1
|
Marker-Assisted Pyramiding of Genes for Multilocular Ovaries, Self-Compatibility, and Clubroot Resistance in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molecular marker-assisted gene pyramiding combined with backcrossing has been widely applied for crop variety improvement. Molecular marker identification could be used in the early stage of breeding to achieve the rapid and effective pyramiding of multiple genes. To create high-quality germplasm for Chinese cabbage breeding, multi-gene pyramiding for self-compatibility, multilocular, and clubroot resistance was performed through molecular marker-assisted selection. The results showed that self-compatibility and multilocular traits were controlled by a pair of recessive genes. Two flanking markers, sau_um190 and cun_246a, and marker Teo-1, based on the gene sequence related to multilocular ovaries, were used for multilocular ovary trait selection. Two flanking markers, SCF-6 and SC-12, and marker Sal-SLGI /PK1+PK4, based on the gene sequence, were used for self-compatibility selection. Two flanking markers, TCR74 and TCR79, closely linked to clubroot resistance gene CRb, were used as foreground selection markers. Based on Chinese cabbage genomic information, 111 SSR markers covering 10 chromosomes were applied for background selection. After multiple generations of selection, a multi-gene pyramided line from a BC4F2 population with self-compatibility, multilocular ovaries, and clubroot resistance was obtained with a high genomic background recovery rate. The improved pyramided line is expected to be utilized as a potential material in further breeding programs.
Collapse
|
2
|
Soundararajan P, Park SG, Won SY, Moon MS, Park HW, Ku KM, Kim JS. Influence of Genotype on High Glucosinolate Synthesis Lines of Brassica rapa. Int J Mol Sci 2021; 22:ijms22147301. [PMID: 34298919 PMCID: PMC8305852 DOI: 10.3390/ijms22147301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to investigate doubled haploid (DH) lines produced between high GSL (HGSL) Brassica rapa ssp. trilocularis (yellow sarson) and low GSL (LGSL) B. rapa ssp. chinensis (pak choi) parents. In total, 161 DH lines were generated. GSL content of HGSL DH lines ranged from 44.12 to 57.04 μmol·g−1·dry weight (dw), which is within the level of high GSL B. rapa ssp. trilocularis (47.46 to 59.56 μmol g−1 dw). We resequenced five of the HGSL DH lines and three of the LGSL DH lines. Recombination blocks were formed between the parental and DH lines with 108,328 single-nucleotide polymorphisms in all chromosomes. In the measured GSL, gluconapin occurred as the major substrate in HGSL DH lines. Among the HGSL DH lines, BrYSP_DH005 had glucoraphanin levels approximately 12-fold higher than those of the HGSL mother plant. The hydrolysis capacity of GSL was analyzed in HGSL DH lines with a Korean pak choi cultivar as a control. Bioactive compounds, such as 3-butenyl isothiocyanate, 4-pentenyl isothiocyanate, 2-phenethyl isothiocyanate, and sulforaphane, were present in the HGSL DH lines at 3-fold to 6.3-fold higher levels compared to the commercial cultivar. The selected HGSL DH lines, resequencing data, and SNP identification were utilized for genome-assisted selection to develop elite GSL-enriched cultivars and the industrial production of potential anti-cancerous metabolites such as gluconapin and glucoraphanin.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Sin-Gi Park
- Bioinformatics Team of Theragen Etex Institute, Suwon 16229, Korea;
| | - So Youn Won
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Mi-Sun Moon
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Hyun Woo Park
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Kang-Mo Ku
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea;
- Department of Horticulture, Chonnam National University, Gwangju 61186, Korea
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
- Correspondence:
| |
Collapse
|
3
|
Solomon AM, Kim TG, Han K, Lee HY, Patil A, Siddique MI, Ahn J, Kang BC. Fine Mapping and Candidate Gene Identification for the CapUp Locus Controlling Fruit Orientation in Pepper ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2021; 12:675474. [PMID: 34262581 PMCID: PMC8273576 DOI: 10.3389/fpls.2021.675474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The orientation of fruits is a distinguishing morphological feature of pepper (Capsicum spp.) varieties. The pendent (downward curved) growth of the fruit stalks, known as pedicels, is highly correlated with fruit weight and pedicel length. A previous genetic analysis revealed that the pendent fruit orientation is governed by a dominant gene, and incomplete inheritance is also observed in some Capsicum accessions. To identify and localize this gene, a single quantitative trait locus (QTL) analysis was performed on one F2 and two recombinant inbred line (RIL) populations, and a genome-wide association study (GWAS) was performed using a core collection. Common QTL regions associated with fruit orientation were detected on chromosome 12. A total of 187,966 SNPs were identified in a genotyping-by-sequencing (GBS) for GWAS analysis of 196 Capsicum annuum, 25 Capsicum baccatum, 21 Capsicum chinense, and 14 Capsicum frutescens accessions, representing the germplasm collection of South Korea. The results of these analyses enabled us to narrow down the CapUp region of interest to 200-250 Mbp on chromosome 12. Seven candidate genes were found to be located between two markers that were completely cosegregated with the fruit orientation phenotype. The findings and markers developed in this study will be helpful for additional understanding of pepper fruit development and breeding for fruit orientation.
Collapse
Affiliation(s)
- Abate Mekonnen Solomon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Tae-Gun Kim
- Interdisciplinary Program in Agricultural Genomics, Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Koeun Han
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hea-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Abhinandan Patil
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Irfan Siddique
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Kawakatsu Y, Sakamoto T, Nakayama H, Kaminoyama K, Igarashi K, Yasugi M, Kudoh H, Nagano AJ, Yano K, Kubo N, Notaguchi M, Kimura S. Combination of genetic analysis and ancient literature survey reveals the divergence of traditional Brassica rapa varieties from Kyoto, Japan. HORTICULTURE RESEARCH 2021; 8:132. [PMID: 34059655 PMCID: PMC8167115 DOI: 10.1038/s41438-021-00569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Since ancient times, humans have bred several plants that we rely on today. However, little is known about the divergence of most of these plants. In the present study, we investigated the divergence of Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey), a traditional leafy vegetable in Kyoto (Japan), by combining genetic analysis and a survey of ancient literature. Mibuna is considered to have been bred 200 years ago from Mizuna, another traditional leafy vegetable in Kyoto. Mibuna has simple spatulate leaves, whereas Mizuna has characteristic serrated leaves. The quantitative trait loci (QTL) and gene expression analyses suggested that the downregulation of BrTCP15 expression contributed to the change in the leaf shape from serrated to simple spatulate. Interestingly, the SNP analysis indicated that the genomic region containing the BrTCP15 locus was transferred to Mibuna by introgression. Furthermore, we conducted a survey of ancient literature to reveal the divergence of Mibuna and found that hybridization between Mizuna and a simple-leaved turnip might have occurred in the past. Indeed, the genomic analysis of multiple turnip cultivars showed that one of the cultivars, Murasakihime, has almost the same sequence in the BrTCP15 region as Mibuna. These results suggest that the hybridization between Mizuna and turnip has resulted in the establishment of Mibuna.
