1
|
Gabriëls RY, van der Waaij AM, Linssen MD, Dobosz M, Volkmer P, Jalal S, Robinson D, Hermoso MA, Lub-de Hooge MN, Festen EAM, Kats-Ugurlu G, Dijkstra G, Nagengast WB. Fluorescently labelled vedolizumab to visualise drug distribution and mucosal target cells in inflammatory bowel disease. Gut 2024; 73:1454-1463. [PMID: 38580386 PMCID: PMC11347245 DOI: 10.1136/gutjnl-2023-331696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE Improving patient selection and development of biological therapies such as vedolizumab in IBD requires a thorough understanding of the mechanism of action and target binding, thereby providing individualised treatment strategies. We aimed to visualise the macroscopic and microscopic distribution of intravenous injected fluorescently labelled vedolizumab, vedo-800CW, and identify its target cells using fluorescence molecular imaging (FMI). DESIGN Forty three FMI procedures were performed, which consisted of macroscopic in vivo assessment during endoscopy, followed by macroscopic and microscopic ex vivo imaging. In phase A, patients received an intravenous dose of 4.5 mg, 15 mg vedo-800CW or no tracer prior to endoscopy. In phase B, patients received 15 mg vedo-800CW preceded by an unlabelled (sub)therapeutic dose of vedolizumab. RESULTS FMI quantification showed a dose-dependent increase in vedo-800CW fluorescence intensity in inflamed tissues, with 15 mg (153.7 au (132.3-163.7)) as the most suitable tracer dose compared with 4.5 mg (55.3 au (33.6-78.2)) (p=0.0002). Moreover, the fluorescence signal decreased by 61% when vedo-800CW was administered after a therapeutic dose of unlabelled vedolizumab, suggesting target saturation in the inflamed tissue. Fluorescence microscopy and immunostaining showed that vedolizumab penetrated the inflamed mucosa and was associated with several immune cell types, most prominently with plasma cells. CONCLUSION These results indicate the potential of FMI to determine the local distribution of drugs in the inflamed target tissue and identify drug target cells, providing new insights into targeted agents for their use in IBD. TRIAL REGISTRATION NUMBER NCT04112212.
Collapse
Affiliation(s)
- Ruben Y Gabriëls
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anne M van der Waaij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Matthijs D Linssen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michael Dobosz
- Department of Oncology and Immuno-Oncology, Regeneron Pharmaceuticals inc, Tarrytown, New York, USA
| | - Pia Volkmer
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sumreen Jalal
- Department of Oncology and Immuno-Oncology, Regeneron Pharmaceuticals inc, Tarrytown, New York, USA
| | - Dominic Robinson
- Centre for Optical Diagnostics and Therapy, Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marcela A Hermoso
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gursah Kats-Ugurlu
- Department of Pathology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Harris S, Feagan BG, Hanauer S, Vermeire S, Ghosh S, Yan J, Wu C, Hu Y, Maddux R, Wolf DC, D'Haens G. Ozanimod Differentially Impacts Circulating Lymphocyte Subsets in Patients with Moderately to Severely Active Crohn's Disease. Dig Dis Sci 2024; 69:2044-2054. [PMID: 38568396 PMCID: PMC11162376 DOI: 10.1007/s10620-024-08391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Ozanimod showed efficacy and safety in the phase 2 STEPSTONE study conducted in patients with moderately to severely active Crohn's disease. AIMS This analysis assessed the effects of ozanimod on circulating lymphocytes in Crohn's disease. METHODS Patients received ozanimod 0.92 mg for 12 weeks. Lymphocyte subtypes were evaluated using multicolor flow analysis on blood samples collected before treatment and on Week 12. Absolute lymphocyte count changes were analyzed by Wilcoxon signed rank tests. Disease activity changes and efficacy outcomes were evaluated at Week 12, and associations with lymphocyte subtype levels were assessed using Spearman's correlation and logistic regression. RESULTS Reductions in median total T, Th, and cytotoxic T cells occurred at Week 12 (45.4%-76.8%), with reductions in most subtypes of 47.5% to 91.3% (P < 0.001). CD8+ terminally differentiated effector memory cells were largely unaffected (median change, - 19%; P = 0.44). Reductions in median total B cells occurred at Week 12 (76.7%), with reductions in subtypes of 71.4% to 81.7% (P < 0.001). Natural killer and monocyte cell counts were unchanged. Greater baseline levels and changes in nonswitched memory B cells were significantly associated with clinical, endoscopic, and histologic efficacy (P < 0.05, all comparisons). CONCLUSIONS Ozanimod reduced circulating levels of all B-cell and most T-cell subsets but not monocytes or natural killer cells. Key subsets relevant to immune surveillance were not reduced, supporting the low risk of infection and malignancy with ozanimod in chronic inflammatory diseases. Levels of nonswitched memory B cells were associated with efficacy, providing a potential marker for ozanimod response. TRIAL REGISTRATION ClinicalTrials.gov: NCT02531113, EudraCT: 2015-002025-19.
