1
|
Taguchi-Shiobara F, Takahashi K, Yano R, Suzuki R, Yokota Y, Yamazaki T, Yamada T, Sayama T, Yamada N, Oki N, Anai T, Kaga A, Ishimoto M. A single-nucleotide insertion in Rxp confers durable resistance to bacterial pustule in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:254. [PMID: 39441215 DOI: 10.1007/s00122-024-04743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE The soybean Rxp gene, encoding a bHLH transcription factor and an ACT-like domain, has an rxp allele producing a truncated protein that confers resistance to pustule-causing Xanthomonas axonopodis pv. glycines. In soybean, bacterial pustules caused by Xanthomonas axonopodis pv. glycines lead to premature defoliation and decreased yield in warm, wet climates. In the USA, approximately 70 years ago, bacterial pustules were eliminated by introducing a recessive resistance allele, rxp, of the Rxp gene, representing the first example of successful soybean breeding for durable disease resistance in North America. In this study, we isolated this historical Rxp gene from resistant soybean varieties using positional cloning. The 1.06 Mb region where Rxp was reported to reside was narrowed down to an 11.1 kb region containing a single gene, Glyma.17g090500. The resistance allele, rxp, contains a T insertion. A complementation test of the Rxp allele in resistant plants confirmed the identification of the Rxp gene. The product of the susceptible wild-type allele, Rxp, is presumed to be a basic helix-loop-helix (bHLH) transcription factor with an aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain. This gene was mainly expressed in extended leaves, and its homologs were identified to be distributed in angiosperms. A total of six alleles were obtained: four from spontaneous variation, including the wild-type and three mutant alleles that encoded truncated proteins, and two from ethyl methanesulfonate mutants, including an allele that encoded a truncated protein and a missense allele. By evaluating the resistance of these six alleles, we found that the loss of function of RXP decreased the bacterial pustule lesions. This study provides important insights into the soybean rxp allele, which confers durable resistance to bacterial pustules.
Collapse
Affiliation(s)
- Fumio Taguchi-Shiobara
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan.
- Headquarters, NARO, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Koji Takahashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Ryoichi Yano
- Research Center for Advanced Analysis, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Rintaro Suzuki
- Research Center for Advanced Analysis, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yuko Yokota
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Toshimasa Yamazaki
- Research Center for Advanced Analysis, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Tetsuya Yamada
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Research Center for Agricultural Information Technology, NARO, Tsukuba, Ibaraki, 305-0856, Japan
| | - Takashi Sayama
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Tohoku Agricultural Research Center, NARO, Daisen, Akita, 019-2112, Japan
| | - Naohiro Yamada
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Nagano Agricultural Experiment Station, Suzaka, Nagano, 382-0072, Japan
| | - Nobuhiko Oki
- Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Kumamoto, 861-1192, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, Saga, Saga, 840-8502, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Masao Ishimoto
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
2
|
Subedi A, Minsavage GV, Roberts PD, Goss EM, Sharma A, Jones JB. Insights into bs5 resistance mechanisms in pepper against Xanthomonas euvesicatoria through transcriptome profiling. BMC Genomics 2024; 25:711. [PMID: 39044136 PMCID: PMC11267861 DOI: 10.1186/s12864-024-10604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Bacterial spot of pepper (BSP), caused by four different Xanthomonas species, primarily X. euvesicatoria (Xe), poses a significant challenge in pepper cultivation. Host resistance is considered the most important approach for BSP control, offering long-term protection and sustainability. While breeding for resistance to BSP for many years focused on dominant R genes, introgression of recessive resistance has been a more recent focus of breeding programs. The molecular interactions underlying recessive resistance remain poorly understood. RESULTS In this study, transcriptomic analyses were performed to elucidate defense responses triggered by Xe race P6 infection by two distinct pepper lines: the Xe-resistant line ECW50R containing bs5, a recessive resistance gene that confers resistance to all pepper Xe races, and the Xe-susceptible line ECW. The results revealed a total of 3357 upregulated and 4091 downregulated genes at 0, 1, 2, and 4 days post-inoculation (dpi), with the highest number of differentially expressed genes (DEGs) observed at 2 dpi. Pathway analysis highlighted DEGs in key pathways such as plant-pathogen interaction, MAPK signaling pathway, plant hormone signal transduction, and photosynthesis - antenna proteins, along with cysteine and methionine metabolism. Notably, upregulation of genes associated with PAMP-Triggered Immunity (PTI) was observed, including components like FLS2, Ca-dependent pathways, Rboh, and reactive oxygen species (ROS) generation. In support of these results, infiltration of ECW50R leaves with bacterial suspension of Xe led to observable hydrogen peroxide accumulation without a rapid increase in electrolyte leakage, suggestive of the absence of Effector-Triggered Immunity (ETI). Furthermore, the study confirmed that bs5 does not disrupt the effector delivery system, as evidenced by incompatible interactions between avirulence genes and their corresponding dominant resistant genes in the bs5 background. CONCLUSION Overall, these findings provide insights into the molecular mechanisms underlying bs5-mediated resistance in pepper against Xe and suggest a robust defense mechanism in ECW50R, primarily mediated through PTI. Given that bs5 provides early strong response for resistance, combining this resistance with other dominant resistance genes will enhance the durability of resistance to BSP.
Collapse
Affiliation(s)
- Aastha Subedi
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Pamela D Roberts
- Southwest Florida Research & Education Center, University of Florida, Immokalee, FL, USA
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Garg V, Chitikineni A, Sharma M, Ghosh R, Samineni S, Varshney RK, Kudapa H. Transcriptome profiling reveals the expression and regulation of genes associated with Fusarium wilt resistance in chickpea (Cicer arietinum L.). THE PLANT GENOME 2023; 16:e20340. [PMID: 37211948 DOI: 10.1002/tpg2.20340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/23/2023]
Abstract
Fusarium wilt (FW) is one of the most significant biotic stresses limiting chickpea production worldwide. To dissect the molecular mechanism of FW resistance in chickpea, comparative transcriptome analyses of contrasting resistance sources of chickpea genotypes under control and Fusarium oxysporum f. sp. ciceris (Foc) inoculated conditions were performed. The high-throughput transcriptome sequencing generated about 1137 million sequencing reads from 24 samples representing two resistant genotypes, two susceptible genotypes, and two near-isogenic lines under control and stress conditions at two-time points (7th- and 12th-day post-inoculation). The analysis identified 5182 differentially expressed genes (DEGs) between different combinations of chickpea genotypes. Functional annotation of these genes indicated their involvement in various biological processes such as defense response, cell wall biogenesis, secondary metabolism, and disease resistance. A significant number (382) of transcription factor encoding genes exhibited differential expression patterns under stress. Further, a considerable number of the identified DEGs (287) co-localized with previously reported quantitative trait locus for FW resistance. Several resistance/susceptibility-related genes, such as SERINE/THREONINE PROTEIN KINASE, DIRIGENT, and MLO exhibiting contrasting expression patterns in resistant and susceptible genotypes upon Foc inoculation, were identified. The results presented in the study provide valuable insights into the transcriptional dynamics associated with FW stress response in chickpea and provide candidate genes for the development of disease-resistant chickpea cultivars.
Collapse
Affiliation(s)
- Vanika Garg
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Annapurna Chitikineni
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Raju Ghosh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Srinivasan Samineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Crop Diversification and Genetics, International Center for Biosaline Agriculture (ICBA), Dubai, Uniited Arab Emirates
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
4
|
Patel S, Patel J, Silliman K, Hall N, Bowen K, Koebernick J. Comparative Transcriptome Profiling Unfolds a Complex Defense and Secondary Metabolite Networks Imparting Corynespora cassiicola Resistance in Soybean ( Glycine max (L.) Merrill). Int J Mol Sci 2023; 24:10563. [PMID: 37445741 DOI: 10.3390/ijms241310563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Target spot is caused by Corynespora cassiicola, which heavily affects soybean production areas that are hot and humid. Resistant soybean genotypes have been identified; however, the molecular mechanisms governing resistance to infection are unknown. Comparative transcriptomic profiling using two known resistant genotypes and two susceptible genotypes was performed under infected and control conditions to understand the regulatory network operating between soybean and C. cassiicola. RNA-Seq analysis identified a total of 2571 differentially expressed genes (DEGs) which were shared by all four genotypes. These DEGs are related to secondary metabolites, immune response, defense response, phenylpropanoid, and flavonoid/isoflavonoid pathways in all four genotypes after C. cassiicola infection. In the two resistant genotypes, additional upregulated DEGs were identified affiliated with the defense network: flavonoids, jasmonic acid, salicylic acid, and brassinosteroids. Further analysis led to the identification of differentially expressed transcription factors, immune receptors, and defense genes with a leucine-rich repeat domain, dirigent proteins, and cysteine (C)-rich receptor-like kinases. These results will provide insight into molecular mechanisms of soybean resistance to C. cassiicola infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jinesh Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Katherine Silliman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Nathan Hall
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kira Bowen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Bisht A, Saini DK, Kaur B, Batra R, Kaur S, Kaur I, Jindal S, Malik P, Sandhu PK, Kaur A, Gill BS, Wani SH, Kaur B, Mir RR, Sandhu KS, Siddique KHM. Multi-omics assisted breeding for biotic stress resistance in soybean. Mol Biol Rep 2023; 50:3787-3814. [PMID: 36692674 DOI: 10.1007/s11033-023-08260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
Biotic stress is a critical factor limiting soybean growth and development. Soybean responses to biotic stresses such as insects, nematodes, fungal, bacterial, and viral pathogens are governed by complex regulatory and defense mechanisms. Next-generation sequencing has availed research techniques and strategies in genomics and post-genomics. This review summarizes the available information on marker resources, quantitative trait loci, and marker-trait associations involved in regulating biotic stress responses in soybean. We discuss the differential expression of related genes and proteins reported in different transcriptomics and proteomics studies and the role of signaling pathways and metabolites reported in metabolomic studies. Recent advances in omics technologies offer opportunities to reshape and improve biotic stress resistance in soybean by altering gene regulation and/or other regulatory networks. We suggest using 'integrated omics' to precisely understand how soybean responds to different biotic stresses. We also discuss the potential challenges of integrating multi-omics for the functional analysis of genes and their regulatory networks and the development of biotic stress-resistant cultivars. This review will help direct soybean breeding programs to develop resistance against different biotic stresses.