Collapse
Affiliation(s)
- Yaichi Kawakatsu
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Tomoaki Sakamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Hokuto Nakayama
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kaori Kaminoyama
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Kaori Igarashi
- School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Masaki Yasugi
- Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi, 321-8585, Japan
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| | - Atsushi J Nagano
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Nakao Kubo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, 74 Oji, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto, 619-0244, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
5
|
Quantitative Trait Locus Mapping of Clubroot Resistance and Plasmodiophora brassicae Pathotype Banglim-Specific Marker Development in Brassica rapa. Int J Mol Sci 2020; 21:ijms21114157. [PMID: 32532118 PMCID: PMC7312193 DOI: 10.3390/ijms21114157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Clubroot resistance is an economically important trait in Brassicaceae crops. Although many quantitative trait loci (QTLs) for clubroot resistance have been identified in Brassica, disease-related damage continues to occur owing to differences in host variety and constant pathogen variation. Here, we investigated the inheritance of clubroot resistance in a double haploid population developed by crossing clubroot resistant and susceptible lines "09CR500" and "09CR501", respectively. The resistance of "09CR500" to Plasmodiophora brassicae pathotype "Banglim" was controlled as a single dominant gene, with the segregation of resistance and susceptibility being nearly 1:1. PbBrA08Banglim was identified as having a logarithm of odds value of 7.9-74.8, and a phenotypic variance of 26.0-97.1% with flanking marker "09CR.11390652" in A08. After aligning QTL regions to the B. rapa reference genome, 11 genes were selected as candidates. PbBrA08Banglim was located near Crr1, CRs, and Rcr9 loci, but differences were validated by marker analysis, gene structural variations, and gene expression levels, as well as phenotypic responses to the pathotype. Genotyping using the "09CR.11390652" marker accurately distinguished the Banglim-resistance phenotypes in the double haploid population. Thus, the developed marker will be useful in Brassica breeding programs, marker-assisted selection, and gene pyramiding to identify and develop resistant cultivars.
Collapse
|
6
|
Schiessl S, Williams N, Specht P, Staiger D, Johansson M. Different copies of SENSITIVITY TO RED LIGHT REDUCED 1 show strong subfunctionalization in Brassica napus. BMC PLANT BIOLOGY 2019; 19:372. [PMID: 31438864 PMCID: PMC6704554 DOI: 10.1186/s12870-019-1973-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Correct timing of flowering is critical for plants to produce enough viable offspring. In Arabidopsis thaliana (Arabidopsis), flowering time is regulated by an intricate network of molecular signaling pathways. Arabidopsis srr1-1 mutants lacking SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) expression flower early, particularly under short day (SD) conditions (1). SRR1 ensures that plants do not flower prematurely in such non-inductive conditions by controlling repression of the key florigen FT. Here, we have examined the role of SRR1 in the closely related crop species Brassica napus. RESULTS Arabidopsis SRR1 has five homologs in Brassica napus. They can be divided into two groups, where the A02 and C02 copies show high similarity to AtSRR1 on the protein level. The other group, including the A03, A10 and C09 copies all carry a larger deletion in the amino acid sequence. Three of the homologs are expressed at detectable levels: A02, C02 and C09. Notably, the gene copies show a differential expression pattern between spring and winter type accessions of B. napus. When the three expressed gene copies were introduced into the srr1-1 background, only A02 and C02 were able to complement the srr1-1 early flowering phenotype, while C09 could not. Transcriptional analysis of known SRR1 targets in Bna.SRR1-transformed lines showed that CYCLING DOF FACTOR 1 (CDF1) expression is key for flowering time control via SRR1. CONCLUSIONS We observed subfunctionalization of the B. napus SRR1 gene copies, with differential expression between early and late flowering accessions of some Bna.SRR1 copies. This suggests involvement of Bna.SRR1 in regulation of seasonal flowering in B. napus. The C09 gene copy was unable to complement srr1-1 plants, but is highly expressed in B. napus, suggesting specialization of a particular function. Furthermore, the C09 protein carries a deletion which may pinpoint a key region of the SRR1 protein potentially important for its molecular function. This is important evidence of functional domain annotation in the highly conserved but unique SRR1 amino acid sequence.
Collapse
Affiliation(s)
- Sarah Schiessl
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Giessen, Germany
| | - Natalie Williams
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Pascal Specht
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Giessen, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Mikael Johansson
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Transcriptomic analysis of contrasting inbred lines and F 2 segregant of Chinese cabbage provides valuable information on leaf morphology. Genes Genomics 2019; 41:811-829. [PMID: 30900192 DOI: 10.1007/s13258-019-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Leaf morphology influences plant growth and productivity and is controlled by genetic and environmental cues. The various morphotypes of Brassica rapa provide an excellent resource for genetic and molecular studies of morphological traits. OBJECTIVE This study aimed to identify genes regulating leaf morphology using segregating B. rapa p F2 population. METHODS Phenotyping and transcriptomic analyses were performed on an F2 population derived from a cross between Rapid cycling B. rapa (RCBr) and B. rapa ssp. penkinensis, inbred line Kenshin. Analyses focused on four target traits: lamina (leaf) length (LL), lamina width (LW), petiole length (PL), and leaf margin (LM). RESULTS All four traits were controlled by multiple QTLs, and expression of 466 and 602 genes showed positive and negative correlation with leaf phenotypes, respectively. From this microarray analysis, large numbers of genes were putatively identified as leaf morphology-related genes. The Gene Ontology (GO) category containing the highest number of differentially expressed genes (DEGs) was "phytohormones". The sets of genes enriched in the four leaf phenotypes did not overlap, indicating that each phenotype was regulated by a different set of genes. The expression of BrAS2, BrAN3, BrCYCB1;2, BrCYCB2;1,4, BrCYCB3;1, CrCYCBD3;2, BrULT1, and BrANT seemed to be related to leaf size traits (LL and LW), whereas BrCUC1, BrCUC2, and BrCUC3 expression for LM trait. CONCLUSION An analysis integrating the results of the current study with previously published data revealed that Kenshin alleles largely determined LL and LW but LM resulted from RCBr alleles. Genes identified in this study could be used to develop molecular markers for use in Brassica breeding projects and for the dissection of gene function.
Collapse
|
8
|
Zhang Y, Sun Y, Sun J, Feng H, Wang Y. Identification and validation of major and minor QTLs controlling seed coat color in Brassica rapa L. BREEDING SCIENCE 2019; 69:47-54. [PMID: 31086483 PMCID: PMC6507729 DOI: 10.1270/jsbbs.18108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/11/2018] [Indexed: 05/30/2023]
Abstract
Seed coat color is an important agronomic trait in Brassica rapa. Yellow seeds are a desirable trait for breeding oilseed Brassica crops. To identify quantitative trait loci (QTLs) that condition seed coat color in B. rapa, we used a population of recombinant inbred lines (RILs) derived from crossing 09A001, a standard rapid-cycling (RcBr) inbred line of B. rapa L. ssp. dichotoma with yellow seeds, with 08A061, an inbred line of heading Chinese cabbage with dark brown seeds. Using two phenotypic scoring methods, we detected a total of nine QTLs distributed on four chromosomes (Chrs.), A03, A06, A08, and A09, that explained 3.17 to 55.73% of the phenotypic variation for seed color. To validate the effects of the identified QTLs in the RIL population, chromosome segment substitution lines (CSSLs) harboring the chromosomal segment carrying the candidate QTL region from 08A061 were selected, and two co-localized major QTLs, qSC9.1 and qSCb9.1, and one minor QTL, qSC3.1, were successfully validated. The validated QTL located on Chr. A03 appears to be a new locus underlying seed coat color in B. rapa. These findings provide additional insight that will help explain the complex genetic mechanisms underlying the seed coat color trait in B. rapa.
