1
|
Henry R, Vander Heide R, Roy NM. Toxicity of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on Oligodendrocytes During Embryonic Zebrafish Development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104627. [PMID: 39756717 DOI: 10.1016/j.etap.2025.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants heavily utilized across plastic, textile and electronic industries. Although these PBDEs are effective in protecting property and human life from fire, their high production volumes have led PBDEs to become pervasive environmental contaminants and pose an ecological and health risk as high levels have been noted in environmental media including water and sediment, wildlife and human tissue. Here we investigate the developmental neurotoxicity of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), one of the more dominant PBDE congeners found in human tissue, on oligodendrocytes in the hindbrain and spinal cord. We utilized the zebrafish vertebrate model system and investigated low (5µM) and high concentrations (20µM) of BDE-47. We find that by 6 days post-fertilization, BDE-47 negatively affects oligodendrocyte development in the hindbrain and spinal cord in a concentration dependent manner.
Collapse
Affiliation(s)
- Ryann Henry
- Department of Biology, Sacred Heart University, Fairfield, CT
| | | | - Nicole M Roy
- Department of Biology, Sacred Heart University, Fairfield, CT.
| |
Collapse
|
2
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Hadisurya M, Tao WA, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA polymerase II productive elongation. Cell Rep 2024; 43:114877. [PMID: 39412992 PMCID: PMC11625021 DOI: 10.1016/j.celrep.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Signal-dependent RNA polymerase II (RNA Pol II) productive elongation is an integral component of gene transcription, including that of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating RNA Pol II overcomes nucleosomal barriers. Using RNAi, three degraders, and several small-molecule inhibitors, we show that the mammalian switch/sucrose non-fermentable (SWI/SNF) complex of neurons (neuronal BRG1/BRM-associated factor or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc. The nBAF complex facilitates promoter-proximal RNA Pol II pausing and signal-dependent RNA Pol II recruitment (loading) and, importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent RNA Pol II. Mechanistically, RNA Pol II elongation is mediated by activity-induced nBAF assembly (especially ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of RNA Pol II transcription and reveal mechanisms underlying activity-induced RNA Pol II elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
Affiliation(s)
- Karen G Cornejo
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Andie Venegas
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Morgan H Sono
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Madeline Door
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Brenda Gutierrez-Ruiz
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Lucy B Karabedian
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Supratik G Nandi
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
3
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA Polymerase II productive elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573688. [PMID: 38234780 PMCID: PMC10793463 DOI: 10.1101/2023.12.30.573688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Signal-dependent RNA Polymerase II (Pol2) productive elongation is an integral component of gene transcription, including those of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating Pol2 overcome nucleosomal barriers. Using RNAi, three degraders, and several small molecule inhibitors, we show that the mammalian SWI/SNF complex of neurons (neuronal BAF, or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc . The nBAF complex facilitates promoter-proximal Pol2 pausing, signal-dependent Pol2 recruitment (loading), and importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent Pol2. Mechanistically, Pol2 elongation is mediated by activity-induced nBAF assembly (especially, ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of Pol2 transcription and reveal mechanisms underlying activity-induced Pol2 elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
|
4
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
5
|
Cervetto C, Pistollato F, Amato S, Mendoza-de Gyves E, Bal-Price A, Maura G, Marcoli M. Assessment of neurotransmitter release in human iPSC-derived neuronal/glial cells: a missing in vitro assay for regulatory developmental neurotoxicity testing. Reprod Toxicol 2023; 117:108358. [PMID: 36863571 PMCID: PMC10112275 DOI: 10.1016/j.reprotox.2023.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) and their differentiated neuronal/glial derivatives have been recently considered suitable to assess in vitro developmental neurotoxicity (DNT) triggered by exposure to environmental chemicals. The use of human-relevant test systems combined with in vitro assays specific for different neurodevelopmental events, enables a mechanistic understanding of the possible impact of environmental chemicals on the developing brain, avoiding extrapolation uncertainties associated with in vivo studies. Currently proposed in vitro battery for regulatory DNT testing accounts for several assays suitable to study key neurodevelopmental processes, including NSC proliferation and apoptosis, differentiation into neurons and glia, neuronal migration, synaptogenesis, and neuronal network formation. However, assays suitable to measure interference of compounds with neurotransmitter release or clearance are at present not included, which represents a clear gap of the biological applicability domain of such a testing battery. Here we applied a HPLC-based methodology to measure the release of neurotransmitters in a previously characterized hiPSC-derived NSC model undergoing differentiation towards neurons and glia. Glutamate release was assessed in control cultures and upon depolarization, as well as in cultures repeatedly exposed to some known neurotoxicants (BDE47 and lead) and chemical mixtures. Obtained data indicate that these cells have the ability to release glutamate in a vesicular manner, and that both glutamate clearance and vesicular release concur in the maintenance of extracellular glutamate levels. In conclusion, analysis of neurotransmitter release is a sensitive readout that should be included in the envisioned battery of in vitro assays for DNT testing.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Centro 3R, Pisa, Italy.
