1
|
Shen Y, Zhu W, Li S, Zhang Z, Zhang J, Li M, Zheng W, Wang D, Zhong Y, Li M, Zheng H, Du J. Integrated analyses of 5 mC, 5hmC methylation and gene expression reveal pathology-associated AKT3 gene and potential biomarkers for Alzheimer's disease. J Psychiatr Res 2024; 178:367-377. [PMID: 39197298 DOI: 10.1016/j.jpsychires.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
AIMS 5 mC methylation and hydroxymethylation (5hmC) are associated with Alzheimer's disease (AD). However, previous studies were limited by the absence of a 5hmC calculation. This study aims to find AD associated predictors and potential therapeutic chemicals using bioinformatics approach integrating 5 mC, 5hmC, and expression changes, and an AD mouse model. METHODS Gene expression microarray and 5 mC and 5hmC sequencing datasets were downloaded from GEO repository. 142 AD and 52 normal entorhinal cortex specimens were enrolled. Data from oxidative bisulfite sequencing (oxBS)-treated samples, which represent only 5 mC, were used to calculate 5hmC level. Functional analyses, random forest supervised classification and methylation validation were applied. Potential chemicals were predicted by CMap. Morris water maze, Y maze and novel object recognition behavior tests were performed using FAD4T AD mice model. Cortex and hippocampus tissues were isolated for immunohistochemical staining. RESULTS C1QTNF5, UBD, ZFP106, NEDD1, AKT3, and MBP genes involving 13 promoter CpG sites with 5mc, 5hmC methylation and expression difference were identified. AKT3 and MBP were down-regulated in both patients and mouse model. Three CpG sites in AKT3 and MBP showed significant methylation difference on validation. FAD4T AD mice showed recession in brain functions and lower AKT3 expression in both cortex and hippocampus. Ten chemicals were predicted as potential treatments for AD. CONCLUSIONS AKT3 and MBP may be associated with AD pathology and could serve as biomarkers. The ten predicted chemicals might offer new therapeutic approaches. Our findings could contribute to identifying novel markers and advancing the understanding of AD mechanisms.
Collapse
Affiliation(s)
- Yupei Shen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Weiqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shuaicheng Li
- School of Computer Science, Fudan University, Shanghai Key Laboratory of Intelligent Information Processing Shanghai, China
| | - Zhaofeng Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jian Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Mingjie Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wei Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Difei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yushun Zhong
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Min Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jing Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| |
Collapse
|
2
|
Abdul-Rahman T, Awuah WA, Mikhailova T, Kalmanovich J, Mehta A, Ng JC, Coghlan MA, Zivcevska M, Tedeschi AJ, de Oliveira EC, Kumar A, Cantu-Herrera E, Lyndin M, Sikora K, Alexiou A, Bilgrami AL, Al-Ghamdi KM, Perveen A, Papadakis M, Ashraf GM. Antioxidant, anti-inflammatory and epigenetic potential of curcumin in Alzheimer's disease. Biofactors 2024; 50:693-708. [PMID: 38226733 DOI: 10.1002/biof.2039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) constitutes a multifactorial neurodegenerative pathology characterized by cognitive deterioration, personality alterations, and behavioral shifts. The ongoing brain impairment process poses significant challenges for therapeutic interventions due to activating multiple neurotoxic pathways. Current pharmacological interventions have shown limited efficacy and are associated with significant side effects. Approaches focusing on the early interference with disease pathways, before activation of broad neurotoxic processes, could be promising to slow down symptomatic progression of the disease. Curcumin-an integral component of traditional medicine in numerous cultures worldwide-has garnered interest as a promising AD treatment. Current research indicates that curcumin may exhibit therapeutic potential in neurodegenerative pathologies, attributed to its potent anti-inflammatory and antioxidant properties. Additionally, curcumin and its derivatives have demonstrated an ability to modulate cellular pathways via epigenetic mechanisms. This article aims to raise awareness of the neuroprotective properties of curcuminoids that could provide therapeutic benefits in AD. The paper provides a comprehensive overview of the neuroprotective efficacy of curcumin against signaling pathways that could be involved in AD and summarizes recent evidence of the biological efficiency of curcumins in vivo.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | - Wireko Andrew Awuah
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | | | - Jacob Kalmanovich
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Jyi Cheng Ng
- Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | - Megan Ariel Coghlan
- University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | | | | | - Akinchita Kumar
- Lincoln Memorial University-DeBusk College of Osteopathic Medicine Harrogate, Harrogate, Tennessee, United States
| | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, Mexico
| | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Essen, Germany
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
- AFNP Med, Wien, Austria
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, Uttar Pradesh, India
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Pett L, Li Z, Abrishamcar S, Hodge K, Everson T, Christensen G, Gearing M, Kobor MS, Konwar C, MacIsaac JL, Dever K, Wingo AP, Levey A, Lah JJ, Wingo TS, Hüls A. The association between neighborhood deprivation and DNA methylation in an autopsy cohort. Aging (Albany NY) 2024; 16:6694-6716. [PMID: 38663907 PMCID: PMC11087100 DOI: 10.18632/aging.205764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024]
Abstract
Previous research has found that living in a disadvantaged neighborhood is associated with poor health outcomes. Living in disadvantaged neighborhoods may alter inflammation and immune response in the body, which could be reflected in epigenetic mechanisms such as DNA methylation (DNAm). We used robust linear regression models to conduct an epigenome-wide association study examining the association between neighborhood deprivation (Area Deprivation Index; ADI), and DNAm in brain tissue from 159 donors enrolled in the Emory Goizueta Alzheimer's Disease Research Center (Georgia, USA). We found one CpG site (cg26514961, gene PLXNC1) significantly associated with ADI after controlling for covariates and multiple testing (p-value=5.0e-8). Effect modification by APOE ε4 was statistically significant for the top ten CpG sites from the EWAS of ADI, indicating that the observed associations between ADI and DNAm were mainly driven by donors who carried at least one APOE ε4 allele. Four of the top ten CpG sites showed a significant concordance between brain tissue and tissues that are easily accessible in living individuals (blood, buccal cells, saliva), including DNAm in cg26514961 (PLXNC1). Our study identified one CpG site (cg26514961, PLXNC1 gene) that was significantly associated with neighborhood deprivation in brain tissue. PLXNC1 is related to immune response, which may be one biological pathway how neighborhood conditions affect health. The concordance between brain and other tissues for our top CpG sites could make them potential candidates for biomarkers in living individuals.