Collapse
Affiliation(s)
- Yinghuan Zhang
- College of Horticulture, Shenyang Agricultural University,
Shenyang 110866,
China
| | - Yunxia Sun
- College of Horticulture, Shenyang Agricultural University,
Shenyang 110866,
China
| | - Junpeng Sun
- Liaoing Dongya Seed Limited Company,
Shenyang 110164,
China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University,
Shenyang 110866,
China
| | - Yugang Wang
- College of Horticulture, Shenyang Agricultural University,
Shenyang 110866,
China
| |
Collapse
|
9
|
Nehnevajova E, Ramireddy E, Stolz A, Gerdemann-Knörck M, Novák O, Strnad M, Schmülling T. Root enhancement in cytokinin-deficient oilseed rape causes leaf mineral enrichment, increases the chlorophyll concentration under nutrient limitation and enhances the phytoremediation capacity. BMC PLANT BIOLOGY 2019; 19:83. [PMID: 30786853 PMCID: PMC6381662 DOI: 10.1186/s12870-019-1657-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cytokinin is a negative regulator of root growth, and a reduction of the cytokinin content or signalling causes the formation a larger root system in model plants, improves their growth under drought and nutrient limitation and causes increased accumulation of elements in the shoot. Roots are an important but understudied target of plant breeding. Here we have therefore explored whether root enhancement by lowering the cytokinin content can also be achieved in oilseed rape (Brassica napus L.) plants. RESULTS Transgenic plants overexpressing the CKX2 gene of Arabidopsis thaliana encoding a cytokinin-degrading cytokinin oxidase/dehydrogenase showed higher CKX activity and a strongly reduced cytokinin content. Cytokinin deficiency led to the formation of a larger root system under different growth conditions, which was mainly due to an increased number of lateral and adventitious roots. In contrast, shoot growth was comparable to wild type, which caused an enhanced root-to-shoot ratio. Transgenic plants accumulated in their leaves higher concentrations of macro- and microelements including P, Ca, Mg, S, Zn, Cu, Mo and Mn. They formed more chlorophyll under Mg- and S-deficiency and accumulated a larger amount of Cd and Zn from contaminated medium and soil. CONCLUSIONS These findings demonstrate the usefulness of ectopic CKX gene expression to achieve root enhancement in oilseed rape and underpin the functional relevance of a larger root system. Furthermore, the lack of major developmental consequences on shoot growth in cytokinin-deficient oilseed rape indicates species-specific differences of CKX gene and/or cytokinin action.
Collapse
Affiliation(s)
- Erika Nehnevajova
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
- Present address: Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, 517507, Tirupati, Andhra Pradesh India
| | - Andrea Stolz
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Maria Gerdemann-Knörck
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Ondřej Novák
- Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Olomouc, Czech Republic
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
10
|
Choi SR, Yu X, Dhandapani V, Li X, Wang Z, Lee SY, Oh SH, Pang W, Ramchiary N, Hong CP, Park S, Piao Z, Kim H, Lim YP. Integrated analysis of leaf morphological and color traits in different populations of Chinese cabbage (Brassica rapa ssp. pekinensis). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1617-1634. [PMID: 28577084 DOI: 10.1007/s00122-017-2914-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/27/2017] [Indexed: 05/22/2023]
Abstract
QTLs and candidate gene markers associated with leaf morphological and color traits were identified in two immortalized populations of Brassica rapa, which will provide genetic information for marker-assisted breeding. Brassica rapa is an important leafy vegetable consumed worldwide and morphology is a key character for its breeding. To enhance genetic control, quantitative trait loci (QTLs) for leaf color and plant architecture were identified using two immortalized populations with replications of 2 and 4 years. Overall, 158 and 80 QTLs associated with 23 and 14 traits were detected in the DH and RIL populations, respectively. Among them, 23 common robust-QTLs belonging to 12 traits were detected in common loci over the replications. Through comparative analysis, five crucifer genetic blocks corresponding to morphology trait (R, J&U, F and E) and color trait (F, E) were identified in three major linkage groups (A2, A3 and A7). These might be key conserved genomic regions involved with the respective traits. Through synteny analysis with Arabidopsis, 64 candidate genes involved in chlorophyll biosynthesis, cell proliferation and elongation were co-localized within QTL intervals. Among them, SCO3, ABI3, FLU, HCF153, HEMB1, CAB3 were mapped within QTLs for leaf color; and CYCD3;1, CYCB2;4, AN3, ULT1 and ANT were co-localized in QTL regions for leaf size. These robust QTLs and their candidate genes provide useful information for further research into leaf architecture with crop breeding.
Collapse
Affiliation(s)
- Su Ryun Choi
- Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Xiaona Yu
- Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Vignesh Dhandapani
- Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Xiaonan Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhi Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Seo Yeon Lee
- Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Sang Heon Oh
- Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Wenxing Pang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Suhyoung Park
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Wanju-gun, Jeollabuk-do, Korea
| | - Zhongyun Piao
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - HyeRan Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
11
|
Kawakatsu Y, Nakayama H, Kaminoyama K, Igarashi K, Yasugi M, Kudoh H, Nagano AJ, Yano K, Kubo N, Kimura S. A GLABRA1 ortholog on LG A9 controls trichome number in the Japanese leafy vegetables Mizuna and Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey): evidence from QTL analysis. JOURNAL OF PLANT RESEARCH 2017; 130:539-550. [PMID: 28258381 DOI: 10.1007/s10265-017-0917-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/14/2016] [Indexed: 05/19/2023]
Abstract
Brassica rapa show a wide range of morphological variations. In particular, the leaf morphologies of the Japanese traditional leafy vegetables Mizuna and Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey) are distinctly different, even though they are closely related cultivars that are easy to cross. In addition to the differences in the gross morphology of leaves, some cultivars of Mibuna (Kyo-nishiki) have many trichomes on its leaves, whereas Mizuna (Kyo-mizore) does not. To identify the genes responsible for the different number of trichomes, we performed a quantitative trait loci (QTL) analysis of Mizuna and Mibuna. To construct linkage maps for these cultivars, we used RNA-seq data to develop cleaved amplified polymorphic sequence (CAPS) markers. We also performed a restriction site-associated DNA sequencing (RAD-seq) analysis to detect single-nucleotide polymorphisms (SNPs). Two QTL analyses were performed in different years, and both analyses indicated that the largest effect was found on LG A9. Expression analyses showed that a gene homologous to GLABRA1 (GL1), a transcription factor implicated in trichome development in Arabidopsis thaliana, and the sequences 3'-flanking (downstream) of BrGL1, differed considerably between Mizuna (Kyo-mizore) and Mibuna (Kyo-nishiki). These results indicate that BrGL1 on LG A9 is one of the candidate genes responsible for the difference in trichome number between Mizuna and Mibuna. Detecting genes that are responsible for morphological variations allows us to better understand the breeding history of Mizuna and Mibuna.