| | | | - Sarah Amato
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, JRC, Ispra, Italy.
| | - Guido Maura
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy
| | - Manuela Marcoli
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Centro 3R, Pisa, Italy.
| |
Collapse
|
6
|
Sokolov PL, Chebanenko NV, Mednaya DM. [Epigenetic influences and brain development]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:12-19. [PMID: 36946391 DOI: 10.17116/jnevro202312303112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In recent years, the amount of scientific data on the involvement of epigenetic processes in the regulation of brain development in postnatal ontogenesis has been rapidly growing. The article provides an overview of scientific research on the mechanisms of epigenetic influences on brain development. Information was searched in the Scopus, Web of Science, MedLine, The Cochrane Library, PubMed, Pedro, Scholar, eLibrary, CyberLeninka and RSCI databases for the period 1940-2022 by keywords: brain development, epigenetics, neuroontogenesis, methylation, histone modifications, chromatin remodeling, non-coding RNAs. Today, the mechanisms of epigenetic influence on the genome include DNA and RNA methylation, covalent modification of histones, chromatin remodeling, and the influence of non-coding RNAs. Epigenetic modifications are often reversible and provide the necessary plasticity for the response of progenitor cells to environmental signals. The influence of each of these factors on the neurodevelopment is considered. The possibility of transsynaptic transmission of hereditary material by means of circular RNA is indicated. The main ways of microRNA influence on brain development are presented and their universality as an «overgenic» regulator of organism adaptation to external conditions is indicated. Data on the relationship of long non-coding RNAs with the regulation of the functional activity of oligodendroglia are presented. Also, the data presented indicate the paths to the pathogenetically determined prevention of congenital brain pathology.
Collapse
Affiliation(s)
- P L Sokolov
- Voyno-Yasenetsky Scientific and Practical Center for Specialized Assistance for Children, Moscow, Russia
| | - N V Chebanenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - D M Mednaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
7
|
Rienecker KDA, Poston RG, Segales JS, Finholm IW, Sono MH, Munteanu SJ, Ghaninejad-Esfahani M, Rejepova A, Tejeda-Garibay S, Wickman K, Marron Fernandez de Velasco E, Thayer SA, Saha RN. Mild membrane depolarization in neurons induces immediate early gene transcription and acutely subdues responses to successive stimulus. J Biol Chem 2022; 298:102278. [PMID: 35863435 PMCID: PMC9396413 DOI: 10.1016/j.jbc.2022.102278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Immediate early genes (IEGs) are transcribed in response to neuronal activity from sensory stimulation during multiple adaptive processes in the brain. The transcriptional profile of IEGs is indicative of the duration of neuronal activity, but its sensitivity to the strength of depolarization remains unknown. Also unknown is whether activity history of graded potential changes influence future neuronal activity. In this work with dissociated rat cortical neurons, we found that mild depolarization—mediated by elevated extracellular potassium (K+)—induces a wide array of rapid IEGs and transiently depresses transcriptional and signaling responses to a successive stimulus. This latter effect was independent of de novo transcription, translation, and signaling via calcineurin or mitogen-activated protein kinase. Furthermore, as measured by multiple electrode arrays and calcium imaging, mild depolarization acutely subdues subsequent spontaneous and bicuculline-evoked activity via calcium- and N-methyl-d-aspartate receptor–dependent mechanisms. Collectively, this work suggests that a recent history of graded potential changes acutely depress neuronal intrinsic properties and subsequent responses. Such effects may have several potential downstream implications, including reducing signal-to-noise ratio during synaptic plasticity processes.