Collapse
Affiliation(s)
- Lindsay Pett
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kenyaita Hodge
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Todd Everson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Grace Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael S. Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Chaini Konwar
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Julia L. MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Kristy Dever
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Aliza P. Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Thomas S. Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Li Z, Liang D, Ebelt S, Gearing M, Kobor MS, Konwar C, Maclsaac JL, Dever K, Wingo AP, Levey AI, Lah JJ, Wingo TS, Hüls A. Differential DNA methylation in the brain as potential mediator of the association between traffic-related PM 2.5 and neuropathology markers of Alzheimer's disease. Alzheimers Dement 2024; 20:2538-2551. [PMID: 38345197 PMCID: PMC11032571 DOI: 10.1002/alz.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/29/2023] [Accepted: 11/30/2023] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Growing evidence indicates that fine particulate matter (PM2.5) is a risk factor for Alzheimer's disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as a potential mediator of this association. METHODS We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-four CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD. HIGHLIGHTS First study to evaluate the potential mediation effect of DNA methylation for the association between PM2.5 exposure and neuropathological changes of Alzheimer's disease. Study was based on brain tissues rarely investigated in previous air pollution research. Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures prior to death. Meet-in-the-middle approach and high-dimensional mediation analysis were used simultaneously to increase the potential of identifying the differentially methylated CpGs. Differential DNAm related to neuroinflammation was found to mediate the association between traffic-related PM2.5 and Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenjiang Li
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Donghai Liang
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Stefanie Ebelt
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Marla Gearing
- Department of Pathology and Laboratory MedicineEmory UniversityAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Michael S. Kobor
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
- Centre for Molecular Medicine and TherapeuticsVancouverBritish ColumbiaCanada
| | - Chaini Konwar
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
| | - Julie L. Maclsaac
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
- Centre for Molecular Medicine and TherapeuticsVancouverBritish ColumbiaCanada
| | - Kristy Dever
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
- Centre for Molecular Medicine and TherapeuticsVancouverBritish ColumbiaCanada
| | - Aliza P. Wingo
- Division of Mental HealthAtlanta VA Medical CenterDecaturGeorgiaUSA
- Department of PsychiatryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Allan I. Levey
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - James J. Lah
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Thomas S. Wingo
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Human GeneticsEmory UniversityAtlantaGeorgiaUSA
| | - Anke Hüls
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
6
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
7
|
Hernández-Oliveras A, Zarain-Herzberg A. The role of Ca 2+-signaling in the regulation of epigenetic mechanisms. Cell Calcium 2024; 117:102836. [PMID: 37988873 DOI: 10.1016/j.ceca.2023.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Epigenetic mechanisms regulate multiple cell functions like gene expression and chromatin conformation and stability, and its misregulation could lead to several diseases including cancer. Epigenetic drugs are currently under investigation in a broad range of diseases, but the cellular processes involved in regulating epigenetic mechanisms are not fully understood. Calcium (Ca2+) signaling regulates several cellular mechanisms such as proliferation, gene expression, and metabolism, among others. Moreover, Ca2+ signaling is also involved in diseases such as neurological disorders, cardiac, and cancer. Evidence indicates that Ca2+ signaling and epigenetics are involved in the same cellular functions, which suggests a possible interplay between both mechanisms. Ca2+-activated transcription factors regulate the recruitment of chromatin remodeling complexes into their target genes, and Ca2+-sensing proteins modulate their activity and intracellular localization. Thus, Ca2+ signaling is an important regulator of epigenetic mechanisms. Moreover, Ca2+ signaling activates epigenetic mechanisms that in turn regulate genes involved in Ca2+ signaling, suggesting possible feedback between both mechanisms. The understanding of how epigenetics are regulated could lead to developing better therapeutical approaches.
Collapse
Affiliation(s)
- Andrés Hernández-Oliveras
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Angel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Li Z, Liang D, Ebelt S, Gearing M, Kobor MS, Konwar C, Maclsaac JL, Dever K, Wingo A, Levey A, Lah JJ, Wingo T, Huels A. Differential DNA Methylation in the Brain as Potential Mediator of the Association between Traffic-related PM 2.5 and Neuropathology Markers of Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.30.23292085. [PMID: 37425713 PMCID: PMC10327281 DOI: 10.1101/2023.06.30.23292085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Growing evidence indicates fine particulate matter (PM2.5) as risk factor for Alzheimer's' disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as potential mediator of this association. METHODS We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3 and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-six CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD.
Collapse
Affiliation(s)
- Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Stefanie Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA 30322, USA
| | - Michael S. Kobor
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, BC V6H 0B3, Canada
| | - Chaini Konwar
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Julie L Maclsaac
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, BC V6H 0B3, Canada
| | - Kristy Dever
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, BC V6H 0B3, Canada
| | - Aliza Wingo
- Division of Mental Health, Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
- Department of Psychiatry, Emory University School of Medicine, 12 Executive Park Dr NE #200, Atlanta, GA 30329, USA
| | - Allan Levey
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA 30322, USA
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA 30322, USA
| | - Thomas Wingo
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University, 615 Michael Street Suite 301, Atlanta, GA 30322, USA
| | - Anke Huels
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Milicic L, Porter T, Vacher M, Laws SM. Utility of DNA Methylation as a Biomarker in Aging and Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:475-503. [PMID: 37313495 PMCID: PMC10259073 DOI: 10.3233/adr-220109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer, heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been utilized in the design of epigenetic clocks, which aim to predict an individual's biological age based on an algorithmically defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Floreat, Western Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
10
|
Simons RL, Ong ML, Lei MK, Beach SRH, Zhang Y, Philibert R, Mielke MM. Changes in Loneliness, BDNF, and Biological Aging Predict Trajectories in a Blood-Based Epigenetic Measure of Cortical Aging: A Study of Older Black Americans. Genes (Basel) 2023; 14:842. [PMID: 37107599 PMCID: PMC10138024 DOI: 10.3390/genes14040842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
A recent epigenetic measure of aging has developed based on human cortex tissue. This cortical clock (CC) dramatically outperformed extant blood-based epigenetic clocks in predicting brain age and neurological degeneration. Unfortunately, measures that require brain tissue are of limited utility to investigators striving to identify everyday risk factors for dementia. The present study investigated the utility of using the CpG sites included in the CC to formulate a peripheral blood-based cortical measure of brain age (CC-Bd). To establish the utility of CC-Bd, we used growth curves with individually varying time points and longitudinal data from a sample of 694 aging African Americans. We examined whether three risk factors that have been linked to cognitive decline-loneliness, depression, and BDNFm-predicted CC-Bd after controlling for several factors, including three new-generation epigenetic clocks. Our findings showed that two clocks-DunedinPACE and PoAm-predicted CC-BD, but that increases in loneliness and BDNFm continued to be robust predictors of accelerated CC-Bd even after taking these effects into account. This suggests that CC-Bd is assessing something more than the pan-tissue epigenetic clocks but that, at least in part, brain health is also associated with the general aging of the organism.