Collapse
Affiliation(s)
- Ashita Bisht
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
- CSK Himachal Pradesh Krishi Vishvavidyalaya, Highland Agricultural Research and Extension Centre, 175142, Kukumseri, Lahaul and Spiti, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India.
| | - Baljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, 25004, Meerut, India
| | - Sandeep Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Ishveen Kaur
- Agriculture, Environmental and Sustainability Sciences, College of sciences, University of Texas Rio Grande Valley, 78539, Edinburg, TX, USA
| | - Suruchi Jindal
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Palvi Malik
- , Gurdev Singh Khush Institute of Genetics, Plant Breeding and Biotechnology, Punjab Agricultural University,, 141004, Ludhiana, India
| | - Pawanjit Kaur Sandhu
- Department of Chemistry, University of British Columbia, V1V 1V7, Okanagan, Kelowna, Canada
| | - Amandeep Kaur
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Balwinder Singh Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Shabir Hussain Wani
- MRCFC Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Shalimar, India
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, 33430, Belle Glade, Florida, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, 193201, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, 99163, Pullman, WA, USA.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, 6001, Perth, WA, Australia.
| |
Collapse
|
6
|
Jia B, Li Y, Sun X, Sun M. Structure, Function, and Applications of Soybean Calcium Transporters. Int J Mol Sci 2022; 23:ijms232214220. [PMID: 36430698 PMCID: PMC9693241 DOI: 10.3390/ijms232214220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Glycine max is a calcium-loving crop. The external application of calcium fertilizer is beneficial to the increase of soybean yield. Indeed, calcium is a vital nutrient in plant growth and development. As a core metal ion in signaling transduction, calcium content is maintained in dynamic balance under normal circumstances. Now, eight transporters were found to control the uptake and efflux of calcium. Though these calcium transporters have been identified through genome-wide analysis, only a few of them were functionally verified. Therefore, in this study, we summarized the current knowledge of soybean calcium transporters in structural features, expression characteristics, roles in stress response, and prospects. The above results will be helpful in understanding the function of cellular calcium transport and provide a theoretical basis for elevating soybean yield.
Collapse
|
7
|
Fang X, Yan P, Luo F, Han S, Lin T, Li S, Li S, Zhu T. Functional Identification of Arthrinium phaeospermum Effectors Related to Bambusa pervariabilis × Dendrocalamopsis grandis Shoot Blight. Biomolecules 2022; 12:biom12091264. [PMID: 36139102 PMCID: PMC9496123 DOI: 10.3390/biom12091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
The shoot blight of Bambusa pervariabilis × Dendrocalamopsis grandis caused by Arthrinium phaeospermum made bamboo die in a large area, resulting in serious ecological and economic losses. Dual RNA-seq was used to sequence and analyze the transcriptome data of A. phaeospermum and B. pervariabilis × D. grandis in the four periods after the pathogen infected the host and to screen the candidate effectors of the pathogen related to the infection. After the identification of the effectors by the tobacco transient expression system, the functions of these effectors were verified by gene knockout. Fifty-three differentially expressed candidate effectors were obtained by differential gene expression analysis and effector prediction. Among them, the effectors ApCE12 and ApCE22 can cause programmed cell death in tobacco. The disease index of B. pervariabilis × D. grandis inoculated with mutant ΔApCE12 and mutant ΔApCE22 strains were 52.5% and 47.5%, respectively, which was significantly lower than that of the wild-type strains (80%), the ApCE12 complementary strain (77.5%), and the ApCE22 complementary strain (75%). The tolerance of the mutant ΔApCE12 and mutant ΔApCE22 strains to H2O2 and NaCl stress was significantly lower than that of the wild-type strain and the ApCE12 complementary and ApCE22 complementary strains, but there was no difference in their tolerance to Congo red. Therefore, this study shows that the effectors ApCE12 and ApCE22 play an important role in A. phaeospermum virulence and response to H2O2 and NaCl stress.
Collapse
Affiliation(s)
- Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- Faculty of Mathematics and Natural Sciences, University of Cologne, 50674 Köln, Germany
| | - Peng Yan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengying Luo
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China
- Correspondence: (S.L.); (T.Z.); Tel.: +86-17761264491 (T.Z.)
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.L.); (T.Z.); Tel.: +86-17761264491 (T.Z.)
| |
Collapse
|
8
|
Molecular Breeding to Overcome Biotic Stresses in Soybean: Update. PLANTS 2022; 11:plants11151967. [PMID: 35956444 PMCID: PMC9370206 DOI: 10.3390/plants11151967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Soybean (Glycine max (L.) Merr.) is an important leguminous crop and biotic stresses are a global concern for soybean growers. In recent decades, significant development has been carried outtowards identification of the diseases caused by pathogens, sources of resistance and determination of loci conferring resistance to different diseases on linkage maps of soybean. Host-plant resistance is generally accepted as the bestsolution because of its role in the management of environmental and economic conditions of farmers owing to low input in terms of chemicals. The main objectives of soybean crop improvement are based on the identification of sources of resistance or tolerance against various biotic as well as abiotic stresses and utilization of these sources for further hybridization and transgenic processes for development of new cultivars for stress management. The focus of the present review is to summarize genetic aspects of various diseases caused by pathogens in soybean and molecular breeding research work conducted to date.
Collapse
|
9
|
PNGSeqR: An R Package for Rapid Candidate Gene Selection through Pooled Next-Generation Sequencing. PLANTS 2022; 11:plants11141821. [PMID: 35890455 PMCID: PMC9315718 DOI: 10.3390/plants11141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Although bulked segregant analysis (BSA) has been used extensively in genetic mapping, user-friendly tools which can integrate current algorithms for researchers with no background in bioinformatics are scarce. To address this issue, we developed an R package, PNGSeqR, which takes single-nucleotide polymorphism (SNP) markers from next-generation sequencing (NGS) data in variant call format (VCF) as the input file, provides four BSA algorithms to indicate the magnitude of genome-wide signals, and rapidly defines the candidate region through the permutation test and fractile quantile. Users can choose the analysis methods according to their data and experimental design. In addition, it also supports differential expression gene analysis (DEG) and gene ontology analysis (GO) to prioritize the target gene. Once the analysis is completed, the plots can conveniently be exported.
Collapse
|
10
|
Cui M, Han S, Wang D, Haider MS, Guo J, Zhao Q, Du P, Sun Z, Qi F, Zheng Z, Huang B, Dong W, Li P, Zhang X. Gene Co-expression Network Analysis of the Comparative Transcriptome Identifies Hub Genes Associated With Resistance to Aspergillus flavus L. in Cultivated Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:899177. [PMID: 35812950 PMCID: PMC9264616 DOI: 10.3389/fpls.2022.899177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/06/2022] [Indexed: 06/08/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.), a cosmopolitan oil crop, is susceptible to a variety of pathogens, especially Aspergillus flavus L., which not only vastly reduce the quality of peanut products but also seriously threaten food safety for the contamination of aflatoxin. However, the key genes related to resistance to Aspergillus flavus L. in peanuts remain unclear. This study identifies hub genes positively associated with resistance to A. flavus in two genotypes by comparative transcriptome and weighted gene co-expression network analysis (WGCNA) method. Compared with susceptible genotype (Zhonghua 12, S), the rapid response to A. flavus and quick preparation for the translation of resistance-related genes in the resistant genotype (J-11, R) may be the drivers of its high resistance. WGCNA analysis revealed that 18 genes encoding pathogenesis-related proteins (PR10), 1-aminocyclopropane-1-carboxylate oxidase (ACO1), MAPK kinase, serine/threonine kinase (STK), pattern recognition receptors (PRRs), cytochrome P450, SNARE protein SYP121, pectinesterase, phosphatidylinositol transfer protein, and pentatricopeptide repeat (PPR) protein play major and active roles in peanut resistance to A. flavus. Collectively, this study provides new insight into resistance to A. flavus by employing WGCNA, and the identification of hub resistance-responsive genes may contribute to the development of resistant cultivars by molecular-assisted breeding.
Collapse
Affiliation(s)
- Mengjie Cui
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Suoyi Han
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Du Wang
- Key Laboratory of Detection for Mycotoxins, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | | | - Junjia Guo
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Qi Zhao
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
| | - Pei Du
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Ziqi Sun
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Feiyan Qi
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Zheng Zheng
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Bingyan Huang
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Wenzhao Dong
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Peiwu Li
- Key Laboratory of Detection for Mycotoxins, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| |
Collapse
|
11
|
Karhoff S, Vargas-Garcia C, Lee S, Mian MAR, Graham MA, Dorrance AE, McHale LK. Identification of Candidate Genes for a Major Quantitative Disease Resistance Locus From Soybean PI 427105B for Resistance to Phytophthora sojae. FRONTIERS IN PLANT SCIENCE 2022; 13:893652. [PMID: 35774827 PMCID: PMC9237613 DOI: 10.3389/fpls.2022.893652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a yield-limiting soybean disease caused by the soil-borne oomycete Phytophthora sojae. Although multiple quantitative disease resistance loci (QDRL) have been identified, most explain <10% of the phenotypic variation (PV). The major QDRL explaining up to 45% of the PV were previously identified on chromosome 18 and represent a valuable source of resistance for soybean breeding programs. Resistance alleles from plant introductions 427105B and 427106 significantly increase yield in disease-prone fields and result in no significant yield difference in fields with less to no disease pressure. In this study, high-resolution mapping reduced the QDRL interval to 3.1 cm, and RNA-seq analysis of near-isogenic lines (NILs) varying at QDRL-18 pinpointed a single gene of interest which was downregulated in inoculated NILs carrying the resistant allele compared to inoculated NILs with the susceptible allele. This gene of interest putatively encodes a serine-threonine kinase (STK) related to the AtCR4 family and may be acting as a susceptibility factor, based on the specific increase of jasmonic acid concentration in inoculated NILs. This work facilitates further functional analyses and marker-assisted breeding efforts by prioritizing candidate genes and narrowing the targeted region for introgression.