Collapse
Affiliation(s)
- Sarah Harris
- Bristol Myers Squibb, Princeton, NJ, USA.
- Bristol Myers Squibb, 3033 Science Park Rd, San Diego, CA, 92121, USA.
| | - Brian G Feagan
- Robarts Clinical Trials, Robarts Research Institute, Western University, London, ON, Canada
| | - Stephen Hanauer
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Subrata Ghosh
- College of Medicine and Health, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jim Yan
- Laboratory Corporation of America, Durham, NC, USA
| | - Chun Wu
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Yanhua Hu
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | - Douglas C Wolf
- Center for Crohn's Disease & Ulcerative Colitis, Atlanta Gastroenterology Associates, Atlanta, GA, USA
| | - Geert D'Haens
- Inflammatory Bowel Disease Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
3
|
Boden EK, Kongala R, Hindmarch DC, Shows DM, Juarez JG, Lord JD. Vedolizumab Efficacy Is Associated With Decreased Intracolonic Dendritic Cells, Not Memory T Cells. Inflamm Bowel Dis 2024; 30:704-717. [PMID: 37837660 PMCID: PMC11063563 DOI: 10.1093/ibd/izad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Vedolizumab, an antibody blocking integrin α4β7, is a safe and effective therapy for Crohn's disease and ulcerative colitis. Blocking α4β7 from binding its cognate addressin MAdCAM-1 on intestinal blood vessel endothelial cells prevents T cells from migrating to the gut mucosa in animal models. However, data supporting this mechanism of action in humans is limited. METHODS We conducted a cross-sectional case-control study to evaluate the effect of vedolizumab on intestinal immune cell populations while avoiding the confounding effect of resolving inflammation on the cellularity of the colonic mucosa in treatment-responsive patients. Colon biopsies from 65 case subjects receiving vedolizumab were matched with biopsies from 65 control individuals, similar in disease type, medications, anatomic location, and inflammation. Biopsies were analyzed by flow cytometry and full messenger RNA transcriptome sequencing of sorted T cells. RESULTS No difference was seen between vedolizumab recipients and control individuals in the quantity of any antigen-experienced T lymphocyte subset or in the quality of the transcriptome in any experienced T cell subset. Fewer naïve colonic B and T cells were seen in vedolizumab recipients than control individuals, regardless of response. However, the most striking finding was a marked reduction in CD1c+ (BDCA1+) dendritic cells exclusively in vedolizumab-responsive patients. In blood, these dendritic cells ubiquitously express high levels of α4β7, which is rapidly downregulated upon vedolizumab exposure. CONCLUSIONS The clinical effects of vedolizumab reveal integrin α4β7-dependent dendritic cell migration to the intestinal mucosa to be central to inflammatory bowel disease pathogenesis.