Collapse
Affiliation(s)
- Ronald L. Simons
- Department of Sociology, University of Georgia, Athens, GA 30602, USA
| | - Mei Ling Ong
- Center for Family Research, University of Georgia, Athens, GA 30602, USA
| | - Man-Kit Lei
- Department of Sociology, University of Georgia, Athens, GA 30602, USA
| | | | - Yue Zhang
- Department of Sociology, University of Georgia, Athens, GA 30602, USA
| | - Robert Philibert
- Department of Psychiatry, University of Iowa School of Medicine, Iowa City, IA 52242, USA
| | - Michelle M. Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
11
|
Monteiro AR, Barbosa DJ, Remião F, Silva R. Alzheimer’s disease: insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol 2023; 211:115522. [PMID: 36996971 DOI: 10.1016/j.bcp.2023.115522] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases that affect millions of people worldwide, with both prevalence and incidence increasing with age. It is characterized by cognitive decline associated, specifically, with degeneration of cholinergic neurons. The problem of this disease is even more fundamental as the available therapies remain fairly limited and mainly focused on symptoms' relief. Although the aetiology of the disease remains elusive, two main pathological hallmarks are described: i) presence of neurofibrillary tangles formed by unfolded protein aggregates (hyperphosphorylated Tau protein) and ii) presence of extracellular aggregates of amyloid-beta peptide. Given the complexity surrounding the pathogenesis of the disease, several potential targets have been highlighted and interrelated upon its progression, such as oxidative stress and the accumulation of metal ions. Thus, advances have been made on the development of innovative multitarget therapeutical compounds to delay the disease progression and restore cell function. This review focuses the ongoing research on new insights and emerging disease-modifying drugs for AD treatment. Furthermore, classical and novel potential biomarkers for early diagnosis of the disease, and their role in assisting on the improvement of targeted therapies will also be approached.
Collapse
Affiliation(s)
- Ana R Monteiro
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel J Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
13
|
Sattarov R, Toresson H, Orbjörn C, Mattsson-Carlgren N. Direct Conversion of Fibroblast into Neurons for Alzheimer's Disease Research: A Systematic Review. J Alzheimers Dis 2023; 95:805-828. [PMID: 37661882 PMCID: PMC10578293 DOI: 10.3233/jad-230119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without a cure. Innovative disease models, such as induced neurons (iNs), could enhance our understanding of AD mechanisms and accelerate treatment development. However, a review of AD human iN studies is necessary to consolidate knowledge. OBJECTIVE The objective of this review is to examine the current body of literature on AD human iN cells and provide an overview of the findings to date. METHODS We searched two databases for relevant studies published between 2010 and 2023, identifying nine studies meeting our criteria. RESULTS Reviewed studies indicate the feasibility of generating iNs directly from AD patients' fibroblasts using chemical induction or viral vectors. These cells express mature neuronal markers, including MAP-2, NeuN, synapsin, and tau. However, most studies were limited in sample size and primarily focused on autosomal dominant familial AD (FAD) rather than the more common sporadic forms of AD. Several studies indicated that iNs derived from FAD fibroblasts exhibited abnormal amyloid-β metabolism, a characteristic feature of AD in humans. Additionally, elevated levels of hyperphosphorylated tau, another hallmark of AD, were reported in some studies. CONCLUSION Although only a limited number of small-scale studies are currently available, AD patient-derived iNs hold promise as a valuable model for investigating AD pathogenesis. Future research should aim to conduct larger studies, particularly focusing on sporadic AD cases, to enhance the clinical relevance of the findings for the broader AD patient population. Moreover, these cells can be utilized in screening potential novel treatments for AD.
Collapse
Affiliation(s)
- Roman Sattarov
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Håkan Toresson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Camilla Orbjörn
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Kim B, Vasanthakumar A, Li QS, Nudelman KN, Risacher SL, Davis JW, Idler K, Lee J, Seo SW, Waring JF, Saykin AJ, Nho K. Integrative analysis of DNA methylation and gene expression identifies genes associated with biological aging in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12354. [PMID: 36187194 PMCID: PMC9489162 DOI: 10.1002/dad2.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Introduction The acceleration of biological aging is a risk factor for Alzheimer's disease (AD). Here, we performed weighted gene co-expression network analysis (WGCNA) to identify modules and dysregulated genesinvolved in biological aging in AD. Methods We performed WGCNA to identify modules associated with biological clocks and hub genes of the module with the highest module significance. In addition, we performed differential expression analysis and association analysis with AD biomarkers. Results WGCNA identified five modules associated with biological clocks, with the module designated as "purple" showing the strongest association. Functional enrichment analysis revealed that the purple module was related to cell migration and death. Ten genes were identified as hub genes in purple modules, of which CX3CR1 was downregulated in AD and low levels of CX3CR1 expression were associated with AD biomarkers. Conclusion Network analysis identified genes associated with biological clocks, which suggests the genetic architecture underlying biological aging in AD. Highlights Examine links between Alzheimer's disease (AD) peripheral transcriptome and biological aging changes.Weighted gene co-expression network analysis (WGCNA) found five modules related to biological aging.Among the hub genes of the module, CX3CR1 was downregulated in AD.The CX3CR1 expression level was associated with cognitive performance and brain atrophy.
Collapse
Affiliation(s)
- Bo‐Hyun Kim
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Samsung Alzheimer Research CenterSamsung Medical CenterSeoulRepublic of Korea
- Department of Health Sciences and TechnologySHAISTSungkyunkwan UniversitySeoulRepublic of Korea
| | | | - Qingqin S. Li
- Neuroscience Therapeutic AreaJanssen Research & Development, LLCTitusvilleNew JerseyUSA
| | - Kelly N.H. Nudelman
- National Centralized Repository for Alzheimer's Disease and Related DementiasIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Shannon L. Risacher
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Kenneth Idler
- Genomics Research CenterAbbVieNorth ChicagoIllinoisUSA
| | - Jong‐Min Lee
- Department of Biomedical EngineeringHanyang UniversitySeoulRepublic of Korea
| | - Sang Won Seo
- Samsung Alzheimer Research CenterSamsung Medical CenterSeoulRepublic of Korea
- Department of NeurologySamsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Health Sciences and TechnologySHAISTSungkyunkwan UniversitySeoulRepublic of Korea
| | | | - Andrew J. Saykin
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kwangsik Nho
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | | |
Collapse
|
15
|
Thrush KL, Bennett DA, Gaiteri C, Horvath S, van Dyck CH, Higgins-Chen AT, Levine ME. Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer's disease. Aging (Albany NY) 2022; 14:5641-5668. [PMID: 35907208 PMCID: PMC9365556 DOI: 10.18632/aging.204196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5' cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks. Therefore, we generated a novel age predictor termed PCBrainAge that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability. To characterize the scope of PCBrainAge's utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project. PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. Overall, PCBrainAge's increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience.
