation in response to hemodynamic force directs heart valve development. Purinergic Signal 2022; 18:161-163. [PMID: 35212891 DOI: 10.1007/s11302-022-09843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xin Cao
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, 37 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, People's Republic of China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, People's Republic of China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|