Collapse
Affiliation(s)
- Elisa K Boden
- Center for Translational Research, Benaroya Research Institute, Seattle, WA, USA
- Division of Gastroenterology, Oregon Health and Science University, Portland, OR, USA
| | - Ramya Kongala
- Center for Translational Research, Benaroya Research Institute, Seattle, WA, USA
| | - Duncan C Hindmarch
- Center for Translational Research, Benaroya Research Institute, Seattle, WA, USA
| | - Donna M Shows
- Center for Translational Research, Benaroya Research Institute, Seattle, WA, USA
| | - Julius G Juarez
- GI Drug Discovery, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - James D Lord
- Center for Translational Research, Benaroya Research Institute, Seattle, WA, USA
- Division of Gastroenterology, Virginia Mason Medical Center, Seattle, WA, USA
| |
Collapse
|
4
|
Canales-Herrerias P, Uzzan M, Seki A, Czepielewski RS, Verstockt B, Livanos AE, Raso F, Dunn A, Dai D, Wang A, Al-taie Z, Martin J, Laurent T, Ko HM, Tokuyama M, Tankelevich M, Meringer H, Cossarini F, Jha D, Krek A, Paulsen JD, Taylor MD, Nakadar MZ, Wong J, Erlich EC, Mintz RL, Onufer EJ, Helmink BA, Sharma K, Rosenstein A, Ganjian D, Chung G, Dawson T, Juarez J, Yajnik V, Cerutti A, Faith JJ, Suarez-Farinas M, Argmann C, Petralia F, Randolph GJ, Polydorides AD, Reboldi A, Colombel JF, Mehandru S. Gut-associated lymphoid tissue attrition associates with response to anti-α4β7 therapy in ulcerative colitis. Sci Immunol 2024; 9:eadg7549. [PMID: 38640252 PMCID: PMC11140591 DOI: 10.1126/sciimmunol.adg7549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2024] [Indexed: 04/21/2024]
Abstract
Vedolizumab (VDZ) is a first-line treatment in ulcerative colitis (UC) that targets the α4β7- mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) axis. To determine the mechanisms of action of VDZ, we examined five distinct cohorts of patients with UC. A decrease in naïve B and T cells in the intestines and gut-homing (β7+) plasmablasts in circulation of VDZ-treated patients suggested that VDZ targets gut-associated lymphoid tissue (GALT). Anti-α4β7 blockade in wild-type and photoconvertible (KikGR) mice confirmed a loss of GALT size and cellularity because of impaired cellular entry. In VDZ-treated patients with UC, treatment responders demonstrated reduced intestinal lymphoid aggregate size and follicle organization and a reduction of β7+IgG+ plasmablasts in circulation, as well as IgG+ plasma cells and FcγR-dependent signaling in the intestine. GALT targeting represents a previously unappreciated mechanism of action of α4β7-targeted therapies, with major implications for this therapeutic paradigm in UC.
Collapse
Affiliation(s)
- Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Paris Est Créteil University UPEC, Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Gastroenterology Department, Fédération Hospitalo–Universitaire TRUE (InnovaTive theRapy for immUne disordErs), Créteil F-94010, France
| | - Akihiro Seki
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Alexandra E. Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Raso
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexandra Dunn
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Dai
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Wang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome Martin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’immunologie, CIMNA, Nantes, France
| | - Thomas Laurent
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’immunologie, CIMNA, Nantes, France
| | - Huaibin M. Ko
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadar Meringer
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Cossarini
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John D. Paulsen
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Zuber Nakadar
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Wong
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma C. Erlich
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel L. Mintz
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Beth A. Helmink
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Rosenstein
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle Ganjian
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Grace Chung
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gwendalyn J. Randolph
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandros D. Polydorides
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Jiménez-Gracia L, Marchese D, Nieto JC, Caratù G, Melón-Ardanaz E, Gudiño V, Roth S, Wise K, Ryan NK, Jensen KB, Hernando-Momblona X, Bernardes JP, Tran F, Sievers LK, Schreiber S, van den Berge M, Kole T, van der Velde PL, Nawijn MC, Rosenstiel P, Batlle E, Butler LM, Parish IA, Plummer J, Gut I, Salas A, Heyn H, Martelotto LG. FixNCut: single-cell genomics through reversible tissue fixation and dissociation. Genome Biol 2024; 25:81. [PMID: 38553769 PMCID: PMC10979608 DOI: 10.1186/s13059-024-03219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.
Collapse
Affiliation(s)
- Laura Jiménez-Gracia
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Domenica Marchese
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan C Nieto
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Ginevra Caratù
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisa Melón-Ardanaz
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Victoria Gudiño
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Sara Roth
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Monash University Department of Surgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Kellie Wise
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Research Facility, Adelaide, South Australia, Australia
| | - Natalie K Ryan
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kirk B Jensen
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Research Facility, Adelaide, South Australia, Australia
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Laura Katharina Sievers
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tessa Kole
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Petra L van der Velde
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Lisa M Butler
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jasmine Plummer
- St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
- Omniscope, Barcelona, Spain.
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia.