Collapse
Affiliation(s)
- Kyra L. Thrush
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher Gaiteri
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Alzheimer’s Disease Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Albert T. Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Morgan E. Levine
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA 92114, USA
| |
Collapse
|
16
|
Kaur G, Rathod SSS, Ghoneim MM, Alshehri S, Ahmad J, Mishra A, Alhakamy NA. DNA Methylation: A Promising Approach in Management of Alzheimer's Disease and Other Neurodegenerative Disorders. BIOLOGY 2022; 11:90. [PMID: 35053088 PMCID: PMC8773419 DOI: 10.3390/biology11010090] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of neurodegenerative diseases such as Alzheimer's disease has been an interesting research area. Furthermore, mutations altering DNA methylation affect neurodevelopmental functions and may cause the progression of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases are widely studied in different populations to uncover the plausible mechanisms contributing to the development and progression of the disease and detect novel biomarkers for early prognosis and future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methylation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer's disease, Parkinson's disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative diseases.
Collapse
Affiliation(s)
- Gagandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; (G.K.); (S.S.S.R.)
| | - Suraj Singh S. Rathod
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; (G.K.); (S.S.S.R.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, Kamrup 781101, Assam, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
17
|
Khorani M, Bobe G, Matthews DG, Magana AA, Caruso M, Gray NE, Quinn JF, Stevens JF, Soumyanath A, Maier CS. The Impact of the hAPP695SW Transgene and Associated Amyloid-β Accumulation on Murine Hippocampal Biochemical Pathways. J Alzheimers Dis 2021; 85:1601-1619. [DOI: 10.3233/jad-215084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) peptide in the brain. Objective: Gain a better insight into alterations in major biochemical pathways underlying AD. Methods: We compared metabolomic profiles of hippocampal tissue of 20-month-old female Tg2576 mice expressing the familial AD-associated hAPP695SW transgene with their 20-month-old wild type female littermates. Results: The hAPP695SW transgene causes overproduction and accumulation of Aβ in the brain. Out of 180 annotated metabolites, 54 metabolites differed (30 higher and 24 lower in Tg2576 versus wild-type hippocampal tissue) and were linked to the amino acid, nucleic acid, glycerophospholipid, ceramide, and fatty acid metabolism. Our results point to 1) heightened metabolic activity as indicated by higher levels of urea, enhanced fatty acid β-oxidation, and lower fatty acid levels; 2) enhanced redox regulation; and 3) an imbalance of neuro-excitatory and neuro-inhibitory metabolites in hippocampal tissue of aged hAPP695SW transgenic mice. Conclusion: Taken together, our results suggest that dysregulation of multiple metabolic pathways associated with a concomitant shift to an excitatory-inhibitory imbalance are contributing mechanisms of AD-related pathology in the Tg2576 mouse.
Collapse
Affiliation(s)
- Mona Khorani
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Donald G. Matthews
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Armando Alcazar Magana
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
18
|
Rabaneda-Bueno R, Mena-Montes B, Torres-Castro S, Torres-Carrillo N, Torres-Carrillo NM. Advances in Genetics and Epigenetic Alterations in Alzheimer's Disease: A Notion for Therapeutic Treatment. Genes (Basel) 2021; 12:1959. [PMID: 34946908 PMCID: PMC8700838 DOI: 10.3390/genes12121959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a disabling neurodegenerative disorder that leads to long-term functional and cognitive impairment and greatly reduces life expectancy. Early genetic studies focused on tracking variations in genome-wide DNA sequences discovered several polymorphisms and novel susceptibility genes associated with AD. However, despite the numerous risk factors already identified, there is still no fully satisfactory explanation for the mechanisms underlying the onset of the disease. Also, as with other complex human diseases, the causes of low heritability are unclear. Epigenetic mechanisms, in which changes in gene expression do not depend on changes in genotype, have attracted considerable attention in recent years and are key to understanding the processes that influence age-related changes and various neurological diseases. With the recent use of massive sequencing techniques, methods for studying epigenome variations in AD have also evolved tremendously, allowing the discovery of differentially expressed disease traits under different conditions and experimental settings. This is important for understanding disease development and for unlocking new potential AD therapies. In this work, we outline the genomic and epigenomic components involved in the initiation and development of AD and identify potentially effective therapeutic targets for disease control.
Collapse
Affiliation(s)
- Rubén Rabaneda-Bueno
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic
- School of Biological Sciences, James Clerk Maxwell Building, The King’s Buildings Campus, University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Beatriz Mena-Montes
- Laboratorio de Biología del Envejecimiento, Departamento de Investigación Básica, Instituto Nacional de Geriatría, Mexico City 10200, Mexico;
| | - Sara Torres-Castro
- Departamento de Epidemiología Demográfica y Determinantes Sociales, Instituto Nacional de Geriatría, Mexico City 10200, Mexico;
| | - Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (N.T.-C.); (N.M.T.-C.)