Collapse
Affiliation(s)
- Yaichi Kawakatsu
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Hokuto Nakayama
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Kaori Kaminoyama
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Kaori Igarashi
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Masaki Yasugi
- National Institute for Basic Biology, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, 509-3, 2-chome, Hirano, Otsu, Shiga, 520-2113, Japan
| | - Atsushi J Nagano
- Center for Ecological Research, Kyoto University, 509-3, 2-chome, Hirano, Otsu, Shiga, 520-2113, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
- JST PRESTO, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Kentaro Yano
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Nakao Kubo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 74 Oji, Kitainayazuma, Seika, Soraku, Kyoto, 619-0244, Japan
| | - Seisuke Kimura
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
12
|
Zu P, Schiestl FP. The effects of becoming taller: direct and pleiotropic effects of artificial selection on plant height in Brassica rapa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1009-1019. [PMID: 27889935 DOI: 10.1111/tpj.13440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/07/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Plant height is an important trait for plant reproductive success. Plant height is often under pollinator-mediated selection, and has been shown to be correlated with various other traits. However, few studies have examined the evolutionary trajectory of plant height under selection and the pleiotropic effects of plant height evolution. We conducted a bi-directional artificial selection experiment on plant height with fast cycling Brassica rapa plants to estimate its heritability and genetic correlations, and to reveal evolutionary responses to artificial selection on height and various correlated traits. With the divergent lines obtained through artificial selection, we subsequently conducted pollinator-choice assays and investigated resource limitation of fruit production. We found that plant height variation is strongly genetically controlled (with a realized heritability of 41-59%). Thus, plant height can evolve rapidly under phenotypic selection. In addition, we found remarkable pleiotropic effects in phenology, morphology, floral scent, color, nectar and leaf glucosinolates. Most traits were increased in tall-line plants, but flower size, UV reflection and glucosinolates were decreased, indicating potential trade-offs. Pollinators preferred plants of the tall selection lines over the short selection lines in both greenhouse experiments with bumblebees and field experiment with natural pollinators. We did not detect any differences in resource limitation between plants of the different selection lines. Overall, our study predicts that increased height should evolve under positive pollinator-mediated directional selection with potential trade-offs in floral signals and herbivore defense.
Collapse
Affiliation(s)
- Pengjuan Zu
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| |
Collapse
|
13
|
Dhaka N, Rout K, Yadava SK, Sodhi YS, Gupta V, Pental D, Pradhan AK. Genetic dissection of seed weight by QTL analysis and detection of allelic variation in Indian and east European gene pool lines of Brassica juncea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:293-307. [PMID: 27744489 DOI: 10.1007/s00122-016-2811-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/08/2016] [Indexed: 05/26/2023]
Abstract
Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight. Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0 g to more than 7.0 g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6 g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six 'consensus' QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Kadambini Rout
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Satish K Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Yaspal Singh Sodhi
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Akshay K Pradhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
14
|
Schiessl SV, Huettel B, Kuehn D, Reinhardt R, Snowdon RJ. Flowering Time Gene Variation in Brassica Species Shows Evolutionary Principles. FRONTIERS IN PLANT SCIENCE 2017; 8:1742. [PMID: 29089948 PMCID: PMC5651034 DOI: 10.3389/fpls.2017.01742] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 05/02/2023]
Abstract
Flowering time genes have a strong influence on successful reproduction and life cycle adaptation. However, their regulation is highly complex and only well understood in diploid model systems. For crops with a polyploid background from the genus Brassica, data on flowering time gene variation are scarce, although indispensable for modern breeding techniques like marker-assisted breeding. We have deep-sequenced all paralogs of 35 Arabidopsis thaliana flowering regulators using Sequence Capture followed by Illumina sequencing in two selected accessions of the vegetable species Brassica rapa and Brassica oleracea, respectively. Using these data, we were able to call SNPs, InDels and copy number variations (CNVs) for genes from the total flowering time network including central flowering regulators, but also genes from the vernalisation pathway, the photoperiod pathway, temperature regulation, the circadian clock and the downstream effectors. Comparing the results to a complementary data set from the allotetraploid species Brassica napus, we detected rearrangements in B. napus which probably occurred early after the allopolyploidisation event. Those data are both a valuable resource for flowering time research in those vegetable species, as well as a contribution to speciation genetics.
Collapse
Affiliation(s)
- Sarah V. Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- *Correspondence: Sarah V. Schiessl
| | - Bruno Huettel
- Max Planck Institute for Breeding Research, Cologne, Germany
| | - Diana Kuehn
- Max Planck Institute for Breeding Research, Cologne, Germany
| | | | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
15
|
Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W, Wang H. Genome-Wide Association Study Reveals Candidate Genes for Control of Plant Height, Branch Initiation Height and Branch Number in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1246. [PMID: 28769955 PMCID: PMC5513965 DOI: 10.3389/fpls.2017.01246] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 05/13/2023]
Abstract
Plant architecture is crucial for rapeseed yield and is determined by plant height (PH), branch initiation height (BIH), branch number (BN) and leaf and inflorescence morphology. In this study, we measured three major factors (PH, BIH, and BN) in a panel of 333 rapeseed accessions across 4 years. A genome-wide association study (GWAS) was performed via Q + K model and the panel was genotyped using the 60 k Brassica Infinium SNP array. We identified seven loci for PH, four for BIH, and five for BN. Subsequently, by determining linkage disequilibrium (LD) decay associated with 38 significant SNPs, we gained 31, 15, and 17 candidate genes for these traits, respectively. We also showed that PH is significantly correlated with BIH, while no other correlation was revealed. Notably, a GA signaling gene (BnRGA) and a flowering gene (BnFT) located on chromosome A02 were identified as the most likely candidate genes associated with PH regulation. Furthermore, a meristem initiation gene (BnLOF2) and a NAC domain transcriptional factor (BnCUC3) that may be associated with BN were identified on the chromosome A07. This study reveals novel insight into the genetic control of plant architecture and may facilitate marker-based breeding for rapeseed.
Collapse
Affiliation(s)
- Ming Zheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Cheng Peng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Hongfang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Min Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xiaokang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Jinglin Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xingchao Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Junfeng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
- *Correspondence: Hanzhong Wang
| |
Collapse
|
16
|
Yi H, Li X, Lee SH, Nou IS, Lim YP, Hur Y. Natural variation in CIRCADIAN CLOCK ASSOCIATED 1 is associated with flowering time in Brassica rapa. Genome 2016; 60:402-413. [PMID: 28177832 DOI: 10.1139/gen-2016-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flowering time is a very important agronomic trait and the development of molecular markers associated with this trait can facilitate crop breeding. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a core oscillator component of circadian rhythms that affect metabolic pathways in plants, has been implicated in flowering time control in species of Brassica. CCA1 gene sequences from three Brassica rapa inbred lines, showing either early flowering or late flowering phenotypes, were analyzed and a high level of sequence variation was identified, especially within the fourth intron. Using this information, three PCR primer sets were designed and tested using various inbred lines of B. rapa. The usage of InDel markers was further validated by evaluation of flowering time and high resolution melting (HRM) analysis. Both methods, PCR and HRM, validated the use of newly developed markers. Additional sequence analyses of Brassica plants with diploid (AA, BB, or CC) and allotetraploid genomes further confirmed a large number of sequence polymorphisms in the CCA1 gene, including insertions/deletions in the fourth intron. Our results demonstrated that sequence variations in CCA1 can be used to develop valuable trait-related molecular markers for Brassica crop breeding.