- Omniscope, Barcelona, Spain.
| |
Collapse
|
7
|
Mehandru S, Colombel JF, Juarez J, Bugni J, Lindsay JO. Understanding the molecular mechanisms of anti-trafficking therapies and their clinical relevance in inflammatory bowel disease. Mucosal Immunol 2023; 16:859-870. [PMID: 37574127 PMCID: PMC11141405 DOI: 10.1016/j.mucimm.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
In patients with inflammatory bowel disease (IBD), a combination of dysbiosis, increased intestinal permeability, and insufficient regulatory responses facilitate the development of chronic inflammation, which is driven by a complex interplay between the mucosal immune system and the environment and sustained by immune priming and ongoing cellular recruitment to the gut. The localization of immune cells is mediated by their expression of chemokine receptors and integrins, which bind to chemokines and adhesion molecules, respectively. In this article, we review the mechanisms of action of anti-trafficking therapies for IBD and consider clinical observations in the context of the different mechanisms of action. Furthermore, we discuss the evolution of molecular resistance to anti-cytokines, in which the composition of immune cells in the gut changes in response to treatment, and the potential implications of this for treatment sequencing. Lastly, we discuss the relevance of mechanism of action to combination therapy for IBD.
Collapse
Affiliation(s)
- Saurabh Mehandru
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julius Juarez
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James Bugni
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James O Lindsay
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK; Department of Gastroenterology, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
8
|
Yerigeri K, Buhtoiarov I. Pediatric-type follicular lymphoma in a Crohn's disease patient receiving anti-α4β7-integrin therapy: A case report. World J Gastroenterol 2023; 29:5865-5871. [PMID: 38074918 PMCID: PMC10701312 DOI: 10.3748/wjg.v29.i43.5865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Patients with autoimmune conditions receiving immunosuppressants are at risk of non-Hodgkin lymphomas (NHL). Vedolizumab (anti-α4β7-integrin antibody), a treatment-of-choice for Crohn's disease (CD), reduces inflammatory lymphocyte trafficking into the intestinal mucosa. This effect is believed to be confined to the colon. CASE SUMMARY We report the case of a CD patient on vedolizumab for five years who developed pediatric-type follicular lymphoma. Work-up prior to therapy revealed a reduction in circulating T-lymphocytes and their suppressed response to mitogens. Rituximab, cyclophosphamide, vincristine, and prednisone chemo-immunotherapy resulted in durable lymphoma remission, and vedolizumab treatment was continued. While the patient's T-lymphocyte population and immunoglobulin production recovered, the T-lymphocyte mitogen response remained suppressed. CONCLUSION This patient's NHL may be linked to receiving anti-α4β7 therapy. Further research could be beneficial to determine if proactive surveillance for NHL and other systemic diseases is indicated in patients on vedolizumab.
Collapse
Affiliation(s)
- Keval Yerigeri
- Internal Medicine-Pediatrics, Case Western Reserve University/MetroHealth, Cleveland, OH 44109, United States
| | - Ilia Buhtoiarov
- Pediatric Hematology/Oncology and Bone Marrow Transplantation, Cleveland Clinic Children’s, Cleveland, OH 44106, United States
| |
Collapse
|
9
|
Garrido-Trigo A, Corraliza AM, Veny M, Dotti I, Melón-Ardanaz E, Rill A, Crowell HL, Corbí Á, Gudiño V, Esteller M, Álvarez-Teubel I, Aguilar D, Masamunt MC, Killingbeck E, Kim Y, Leon M, Visvanathan S, Marchese D, Caratù G, Martin-Cardona A, Esteve M, Ordás I, Panés J, Ricart E, Mereu E, Heyn H, Salas A. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. Nat Commun 2023; 14:4506. [PMID: 37495570 PMCID: PMC10372067 DOI: 10.1038/s41467-023-40156-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Ulcerative colitis and Crohn's disease are chronic inflammatory intestinal diseases with perplexing heterogeneity in disease manifestation and response to treatment. While the molecular basis for this heterogeneity remains uncharacterized, single-cell technologies allow us to explore the transcriptional states within tissues at an unprecedented resolution which could further understanding of these complex diseases. Here, we apply single-cell RNA-sequencing to human inflamed intestine and show that the largest differences among patients are present within the myeloid compartment including macrophages and neutrophils. Using spatial transcriptomics in human tissue at single-cell resolution (CosMx Spatial Molecular Imaging) we spatially localize each of the macrophage and neutrophil subsets identified by single-cell RNA-sequencing and unravel further macrophage diversity based on their tissue localization. Finally, single-cell RNA-sequencing combined with single-cell spatial analysis reveals a strong communication network involving macrophages and inflammatory fibroblasts. Our data sheds light on the cellular complexity of these diseases and points towards the myeloid and stromal compartments as important cellular subsets for understanding patient-to-patient heterogeneity.