| |
Collapse
|
19
|
Wei Z, Qi X, Zhai S, Chen Y, Xia X, Zheng B, Sun X, Zhang G, Wang L, Zhang Q, Xu C, Jiang S, Li X, Xie B, Liao X, Ai Z, Li X. Down-regulation of SORL1 is associated with Alzheimer's disease through activating ABC transporter pathway. ACTA ACUST UNITED AC 2021; 76:187-192. [PMID: 33909958 DOI: 10.1515/znc-2019-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/31/2020] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease with high morbidity among elderly people. A genetic attribution has been extensively proved. Here, we propose to further prioritize genes that harbor single nucleotide variation (SNV) or structural variation (SV) for AD and explore the underlying potential mechanisms through exploiting their expression and methylation spectra. A high-confidence AD-associated candidate gene list was obtained from the ClinVar and Human Gene Mutation Database (HGMD). Genome-wide methylation and expression profiles of AD and normal subjects were downloaded from the Gene Expression Omnibus (GEO). Through comprehensive comparison of expression and methylation levels between AD and normal samples, as well as different stages of AD samples, SORL1 was identified as the most plausible gene for AD incidence and progression. Gene Set Enrichment Analysis (GSEA) revealed significant activation of the ABC (ATP binding cassette) transporter with the aberrant up-regulation of SORL1 within AD samples. This study unfolds the expression and methylation spectra of previously probed genes with SNV or SV in AD for the first time, and reports an aberrant activation of the ABC transporter pathway that might contribute to AD progression. This should shed some light on AD diagnosis and precision treatment.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Xingdi Qi
- Public Administration, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Shijun Zhai
- Department of Nuclear Medicine, Putuo People's Hospital, Tongji University, Shanghai200060, P.R. China
| | - Yan Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Boyu Zheng
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xugang Sun
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Guangming Zhang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Ling Wang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Qi Zhang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Chen Xu
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Shihe Jiang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xiulian Li
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Bingxin Xie
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xiaohui Liao
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Zhu Ai
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| |
Collapse
|
20
|
Hsu KC, Chu JC, Tseng HJ, Liu CI, Wang HC, Lin TE, Lee HS, Hsin LW, Wang AHJ, Lin CH, Huang WJ. Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class II histone deacetylase inhibitors. Eur J Med Chem 2021; 219:113419. [PMID: 33845233 DOI: 10.1016/j.ejmech.2021.113419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/22/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) has been associated with dysregulation of histone deacetylases (HDACs). Previously, acridine-based HDAC inhibitors have shown potential in ameliorating HDAC activity and enhancing neurite outgrowth. In this study, the acridine ring was modified using various phenothiazine derivatives. Several resulting compounds exhibited potent enzyme-inhibiting activity towards class II HDACs when compared to the clinically approved HDAC inhibitor SAHA. Compound 4f demonstrated the highest class II HDAC inhibition (IC50 = 4.6-600 nM), as well as promotion of neurite outgrowth. Importantly, compound 4f displayed no cytotoxicity against neuron cells. Compound 4f was further evaluated for cellular effects. Altogether, these findings show a potential strategy in HDAC inhibition for treatment of the neurological disease.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hong-Sheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Andrew H-J Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
21
|
Lin C, Huang Z, Zhou R, Zhou Y, Shentu Y, Yu K, Zhang Y. Notch3 and its CADASIL mutants differentially regulate cellular phenotypes. Exp Ther Med 2020; 21:117. [PMID: 33335580 PMCID: PMC7739825 DOI: 10.3892/etm.2020.9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Notch3 is a member of the Notch family and its mutations are known to cause a hereditary human disorder called cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, the specific function and signaling cascade initiated by CADASIL mutants remain unknown. To gain further insight into mechanism of action of CADASIL mutants, the present study conducted several experiments on the effects of Notch3 mutants in multiple cell lines. The protein levels of Notch3, fibronectin, collagen, inducible nitric oxide synthase and DNA (cytosine-5)-methyltransferase 1 (DNMT1) were determined by western blotting. The mRNA levels of IL-1β and TNF-α were measured by reverse transcription semi-quantitative PCR and DNMT1 mRNA levels were determined by quantitative PCR. Trypan blue staining was used for proliferation analysis and wound healing assays were performed to determine cell migration capability. The present study reported that R90C and R169C Notch3 mutants, and wild-type Notch3 had different effects on several cell lines. In T/GHA-VSMC cells, following the transfection of the two mutants, collagen and fibronectin expression increased, whereas expression decreased in IMR-90 cells. In BV2 cells, the two mutants resulted in decreased nitric oxide and iNOS production. In HeLa cells, proliferation and migration increased significantly following the transfection of the two mutants, whereas in the MCF-7 and HCC1937 cell lines, cell proliferation and migration decreased. In addition, the two mutants suppressed the expression of DNMT1 in HeLa and IMR-90 cells. Overall, the present study provided novel insights that further explored the underlying mechanisms of CADASIL.
Collapse
Affiliation(s)
- Chunjing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziyang Huang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Riyong Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
22
|
Zhang L, Silva TC, Young JI, Gomez L, Schmidt MA, Hamilton-Nelson KL, Kunkle BW, Chen X, Martin ER, Wang L. Epigenome-wide meta-analysis of DNA methylation differences in prefrontal cortex implicates the immune processes in Alzheimer's disease. Nat Commun 2020; 11:6114. [PMID: 33257653 PMCID: PMC7704686 DOI: 10.1038/s41467-020-19791-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
DNA methylation differences in Alzheimer's disease (AD) have been reported. Here, we conducted a meta-analysis of more than 1000 prefrontal cortex brain samples to prioritize the most consistent methylation differences in multiple cohorts. Using a uniform analysis pipeline, we identified 3751 CpGs and 119 differentially methylated regions (DMRs) significantly associated with Braak stage. Our analysis identified differentially methylated genes such as MAMSTR, AGAP2, and AZU1. The most significant DMR identified is located on the MAMSTR gene, which encodes a cofactor that stimulates MEF2C. Notably, MEF2C cooperates with another transcription factor, PU.1, a central hub in the AD gene network. Our enrichment analysis highlighted the potential roles of the immune system and polycomb repressive complex 2 in pathological AD. These results may help facilitate future mechanistic and biomarker discovery studies in AD.
Collapse
Affiliation(s)
- Lanyu Zhang
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Tiago C Silva
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Juan I Young
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael A Schmidt
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Brian W Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Eden R Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
23
|
Differential Methylation Levels in CpGs of the BIN1 Gene in Individuals With Alzheimer Disease. Alzheimer Dis Assoc Disord 2020; 33:321-326. [PMID: 31335457 DOI: 10.1097/wad.0000000000000329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Late-onset Alzheimer disease (LOAD) is the most common dementia worldwide. APOE-[Latin Small Letter Open E]4 and BIN1 (Bridging Integrator 1) have been implicated in the pathogenesis of this disease, but, although DNA methylation of dinucleotide CpGs in the BIN1 gene influences alterations, it has not been studied in Hispanics. OBJECTIVE The objective of this study was to evaluate the BIN1 3' intergenic region DNA methylation patterns in a Colombian sample of LOAD patients. METHODS A case-control study was conducted in 50 individuals with LOAD and 50 age-sex matched controls to determine associations of LOAD with DNA methylation. DNA was isolated from peripheral blood, and methylation levels of 8 CpGs were estimated by bisulfite conversion followed by Sanger sequencing with direct PCR analysis. Logistic regression models adjusted by age, sex, and APOE were used to calculate risk associations between methylation levels and LOAD. RESULTS Overall, participants with LOAD had significantly lower methylation levels on CpG26 (0.86±0.11 vs. 0.95±0.05; P>0.001), CpG44 (0.84±0.09 vs. 0.94±0.06; P=0.001), and CpG87 (0.64±0.12 vs. 0.82±0.10; P>0.001). Adjusted regression models showed that decreased methylation levels of these CpGs remained as risk factors for LOAD (P<0.05). CONCLUSIONS Hypomethylation of CpGs in BIN1 might play an important role in the expression of BIN1 and may be a biomarker for identifying individuals at high risk of developing LOAD.