Collapse
Affiliation(s)
- Hankuil Yi
- a Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Xiaonan Li
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea.,d Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Seong Ho Lee
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | - Ill-Sup Nou
- c Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Yong Pyo Lim
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | - Yoonkang Hur
- a Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
17
|
Foulongne-Oriol M, Rocha de Brito M, Cabannes D, Clément A, Spataro C, Moinard M, Dias ES, Callac P, Savoie JM. The Genetic Linkage Map of the Medicinal Mushroom Agaricus subrufescens Reveals Highly Conserved Macrosynteny with the Congeneric Species Agaricus bisporus. G3 (BETHESDA, MD.) 2016; 6:1217-26. [PMID: 26921302 PMCID: PMC4856074 DOI: 10.1534/g3.115.025718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/21/2016] [Indexed: 01/15/2023]
Abstract
Comparative linkage mapping can rapidly facilitate the transfer of genetic information from model species to orphan species. This macrosynteny analysis approach has been extensively used in plant species, but few example are available in fungi, and even fewer in mushroom crop species. Among the latter, the Agaricus genus comprises the most cultivable or potentially cultivable species. Agaricus bisporus, the button mushroom, is the model for edible and cultivable mushrooms. We have developed the first genetic linkage map for the basidiomycete A. subrufescens, an emerging mushroom crop known for its therapeutic properties and potential medicinal applications. The map includes 202 markers distributed over 16 linkage groups (LG), and covers a total length of 1701 cM, with an average marker spacing of 8.2 cM. Using 96 homologous loci, we also demonstrated the high level of macrosynteny with the genome of A. bisporus The 13 main LG of A. subrufescens were syntenic to the 13 A. bisporus chromosomes. A disrupted synteny was observed for the three remaining A. subrufescens LG. Electronic mapping of a collection of A. subrufescens expressed sequence tags on A. bisporus genome showed that the homologous loci were evenly spread, with the exception of a few local hot or cold spots of homology. Our results were discussed in the light of Agaricus species evolution process. The map provides a framework for future genetic or genomic studies of the medicinal mushroom A. subrufescens.
Collapse
Affiliation(s)
| | - Manuela Rocha de Brito
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France Departamento de Biologia, UFLA, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil
| | - Delphine Cabannes
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Aurélien Clément
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Cathy Spataro
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Magalie Moinard
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Eustáquio Souza Dias
- Departamento de Biologia, UFLA, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil
| | - Philippe Callac
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Jean-Michel Savoie
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| |
Collapse
|
18
|
Genome wide identification and functional prediction of long non-coding RNAs in Brassica rapa. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0405-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Zou J, Hu D, Liu P, Raman H, Liu Z, Liu X, Parkin IAP, Chalhoub B, Meng J. Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genomics 2016; 17:18. [PMID: 26728943 PMCID: PMC4700566 DOI: 10.1186/s12864-015-2343-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023] Open
Abstract
Background There are three basic Brassica genomes (A, B, and C) and three parallel sets of subgenomes distinguished in the diploid Brassica (i.e.: B. rapa, ArAr; B. nigra, BniBni; B. oleracea, CoCo) and the derived allotetraploid species (i.e.: B. juncea, AjAjBjBj; B. napus, AnAnCnCn; B. carinata, BcBcCcCc). To understand subgenome differentiation in B. juncea in comparison to other A genome-carrying Brassica species (B. rapa and B. napus), we constructed a dense genetic linkage map of B. juncea, and conducted population genetic analysis on diverse lines of the three A-genome carrying Brassica species using a genotyping-by-sequencing approach (DArT-seq). Results A dense genetic linkage map of B. juncea was constructed using an F2 population derived from Sichuan Yellow/Purple Mustard. The map included 3329 DArT-seq markers on 18 linkage groups and covered 1579 cM with an average density of two markers per cM. Based on this map and the alignment of the marker sequences with the physical genome of Arabidopsis thaliana, we observed strong co-linearity of the ancestral blocks among the different A subgenomes but also considerable block variation. Comparative analyses at the level of genome sequences of B. rapa and B. napus, and marker sequence anchored on the genetic map of B. juncea, revealed a total of 30 potential inversion events across large segments and 20 potential translocation events among the three A subgenomes. Population genetic analysis on 26 accessions of the three A genome-carrying Brassica species showed that the highest genetic distance were estimated when comparing Aj-An than between An-Ar and Aj-Ar subgenome pairs. Conclusions The development of the dense genetic linkage map of B. juncea with informative DArT-seq marker sequences and availability of the reference sequences of the Ar, and AnCn genomes allowed us to compare the A subgenome structure of B. juncea (Aj) . Our results suggest that strong co-linearity exists among the three A Brassica genomes (Ar, An and Aj) but with apparent subgenomic variation. Population genetic analysis on three A-genome carrying Brassica species support the idea that B. juncea has distinct genomic diversity, and/or evolved from a different A genome progenitor of B. napus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2343-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Peifa Liu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between the Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia.
| | - Zhongsong Liu
- Oilseed Crops Institute, Hunan Agricultural University, Changsha, 410128, China.
| | - Xianjun Liu
- Oilseed Crops Institute, Hunan Agricultural University, Changsha, 410128, China.
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| | - Boulos Chalhoub
- Unité de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d'Evry Val d'Essonnes), Organization and Evolution of Plant Genomes, 91057, Evry cedex, France.
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Yu X, Choi SR, Dhandapani V, Rameneni JJ, Li X, Pang W, Lee JY, Lim YP. Quantitative Trait Loci for Morphological Traits and their Association with Functional Genes in Raphanus sativus. FRONTIERS IN PLANT SCIENCE 2016; 7:255. [PMID: 26973691 PMCID: PMC4777717 DOI: 10.3389/fpls.2016.00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/15/2016] [Indexed: 05/04/2023]
Abstract
Identification of quantitative trait loci (QTLs) governing morphologically important traits enables to comprehend their potential genetic mechanisms in the genetic breeding program. In this study, we used 210 F2 populations derived from a cross between two radish inbred lines (Raphanus sativus) "835" and "B2," including 258 SSR markers were used to detect QTLs for 11 morphological traits that related to whole plant, leaf, and root yield in 3 years of replicated field test. Total 55 QTLs were detected which were distributed on each linkage group of the Raphanus genome. Individual QTLs accounted for 2.69-12.6 of the LOD value, and 0.82-16.25% of phenotypic variation. Several genomic regions have multiple traits that clustered together, suggested the existence of pleiotropy linkage. Synteny analysis of the QTL regions with A. thaliana genome selected orthologous genes in radish. InDels and SNPs in the parental lines were detected in those regions by Illumina genome sequence. Five identified candidate gene-based markers were validated by co-mapping with underlying QTLs affecting different traits. Semi-quantitative reverse transcriptase PCR analysis showed the different expression levels of these five genes in parental lines. In addition, comparative QTL analysis with B. rapa revealed six common QTL regions and four key major evolutionarily conserved crucifer blocks (J, U, R, and W) harboring QTL for morphological traits. The QTL positions identified in this study will provide a valuable resource for identifying more functional genes when whole radish genome sequence is released. Candidate genes identified in this study that co-localized in QTL regions are expected to facilitate in radish breeding programs.