Collapse
Affiliation(s)
- Stephanie Karhoff
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
| | - Christian Vargas-Garcia
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Sungwoo Lee
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - M. A. Rouf Mian
- United States Department of Agriculture-Agricultural Research Service, Soybean Research Unit, Raleigh, NC, United States
| | - Michelle A. Graham
- Department of Agronomy, Iowa State University, Ames, IA, United States
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Resources Unit, Ames, IA, United States
| | - Anne E. Dorrance
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Leah K. McHale
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Wang J, Hu T, Wang W, Hu H, Wei Q, Yan Y, He J, Hu J, Bao C. Comparative transcriptome analysis reveals distinct responsive biological processes in radish genotypes contrasting for Plasmodiophora brassicae interaction. Gene 2022; 817:146170. [PMID: 35031420 DOI: 10.1016/j.gene.2021.146170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Plasmodiophora brassicae is a protozoan pathogen that causes clubroot disease, which is one of the most destructive diseases for Brassica crops, including radish. However, little is known about the molecular mechanism of clubroot resistance in radish. In this study, we performed a comparative transcriptome analysis between resistant and susceptible radish inoculated with P. brassicae. More differentially expressed genes (DEGs) were identified at 28 days after inoculation (DAI) compared to 7 DAI in both genotypes. Gene ontology (GO) and KEGG enrichment indicated that stress/defense response, secondary metabolic biosynthesis, hormone metabolic process, and cell periphery are directly involved in the defense response process. Further analysis of the transcriptome revealed that effector-triggered immunity (ETI) plays key roles in the defense response. The plant hormones jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) related genes are activated in clubroot defense in the resistant line. Auxin (AUX) hormone related genes are activated in the developing galls of susceptible radish. Our study provides a global transcriptional overview for clubroot development for insights into the P. brassicae defense mechanisms in radish.
Collapse
Affiliation(s)
- Jinglei Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tianhua Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wuhong Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haijiao Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingzhen Wei
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yaqin Yan
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiangming He
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jingfeng Hu
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Chonglai Bao
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
13
|
Zhao F, Cheng W, Wang Y, Gao X, Huang D, Kong J, Antwi-Boasiako A, Zheng L, Yan W, Chang F, Kong K, Liao YY, Huerta AI, Liu W, Zhang M, Zhao T. Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean ( Glycine max L.) via Integrating Linkage Mapping and Association Analysis. Int J Mol Sci 2022; 23:2113. [PMID: 35216225 PMCID: PMC8876204 DOI: 10.3390/ijms23042113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/20/2023] Open
Abstract
Bacterial leaf pustule (BLP), caused by Xanthornonas axonopodis pv. glycines (Xag), is a worldwide disease of soybean, particularly in warm and humid regions. To date, little is known about the underlying molecular mechanisms of BLP resistance. The only single recessive resistance gene rxp has not been functionally identified yet, even though the genotypes carrying the gene have been widely used for BLP resistance breeding. Using a linkage mapping in a recombinant inbred line (RIL) population against the Xag strain Chinese C5, we identified that quantitative trait locus (QTL) qrxp-17-2 accounted for 74.33% of the total phenotypic variations. We also identified two minor QTLs, qrxp-05-1 and qrxp-17-1, that accounted for 7.26% and 22.26% of the total phenotypic variations, respectively, for the first time. Using a genome-wide association study (GWAS) in 476 cultivars of a soybean breeding germplasm population, we identified a total of 38 quantitative trait nucleotides (QTNs) on chromosomes (Chr) 5, 7, 8, 9,15, 17, 19, and 20 under artificial infection with C5, and 34 QTNs on Chr 4, 5, 6, 9, 13, 16, 17, 18, and 20 under natural morbidity condition. Taken together, three QTLs and 11 stable QTNs were detected in both linkage mapping and GWAS analysis, and located in three genomic regions with the major genomic region containing qrxp_17_2. Real-time RT-PCR analysis of the relative expression levels of five potential candidate genes in the resistant soybean cultivar W82 following Xag treatment showed that of Glyma.17G086300, which is located in qrxp-17-2, significantly increased in W82 at 24 and 72 h post-inoculation (hpi) when compared to that in the susceptible cultivar Jack. These results indicate that Glyma.17G086300 is a potential candidate gene for rxp and the QTLs and QTNs identified in this study will be useful for marker development for the breeding of Xag-resistant soybean cultivars.
Collapse
Affiliation(s)
- Fangzhou Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Wei Cheng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Yanan Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Debao Huang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA; (D.H.); (W.L.)
| | - Jiejie Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Augustine Antwi-Boasiako
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
- CSIR-Crops Research Institute, Kumasi AK420, Ghana
| | - Lingyi Zheng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Wenliang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Fangguo Chang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Ying-Yu Liao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607, USA; (Y.-Y.L.); (A.I.H.)
| | - Alejandra I. Huerta
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607, USA; (Y.-Y.L.); (A.I.H.)
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA; (D.H.); (W.L.)
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Laboratory of Crop Genetics and Breeding of Hebei, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| |
Collapse
|
14
|
Wilkerson DG, Crowell CR, Carlson CH, McMullen PW, Smart CD, Smart LB. Comparative transcriptomics and eQTL mapping of response to Melampsora americana in selected Salix purpurea F2 progeny. BMC Genomics 2022; 23:71. [PMID: 35065596 PMCID: PMC8783449 DOI: 10.1186/s12864-021-08254-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background Melampsora spp. rusts are the greatest pathogen threat to shrub willow (Salix spp.) bioenergy crops. Genetic resistance is key to limit the effects of these foliar diseases on host response and biomass yield, however, the genetic basis of host resistance has not been characterized. The addition of new genomic resources for Salix provides greater power to investigate the interaction between S. purpurea and M. americana, species commonly found in the Northeast US. Here, we utilize 3′ RNA-seq to investigate host-pathogen interactions following controlled inoculations of M. americana on resistant and susceptible F2S. purpurea genotypes identified in a recent QTL mapping study. Differential gene expression, network analysis, and eQTL mapping were used to contrast the response to inoculation and to identify associated candidate genes. Results Controlled inoculation in a replicated greenhouse study identified 19 and 105 differentially expressed genes between resistant and susceptible genotypes at 42 and 66 HPI, respectively. Defense response gene networks were activated in both resistant and susceptible genotypes and enriched for many of the same defense response genes, yet the hub genes of these common response modules showed greater mean expression among the resistant plants. Further, eight and six eQTL hotspots were identified at 42 and 66 HPI, respectively. The combined results of three analyses highlight 124 candidate genes in the host for further analysis while analysis of pathogen RNA showed differential expression of 22 genes, two of which are candidate pathogen effectors. Conclusions We identified two differentially expressed M. americana transcripts and 124 S. purpurea genes that are good candidates for future studies to confirm their role in conferring resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08254-1.
Collapse
|
15
|
Ferreira EGC, Marcelino-Guimarães FC. Mapping Major Disease Resistance Genes in Soybean by Genome-Wide Association Studies. Methods Mol Biol 2022; 2481:313-340. [PMID: 35641772 DOI: 10.1007/978-1-0716-2237-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most valuable agricultural crops in the world. Besides, this legume is constantly attacked by a wide range of pathogens (fungi, bacteria, viruses, and nematodes) compromising yield and increasing production costs. One of the major disease management strategies is the genetic resistance provided by single genes and quantitative trait loci (QTL). Identifying the genomic regions underlying the resistance against these pathogens on soybean is one of the first steps performed by molecular breeders. In the past, genetic mapping studies have been widely used to discover these genomic regions. However, over the last decade, advances in next-generation sequencing technologies and their subsequent cost decreasing led to the development of cost-effective approaches to high-throughput genotyping. Thus, genome-wide association studies applying thousands of SNPs in large sets composed of diverse soybean accessions have been successfully done. In this chapter, a comprehensive review of the majority of GWAS for soybean diseases published since this approach was developed is provided. Important diseases caused by Heterodera glycines, Phytophthora sojae, and Sclerotinia sclerotiorum have been the focus of the several GWAS. However, other bacterial and fungi diseases also have been targets of GWAS. As such, this GWAS summary can serve as a guide for future studies of these diseases. The protocol begins by describing several considerations about the pathogens and bringing different procedures of molecular characterization of them. Advice to choose the best isolate/race to maximize the discovery of multiple R genes or to directly map an effective R gene is provided. A summary of protocols, methods, and tools to phenotyping the soybean panel is given to several diseases. We also give details of options of DNA extraction protocols and genotyping methods, and we describe parameters of SNP quality to soybean data. Websites and their online tools to obtain genotypic and phenotypic data for thousands of soybean accessions are highlighted. Finally, we report several tricks and tips in Subheading 4, especially related to composing the soybean panel as well as generating and analyzing the phenotype data. We hope this protocol will be helpful to achieve GWAS success in identifying resistance genes on soybean.
Collapse
|
16
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
17
|
Wang Q, Xu Y, Zhang M, Zhu F, Sun M, Lian X, Zhao G, Duan D. Transcriptome and metabolome analysis of stress tolerance to aluminium in Vitis quinquangularis. PLANTA 2021; 254:105. [PMID: 34687358 DOI: 10.1007/s00425-021-03759-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Transcriptional and metabolic regulation of aluminium tolerance of Chinese wild Vitis quinquangularis after Al treatment for 12 h: genes and pathways related to stress resistance are activated to cope with Al stress. The phytotoxicity of aluminium (Al) has become a major issue in inhibiting plant growth in acidic soils. Chinese wild Vitis species have excellent stress resistance. In this study, to explore the mechanism underlying Al tolerance in Chinese wild Vitis quinquangularis, we conducted a transcriptome analysis to understand the changes in gene expression and pathways in V. quinquangularis leaves after Al treatment for 12 h (Al_12 h). Compared with the control (CK) treatment, 2266 upregulated differentially expressed genes (DEGs) and 2943 downregulated DEGs were identified after Al treatment. We analysed the top 60 upregulated DEGs and found that these genes were related mostly to cell wall organization or biogenesis, transition metal ion binding, etc. Another analysis of all the upregulated DEGs showed that genes related to the ABC transport pathway, salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) hormone signalling pathway were expressed. Transcriptome and metabolome analysis revealed that genes and metabolites (phenylalanine, cinnamate and quercetin) related to the phenylalanine metabolic pathway were expressed. In summary, the results provide a new contribution to a better understanding of the metabolic changes that occur in grapes after Al stress as well as to research on improving the resistance of grape cultivars.