Collapse
|
24
|
Sato K, Mano T, Suzuki K, Toda T, Iwatsubo T, Iwata A. Attempt to Predict A/T/N-Based Alzheimer's Disease Cerebrospinal Fluid Biomarkers Using a Peripheral Blood DNA Methylation Clock. J Alzheimers Dis Rep 2020; 4:287-296. [PMID: 32904719 PMCID: PMC7458568 DOI: 10.3233/adr-200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Although aging is the strongest risk factor for the development of Alzheimer’s disease (AD), it remains uncertain if the blood DNA methylation clock, which reflects the effect of biological aging on DNA methylation (DNAme) status of blood cells, may be used as a surrogate biomarker for AD pathology in the central nervous system (CNS). Objective: We aimed to develop a practical model to predict for A/T/N-based AD biomarkers as the prediction targets using the aging acceleration of blood cells. Methods: We obtained data of North American ADNI study participants (n = 317) whose blood DNA methylation microarray (Illumina HumanMethylation EPIC Beadchips) and cerebrospinal fluid (CSF) AD biomarkers (Aβ, t-tau, and p-tau) were recorded simultaneously. Methylation clock was calculated to conduct machine learning, in order to predict binary statuses (+ or –) for A (corresponding to the lowered CSF Aβ), T (the elevated CSF p-tau), or N (the elevated CSF t-tau). The predictive performance of the models was evaluated by area under curve (AUC) in the test subset within ADNI. Results: Among the 317 included samples, 194 (61.2%) were A+, 247 (77.9%) were T+, and 104 (32.8%) were N+. The degree of blood aging acceleration showed weak positive correlation with the CSF Aβ levels, even after adjustment with APOE genotype and other covariates. However, the contribution of aging acceleration to improve the predictive performance of models was not significant for any of A+, T+, or N+. Conclusion: Our exploratory attempts could not demonstrate the substantial utility of the peripheral blood cells’ methylation clock as a predictor for A/T/N-based CSF biomarkers of AD, and further additional work should be conducted to determine whether the blood DNAme signatures including methylation clock have substantial utility in detecting underlying amyloid, tau or neurodegeneration pathology of AD.
Collapse
Affiliation(s)
- Kenichiro Sato
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazushi Suzuki
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Department of Neurology, Tokyo Metropolitan Geriatric Medical Center Hospital, Tokyo, Japan
| | | |
Collapse
|
25
|
Summary-Based Methylome-Wide Association Analyses Suggest Potential Genetically Driven Epigenetic Heterogeneity of Alzheimer's Disease. J Clin Med 2020; 9:jcm9051489. [PMID: 32429084 PMCID: PMC7290473 DOI: 10.3390/jcm9051489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with no curative treatment available. Exploring the genetic and non-genetic contributors to AD pathogenesis is essential to better understand its underlying biological mechanisms, and to develop novel preventive and therapeutic strategies. We investigated potential genetically driven epigenetic heterogeneity of AD through summary data-based Mendelian randomization (SMR), which combined results from our previous genome-wide association analyses with those from two publicly available methylation quantitative trait loci studies of blood and brain tissue samples. We found that 152 probes corresponding to 113 genes were epigenetically associated with AD at a Bonferroni-adjusted significance level of 5.49E-07. Of these, 10 genes had significant probes in both brain-specific and blood-based analyses. Comparing males vs. females and hypertensive vs. non-hypertensive subjects, we found that 22 and 79 probes had group-specific associations with AD, respectively, suggesting a potential role for such epigenetic modifications in the heterogeneous nature of AD. Our analyses provided stronger evidence for possible roles of four genes (i.e., AIM2, C16orf80, DGUOK, and ST14) in AD pathogenesis as they were also transcriptionally associated with AD. The identified associations suggest a list of prioritized genes for follow-up functional studies and advance our understanding of AD pathogenesis.
Collapse
|
26
|
Phanus-Umporn C, Prachayasittikul V, Nantasenamat C, Prachayasittikul S, Prachayasittikul V. QSAR-driven rational design of novel DNA methyltransferase 1 inhibitors. EXCLI JOURNAL 2020; 19:458-475. [PMID: 32398970 PMCID: PMC7214779 DOI: 10.17179/excli2020-1096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 01/30/2023]
Abstract
DNA methylation, an epigenetic modification, is mediated by DNA methyltransferases (DNMTs), a family of enzymes. Inhibitions of these enzymes are considered a promising strategy for the treatment of several diseases. In this study, a quantitative structure-activity relationship (QSAR) modeling was employed to understand the structure-activity relationship (SAR) of currently available non-nucleoside DNMT1 inhibitors (i.e., indole and oxazoline/1,2-oxazole scaffolds). Two QSAR models were successfully constructed using multiple linear regression (MLR) and provided good predictive performance (R2Tr = 0.850-0.988 and R2CV = 0.672-0.869). Bond information content index (BIC1) and electronegativity (R6e+) are the most influential descriptors governing the activity of compounds. The constructed QSAR models were further applied for guiding a rational design of novel inhibitors. A novel set of 153 structurally modified compounds were designed in silico according to the important descriptors deduced from the QSAR finding, and their DNMT1 inhibitory activities were predicted. This result demonstrated that 86 newly designed inhibitors were predicted to elicit enhanced DNMT1 inhibitory activity when compared to their parent compounds. Finally, a set of promising compounds as potent DNMT1 inhibitors were highlighted to be further developed. The key SAR findings may also be beneficial for structural optimization to improve properties of the known inhibitors.
Collapse
Affiliation(s)
- Chuleeporn Phanus-Umporn
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
27
|
Hu Z, Jiao R, Wang P, Zhu Y, Zhao J, De Jager P, Bennett DA, Jin L, Xiong M. Shared Causal Paths underlying Alzheimer's dementia and Type 2 Diabetes. Sci Rep 2020; 10:4107. [PMID: 32139775 PMCID: PMC7058072 DOI: 10.1038/s41598-020-60682-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Although Alzheimer's disease (AD) is a central nervous system disease and type 2 diabetes MELLITUS (T2DM) is a metabolic disorder, an increasing number of genetic epidemiological studies show clear link between AD and T2DM. The current approach to uncovering the shared pathways between AD and T2DM involves association analysis; however such analyses lack power to discover the mechanisms of the diseases. As an alternative, we developed novel causal inference methods for genetic studies of AD and T2DM and pipelines for systematic multi-omic casual analysis to infer multilevel omics causal networks for the discovery of common paths from genetic variants to AD and T2DM. The proposed pipelines were applied to 448 individuals from the ROSMAP Project. We identified 13 shared causal genes, 16 shared causal pathways between AD and T2DM, and 754 gene expression and 101 gene methylation nodes that were connected to both AD and T2DM in multi-omics causal networks.