Collapse
Affiliation(s)
- Alba Garrido-Trigo
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ana M Corraliza
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Marisol Veny
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Isabella Dotti
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Elisa Melón-Ardanaz
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Aina Rill
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Switzerland. SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Ángel Corbí
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Victoria Gudiño
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Miriam Esteller
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Iris Álvarez-Teubel
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Daniel Aguilar
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - M Carme Masamunt
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | | | | | | | - Sudha Visvanathan
- Translational Medicine and Clinical Pharmacology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ginevra Caratù
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Albert Martin-Cardona
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, Terrassa, Spain
| | - Maria Esteve
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, Terrassa, Spain
| | - Ingrid Ordás
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Julian Panés
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Elisabetta Mereu
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.
| |
Collapse
|
10
|
Canales-Herrerias P, Uzzan M, Seki A, Czepielewski RS, Verstockt B, Livanos A, Raso F, Dunn A, Dai D, Wang A, Al-taie Z, Martin J, Ko HM, Tokuyama M, Tankelevich M, Meringer H, Cossarini F, Jha D, Krek A, Paulsen JD, Nakadar MZ, Wong J, Erlich EC, Onufer EJ, Helmink BA, Sharma K, Rosenstein A, Chung G, Dawson T, Juarez J, Yajnik V, Cerutti A, Faith J, Suarez-Farinas M, Argmann C, Petralia F, Randolph GJ, Polydorides AD, Reboldi A, Colombel JF, Mehandru S. Gut-associated lymphoid tissue attrition associates with response to anti-α4β7 therapy in ulcerative colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524731. [PMID: 36711839 PMCID: PMC9882272 DOI: 10.1101/2023.01.19.524731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Targeting the α4β7-MAdCAM-1 axis with vedolizumab (VDZ) is a front-line therapeutic paradigm in ulcerative colitis (UC). However, mechanism(s) of action (MOA) of VDZ remain relatively undefined. Here, we examined three distinct cohorts of patients with UC (n=83, n=60, and n=21), to determine the effect of VDZ on the mucosal and peripheral immune system. Transcriptomic studies with protein level validation were used to study drug MOA using conventional and transgenic murine models. We found a significant decrease in colonic and ileal naïve B and T cells and circulating gut-homing plasmablasts (β7+) in VDZ-treated patients, pointing to gut-associated lymphoid tissue (GALT) targeting by VDZ. Murine Peyer's patches (PP) demonstrated a significant loss cellularity associated with reduction in follicular B cells, including a unique population of epithelium-associated B cells, following anti-α4β7 antibody (mAb) administration. Photoconvertible (KikGR) mice unequivocally demonstrated impaired cellular entry into PPs in anti-α4β7 mAb treated mice. In VDZ-treated, but not anti-tumor necrosis factor-treated UC patients, lymphoid aggregate size was significantly reduced in treatment responders compared to non-responders, with an independent validation cohort further confirming these data. GALT targeting represents a novel MOA of α4β7-targeted therapies, with major implications for this therapeutic paradigm in UC, and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Paris Est Créteil University UPEC, Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Gastroenterology department, Fédération Hospitalo-Universitaire TRUE InnovaTive theRapy for immUne disordErs, Créteil F-94010, France
| | - Akihiro Seki
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Alexandra Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Raso
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexandra Dunn
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Dai
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Wang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome Martin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’Immunologie, CIMNA, Nantes, France
| | - Huaibin M. Ko
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadar Meringer
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Cossarini
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John D. Paulsen
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M. Zuber Nakadar
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Wong
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma C. Erlich
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Beth A. Helmink
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, St. Louis, MO
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Rosenstein
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Grace Chung
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jeremiah Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gwendalyn J. Randolph
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandros D. Polydorides
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Becker E, Dedden M, Gall C, Wiendl M, Ekici AB, Schulz-Kuhnt A, Schweda A, Voskens C, Hegazy A, Vitali F, Atreya R, Müller TM, Atreya I, Neurath MF, Zundler S. Residual homing of α4β7-expressing β1 +PI16 + regulatory T cells with potent suppressive activity correlates with exposure-efficacy of vedolizumab. Gut 2022; 71:1551-1566. [PMID: 34462337 DOI: 10.1136/gutjnl-2021-324868] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The anti-α4β7 integrin antibody vedolizumab is administered at a fixed dose for the treatment of IBDs. This leads to a wide range of serum concentrations in patients and previous studies had suggested that highest exposure levels are associated with suboptimal clinical response. We aimed to determine the mechanisms underlying these non-linear exposure-efficacy characteristics of vedolizumab. DESIGN We characterised over 500 samples from more than 300 subjects. We studied the binding of vedolizumab to T cells and investigated the functional consequences for dynamic adhesion, transmigration, gut homing and free binding sites in vivo. Employing single-cell RNA sequencing, we characterised α4β7 integrin-expressing T cell populations 'resistant' to vedolizumab and validated our findings in vitro and in samples from vedolizumab-treated patients with IBD. We also correlated our findings with a post-hoc analysis of the Gemini II and III studies. RESULTS Regulatory T (TReg) cells exhibited a right-shifted vedolizumab binding profile compared with effector T (TEff) cells. Consistently, in a certain concentration range, the residual adhesion, transmigration, homing of and availability of functional α4β7 on TReg cells in vivo was higher than that of/on TEff cells. We identified a vedolizumab-'resistant' α4β7-expressing β1+PI16+ TReg cell subset with pronounced regulatory properties as the substrate for this effect. Our observations correlated with exposure-efficacy data from Gemini II and III trials. CONCLUSION Completely blocking TEff cell trafficking with vedolizumab, while simultaneously permitting residual homing of powerful TReg cells in an optimal 'therapeutic window' based on target exposure levels might be a strategy to optimise treatment outcomes in patients with IBD.