Collapse
Affiliation(s)
- Qingyang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yifan Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ming Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Fanding Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mingxuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinyu Lian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
18
|
He W, Zhu Y, Leng Y, Yang L, Zhang B, Yang J, Zhang X, Lan H, Tang H, Chen J, Gao S, Tan J, Kang J, Deng L, Li Y, He Y, Rong T, Cao M. Transcriptomic Analysis Reveals Candidate Genes Responding Maize Gray Leaf Spot Caused by Cercospora zeina. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112257. [PMID: 34834621 PMCID: PMC8625984 DOI: 10.3390/plants10112257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Gray leaf spot (GLS), caused by the fungal pathogen Cercospora zeina (C. zeina), is one of the most destructive soil-borne diseases in maize (Zea mays L.), and severely reduces maize production in Southwest China. However, the mechanism of resistance to GLS is not clear and few resistant alleles have been identified. Two maize inbred lines, which were shown to be resistant (R6) and susceptible (S8) to GLS, were injected by C. zeina spore suspensions. Transcriptome analysis was carried out with leaf tissue at 0, 6, 24, 144, and 240 h after inoculation. Compared with 0 h of inoculation, a total of 667 and 419 stable common differentially expressed genes (DEGs) were found in the resistant and susceptible lines across the four timepoints, respectively. The DEGs were usually enriched in 'response to stimulus' and 'response to stress' in GO term analysis, and 'plant-pathogen interaction', 'MAPK signaling pathways', and 'plant hormone signal transduction' pathways, which were related to maize's response to GLS, were enriched in KEGG analysis. Weighted-Genes Co-expression Network Analysis (WGCNA) identified two modules, while twenty hub genes identified from these indicated that plant hormone signaling, calcium signaling pathways, and transcription factors played a central role in GLS sensing and response. Combing DEGs and QTL mapping, five genes were identified as the consensus genes for the resistance of GLS. Two genes, were both putative Leucine-rich repeat protein kinase family proteins, specifically expressed in R6. In summary, our results can provide resources for gene mining and exploring the mechanism of resistance to GLS in maize.
Collapse
Affiliation(s)
- Wenzhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Yonghui Zhu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yifeng Leng
- College of Agricultural Sciences, Xichang University, Xichang 615000, China;
| | - Lin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Biao Zhang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Junpin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Haitao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Jie Chen
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Jun Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Jiwei Kang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Luchang Deng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yan Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yuanyuan He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| |
Collapse
|
19
|
Deshmukh R, Tiwari S. Molecular interaction of charcoal rot pathogenesis in soybean: a complex interaction. PLANT CELL REPORTS 2021; 40:1799-1812. [PMID: 34232377 DOI: 10.1007/s00299-021-02747-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Charcoal rot (CR) is a major disease of soybean, which is caused by Macrophomina phaseolina (Mp). Increasing temperatures and low rainfall in recent years have immensely benefitted the pathogen. Hence, the search for genetically acquired resistance to this pathogen is essential. The pathogen is a hemibiotroph, which germinates on the root surface and colonizes epidermal tissue. Several surface receptors initiate pathogenesis, followed by the secretion of various enzymes that provide entry to host tissue. Several enzymes and other converging cascades in the pathogen participate against host defensive responses. β-glucan of the fungal cell wall is recognized as MAMPs (microbe-associated molecular patterns) in plants, which trigger host immune responses. Kinase receptors, resistance, and pathogenesis-related genes correspond to host defense response. They work in conjunction with hormone-mediated defense pathway especially, the systemic acquired resistance, calcium-signaling, and production of phytoalexins. Due to its quantitative nature, limited QTLs have been identified in soybean for CR resistance. The present review attempts to provide a functional link between M. phaseolina pathogenicity and soybean responses. Elucidation of CR resistance responses would facilitate improved designing of breeding programs, and may help in the selection of corresponding genes to introgress CR resistant traits.
Collapse
Affiliation(s)
- Reena Deshmukh
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
| | - Sharad Tiwari
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India
| |
Collapse
|
20
|
He Q, Xiang S, Wang W, Shu Y, Li Z, Wang S, Chen L, Yang X, Zhao T. Transcriptomic and photosynthetic responses to grafting of the Nod1 gene in nodulated and non-nodulated soybeans. G3 (BETHESDA, MD.) 2021; 11:jkab209. [PMID: 34544123 PMCID: PMC8496209 DOI: 10.1093/g3journal/jkab209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023]
Abstract
Legume plants form symbiotic relationships with rhizobia to convert N2 into ammonia, and the nodulation status can affect plant development including photosynthesis. However, the relationship between nitrogen fixation and photosynthesis during carbon and nitrogen metabolism remains unclear. This study was undertaken to unravel regulation of nodulation and photosynthesis using a spontaneous nonnodulated soybean mutant by grafting. The results of inheritance and gene mapping showed that the nonnodulated mutant was controlled by a recessive gene overlapped with the reported rj1 locus, and might be a new rj1 allele with 1 bp deletion in the fourth exon in comparison to the sequence of normal nodulation plants. According to grafting results, soybean nodulation is obviously determined by the roots, not the seedlings. Moreover, nitrogen content along with related metabolic enzyme activity, and photosynthetic capacity were enhanced by nonnodulated scions grafted with nodulated roots. Contrary results were obtained for nodulated scions grafted with nonnodulated roots. A total of 853 differentially expressed genes (DEGs) in the leaves and 1874 in the roots were identified by transcriptome analyses of the grafting treatments. We identified 285 differential gene ontology (GO) terms and 57 differential pathway terms identified in the leaves, while 856 differential GO terms and 207 differential pathway terms in the roots. Twenty DEGs interacting at translation level were selected, and the results of transcriptome analyses were verified by q-PCR. These findings indicated that the nodulation-related Nod allelic gene increases the nitrogen content of nonnodulated plants, which affects the enzymes involved in nitrogen metabolism, leading to changes in hormone levels and further regulation of photosynthesis and carbon metabolism.
Collapse
Affiliation(s)
- Qingyuan He
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
- Soybean Research Institute/National Center for Soybean Improvement, Ministry of Agriculture/Key Laboratory of Biology and Genetic Improvement of Soybean/Ministry of Agriculture/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shihua Xiang
- Zigong Institute of Agricultural Sciences, Zigong 643000, China
| | - Wubin Wang
- Soybean Research Institute/National Center for Soybean Improvement, Ministry of Agriculture/Key Laboratory of Biology and Genetic Improvement of Soybean/Ministry of Agriculture/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjie Shu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Zhengpeng Li
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Songhua Wang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Lei Chen
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Xiaoyan Yang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Tuanjie Zhao
- Soybean Research Institute/National Center for Soybean Improvement, Ministry of Agriculture/Key Laboratory of Biology and Genetic Improvement of Soybean/Ministry of Agriculture/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Zhao F, Maren NA, Kosentka PZ, Liao YY, Lu H, Duduit JR, Huang D, Ashrafi H, Zhao T, Huerta AI, Ranney TG, Liu W. An optimized protocol for stepwise optimization of real-time RT-PCR analysis. HORTICULTURE RESEARCH 2021; 8:179. [PMID: 34333545 PMCID: PMC8325682 DOI: 10.1038/s41438-021-00616-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 06/06/2021] [Indexed: 05/07/2023]
Abstract
Computational tool-assisted primer design for real-time reverse transcription (RT) PCR (qPCR) analysis largely ignores the sequence similarities between sequences of homologous genes in a plant genome. It can lead to false confidence in the quality of the designed primers, which sometimes results in skipping the optimization steps for qPCR. However, the optimization of qPCR parameters plays an essential role in the efficiency, specificity, and sensitivity of each gene's primers. Here, we proposed an optimized approach to sequentially optimizing primer sequences, annealing temperatures, primer concentrations, and cDNA concentration range for each reference (and target) gene. Our approach started with a sequence-specific primer design that should be based on the single-nucleotide polymorphisms (SNPs) present in all the homologous sequences for each of the reference (and target) genes under study. By combining the efficiency calibrated and standard curve methods with the 2-ΔΔCt method, the standard cDNA concentration curve with a logarithmic scale was obtained for each primer pair for each gene. As a result, an R2 ≥ 0.9999 and the efficiency (E) = 100 ± 5% should be achieved for the best primer pair of each gene, which serve as the prerequisite for using the 2-ΔΔCt method for data analysis. We applied our newly developed approach to identify the best reference genes in different tissues and at various inflorescence developmental stages of Tripidium ravennae, an ornamental and biomass grass, and validated their utility under varying abiotic stress conditions. We also applied this approach to test the expression stability of six reference genes in soybean under biotic stress treatment with Xanthomonas axonopodis pv. glycines (Xag). Thus, these case studies demonstrated the effectiveness of our optimized protocol for qPCR analysis.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Soybean Research Institute, Nanjing Agricultural University, 210095, Nanjing, China
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Nathan A Maren
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC, 28759, USA
| | - Pawel Z Kosentka
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Ying-Yu Liao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Hongyan Lu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China
| | - James R Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Debao Huang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, 210095, Nanjing, China
| | - Alejandra I Huerta
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Thomas G Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC, 28759, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
22
|
Zhang B, Xia P, Yu H, Li W, Chai W, Liang Z. Based on the whole genome clarified the evolution and expression process of fatty acid desaturase genes in three soybeans. Int J Biol Macromol 2021; 182:1966-1980. [PMID: 34052275 DOI: 10.1016/j.ijbiomac.2021.05.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022]
Abstract
Soybean is an important oil crop cultivated worldwide. With the increasing global population crossed with growing challenging cultivation conditions, improving soybean breeding by selecting important traits is urgent needed. Genes coding for plant fatty acid desaturases (FADs) genes are major candidates for that, because they are involving in controlling fatty acid composition and holding membrane fluidity under abiotic stress. Here, 75 FADs were found in three soybean genomes, which were further classified into four sub-groups. Phylogenetic tree, gene structure, motif and promoter analysis showed that the FAD gene family was conserved in the three soybeans. In addition, the numbers of omega desaturase from Chinese cultivated varieties were significantly higher than those in Chinese wild soybean and ancient polyploid soybean, respectively. However, it was the opposite for the sphingolipid subfamily. These results indicated that each subfamily was subjected to different selection pressures during cultivation and domestication. As the extra genes of the subfamily were very close to other family members' positions on chromosomes, they should be produced by duplication. The cis-element analysis of FAD promoter sequences revealed that upstream sequences of FAD contained abundant light, hormone and abiotic stress responsive cis-elements, suggesting that the quality of soybean could be improved by regulating these stresses. Expression analysis of Chinese wild soybean under salt stress showed that GsDES1.1, GsDES1.2, GsFAD2.1 and GsSLD1 in leaves and GsSLD2, GsSLD5 and GsSLD6 in roots were not closely related to salt stress response. Therefore, we explored the significant role of conserved, duplicated and neofunctionalized FAD in the domestication of soybean, which contributes to the importance of soybean as a global oil crop.