Collapse
Affiliation(s)
- Kira D A Rienecker
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Robert G Poston
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Joshua S Segales
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Isabelle W Finholm
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Morgan H Sono
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Sorina J Munteanu
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Mina Ghaninejad-Esfahani
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Ayna Rejepova
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Susana Tejeda-Garibay
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | | | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California, USA, 95343.
| |
Collapse
|
8
|
Mandour DA, Tolba AM, El-Bestawy EM. Maternal exposure to the environmental pollutant "BDE-47" impairs the postnatal development of rat cerebellar cortex by modulating neuronal proliferation, synaptogenesis, NGF and BDNF pathways. Histol Histopathol 2022; 37:555-573. [PMID: 35191013 DOI: 10.14670/hh-18-441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
UNLABELLED 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is an environmental contaminant that crosses the blood placental barrier and interferes with the homeostasis of fetal thyroid hormones. AIM OF WORK This study was designed to investigate the perinatal effect of BDE-47 exposure on the postnatal development of the rat cerebellar cortex. MATERIALS AND METHODS This study was carried out on 20 pregnant rats and 36 of their offspring. The pregnant rats were divided equally into control and BDE-47 treated mother groups; supplemented orally with BDE-47 (0.2 mg/kg/day from day 8 of gestation until the day of weaning). The offspring of both mother groups were subdivided, according to their developmental age, into three subgroups; PND14, PND21and PND42. SerumT3, T4 and TSH were assessed for dams and their offspring. Testing the motor coordination of the offspring via the rotarod test was conducted. Sections of the cerebellar cortex from offspring subgroups were stained with hematoxylin and eosin alongside immunohistochemical reactions and optical density of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), proliferating cell nuclear antigen (PCNA) and synaptophysin (SYN). Also, the thickness of different layers of the cerebellar cortex was histomorphometrically measured. RESULTS BDE-47 treated mothers and their offspring subgroups showed a significant decrease in the serum free T3, T4 and increased TSH. The BDE-47 offspring displayed incoordination of the motor activity together with disturbed cytoarchitecture of the cerebellar cortical layers, and impaired migration of its germinative neuronal zones, particularly on PND14 and PND21. Moreover, these offspring displayed a decrease of the immune-expression and optical density of NGF, BDNF in the cerebellar cortical layers with impaired proliferation, and synaptogenesis. CONCLUSION Maternal exposure to BDE-47 during pregnancy and lactation effectuated a potential deleterious retarding effect on the postnatal development of the rat cerebellar cortex mostly via modulating neuronal proliferation, synaptogenesis, NGF and BDNF pathways secondary to its hypothyroid effect.
Collapse
Affiliation(s)
- Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa M Tolba
- Department of Human Anatomy and Embryology, Faculty of medicine, Zagazig University, Zagazig, Egypt.
| | - Emtethal M El-Bestawy
- Department of Human Anatomy and Embryology, Faculty of medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Pistollato F, Carpi D, Mendoza-de Gyves E, Paini A, Bopp SK, Worth A, Bal-Price A. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reprod Toxicol 2021; 105:101-119. [PMID: 34455033 PMCID: PMC8522961 DOI: 10.1016/j.reprotox.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.
Collapse
Affiliation(s)
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
10
|
Zhu Q, Liu Z, Wang Y, Song E, Song Y. Endoplasmic reticulum stress manipulates autophagic response that antagonizes polybrominated diphenyl ethers quinone induced cytotoxicity in microglial BV2 cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124958. [PMID: 33450633 DOI: 10.1016/j.jhazmat.2020.124958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) were widely used as flame retardants. Previously, we reported that their quinone-type metabolite (PBDEQ) induced selective autophagy, but its biological consequences remain obscure. Here, we illustrated the possible link of PBDEQ-induced autophagy with endoplasmic reticulum (ER) stress and cytotoxicity in microglial BV2 cells. We found PBDEQ increased the formation of autophagosomes, promoted autophagic degradation, suggesting an improved autophagy flux in BV2 cells. Interestingly, both pharmacologic autophagy inhibitors and autophagy-related 5 gene small interfering RNA (ATG5 siRNA) aggravated the cytotoxicity of PBDEQ, suggesting the antagonizing role of autophagy. PBDEQ induced ER stress and activated protein kinase R-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) axis of classic unfolded protein response (UPR) pathway, whilst ER stress inhibitor blocked PBDEQ-induced autophagy. Moreover, N-acetyl-L-cysteine (NAC) alleviated PBDEQ-induced activation of ER stress and autophagy, suggesting reactive oxygen species (ROS) were involved in regulating PBDEQ-induced ER stress and autophagy. Taken together, our results demonstrate a new mechanism of PBDEQ-associated toxicity.