Collapse
Affiliation(s)
- Emily Becker
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Christine Gall
- Institute for Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Arif Bülent Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Anna Schweda
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Caroline Voskens
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Bayern, Germany
| | - Ahmed Hegazy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Francesco Vitali
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Bayern, Germany
| | - Tanja Martina Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Bayern, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Bayern, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Bayern, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Bayern, Germany .,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Bayern, Germany
| |
Collapse
|
12
|
Distinct Longitudinal Changes in Immunoglobulin G N-Glycosylation Associate with Therapy Response in Chronic Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms23158473. [PMID: 35955616 PMCID: PMC9368836 DOI: 10.3390/ijms23158473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Immunosuppressants and biologicals are widely used therapeutics for various chronic inflammatory diseases (CID). To gain more detailed insight into their downstream effects, we examined their impact on serum immunoglobulin G (IgG) glycosylation. We analyzed IgG subclass-specific fragment crystallizable (Fc) N-glycosylation in patients suffering from various CID using the LC-MS approach. Firstly, we compared IgG Fc N-glycosylation between 128 CID patients and 204 healthy controls. Our results replicated previously observed CID-related decrease in IgG Fc galactosylation (adjusted p-value range 1.70 × 10−2–5.95 × 10−22) and sialylation (adjusted p-value range 1.85 × 10−2–1.71 × 10−18). Secondly, to assess changes in IgG Fc N-glycosylation associated with therapy and remission status, we compared 139 CID patients receiving either azathioprine, infliximab, or vedolizumab therapy. We observed an increase in IgG Fc galactosylation (adjusted p-value range 1.98 × 10−2–1.30 × 10−15) and sialylation (adjusted p-value range 3.28 × 10−6–4.34 × 10−18) during the treatment. Furthermore, patients who reached remission displayed increased Fc galactosylation levels (p-value range 2.25 × 10−2–5.44 × 10−3) in comparison to patients with active disease. In conclusion, the alterations in IgG Fc glycosylation and the fact these changes are even more pronounced in patients who achieved remission, suggest modulation of IgG inflammatory potential associated with CID therapy.
Collapse
|
13
|
Gonzalez-Vivo M, Lund Tiirikainen MK, Andreu M, Fernandez-Clotet A, López-García A, Murciano Gonzalo F, Abril Rodriguez L, de Jesús-Gil C, Ruiz-Romeu E, Sans-de San Nicolàs L, Santamaria-Babí LF, Márquez-Mosquera L. Memory T Cell Subpopulations as Early Predictors of Remission to Vedolizumab in Ulcerative Colitis. Front Med (Lausanne) 2022; 9:837294. [PMID: 35783609 PMCID: PMC9240758 DOI: 10.3389/fmed.2022.837294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Vedolizumab is a humanized monoclonal antibody targeting the α4β7 integrin used for the treatment of ulcerative colitis. Few biomarkers related to vedolizumab response have been identified. The aim of this work was to assess whether baseline circulating CD4+ and CD8+ memory T-lymphocyte subpopulations could help to identify patients with response to vedolizumab treatment in ulcerative colitis. Methods Prospective pilot study in 15 patients with active ulcerative colitis and previous failure to anti-TNFα starting vedolizumab treatment. Peripheral blood samples were obtained before the first dose of vedolizumab and at week 6 and 14 of treatment. Clinical remission was defined as a Mayo Clinic partial score of ≤2 points without any concomitant dose of steroids. Biochemical remission or endoscopic improvement was defined as fecal calprotectin <250 mcg/g or Mayo endoscopic subscore ≤1. Results At week 14, nine patients achieved clinical remission and eight patients achieved biochemical remission or endoscopic improvement. Patients in clinical remission presented higher baseline CD8 α4β7+ memory T cells concentration when compared with patients with no remission. In addition, patients with biochemical remission or endoscopic improvement at week 14 presented higher baseline concentration of CD8 α4β7+ memory T cells. No differences were identified according to flare severity, extent of disease or type of anti-TNFα failure. There were no significant differences regarding changes in T cell subsets during vedolizumab induction. Conclusion CD8+ α4β7+ memory T cells before starting vedolizumab therapy could be an early predictor of remission in ulcerative colitis patients and therefore help to select a subset of responders.