Collapse
Affiliation(s)
- Xiaona Yu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
| | - Vignesh Dhandapani
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
| | - Jana Jeevan Rameneni
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
| | - Xiaonan Li
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
| | - Wenxing Pang
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National UniversitySeoul, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
- *Correspondence: Yong Pyo Lim
| |
Collapse
|
21
|
Gupta S, Kumar T, Verma S, Bharadwaj C, Bhatia S. Development of gene-based markers for use in construction of the chickpea (Cicer arietinum L.) genetic linkage map and identification of QTLs associated with seed weight and plant height. Mol Biol Rep 2015; 42:1571-80. [PMID: 26446030 DOI: 10.1007/s11033-015-3925-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/03/2015] [Indexed: 11/28/2022]
Abstract
Seed weight and plant height are important agronomic traits and contribute to seed yield. The objective of this study was to identify QTLs underlying these traits using an intra-specific mapping population of chickpea. A F11 population of 177 recombinant inbred lines derived from a cross between SBD377 (100-seed weight--48 g and plant height--53 cm) and BGD112 (100-seed weight--15 g and plant height--65 cm) was used. A total of 367 novel EST-derived functional markers were developed which included 187 EST-SSRs, 130 potential intron polymorphisms (PIPs) and 50 expressed sequence tag polymorphisms (ESTPs). Along with these, 590 previously published markers including 385 EST-based markers and 205 genomic SSRs were utilized. Of the 957 markers tested for analysis of parental polymorphism between the two parents of the mapping population, 135 (14.64%) were found to be polymorphic. Of these, 131 polymorphic markers could be mapped to the 8 linkage groups. The linkage map had a total length of 1140.54 cM with an average marker density of 8.7 cM. The map was further used for QTL identification using composite interval mapping method (CIM). Two QTLs each for seed weight, qSW-1 and qSW-2 (explaining 11.54 and 19.24% of phenotypic variance, respectively) and plant height, qPH-1 and qPH-2 (explaining 13.98 and 12.17% of phenotypic variance, respectively) were detected. The novel set of genic markers, the intra-specific linkage map and the QTLs identified in the present study will serve as valuable genomic resources in improving the chickpea seed yield using marker-assisted selection (MAS) strategies.
Collapse
Affiliation(s)
- Shefali Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Tapan Kumar
- Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Subodh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | | | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India.
| |
Collapse
|
22
|
Schiessl S, Iniguez-Luy F, Qian W, Snowdon RJ. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genomics 2015; 16:737. [PMID: 26419915 PMCID: PMC4589123 DOI: 10.1186/s12864-015-1950-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flowering time, plant height and seed yield are strongly influenced by climatic and day-length adaptation in crop plants. To investigate these traits under highly diverse field conditions in the important oilseed crop Brassica napus, we performed a genome-wide association study using data from diverse agroecological environments spanning three continents. METHODS A total of 158 European winter-type B.napus inbred lines were genotyped with 21,623 unique, single-locus single-nucleotide polymorphism (SNP) markers using the Brassica 60 K-SNP Illumina® Infinium consortium array. Phenotypic associations were calculated in the panel over the years 2010-2012 for flowering time, plant height and seed yield in 5 highly diverse locations in Germany, China and Chile, adding up to 11 diverse environments in total. RESULTS We identified 101 genome regions associating with the onset of flowering, 69 with plant height, 36 with seed yield and 68 cross-trait regions with potential adaptive value. Within these regions, B.napus orthologs for a number of candidate adaptation genes were detected, including central circadian clock components like CIRCADIAN CLOCK- ASSOCIATED 1 (Bna.CCA1) and the important flowering-time regulators FLOWERING LOCUS T (Bna.FT) and FRUITFUL (Bna.FUL). DISCUSSION Gene ontology (GO) enrichment analysis of candidate regions suggested that selection of genes involved in post-transcriptional and epigenetic regulation of flowering time may play a potential role in adaptation of B. napus to highly divergent environments. The classical flowering time regulators Bna.FLC and Bna.CO were not found among the candidate regions, although both show functional variation. Allelic effects were additive for plant height and yield, but not for flowering time. The scarcity of positive minor alleles for yield in this breeding pool points to a lack of diversity for adaptation that could restrict yield gain in the face of environmental change. CONCLUSIONS Our study provides a valuable framework to further improve the adaptability and yield stability of this recent allopolyploid crop under changing environments. The results suggest that flowering time regulation within an adapted B. napus breeding pool is driven by a high number of small modulating processes rather than major transcription factors like Bna.CO. In contrast, yield regulation appears highly parallel, therefore yield could be increased by pyramiding positively associated haplotypes.
Collapse
Affiliation(s)
- Sarah Schiessl
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Federico Iniguez-Luy
- Agriaquaculture Nutritional Genomic Center (CGNA), Genomics and Bioinformatics Unit, Km 10 Camino Cajón-Vilcún, INIA, Temuco, Chile.
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, 400716, Chongqing, China.
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
23
|
Ramchiary N, Pang W, Nguyen VD, Li X, Choi SR, Kumar A, Kwon M, Song HY, Begum S, Kehie M, Yoon MK, Na J, Kim H, Lim YP. Quantitative trait loci mapping of partial resistance to Diamondback moth in cabbage (Brassica oleracea L). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1209-18. [PMID: 25805317 DOI: 10.1007/s00122-015-2501-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/14/2015] [Indexed: 05/22/2023]
Abstract
The resistance to Diamondback moth insect in cabbage is governed by many minor loci in quantitative nature, and at least four genetic loci should be incorporated in marker-assisted breeding program for developing partially resistant DBM cabbage cultivars. The Diamondback moth (DBM), Plutella xylostella (L.), is the most destructive insect infesting cruciferous plants worldwide. Earlier studies have reported that the glossy leaves of cabbage are associated with resistance to this insect. However, until now, genetics of DBM resistance has not been studied in detail, and no QTL/gene mapping for this trait has been reported. In this paper, we report quantitative trait loci (QTL) mapping of DBM-resistant trait using 188 randomly selected segregating F 3 population derived from crossing a partially DBM-resistant glossy leaf cabbage (748) with a susceptible smooth cabbage line (747). Quantitative trait loci mapping using phenotypic data of four consecutive years (2008, 2009, 2010, and 2011) on DBM insect infestation detected a total of eight QTL on five linkage groups suggesting that DBM resistance is a quantitative in nature. Of these QTL, four QTL, i.e., qDbm 1 on LG1, qDbm5 and qDbm6 on LG7, and qDbm8 on LG9, were detected in different tests and years. The QTL, qDbm6 on LG7, was consecutively detected over 3 years. Tightly linked molecular markers have been developed for qDbm8 QTL on LG9 which could be used in marker-assisted breeding program. Our research demonstrated that for desired DBM resistance cultivar breeding, those four genetic loci have to be taken into consideration. Furthermore, the comparative study revealed that DBM resistance QTL is conserved between close relative model plant Arabidopsis thaliana and Brassica oleracea genome.