Collapse
Affiliation(s)
- Zixin Hu
- State Key Laboratory of Genetic Engineering and Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Rong Jiao
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Panpan Wang
- State Key Laboratory of Genetic Engineering and Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yun Zhu
- Department of Epidemiology, University of Florida, Florida, USA
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Florida, USA
| | - Phil De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, 10033, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
28
|
Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice. Int J Mol Sci 2020; 21:ijms21031154. [PMID: 32050516 PMCID: PMC7037343 DOI: 10.3390/ijms21031154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cognitive and behavioural disturbances are a growing public healthcare issue for the modern society, as stressful lifestyle is becoming more and more common. Besides, several pieces of evidence state that environment is crucial in the development of several diseases as well as compromising healthy aging. Therefore, it is important to study the effects of stress on cognition and its relationship with aging. To address these queries, Chronic Mild Stress (CMS) paradigm was used in the senescence-accelerated mouse prone 8 (SAMP8) and resistant 1 (SAMR1). On one hand, we determined the changes produced in the three main epigenetic marks after 4 weeks of CMS treatment, such as a reduction in histone posttranslational modifications and DNA methylation, and up-regulation or down-regulation of several miRNA involved in different cellular processes in mice. In addition, CMS treatment induced reactive oxygen species (ROS) damage accumulation and loss of antioxidant defence mechanisms, as well as inflammatory signalling activation through NF-κB pathway and astrogliosis markers, like Gfap. Remarkably, CMS altered mTORC1 signalling in both strains, decreasing autophagy only in SAMR1 mice. We found a decrease in glycogen synthase kinase 3 β (GSK-3β) inactivation, hyperphosphorylation of Tau and an increase in sAPPβ protein levels in mice under CMS. Moreover, reduction in the non-amyloidogenic secretase ADAM10 protein levels was found in SAMR1 CMS group. Consequently, detrimental effects on behaviour and cognitive performance were detected in CMS treated mice, affecting mainly SAMR1 mice, promoting a turning to SAMP8 phenotype. In conclusion, CMS is a feasible intervention to understand the influence of stress on epigenetic mechanisms underlying cognition and accelerating senescence.
Collapse
|
29
|
Ghosh S, Durgvanshi S, Agarwal S, Raghunath M, Sinha JK. Current Status of Drug Targets and Emerging Therapeutic Strategies in the Management of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:883-903. [PMID: 32348223 PMCID: PMC7569315 DOI: 10.2174/1570159x18666200429011823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease affecting the elderly. AD is associated with a progressive decline in memory and cognitive abilities, drastic changes in behavioural patterns and other psychiatric manifestations. It leads to a significant decline in the quality of life at personal, household as well as national level. Although AD was described about hundred years back and multiple theories have been proposed, its exact pathophysiology is unknown. There is no cure for AD and the life expectancy of AD patients remains low at 3-9 years. An accurate understanding of the molecular mechanism(s) involved in the pathogenesis of AD is imperative to devise a successful treatment strategy. This review explains and summarises the current understanding of different therapeutic strategies based on various molecular pathways known to date. Different strategies based on anti-amyloid pathology, glutamatergic pathway, anti-tau, neuroprotection through neurotrophic factors and cholinergic neurotransmission have been discussed. Further, the use of anti-inflammatory drugs, nutraceuticals, and dietary interventions has also been explained in the management of AD. It further describes different pharmacological and dietary interventions being used in treating and/or managing AD. Additionally, this article provides a thorough review of the literature for improving the therapeutic paradigm of AD.
Collapse
Affiliation(s)
| | | | | | | | - Jitendra Kumar Sinha
- Address correspondence to this author at the Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Sector-125, Noida 201303, India; Tel: +91-120-4392971, +91-8919679822; Emails: ,
| |
Collapse
|
30
|
Griñán-Ferré C, Marsal-García L, Bellver-Sanchis A, Kondengaden SM, Turga RC, Vázquez S, Pallàs M. Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer's disease mouse model. Aging (Albany NY) 2019; 11:11591-11608. [PMID: 31804189 PMCID: PMC6932909 DOI: 10.18632/aging.102558] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 05/08/2023]
Abstract
The implication of epigenetic mechanisms in Alzheimer's disease (AD) has been demonstrated in several studies. UNC0642, a specific and potent inhibitor of methyltransferase activity G9a/GLP (G9a-like) complex, was evaluated in the 5XFAD mouse model. UNC0642 treatment rescued 5XFAD cognition impairment, reduced DNA-methylation (5-mC), increased hydroxymethylation (5-hmC), and decreased the di-methylation of lysine 9 of histone H3 (H3K9me2) levels in the hippocampus. Increases in the Nuclear Factor erythroid-2-Related Factor 2 (NRF2), Heme oxygenase decycling 1 (Hmox1) gene expression, and diminution in Reactive Oxygen Species (ROS) were also reported. Moreover, neuroinflammatory markers, such as Interleukin 6 (Il-6), Tumor necrosis factor-alpha (Tnf-α) gene expression, and Glial fibrillary acidic protein (GFAP) immunofluorescence were reduced by UNC0642 treatment. An increase in Nerve growth factor (Ngf), Nerve growth factor inducible (Vgf) gene expression, Brain-derived neurotrophic factor (BDNF), and Synaptophysin (SYN) were found after UNC0642 treatment. Importantly, a reduction in β-amyloid plaques was also observed. In conclusion, our work demonstrates that the inhibition of the G9a/GLP complex by UNC0642 delivered significant neuroprotective effects in 5XFAD mice, point out G9a/GLP as a new target for AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| | - Laura Marsal-García
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| | | | - Ravi Chakra Turga
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| |
Collapse
|
31
|
Armstrong MJ, Jin Y, Allen EG, Jin P. Diverse and dynamic DNA modifications in brain and diseases. Hum Mol Genet 2019; 28:R241-R253. [PMID: 31348493 PMCID: PMC6872432 DOI: 10.1093/hmg/ddz179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is a class of epigenetic modification essential for coordinating gene expression timing and magnitude throughout normal brain development and for proper brain function following development. Aberrant methylation changes are associated with changes in chromatin architecture, transcriptional alterations and a host of neurological disorders and diseases. This review highlights recent advances in our understanding of the methylome's functionality and covers potential new roles for DNA methylation, their readers, writers, and erasers. Additionally, we examine novel insights into the relationship between the methylome, DNA-protein interactions, and their contribution to neurodegenerative diseases. Lastly, we outline the gaps in our knowledge that will likely be filled through the widespread use of newer technologies that provide greater resolution into how individual cell types are affected by disease and the contribution of each individual modification site to disease pathogenicity.