Collapse
Affiliation(s)
- Bingxue Zhang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Pengguo Xia
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Haizheng Yu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenrui Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Chai
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
23
|
Ngaki MN, Sahoo DK, Wang B, Bhattacharyya MK. Overexpression of a plasma membrane protein generated broad-spectrum immunity in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:502-516. [PMID: 32954627 PMCID: PMC7957895 DOI: 10.1111/pbi.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 05/10/2023]
Abstract
Plants fight-off pathogens and pests by manifesting an array of defence responses using their innate immunity mechanisms. Here we report the identification of a novel soybean gene encoding a plasma membrane protein, transcription of which is suppressed following infection with the fungal pathogen, Fusarium virguliforme. Overexpression of the protein led to enhanced resistance against not only against F. virguliforme, but also against spider mites (Tetranychus urticae, Koch), soybean aphids (Aphis glycines, Matsumura) and soybean cyst nematode (Heterodera glycines). We, therefore, name this protein as Glycine max disease resistance 1 (GmDR1; Glyma.10g094800). The homologues of GmDR1 have been detected only in legumes, cocoa, jute and cotton. The deduced GmDR1 protein contains 73 amino acids. GmDR1 is predicted to contain an ecto- and two transmembrane domains. Transient expression of the green fluorescent protein fused GmDR1 protein in soybean leaves showed that it is a plasma membrane protein. We investigated if chitin, a pathogen-associated molecular pattern (PAMP), common to all pathogen and pests considered in this study, can significantly enhance defence pathways among the GmDR1-overexpressed transgenic soybean lines. Chitin induces marker genes of the salicylic- and jasmonic acid-mediated defence pathways, but suppresses the defence pathway regulated by ethylene. Chitin induced SA- and JA-regulated defence pathways may be one of the mechanisms involved in generating broad-spectrum resistance among the GmDR1-overexpressed transgenic soybean lines against two serious pathogens and two pests including spider mites, against which no known resistance genes have been identified in soybean and among the most other crop species.
Collapse
Affiliation(s)
| | | | - Bing Wang
- Department of AgronomyIowa State UniversityAmesIAUSA
- Present address:
Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | | |
Collapse
|
24
|
McCabe CE, Graham MA. New tools for characterizing early brown stem rot disease resistance signaling in soybean. THE PLANT GENOME 2020; 13:e20037. [PMID: 33217212 DOI: 10.1002/tpg2.20037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 05/12/2023]
Abstract
Brown stem rot (BSR) reduces soybean [Glycine max (L.) Merr.] yield by up to 38%. The BSR causal agent is Phialophora gregata f. sp. sojae, a slow-growing, necrotrophic fungus whose life cycle includes latent and pathogenic phases, each lasting several weeks. Brown stem rot foliar symptoms are often misdiagnosed as other soybean diseases or nutrient stress, making BSR resistance especially difficult to phenotype. To shed light on the genes and networks contributing to P. gregata resistance, we conducted RNA sequencing (RNA-seq) of a resistant genotype (PI 437970, Rbs3). Leaf, stem, and root tissues were collected 12, 24, and 36 h after stab inoculation with P. gregata, or mock infection, in the plant stem. By using multiple tissues and time points, we could see that leaves, stems, and roots use the same defense pathways. Our analyses suggest that P. gregata induces a biphasic defense response, with pathogen-associated molecular pattern (PAMP) triggered immunity observed in leaves at 12 and 24 h after infection (HAI) and effector triggered immunity detected at 36 h after infection in the stems. Gene networks associated with defense, photosynthesis, nutrient homeostasis, DNA replication, and growth are the hallmarks of resistance to P. gregata. While P. gregata is a slow-growing pathogen, our results demonstrate that pathogen recognition occurs hours after infection. By exploiting the genes and networks described here, we will be able to develop novel diagnostic tools to facilitate breeding and screening for BSR resistance.
Collapse
Affiliation(s)
- Chantal E McCabe
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA
| | - Michelle A Graham
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA
| |
Collapse
|
25
|
Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes. PLoS One 2020; 15:e0236823. [PMID: 32745143 PMCID: PMC7398544 DOI: 10.1371/journal.pone.0236823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
Stem rot, a devastating fungal disease of peanut, is caused by Sclerotium rolfsii. RNA-sequencing approaches have been used to unravel the mechanisms of resistance to stem rot in peanut over the course of fungal infection in resistant (NRCG-CS85) and susceptible (TG37A) genotypes under control conditions and during the course of infection. Out of about 290 million reads, nearly 251 million (92.22%) high-quality reads were obtained and aligned to the Arachis duranensis and Arachis ipaensis genomes with the average mapping of 78.91% and 78.61%, respectively. In total, about 48.6% of genes were commonly regulated, while approximately 21.8% and 29.6% of uniquely regulated genes from A. duranensis and A. ipaensis genomes, respectively, were identified. Several annotated transcripts, such as receptor-like kinases, jasmonic acid pathway enzymes, and transcription factors (TFs), including WRKY, Zinc finger protein, and C2-H2 zinc finger, showed higher expression in resistant genotypes upon infection. These transcripts have a known role in channelizing the downstream of pathogen perception. The higher expression of WRKY transcripts might have induced the systemic acquired resistance (SAR) by the activation of the jasmonic acid defense signaling pathway. Furthermore, a set of 30 transcripts involved in the defense mechanisms were validated with quantitative real-time PCR. This study suggested PAMP-triggered immunity as a probable mechanism of resistance, while the jasmonic acid signaling pathway was identified as a possible defense mechanism in peanut. The information generated is of immense importance in developing more effective ways to combat the stem rot disease in peanut.
Collapse
|
26
|
Zou J, Zhang Z, Yu S, Kang Q, Shi Y, Wang J, Zhu R, Ma C, Chen L, Wang J, Li J, Li Q, Liu X, Zhu J, Wu X, Hu Z, Qi Z, Liu C, Chen Q, Xin D. Responses of Soybean Genes in the Substituted Segments of Segment Substitution Lines Following a Xanthomonas Infection. FRONTIERS IN PLANT SCIENCE 2020; 11:972. [PMID: 32719700 PMCID: PMC7351525 DOI: 10.3389/fpls.2020.00972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Bacterial blight, which is one of the most common soybean diseases, is responsible for considerable yield losses. In this study, a novel Xanthomonas vasicola strain was isolated from the leaves of soybean plants infected with bacterial blight under field conditions. Sequencing the X. vasicola genome revealed type-III effector-coding genes. Moreover, the hrpG deletion mutant was constructed. To identify the soybean genes responsive to HrpG, two chromosome segment substitution lines (CSSLs) carrying the wild soybean genome, but with opposite phenotypes following Xanthomonas inoculations, were used to analyze gene expression networks based on RNA sequencing at three time points after inoculations with wild-type Xanthomonas or the hrpG deletion mutant. To further identify the hub genes underlying soybean responses to HrpG, the genes located on the substituted chromosome segments were examined. Finally, a combined analysis with the QTLs for resistance to Xanthomonas identified 35 hub genes in the substituted chromosomal segments that may help regulate soybean responses to Xanthomonas and HrpG. Furthermore, two candidate genes in the CSSLs might play pivotal roles in response to Xanthomonas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhaoming Qi
- *Correspondence: Zhaoming Qi, ; Chunyan Liu, ; Qingshan Chen, ; Dawei Xin,
| | - Chunyan Liu
- *Correspondence: Zhaoming Qi, ; Chunyan Liu, ; Qingshan Chen, ; Dawei Xin,
| | - Qingshan Chen
- *Correspondence: Zhaoming Qi, ; Chunyan Liu, ; Qingshan Chen, ; Dawei Xin,
| | - Dawei Xin
- *Correspondence: Zhaoming Qi, ; Chunyan Liu, ; Qingshan Chen, ; Dawei Xin,
| |
Collapse
|
27
|
Luo W, Liu J, Ding P, Li C, Liu H, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Chen G, Jiang Y, Qi P, Zheng Y, Wei Y, Liu C, Lan X, Ma J. Transcriptome analysis of near-isogenic lines for glume hairiness of wheat. Gene 2020; 739:144517. [PMID: 32113949 DOI: 10.1016/j.gene.2020.144517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/29/2022]
Abstract
Hairiness, which is a phenotypic trait common among land plants, primarily affects the stem, leaf, and floral organs. Plant hairiness is associated with complex functions. For example, glume hairiness in wheat is related to the resistance to biotic and abiotic stresses, and may also influence human health. In the present study, two pairs of near-isogenic lines (NILs) for glume hairiness, which were derived from a cross between a Tibetan semi-wild wheat accession (Triticum aestivum ssp. tibetanum Q1028) and a common wheat cultivar (T. aestivum 'Zhengmai 9023'), underwent a glume transcriptome analysis. We detected 27,935 novel genes, of which 18,027 were annotated. Additionally, 488 and 600 differentially expressed genes (DEGs) were detected in NIL1 and NIL2, respectively, with 37 DEGs detected in both NIL pairs. Moreover, 987 and 1584 single nucleotide polymorphisms (SNPs) were detected in NIL1 and NIL2, respectively, with 39 SNPs detected in both NIL pairs, of which most were located in the Hairy glume (Hg) gene region on chromosome arm 1AS. The annotation of the DEGs with gene ontology terms revealed that genes associated with hairiness in Arabidopsis and rice were similarly enriched. The possible functions of these genes related to glume hairiness were examined. The study results provide useful information for identifying candidate genes and the fine-mapping of Hg in the wheat genome.