Collapse
Affiliation(s)
- Maria Gonzalez-Vivo
- Department of Gastroenterology, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- *Correspondence: Maria Gonzalez-Vivo,
| | - Minna K. Lund Tiirikainen
- Grup d’Immunologia Translacional, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Montserrat Andreu
- Department of Gastroenterology, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Alicia López-García
- Department of Gastroenterology, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | | | - Carmen de Jesús-Gil
- Grup d’Immunologia Translacional, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Ester Ruiz-Romeu
- Grup d’Immunologia Translacional, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Lídia Sans-de San Nicolàs
- Grup d’Immunologia Translacional, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Lluis F. Santamaria-Babí
- Grup d’Immunologia Translacional, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Lucía Márquez-Mosquera
- Department of Gastroenterology, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
14
|
Keir ME, Fuh F, Ichikawa R, Acres M, Hackney JA, Hulme G, Carey CD, Palmer J, Jones CJ, Long AK, Jiang J, Klabunde S, Mansfield JC, Looney CM, Faubion WA, Filby A, Kirby JA, McBride J, Lamb CA. Regulation and Role of αE Integrin and Gut Homing Integrins in Migration and Retention of Intestinal Lymphocytes during Inflammatory Bowel Disease. THE JOURNAL OF IMMUNOLOGY 2021; 207:2245-2254. [PMID: 34561227 PMCID: PMC8525869 DOI: 10.4049/jimmunol.2100220] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
Adhesion molecules are upregulated in inflamed intestinal mucosa in IBD patients. Baseline β7 expression does not impact αE induction or gene expression in T cells. Phospho-SMAD3 is increased in inflamed mucosa in IBD.
Targeting interactions between α4β7 integrin and endothelial adhesion molecule MAdCAM-1 to inhibit lymphocyte migration to the gastrointestinal tract is an effective therapy in inflammatory bowel disease (IBD). Following lymphocyte entry into the mucosa, a subset of these cells expresses αEβ7 integrin, which is expressed on proinflammatory lymphocytes, to increase cell retention. The factors governing lymphocyte migration into the intestinal mucosa and αE integrin expression in healthy subjects and IBD patients remain incompletely understood. We evaluated changes in factors involved in lymphocyte migration and differentiation within tissues. Both ileal and colonic tissue from active IBD patients showed upregulation of ICAM-1, VCAM-1, and MAdCAM-1 at the gene and protein levels compared with healthy subjects and/or inactive IBD patients. β1 and β7 integrin expression on circulating lymphocytes was similar across groups. TGF-β1 treatment induced expression of αE on both β7+ and β7− T cells, suggesting that cells entering the mucosa independently of MAdCAM-1/α4β7 can become αEβ7+. ITGAE gene polymorphisms did not alter protein induction following TGF-β1 stimulation. Increased phospho-SMAD3, which is directly downstream of TGF-β, and increased TGF-β–responsive gene expression were observed in the colonic mucosa of IBD patients. Finally, in vitro stimulation experiments showed that baseline β7 expression had little effect on cytokine, chemokine, transcription factor, and effector molecule gene expression in αE+ and αE− T cells. These findings suggest cell migration to the gut mucosa may be altered in IBD and α4β7−, and α4β7+ T cells may upregulate αEβ7 in response to TGF-β once within the gut mucosa.