Collapse
Affiliation(s)
- Nirala Ramchiary
- Molecular Genetics and Genomics Lab, Department of Horticulture, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li X, Wang W, Wang Z, Li K, Lim YP, Piao Z. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2015; 6:432. [PMID: 26106405 PMCID: PMC4460309 DOI: 10.3389/fpls.2015.00432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/27/2015] [Indexed: 05/04/2023]
Abstract
Chromosome segment substitution lines (CSSLs) represent a powerful method for precise quantitative trait loci (QTL) detection of complex agronomical traits in plants. In this study, we used a marker-assisted backcrossing strategy to develop a population consisting of 63 CSSLs, derived from backcrossing of the F1 generated from a cross between two Brassica rapa subspecies: "Chiifu" (ssp. pekinensis), the Brassica "A" genome-represented line used as the donor, and "49caixin" (ssp. parachinensis), a non-heading cultivar used as the recipient. The 63 CSSLs covered 87.95% of the B. rapa genome. Among them, 39 lines carried a single segment; 15 lines, two segments; and nine lines, three or more segments of the donor parent chromosomes. To verify the potential advantage of these CSSL lines, we used them to locate QTL for six morphology-related traits. A total of 58 QTL were located on eight chromosomes for all six traits: 17 for flowering time, 14 each for bolting time and plant height, six for plant diameter, two for leaf width, and five for flowering stalk diameter. Co-localized QTL were mainly distributed on eight genomic regions in A01, A02, A05, A06, A08, A09, and A10, present in the corresponding CSSLs. Moreover, new chromosomal fragments that harbored QTL were identified using the findings of previous studies. The CSSL population constructed in our study paves the way for fine mapping and cloning of candidate genes involved in late bolting, flowering, and plant architecture-related traits in B. rapa. Furthermore, it has great potential for future marker-aided gene/QTL pyramiding of other interesting traits in B. rapa breeding.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Molecular Genetics and Genomics Lab, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
| | - Wenke Wang
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Zhe Wang
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Kangning Li
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Lab, Department of Horticulture, Chungnam National UniversityDaejeon, South Korea
- *Correspondence: Yong Pyo Lim, Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Zhongyun Piao
- Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Zhongyun Piao, Department of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang, Liaoning 110866, China
| |
Collapse
|
25
|
Yadava SK, Paritosh K, Panjabi-Massand P, Gupta V, Chandra A, Sodhi YS, Pradhan AK, Pental D. Tetralocular ovary and high silique width in yellow sarson lines of Brassica rapa (subspecies trilocularis) are due to a mutation in Bra034340 gene, a homologue of CLAVATA3 in Arabidopsis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2359-2369. [PMID: 25205130 DOI: 10.1007/s00122-014-2382-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
Genetic locus for tetralocular ovary (tet-o) in Brassica rapa was identified and it was shown that the number of locules and width of silique are associated. Brassica rapa is a highly polymorphic species containing many vegetables and oleiferous types. An interesting group of oleiferous types is the yellow sarson group (subspecies trilocularis) grown mostly in eastern India. This group contains lines that have bilocular ovaries, a defining trait of Brassicaceae, but also lines that have tetralocular ovaries. Yellow sarson lines commonly have high silique width which is further enhanced in the tetralocular types. We mapped the locus influencing tetralocular ovary in B. rapa using three mapping populations (F2, F6 and F7) derived from a cross between Chiifu (subspecies pekinensis, having bilocular ovary) and Tetralocular (having tetralocular ovary). QTL mapping of silique width was undertaken using the three mapping populations and a F2 population derived from a cross between Chiifu and YSPB-24 (a bilocular line belonging to yellow sarson group). Qualitative mapping of the trait governing locule number (tet-o) in B. rapa mapped the locus to linkage group A4. QTL mapping for silique width detected a major QTL on LG A4, co-mapping with the tet-o locus in bilocular/tetralocular cross. This QTL was not detected in the bilocular/bilocular cross. Saturation mapping of the tet-o region with SNP markers identified Bra034340, a homologue of CLAVATA3 of Arabidopsis thaliana, as the candidate gene for locule number. A C → T transition at position 176 of the coding sequence of Bra034340 revealed co-segregation with the tetralocular phenotype. The study of silique related traits is of interest both for understanding evolution under artificial selection and for breeding of cultivated Brassica species.
Collapse
Affiliation(s)
- Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zou J, Raman H, Guo S, Hu D, Wei Z, Luo Z, Long Y, Shi W, Fu Z, Du D, Meng J. Constructing a dense genetic linkage map and mapping QTL for the traits of flower development in Brassica carinata. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1593-605. [PMID: 24824567 DOI: 10.1007/s00122-014-2321-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 04/25/2014] [Indexed: 05/10/2023]
Abstract
An integrated dense genetic linkage map was constructed in a B. carinata population and used for comparative genome analysis and QTL identification for flowering time. An integrated dense linkage map of Brassica carinata (BBCC) was constructed in a doubled haploid population based on DArT-Seq(TM) markers. A total of 4,031 markers corresponding to 1,366 unique loci were mapped including 639 bins, covering a genetic distance of 2,048 cM. We identified 136 blocks and islands conserved in Brassicaceae, which showed a feature of hexaploidisation representing the suggested ancestral crucifer karyotype. The B and C genome of B. carinata shared 85 % of commonly conserved blocks with the B genome of B. nigra/B. juncea and 80 % of commonly conserved blocks with the C genome of B. napus, and shown frequent structural rearrangements such as insertions and inversions. Up to 24 quantitative trait loci (QTL) for flowering and budding time were identified in the DH population. Of these QTL, one consistent QTL (qFT.B4-2) for flowering time was identified in all of the environments in the J block of the B4 linkage group, where a group of genes for flowering time were aligned in A. thaliana. Another major QTL for flowering time under a winter-cropped environment was detected in the E block of C6, where the BnFT-C6 gene was previously localised in B. napus. This high-density map would be useful not only to reveal the genetic variation in the species with QTL analysis and genome sequencing, but also for other applications such as marker-assisted selection and genomic selection, for the African mustard improvement.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fopa Fomeju B, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R. Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker. BMC Genomics 2014; 15:498. [PMID: 24948032 PMCID: PMC4082613 DOI: 10.1186/1471-2164-15-498] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 06/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several major crop species are current or ancient polyploids. To better describe the genetic factors controlling traits of agronomic interest (QTL), it is necessary to understand the structural and functional organisation of these QTL regions in relation to genome duplication. We investigated quantitative resistance to the fungal disease stem canker in Brassica napus, a highly duplicated amphidiploid species, to assess the proportion of resistance QTL located at duplicated positions. RESULTS Genome-wide association analysis on a panel of 116 oilseed rape varieties genotyped with 3228 SNP indicated that 321 markers, corresponding to 64 genomic regions, are associated with resistance to stem canker. These genomic regions are relatively equally distributed on the A (53%) and C (47%) genomes of B. napus. Overall, 44% of these regions (28/64) are duplicated homoeologous regions. They are located in duplications of six (E, J, R, T, U and W) of the 24 ancestral blocks that constitute the B. napus genome. Overall, these six ancestral blocks have 34 duplicated copies in the B.napus genome. Almost all of the duplicated copies (82% of the 34 regions) harboured resistance associated markers for stem canker resistance, which suggests structural and functional conservation of genetic factors involved in this trait in B. napus. CONCLUSIONS Our study provides information on the involvement of duplicated loci in the control of stem canker resistance in B. napus. Further investigation of the similarity/divergence in sequence and gene content of these duplicated regions will provide insight into the conservation and allelic diversity of the underlying genes.