Collapse
Affiliation(s)
- Matthew J Armstrong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yulin Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
32
|
Kerr K, McAneney H, Flanagan C, Maxwell AP, McKnight AJ. Differential methylation as a diagnostic biomarker of rare renal diseases: a systematic review. BMC Nephrol 2019; 20:320. [PMID: 31419951 PMCID: PMC6697952 DOI: 10.1186/s12882-019-1517-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The challenges in diagnosis of rare renal conditions can negatively impact patient prognosis, quality of life and result in significant healthcare costs. Differential methylation is emerging as an important biomarker for rare diseases and should be evaluated for rare renal conditions. METHODS A comprehensive systematic review of methylation and rare renal disorders was conducted by searching the electronic databases MEDLINE, EMBASE, PubMed, Cochrane Library, alongside grey literature from GreyLit and OpenGrey databases, for publications published before September 2018. Additionally, the reference lists of the included papers were searched. Data was extracted and appraised including the primary focus, measurement and methodological rigour of the source. Eligibility criteria were adapted using the inclusion criteria from 'The 100,000 Genomes Project' and The National Registry of Rare Kidney Diseases, with additional focus on methylation. RESULTS Thirteen full text articles were included in the review. Diseases analysed for differential methylation included glomerular disease, IgA nephropathy, ADPKD, rare causes of proteinuria, congenital renal agenesis, and membranous nephropathy. CONCLUSIONS Differential methylation has been observed for several rare renal diseases, highlighting its potential for improving molecular characterisation of these disorders. Further investigation of methylation following a standardised reporting structure is necessary to improve research quality. Multi-omic data will provide insights for improved diagnosis, prognosis and support for individuals living and working with rare renal diseases.
Collapse
Affiliation(s)
- Katie Kerr
- Centre for Public Health, Queen's University Belfast, c/o Regional Genetics Centre, Level A, Tower Block, Belfast City Hospital, Lisburn Road, BT9 7AB, Belfast, Northern Ireland
| | - Helen McAneney
- Centre for Public Health, Queen's University Belfast, c/o Regional Genetics Centre, Level A, Tower Block, Belfast City Hospital, Lisburn Road, BT9 7AB, Belfast, Northern Ireland
| | - Cheryl Flanagan
- 100,000 Genomes Project Team, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | | | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, c/o Regional Genetics Centre, Level A, Tower Block, Belfast City Hospital, Lisburn Road, BT9 7AB, Belfast, Northern Ireland.
| |
Collapse
|
33
|
Effect of Disease-Associated Germline Mutations on Structure Function Relationship of DNA Methyltransferases. Genes (Basel) 2019; 10:genes10050369. [PMID: 31091831 PMCID: PMC6562416 DOI: 10.3390/genes10050369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Despite a large body of evidence supporting the role of aberrant DNA methylation in etiology of several human diseases, the fundamental mechanisms that regulate the activity of mammalian DNA methyltransferases (DNMTs) are not fully understood. Recent advances in whole genome association studies have helped identify mutations and genetic alterations of DNMTs in various diseases that have a potential to affect the biological function and activity of these enzymes. Several of these mutations are germline-transmitted and associated with a number of hereditary disorders, which are potentially caused by aberrant DNA methylation patterns in the regulatory compartments of the genome. These hereditary disorders usually cause neurological dysfunction, growth defects, and inherited cancers. Biochemical and biological characterization of DNMT variants can reveal the molecular mechanism of these enzymes and give insights on their specific functions. In this review, we introduce roles and regulation of DNA methylation and DNMTs. We discuss DNMT mutations that are associated with rare diseases, the characterized effects of these mutations on enzyme activity and provide insights on their potential effects based on the known crystal structure of these proteins.
Collapse
|
34
|
Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortuño-Sahagún D, Pallàs M, Griñán-Ferré C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front Genet 2018; 9:596. [PMID: 30619445 PMCID: PMC6297390 DOI: 10.3389/fgene.2018.00596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
A growing body of research shows that epigenetic mechanisms are critically involved in normal and pathological aging. The Senescence-Accelerated Mouse Prone 8 (SAMP8) can be considered a useful tool to better understand the dynamics of the global epigenetic landscape during the aging process since its phenotype is not fully explained by genetic factors. Here we investigated dysfunctional age-related transcriptional profiles and epigenetic programming enzymes in the hippocampus of 2- and 9-month-old SAMP8 female mice using the Senescent-Accelerated Resistant 1 (SAMR1) mouse strain as control. SAMP8 mice presented 1,062 genes dysregulated at 2 months of age, and 1,033 genes at 9 months, with 92 genes concurrently dysregulated at both ages compared to age-matched SAMR1. SAMP8 mice showed a significant decrease in global DNA methylation (5-mC) at 2 months while hydroxymethylation (5-hmC) levels were increased in SAMP8 mice at 2 and 9 months of age compared to SAMR1. These changes were accompanied by changes in the expression of several enzymes that regulate 5-mC and methylcytosine oxidation. Acetylated H3 and H4 histone levels were significantly diminished in SAMP8 mice at 2-month-old compared to SAMR1 and altered Histone DeACetylase (HDACs) profiles were detected in both young and old SAMP8 mice. We analyzed 84 different mouse miRNAs known to be altered in neurological diseases or involved in neuronal development. Compared with SAMR1, SAMP8 mice showed 28 and 17 miRNAs differentially expressed at 2 and 9 months of age, respectively; 6 of these miRNAs overlapped at both ages. We used several bioinformatic approaches to integrate our data in mRNA:miRNA regulatory networks and functional predictions for young and aged animals. In sum, our study reveals interplay between epigenetic mechanisms and gene networks that seems to be relevant for the progression toward a pathological aging and provides several potential markers and therapeutic candidates for Alzheimer's Disease (AD) and age-related cognitive impairment.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - María Jesús Álvarez-López
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Perla Kaliman
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Epigenetic mechanisms in amyotrophic lateral sclerosis: A short review. Mech Ageing Dev 2018; 174:103-110. [DOI: 10.1016/j.mad.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/13/2022]
|