Collapse
Affiliation(s)
- Wei Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiajun Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Puyang Ding
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Cong Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chunji Liu
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
28
|
DeMers LC, Redekar NR, Kachroo A, Tolin SA, Li S, Saghai Maroof MA. A transcriptional regulatory network of Rsv3-mediated extreme resistance against Soybean mosaic virus. PLoS One 2020; 15:e0231658. [PMID: 32315334 DOI: 10.1371/journal.pgen.0231658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/29/2020] [Indexed: 05/28/2023] Open
Abstract
Resistance genes are an effective means for disease control in plants. They predominantly function by inducing a hypersensitive reaction, which results in localized cell death restricting pathogen spread. Some resistance genes elicit an atypical response, termed extreme resistance, where resistance is not associated with a hypersensitive reaction and its standard defense responses. Unlike hypersensitive reaction, the molecular regulatory mechanism(s) underlying extreme resistance is largely unexplored. One of the few known, naturally occurring, instances of extreme resistance is resistance derived from the soybean Rsv3 gene, which confers resistance against the most virulent Soybean mosaic virus strains. To discern the regulatory mechanism underlying Rsv3-mediated extreme resistance, we generated a gene regulatory network using transcriptomic data from time course comparisons of Soybean mosaic virus-G7-inoculated resistant (L29, Rsv3-genotype) and susceptible (Williams82, rsv3-genotype) soybean cultivars. Our results show Rsv3 begins mounting a defense by 6 hpi via a complex phytohormone network, where abscisic acid, cytokinin, jasmonic acid, and salicylic acid pathways are suppressed. We identified putative regulatory interactions between transcription factors and genes in phytohormone regulatory pathways, which is consistent with the demonstrated involvement of these pathways in Rsv3-mediated resistance. One such transcription factor identified as a putative transcriptional regulator was MYC2 encoded by Glyma.07G051500. Known as a master regulator of abscisic acid and jasmonic acid signaling, MYC2 specifically recognizes the G-box motif ("CACGTG"), which was significantly enriched in our data among differentially expressed genes implicated in abscisic acid- and jasmonic acid-related activities. This suggests an important role for Glyma.07G051500 in abscisic acid- and jasmonic acid-derived defense signaling in Rsv3. Resultantly, the findings from our network offer insights into genes and biological pathways underlying the molecular defense mechanism of Rsv3-mediated extreme resistance against Soybean mosaic virus. The computational pipeline used to reconstruct the gene regulatory network in this study is freely available at https://github.com/LiLabAtVT/rsv3-network.
Collapse
Affiliation(s)
- Lindsay C DeMers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Neelam R Redekar
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Virginia, United States of America
| | - Sue A Tolin
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - M A Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
29
|
DeMers LC, Redekar NR, Kachroo A, Tolin SA, Li S, Saghai Maroof MA. A transcriptional regulatory network of Rsv3-mediated extreme resistance against Soybean mosaic virus. PLoS One 2020; 15:e0231658. [PMID: 32315334 PMCID: PMC7173922 DOI: 10.1371/journal.pone.0231658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/29/2020] [Indexed: 01/02/2023] Open
Abstract
Resistance genes are an effective means for disease control in plants. They predominantly function by inducing a hypersensitive reaction, which results in localized cell death restricting pathogen spread. Some resistance genes elicit an atypical response, termed extreme resistance, where resistance is not associated with a hypersensitive reaction and its standard defense responses. Unlike hypersensitive reaction, the molecular regulatory mechanism(s) underlying extreme resistance is largely unexplored. One of the few known, naturally occurring, instances of extreme resistance is resistance derived from the soybean Rsv3 gene, which confers resistance against the most virulent Soybean mosaic virus strains. To discern the regulatory mechanism underlying Rsv3-mediated extreme resistance, we generated a gene regulatory network using transcriptomic data from time course comparisons of Soybean mosaic virus-G7-inoculated resistant (L29, Rsv3-genotype) and susceptible (Williams82, rsv3-genotype) soybean cultivars. Our results show Rsv3 begins mounting a defense by 6 hpi via a complex phytohormone network, where abscisic acid, cytokinin, jasmonic acid, and salicylic acid pathways are suppressed. We identified putative regulatory interactions between transcription factors and genes in phytohormone regulatory pathways, which is consistent with the demonstrated involvement of these pathways in Rsv3-mediated resistance. One such transcription factor identified as a putative transcriptional regulator was MYC2 encoded by Glyma.07G051500. Known as a master regulator of abscisic acid and jasmonic acid signaling, MYC2 specifically recognizes the G-box motif ("CACGTG"), which was significantly enriched in our data among differentially expressed genes implicated in abscisic acid- and jasmonic acid-related activities. This suggests an important role for Glyma.07G051500 in abscisic acid- and jasmonic acid-derived defense signaling in Rsv3. Resultantly, the findings from our network offer insights into genes and biological pathways underlying the molecular defense mechanism of Rsv3-mediated extreme resistance against Soybean mosaic virus. The computational pipeline used to reconstruct the gene regulatory network in this study is freely available at https://github.com/LiLabAtVT/rsv3-network.
Collapse
Affiliation(s)
- Lindsay C. DeMers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Neelam R. Redekar
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Virginia, United States of America
| | - Sue A. Tolin
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
30
|
A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea gigas. mBio 2020; 11:mBio.02777-19. [PMID: 32156821 PMCID: PMC7064767 DOI: 10.1128/mbio.02777-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide.IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates.
Collapse
|
31
|
de Lorgeril J, Petton B, Lucasson A, Perez V, Stenger PL, Dégremont L, Montagnani C, Escoubas JM, Haffner P, Allienne JF, Leroy M, Lagarde F, Vidal-Dupiol J, Gueguen Y, Mitta G. Differential basal expression of immune genes confers Crassostrea gigas resistance to Pacific oyster mortality syndrome. BMC Genomics 2020; 21:63. [PMID: 31959106 PMCID: PMC6971885 DOI: 10.1186/s12864-020-6471-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023] Open
Abstract
Background As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). Results We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. Conclusions We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.
Collapse
Affiliation(s)
- Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Bruno Petton
- Ifremer, LEMAR UMR 6539, UBO/CNRS/IRD/Ifremer, 11 presqu'île du vivier, 29840, Argenton-en-Landunvez, France
| | - Aude Lucasson
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Valérie Perez
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Pierre-Louis Stenger
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France.,Ifremer, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia
| | - Lionel Dégremont
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue du Mus de Loup, 17930, La Tremblade, France
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Philippe Haffner
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Jean-François Allienne
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Marc Leroy
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Franck Lagarde
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, 87 Avenue Jean Monnet, 34200, Sète, France
| | - Jérémie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Guillaume Mitta
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France.
| |
Collapse
|
32
|
Dong H, Tan J, Li M, Yu Y, Jia S, Zhang C, Wu Y, Liu Y. Transcriptome analysis of soybean WRKY TFs in response to Peronospora manshurica infection. Genomics 2019; 111:1412-1422. [PMID: 30267765 DOI: 10.1016/j.ygeno.2018.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Soybean downy mildew (SDM) caused by Peronospora manshurica (Pm) is a common disease of soybean that occurs wherever soybean is grown. In order to provide new insights about the defense mechanism of soybean response to Pm infection, differential expression of WRKY transcription factors (TFs) in SDM-high resistant (HR) and SDM-high susceptible (HS) genotypes were analyzed in this study. Totally, 22 WRKY TFs were differentially expressed in HR and HS genotype, while 16 WRKY TFs were found to be specific in response to fungal inoculation. By yeast one-hybrid (Y1H) assay, the GmWRKY31 was characterized to be able to bind the cis-acting W-box element in the promoter region of the GmSAGT1 gene whose higher transcriptional expression was associated with enhanced SDM-resistance. This result of Y1H assay, together with the activation of GmSAGT1 both by SA (salicylic acid) induction and Pm infection in vivo, let us to speculate that the GmWRKY31 might regulate the GmSAGT1 gene expression and involve in SA-mediated immune responses in soybean.
Collapse
Affiliation(s)
- Hang Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, China; College of Plant Protection, Shenyang Agricultural University, China
| | - Jie Tan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Mei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Yue Yu
- School of Biotechnology, East China University of Science and Technology, China
| | - Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Chong Zhang
- College of Plant Protection, Shenyang Agricultural University, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, China.
| | - Yuhui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
33
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
34
|
Kundu A, Singh PK, Dey A, Ganguli S, Pal A. Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Sci Rep 2019; 9:8858. [PMID: 31221982 PMCID: PMC6586629 DOI: 10.1038/s41598-019-45383-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mungbean Yellow Mosaic India Virus (MYMIV)-infection creates major hindrance in V. mungo cultivation and poses significant threat to other grain legume production. Symptoms associated include severe patho-physiological alterations characterized by chlorotic foliar lesion accompanied by reduced growth. However, dissection of the host's defense machinery remains a tough challenge due to limited of host's genomic resources. A comparative RNA-Seq transcriptomes of resistant (VM84) and susceptible (T9) plants was carried out to identify genes potentially involved in V. mungo resistance against MYMIV. Distinct gene expression landscapes were observed in VM84 and T9 with 2158 and 1679 differentially expressed genes (DEGs), respectively. Transcriptomic responses in VM84 reflect a prompt and intense immune reaction demonstrating an efficient pathogen surveillance leading to activation of basal and induced immune responses. Functional analysis of the altered DEGs identified multiple regulatory pathways to be activated or repressed over time. Up-regulation of DEGs including NB-LRR, WRKY33, ankyrin, argonaute and NAC transcription factor revealed an insight on their potential roles in MYMIV-resistance; and qPCR validation shows a propensity of their accumulation in VM84. Analyses of the current RNA-Seq dataset contribute immensely to decipher molecular responses that underlie MYMIV-resistance and will aid in the improvement strategy of V. mungo and other legumes through comparative functional genomics.
Collapse
Affiliation(s)
- Anirban Kundu
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
- Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 7000118, India
| | | | - Avishek Dey
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
| | - Sayak Ganguli
- Theoretical and Computational Biology, AIIST, Palta, Kolkata, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
35
|
Li PT, Rashid MHO, Chen TT, Lu QW, Ge Q, Gong WK, Liu AY, Gong JW, Shang HH, Deng XY, Li JW, Li SQ, Xiao XH, Liu RX, Zhang Q, Duan L, Zou XY, Zhang Z, Jiang X, Zhang Y, Peng RH, Shi YZ, Yuan YL. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum × G. barbadense in response to Verticillium dahliae infection. BMC PLANT BIOLOGY 2019; 19:19. [PMID: 30634907 PMCID: PMC6329193 DOI: 10.1186/s12870-018-1619-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/26/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.