Collapse
Affiliation(s)
| | | | | | - Meghan Acres
- Translational and Clinical Research Institute, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Histopathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | - Gillian Hulme
- Flow Cytometry Core Facility and Innovation, Methodology and Application Research Theme, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher D Carey
- Translational and Clinical Research Institute, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Haematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jeremy Palmer
- Translational and Clinical Research Institute, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire J Jones
- Department of Histopathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anna K Long
- Department of Histopathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | | | - John C Mansfield
- Translational and Clinical Research Institute, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; and
| | | | | | - Andrew Filby
- Flow Cytometry Core Facility and Innovation, Methodology and Application Research Theme, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A Kirby
- Translational and Clinical Research Institute, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Christopher A Lamb
- Translational and Clinical Research Institute, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom;
| |
Collapse
|
15
|
Caballol B, Gudiño V, Panes J, Salas A. Ulcerative colitis: shedding light on emerging agents and strategies in preclinical and early clinical development. Expert Opin Investig Drugs 2021; 30:931-946. [PMID: 34365869 DOI: 10.1080/13543784.2021.1965122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Ulcerative colitis (UC) is an inflammatory disease of the large intestine. Progress in preclinical therapeutic target discovery and clinical trial design has resulted in the approval of new therapies. Nonetheless, remission rates remain below 30% thus underlining the need for novel, more effective therapies. AREAS COVERED This paper reviews current experimental techniques available for drug testing in intestinal inflammation and examines new therapies in clinical development for the treatment of UC. The authors searched the literature for 'ulcerative colitis' AND 'preclinical' OR 'drug target/drug name' (i.e. infliximab, vedolizumab, IL-12, IL-23, JAK, etc.). Studies that included preclinical in vivo or in vitro experiments are discussed. The clinicaltrial.gov site was searched for 'ulcerative colitis' AND 'Recruiting' OR 'Active, not recruiting' AND 'Interventional (Clinical Trial)' AND 'early phase 1' OR 'phase 1' OR 'phase 2' OR 'phase 3.' EXPERT OPINION Using in vivo, ex vivo, and/or in vitro models could increase the success rates of drugs moving to clinical trials, and hence increase the efficiency of this costly process. Selective JAK1 inhibitors, S1P modulators, and anti-p19 antibodies are the most promising options to improve treatment effectiveness. The development of drugs with gut-restricted exposure may provide increased efficacy and an improved safety.
Collapse
Affiliation(s)
- Berta Caballol
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Victoria Gudiño
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Julian Panes
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
16
|
Zhang L, Ocansey DKW, Liu L, Olovo CV, Zhang X, Qian H, Xu W, Mao F. Implications of lymphatic alterations in the pathogenesis and treatment of inflammatory bowel disease. Biomed Pharmacother 2021; 140:111752. [PMID: 34044275 DOI: 10.1016/j.biopha.2021.111752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by intense immune dysregulation, gut microbiota imbalance, and intestinal epithelium destruction. Among the factors that contribute to the pathogenesis of IBD, lymphatics have received less attention, hence less studied, characterized, and explored. However, in recent years, the role of the lymphatic system in gastrointestinal pathophysiology continues to be highlighted. This paper examines the implications of lymphatic changes in IBD pathogenesis related to immune cells, gut microbiota, intestinal and mesenteric epithelial barrier integrity, and progression to colorectal cancer (CRC). Therapeutic targets of lymphatics in IBD studies are also presented. Available studies indicate that lymph nodes and other secondary lymphatic tissues, provide highly specialized microenvironments for mounting effective immune responses and that lymphatic integrity plays a significant role in small intestine homeostasis, where the lymphatic vasculature effectively controls tissue edema, leukocyte exit, bacterial antigen, and inflammatory chemokine clearance. In IBD, there are functional and morphological alterations in intestinal and mesenteric lymphatic vessels (more profoundly in Crohn's disease [CD] compared to ulcerative colitis [UC]), including lymphangiogenesis, lymphangiectasia, lymphadenopathy, and lymphatic vasculature blockade, affecting not only immunity but gut microbiota and epithelial barrier integrity. While increased lymphangiogenesis is primarily associated with a good prognosis of IBD, increased lymphangiectasia, lymphadenopathy, and lymphatic vessel occlusion correlate with poor prognosis. IBD therapies that target the lymphatic system seek to increase lymphangiogenesis via induction of lymphangiogenic factors and inhibition of its antagonists. The resultant increased lymphatic flow coupled with other anti-inflammatory activities restores gut homeostasis.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Lianqin Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
17
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|