Collapse
|
28
|
Sharma A, Li X, Lim YP. Comparative genomics of Brassicaceae crops. BREEDING SCIENCE 2014; 64:3-13. [PMID: 24987286 PMCID: PMC4031108 DOI: 10.1270/jsbbs.64.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/16/2014] [Indexed: 06/03/2023]
Abstract
The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Graduate School of Agricultural Science, Tohoku University,
Aoba, Sendai, Miyagi 981-8555,
Japan
- Present address: Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Xiaonan Li
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University,
Daejeon 305-764,
Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University,
Daejeon 305-764,
Republic of Korea
| |
Collapse
|
29
|
High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genomics 2014; 15:309. [PMID: 24767304 PMCID: PMC4234488 DOI: 10.1186/1471-2164-15-309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified. High density genetic maps of crosses of different genetic backgrounds are indispensable tools for investigating oil palm genetics. They are also useful for comparative mapping analyses to identify markers closely linked to traits of interest. RESULTS A 4.5 K customized oil palm SNP array was developed using the Illumina Infinium platform. The SNPs and 252 SSRs were genotyped on two mapping populations, an intraspecific cross with 87 palms and an interspecific cross with 108 palms. Parental maps with 16 linkage groups (LGs), were constructed for the three fruit forms of E. guineensis (dura, pisifera and tenera). Map resolution was further increased by integrating the dura and pisifera maps into an intraspecific integrated map with 1,331 markers spanning 1,867 cM. We also report the first map of a Colombian E. oleifera, comprising 10 LGs with 65 markers spanning 471 cM. Although not very dense due to the high level of homozygosity in E. oleifera, the LGs were successfully integrated with the LGs of the tenera map. Direct comparison between the parental maps identified 603 transferable markers polymorphic in at least two of the parents. Further analysis revealed a high degree of marker transferability covering 1,075 cM, between the intra- and interspecific integrated maps. The interspecific cross displayed higher segregation distortion than the intraspecific cross. However, inclusion of distorted markers in the genetic maps did not disrupt the marker order and no map expansion was observed. CONCLUSIONS The high density SNP and SSR-based genetic maps reported in this paper have greatly improved marker density and genome coverage in comparison with the first reference map based on AFLP and SSR markers. Therefore, it is foreseen that they will be more useful for fine mapping of QTLs and whole genome association mapping studies in oil palm.
Collapse
|
30
|
El-Soda M, Boer MP, Bagheri H, Hanhart CJ, Koornneef M, Aarts MGM. Genotype-environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:697-708. [PMID: 24474811 PMCID: PMC3904722 DOI: 10.1093/jxb/ert434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adaptation to a wide range of environments. Here, the genetic basis of 20 physiological and morphological traits is explored by describing plant performance and growth in a Brassica rapa recombinant inbred line (RIL) population grown on a sandy substrate supplemented with nutrient solution, under control and drought conditions. Altogether, 54 quantitative trait loci (QTL) were identified, of which many colocated in 11 QTL clusters. Seventeen QTL showed significant QTL-environment interaction (Q×E), indicating genetic variation for phenotypic plasticity. Of the measured traits, only hypocotyl length did not show significant genotype-environment interaction (G×E) in both environments in all experiments. Correlation analysis showed that, in the control environment, stomatal conductance was positively correlated with total leaf dry weight (DW) and aboveground DW, whereas in the drought environment, stomatal conductance showed a significant negative correlation with total leaf DW and aboveground DW. This correlation was explained by antagonistic fitness effects in the drought environment, controlled by a QTL cluster on chromosome A7. These results demonstrate that Q×E is an important component of the genetic variance and can play a great role in improving drought tolerance in future breeding programmes.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Genetics, Faculty of Agriculture, Cairo University, Egypt
| | - Martin P. Boer
- Biometris–Applied Statistics, Department of Plant Science, Wageningen University, Wageningen, The Netherlands
| | - Hedayat Bagheri
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bu-Ali Sina University, Shahid Fahmideh, Hamedan, Iran
| | - Corrie J. Hanhart
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
31
|
Chen J, Jing J, Zhan Z, Zhang T, Zhang C, Piao Z. Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa. PLoS One 2013; 8:e85307. [PMID: 24376876 PMCID: PMC3869933 DOI: 10.1371/journal.pone.0085307] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/25/2013] [Indexed: 11/21/2022] Open
Abstract
Plasmodiophora brassicae, the causal agent of clubroot disease of the Brassica crops, is widespread in the world. Quantitative trait loci (QTLs) for partial resistance to 4 different isolates of P. brassicae (Pb2, Pb4, Pb7, and Pb10) were investigated using a BC1F1 population from a cross between two subspecies of Brassica rapa, i.e. Chinese cabbage inbred line C59-1 as a susceptible recurrent parent and turnip inbred line ECD04 as a resistant donor parent. The BC1F2 families were assessed for resistance under controlled conditions. A linkage map constructed with simple sequence repeats (SSR), unigene-derived microsatellite (UGMS) markers, and specific markers linked to published clubroot resistance (CR) genes of B. rapa was used to perform QTL mapping. A total of 6 QTLs residing in 5 CR QTL regions of the B. rapa chromosomes A01, A03, and A08 were identified to account for 12.2 to 35.2% of the phenotypic variance. Two QTL regions were found to be novel except for 3 QTLs in the respective regions of previously identified Crr1, Crr2, and Crr3. QTL mapping results indicated that 1 QTL region was common for partial resistance to the 2 isolates of Pb2 and Pb7, whereas the others were specific for each isolate. Additionally, synteny analysis between B. rapa and Arabidopsis thaliana revealed that all CR QTL regions were aligned to a single conserved crucifer blocks (U, F, and R) on 3 Arabidopsis chromosomes where 2 CR QTLs were detected in A. thaliana. These results suggest that some common ancestral genomic regions were involved in the evolution of CR genes in B. rapa.
Collapse
Affiliation(s)
- Jingjing Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jing Jing
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongxiang Zhan
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Teng Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (ZP); (CZ)
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- * E-mail: (ZP); (CZ)
| |
Collapse
|
32
|
Yu X, Choi SR, Ramchiary N, Miao X, Lee SH, Sun HJ, Kim S, Ahn CH, Lim YP. Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2553-62. [PMID: 23864230 DOI: 10.1007/s00122-013-2154-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/05/2013] [Indexed: 05/21/2023]
Abstract
Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines '835' (susceptible) and 'B2' (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.
Collapse
Affiliation(s)
- Xiaona Yu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|