Collapse
Affiliation(s)
- Peng-tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Md. Harun or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ting-ting Chen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Quan-wei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Wan-kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ai-ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ju-wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Hai-hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiao-ying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Jun-wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Shao-qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiang-hui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Rui-xian Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Li Duan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xian-yan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ya Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Ren-hai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Yu-zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - You-lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| |
Collapse
|
36
|
Li PT, Rashid MHO, Chen TT, Lu QW, Ge Q, Gong WK, Liu AY, Gong JW, Shang HH, Deng XY, Li JW, Li SQ, Xiao XH, Liu RX, Zhang Q, Duan L, Zou XY, Zhang Z, Jiang X, Zhang Y, Peng RH, Shi YZ, Yuan YL. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum × G. barbadense in response to Verticillium dahliae infection. BMC PLANT BIOLOGY 2019; 19:19. [PMID: 30634907 DOI: 10.1186/s12870-018-1619-1614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/26/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.
Collapse
Affiliation(s)
- Peng-Tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Md Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ting-Ting Chen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Quan-Wei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Hai-Hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiao-Ying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Jun-Wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Shao-Qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiang-Hui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Rui-Xian Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Li Duan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xian-Yan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ya Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Ren-Hai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China.
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China.
| |
Collapse
|
37
|
Suzaki T, Tsuda M, Ezura H, Day B, Miura K. Agroinfiltration-based efficient transient protein expression in leguminous plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:119-123. [PMID: 31768113 PMCID: PMC6847781 DOI: 10.5511/plantbiotechnology.19.0220b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transient protein expression is an effective tool to rapidly unravel novel gene functions, such as transcriptional activity of promoters and sub-cellular localization of proteins. However, transient expression is not applicable to some species and varieties because of insufficient expression levels. We recently developed one of the strongest agroinfiltration-based transient protein expression systems for plant cells, termed 'Tsukuba system.' About 4 mg/g fresh weight of protein expression in Nicotiana benthamiana was obtained using this system. The vector pBYR2HS, which contains a geminiviral replication system and a double terminator, can be used in various plant species and varieties, including lettuces, eggplants, tomatoes, hot peppers, and orchids. In this study, we assessed the applicability of the Tsukuba system to several species of legumes, including Lotus japonicus, soybean Glycine max, and common bean Phaseolus vulgaris. The GFP protein was transiently expressed in the seedpods of all examined legume species, however, protein expression in leaves was observed only in P. vulgaris. Taken together, our system is an effective tool to examine gene function rapidly in several legume species based on transient protein expression.
Collapse
Affiliation(s)
- Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mai Tsuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University Plant Resilience Institute, East Lansing, MI 48824, USA
| | - Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- E-mail: Tel & Fax: 81-29-853-6401
| |
Collapse
|
38
|
Dong H, Shi S, Zhang C, Zhu S, Li M, Tan J, Yu Y, Lin L, Jia S, Wang X, Wu Y, Liu Y. Transcriptomic analysis of genes in soybean in response to Peronospora manshurica infection. BMC Genomics 2018; 19:366. [PMID: 29776333 PMCID: PMC5960119 DOI: 10.1186/s12864-018-4741-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/30/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Soybean downy mildew (SDM), caused by Peronospora manshurica (Pm), is a major fungal disease in soybean. To date, little is known regarding the defense mechanism at molecular level and how soybean plants response to Pm infection. In this study, differential gene expression in SDM-resistant (HR) and SDM-susceptible (HS) genotype was analyzed by RNA-seq to identify differentially expressed genes (DEGs) following Pm infection. RESULTS Of a total of 55,017 genes mapped to the soybean reference genome sequences, 2581 DEGs were identified. Clustering analysis of DEGs revealed that these genes could be grouped into 8 clusters with distinct expression patterns. Functional annotation based on gene ontology (GO) and KEGG analysis indicated they involved in diverse metabolism pathways. Of particular interest were the detected DEGs participating in SA/ROS and JA signalling transduction and plant/pathogen interaction. CONCLUSION Totally, 52 DEGs with P value < 0.001 and log2 fold change > 2 or < - 2 upon fungal inoculation were identified, suggesting they were SDM defense responsive genes. These findings have paved way in further functional characterization of candidate genes and subsequently can be used in breeding of elite soybean varieties with better SDM-resistance.
Collapse
Affiliation(s)
- Hang Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shuangfeng Shi
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chong Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Sihui Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Tan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Yu
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Liping Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuhui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Transcriptome reprogramming of resistant and susceptible peach genotypes during Xanthomonas arboricola pv. pruni early leaf infection. PLoS One 2018; 13:e0196590. [PMID: 29698473 PMCID: PMC5919700 DOI: 10.1371/journal.pone.0196590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is a major threat to Prunus species worldwide. The molecular mechanisms of peach resistance to Xap during early leaf infection were investigated by RNA-Seq analysis of two Prunus persica cultivars, ‘Redkist’ (resistant), and ‘JH Hale’ (susceptible) at 30 minutes, 1 and 3 hours-post-infection (hpi). Both cultivars exhibited extensive modulation of gene expression at 30 mpi, which reduced significantly at 1 hpi, increasing again at 3 hpi. Overall, 714 differentially expressed genes (DEGs) were detected in ‘Redkist’ (12% at 30 mpi and 1 hpi and 88% at 3 hpi). In ‘JH Hale’, 821 DEGs were identified (47% at 30 mpi and 1 hpi and 53% at 3 hpi). Highly up-regulated genes (fold change > 100) at 3 hpi exhibited higher fold change values in ‘Redkist’ than in ‘JH Hale’. RNA-Seq bioinformatics analyses were validated by RT-qPCR. In both cultivars, DEGs included genes with putative roles in perception, signal transduction, secondary metabolism, and transcription regulation, and there were defense responses in both cultivars, with enrichment for the gene ontology terms, ‘immune system process’, ‘defense response’, and ‘cell death’. There were particular differences between the cultivars in the intensity and kinetics of modulation of expression of genes with putative roles in transcriptional activity, secondary metabolism, photosynthesis, and receptor and signaling processes. Analysis of differential exon usage (DEU) revealed that both cultivars initiated remodeling their transcriptomes at 30 mpi; however, ‘Redkist’ exhibited alternative exon usage for a greater number of genes at every time point compared with ‘JH Hale’. Candidate resistance genes (WRKY-like, CRK-like, Copper amine oxidase-like, and TIR-NBS-LRR-like) are of interest for further functional characterization with the aim of elucidating their role in Prunus spp. resistance to Xap.
Collapse
|
40
|
Lee SE, Gupta R, Jayaramaiah RH, Lee SH, Wang Y, Park SR, Kim ST. Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions. THE PLANT PATHOLOGY JOURNAL 2017; 33:458-466. [PMID: 29018309 PMCID: PMC5624488 DOI: 10.5423/ppj.oa.04.2017.0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 05/29/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight, is a major threat to rice productivity. Here, we performed RNA-Seq based transcriptomic analysis of Xoo transcripts isolated under in planta growth (on both susceptible and resistant hosts) and in vitro culture conditions. Our in planta extraction method resulted in successful enrichment of Xoo cells and provided RNA samples of high quality. A total of 4,619 differentially expressed genes were identified between in planta and in vitro growth conditions. The majority of the differentially expressed genes identified under in planta growth conditions were related to the nutrient transport, protease activity, stress tolerance, and pathogenicity. Among them, over 1,300 differentially expressed genes were determined to be secretory, including 184 putative type III effectors that may be involved in Xoo pathogenicity. Expression pattern of some of these identified genes were further validated by semi-quantitative RT-PCR. Taken together, these results provide a transcriptome overview of Xoo under in planta and in vitro growth conditions with a focus on its pathogenic processes, deepening our understanding of the behavior and pathogenicity of Xoo.
Collapse
Affiliation(s)
- So Eui Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463,
Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463,
Korea
| | - Ramesha H. Jayaramaiah
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463,
Korea
| | - Seo Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463,
Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linneweg 10, Cologne 50829,
Germany
| | - Sang-Ryeol Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54875,
Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463,
Korea
| |
Collapse
|
41
|
Dong K, Chang S, Xie Q, Black-Pyrkosz A, Zhang H. Comparative transcriptomics of genetically divergent lines of chickens in response to Marek's disease virus challenge at cytolytic phase. PLoS One 2017; 12:e0178923. [PMID: 28591220 PMCID: PMC5462384 DOI: 10.1371/journal.pone.0178923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 11/30/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), remains an economically significant threat to the poultry industry worldwide. Genetic resistance to MD is a promising alternative strategy to augment current control measures (vaccination and management). However, only a few functional genes reportedly conferring MD resistance have been identified. Here, we performed a comparative transcriptomics analysis of two highly inbred yet genetically divergent lines of chickens (line 63 and 72) that are resistant and susceptible to MD, respectively, in response to a very virulent plus strain of MDV (vv+MDV) challenge at cytolytic phase. A total of 203 DEGs in response to MDV challenge were identified in the two lines. Of these, 96 DEGs were in common for both lines, in addition to 36 and 71 DEGs that were specific for line 63 and 72, respectively. Functional enrichment analysis results showed the DEGs were significantly enriched in GO terms and pathways associated with immune response. Especially, the four DEGs, FGA, ALB, FN1, and F13A1 that reportedly facilitate virus invasion or immunosuppression, were found to be significantly up-regulated in the susceptible line 72 but down-regulated in the resistant line 63 birds. These results provide new resources for future studies to further elucidate the genetic mechanism conferring MD resistance.
Collapse
Affiliation(s)
- Kunzhe Dong
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
- ORISE Fellow, USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Alexis Black-Pyrkosz
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| |
Collapse
|
42
|
Wang B, Zhang S, Wang X, Yang S, Jiang Q, Xu Y, Xia W. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice. Int J Biol Macromol 2017; 102:104-110. [PMID: 28385522 DOI: 10.1016/j.ijbiomac.2017.03.187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022]
Abstract
Transcriptome analysis was performed to investigate the alterations in gene expression after chitosan (CS) treatment on the liver of mice fed with high-fat diet (HFD). The results showed that the body weight, the liver weight and the epididymal fat mass of HFD mice, which were 62.98%, 46.51% and 239.37%, respectively, higher than those of control mice, could be significantly decreased by chitosan supplementation. Also, high-fat diet increased both plasma lipid and liver lipid as compared with the control mice. Chitosan supplementation decreased the plasma lipid and liver lipid, increased the lipoprotein lipase (LPL) and hepatic lipase (HL) activity, increased T-AOC and decreased MDA in the liver and the epididymis adipose as compared with the HFD mice. Transcriptome analysis indicated that increased Mups, Lcn2, Gstm3 and CYP2E1 expressions clearly indicated HFD induced lipid metabolism disorder and oxidative damage. Especially, chitosan treatment decreased the Mup17 and Lcn2 expressions by 64.32% and 82.43% respectively as compared with those of HFD mice. These results indicated that chitosan possess the ability to improve the impairment of lipid metabolism as strongly associated with increased Mups expressions and gene expressions related to oxidative stress.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Sicong Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoya Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
43
|
Transcriptomic profiling of soybean in response to UV-B and Xanthomonas axonopodis treatment reveals shared gene components in stress defense pathways. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Li Y, Chu Y, Yu L, Kang H, Zhou L. Transcriptomic analysis of Bama pig's liver in various nutritional states reveals a metabolic difference of fatty acids. Food Funct 2017; 8:3480-3490. [DOI: 10.1039/c7fo00937b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both fasting and treatment with a high-fat diet (HFD) can dramatically change fat metabolism in the liver.
Collapse
Affiliation(s)
- Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- College of Animal Science and Technology
- Guangxi University
- Nanning
- P.R. China
| | - Yi Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- College of Animal Science and Technology
- Guangxi University
- Nanning
- P.R. China
| | - Lin Yu
- Hangzhou King Techina Feed Co
- Ltd
- Yuhang District, Hangzhou
- China
| | - Huifang Kang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- College of Animal Science and Technology
- Guangxi University
- Nanning
- P.R. China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- College of Animal Science and Technology
- Guangxi University
- Nanning
- P.R. China
| |
Collapse
|
45
|
Zhang X, Liu Y, Fang Z, Li Z, Yang L, Zhuang M, Zhang Y, Lv H. Comparative Transcriptome Analysis between Broccoli ( Brassica oleracea var. italica) and Wild Cabbage ( Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages. FRONTIERS IN PLANT SCIENCE 2016; 7:1929. [PMID: 28066482 DOI: 10.1007/s11104-019-04196-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/05/2016] [Indexed: 05/27/2023]
Abstract
Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae. However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Yumei Liu
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Zhiyuan Fang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Zhansheng Li
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Limei Yang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Mu Zhuang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Yangyong Zhang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Honghao Lv
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
46
|
Cheng XJ, He B, Chen L, Xiao SQ, Fu J, Chen Y, Yu TQ, Cheng ZQ, Feng H. Transcriptome analysis confers a complex disease resistance network in wild rice Oryza meyeriana against Xanthomonas oryzae pv. oryzae. Sci Rep 2016; 6:38215. [PMID: 27905546 PMCID: PMC5131272 DOI: 10.1038/srep38215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/07/2016] [Indexed: 01/30/2023] Open
Abstract
Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the devastating diseases of rice. It is well established that the wild rice Oryza meyeriana is immune to BB. In this study, the transcriptomic analysis was carried out by RNA sequencing of O. meyeriana leaves, inoculated with Xoo to understand the transcriptional responses and interaction between the host and pathogen. Totally, 57,313 unitranscripts were de novo assembled from 58.7 Gb clean reads and 14,143 unitranscripts were identified after Xoo inoculation. The significant metabolic pathways related to the disease resistance enriched by KEGG, were revealed to plant-pathogen interaction, phytohormone signaling, ubiquitin mediated proteolysis, and phenylpropanoid biosynthesis. Further, many disease resistance genes were also identified to be differentially expressed in response to Xoo infection. Conclusively, the present study indicated that the induced innate immunity comprise the basal defence frontier of O. meyeriana against Xoo infection. And then, the resistance genes are activated. Simultaneously, the other signaling transduction pathways like phytohormones and ubiquitin mediated proteolysis may contribute to the disease defence through modulation of the disease-related genes or pathways. This could be an useful information for further investigating the molecular mechanism associated with disease resistance in O. meyeriana.
Collapse
Affiliation(s)
- Xiao-Jie Cheng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Bin He
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Lin Chen
- Biotechnology &Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, Yunnan, China
| | - Su-Qin Xiao
- Biotechnology &Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, Yunnan, China
| | - Jian Fu
- Biotechnology &Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, Yunnan, China
| | - Yue Chen
- Biotechnology &Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, Yunnan, China
| | - Teng-Qiong Yu
- Biotechnology &Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, Yunnan, China
| | - Zai-Quan Cheng
- Biotechnology &Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, Yunnan, China
| | - Hong Feng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| |
Collapse
|
47
|
Huang Y, Li L, Smith KP, Muehlbauer GJ. Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance. BMC Genomics 2016; 17:387. [PMID: 27206761 PMCID: PMC4875680 DOI: 10.1186/s12864-016-2716-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/06/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Fusarium graminearum causes Fusarium head blight (FHB), a major disease problem worldwide. Resistance to FHB is controlled by quantitative trait loci (QTL) of which two are located on barley chromosomes 2H bin8 and 6H bin7. The mechanisms of resistance mediated by FHB QTL are poorly defined. RESULTS Near-isogenic lines (NILs) carrying Chevron-derived resistant alleles for the two QTL were developed and exhibited FHB resistance in field trials. To understand the molecular responses associated with resistance, transcriptomes of the NILs and recurrent parents (M69 and Lacey) were investigated with RNA sequencing (RNA-Seq) after F. graminearum or mock inoculation. A total of 2083 FHB-responsive transcripts were detected and provide a gene expression atlas for the barley-F. graminearum interaction. Comparative analysis of the 2Hb8 resistant (R) NIL and M69 revealed that the 2Hb8 R NIL exhibited an elevated defense response in the absence of fungal infection and responded quicker than M69 upon fungal infection. The 6Hb7 R NIL displayed a more rapid induction of a set of defense genes than Lacey during the early stage of fungal infection. Overlap of differentially accumulated genes were identified between the two R NILs, suggesting that certain responses may represent basal resistance to F. graminearum and/or general biotic stress response and were expressed by both resistant genotypes. Long noncoding RNAs (lncRNAs) have emerged as potential key regulators of transcription. A total of 12,366 lncRNAs were identified, of which 604 were FHB responsive. CONCLUSIONS The current transcriptomic analysis revealed differential responses conferred by two QTL during F. graminearum infection and identified genes and lncRNAs that were associated with FHB resistance.
Collapse
Affiliation(s)
- Yadong Huang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Lin Li
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA.
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
48
|
Gao L, Wang Y, Li Z, Zhang H, Ye J, Li G. Gene Expression Changes during the Gummosis Development of Peach Shoots in Response to Lasiodiplodia theobromae Infection Using RNA-Seq. Front Physiol 2016; 7:170. [PMID: 27242544 PMCID: PMC4861008 DOI: 10.3389/fphys.2016.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/25/2016] [Indexed: 01/31/2023] Open
Abstract
Lasiodiplodia theobromae is a causal agent of peach (Prunus persica L.) tree gummosis, a serious disease affecting peach cultivation and production. However, the molecular mechanism underlying the pathogenesis remains unclear. RNA-Seq was performed to investigate gene expression in peach shoots inoculated or mock-inoculated with L. theobromae. A total of 20772 genes were detected in eight samples; 4231, 3750, 3453, and 3612 differentially expressed genes were identified at 12, 24, 48, and 60 h after inoculation, respectively. Furthermore, 920 differentially co-expressed genes (515 upregulated and 405 downregulated) were found, respectively. Gene ontology annotation revealed that phenylpropanoid biosynthesis and metabolism, uridine diphosphate-glucosyltransferase activity, and photosynthesis were the most differentially regulated processes during gummosis development. Significant differences were also found in the expression of genes involved in glycometabolism and in ethylene and jasmonic acid biosynthesis and signaling. These data illustrate the dynamic changes in gene expression in the inoculated peach shoots at the transcriptome level. Overall, gene expression in defense response and glycometabolism might result in the gummosis of peach trees induced by L. theobromae.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Yuting Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest Agriculture and Forestry University Yangling, China
| | - He Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
49
|
Kim KH, Lim S, Kang YJ, Yoon MY, Nam M, Jun TH, Seo MJ, Baek SB, Lee JH, Moon JK, Lee SH, Lee SH, Lim HS, Moon JS, Park CH. Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans. THE PLANT PATHOLOGY JOURNAL 2016; 32:112-22. [PMID: 27147931 PMCID: PMC4853101 DOI: 10.5423/ppj.oa.04.2015.0063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 05/24/2023]
Abstract
Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately 27°C following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density (OD)600 of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.
Collapse
Affiliation(s)
- Kil Hyun Kim
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Seungmo Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350,
Korea
| | - Yang Jae Kang
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Min Young Yoon
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Moon Nam
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701,
Korea
| | - Tae Hwan Jun
- Department of Plant Bioscience, College of Natural Resources & Life Science, Pusan National University, Pusan 627-706,
Korea
| | - Min-Jung Seo
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Seong-Bum Baek
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Jeom-Ho Lee
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Su-Heon Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701,
Korea
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764,
Korea
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350,
Korea
| | - Chang-Hwan Park
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| |
Collapse
|
50
|
Seo JK, Choi HS, Kim KH. Engineering of soybean mosaic virus as a versatile tool for studying protein-protein interactions in soybean. Sci Rep 2016; 6:22436. [PMID: 26926710 PMCID: PMC4772626 DOI: 10.1038/srep22436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
Transient gene expression approaches are valuable tools for rapid introduction of genes of interest and characterization of their functions in plants. Although agroinfiltration is the most effectively and routinely used method for transient expression of multiple genes in various plant species, this approach has been largely unsuccessful in soybean. In this study, we engineered soybean mosaic virus (SMV) as a dual-gene delivery vector to simultaneously deliver and express two genes in soybean cells. We further show the application of the SMV-based dual vector for a bimolecular fluorescence complementation assay to visualize in vivo protein-protein interactions in soybean and for a co-immunoprecipitation assay to identify cellular proteins interacting with SMV helper component protease. This approach provides a rapid and cost-effective tool for transient introduction of multiple traits into soybean and for in vivo characterization of the soybean cellular protein interaction network.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|