Collapse
Affiliation(s)
- Qiushuang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yuting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
11
|
Wei J, Xiang L, Cai Z. Emerging environmental pollutants hydroxylated polybrominated diphenyl ethers: From analytical methods to toxicology research. MASS SPECTROMETRY REVIEWS 2021; 40:255-279. [PMID: 32608069 DOI: 10.1002/mas.21640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are of particular concern due to their ubiquitous distribution and adverse health effects. Significant progress has been made in the characterization of OH-PBDEs by using mass spectrometry (MS). In this review, we summarize applications of MS-based techniques in detection, environmental and biota distribution, and potential health risk effects, hoping to unfold an overall picture on account of current knowledge of OH-PBDEs. The analytical methodologies are discussed from sample pretreatment to MS analysis. The methods including gas chromatography-MS (GC-MS), liquid chromatography-MS (LC-MS), and ion mobility spectrometry-MS (IMS-MS) are discussed. GC-MS is the most frequently adopted method in the analysis of OH-PBDEs due to its excellent chromatographic resolution, high sensitivity, and strong ability for unknown identification. LC-MS has been widely used for its high sensitivity and capability of direct analysis. As a newly developed technique, IMS-MS provides high specificity, which greatly facilitates the identification of isomers. OH-PBDEs pervasively existed in both abiotic and biotic samples, including humans, animals, and environmental matrices. Multiple adverse health effects have been reported, such as thyroid hormone disruption, estrogen effects, and neurotoxicity. The reported potential pathological mechanisms are also reviewed. Additionally, MS-based metabolomics, lipidomics, and proteomics have been shown as promising tools to unveil the molecular mechanisms of the toxicity of OH-PBDEs. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
12
|
Davidsen N, Lauvås AJ, Myhre O, Ropstad E, Carpi D, Gyves EMD, Berntsen HF, Dirven H, Paulsen RE, Bal-Price A, Pistollato F. Exposure to human relevant mixtures of halogenated persistent organic pollutants (POPs) alters neurodevelopmental processes in human neural stem cells undergoing differentiation. Reprod Toxicol 2021; 100:17-34. [PMID: 33333158 PMCID: PMC7992035 DOI: 10.1016/j.reprotox.2020.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Halogenated persistent organic pollutants (POPs) like perfluorinated alkylated substances (PFASs), brominated flame retardants (BFRs), organochlorine pesticides and polychlorinated biphenyls (PCBs) are known to cause cancer, immunotoxicity, neurotoxicity and interfere with reproduction and development. Concerns have been raised about the impact of POPs upon brain development and possibly neurodevelopmental disorders. The developing brain is a particularly vulnerable organ due to dynamic and complex neurodevelopmental processes occurring early in life. However, very few studies have reported on the effects of POP mixtures at human relevant exposures, and their impact on key neurodevelopmental processes using human in vitro test systems. Aiming to reduce this knowledge gap, we exposed mixed neuronal/glial cultures differentiated from neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) to reconstructed mixtures of 29 different POPs using concentrations comparable to Scandinavian human blood levels. Effects of the POP mixtures on neuronal proliferation, differentiation and synaptogenesis were evaluated using in vitro assays anchored to common key events identified in the existing developmental neurotoxicity (DNT) adverse outcome pathways (AOPs). The present study showed that mixtures of POPs (in particular brominated and chlorinated compounds) at human relevant concentrations increased proliferation of NSCs and decreased synapse number. Based on a mathematical modelling, synaptogenesis and neurite outgrowth seem to be the most sensitive DNT in vitro endpoints. Our results indicate that prenatal exposure to POPs may affect human brain development, potentially contributing to recently observed learning and memory deficits in children.
Collapse
Affiliation(s)
- Nichlas Davidsen
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Jacobsen Lauvås
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Oddvar Myhre
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway; National Institute of Occupational Health, Oslo, Norway
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
13
|
Dai L, Li Z, Chen D, Jia L, Guo J, Zhao T, Nordlund P. Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. Pharmacol Ther 2020; 216:107690. [PMID: 32980441 DOI: 10.1016/j.pharmthera.2020.107690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Natural products (NPs) have been an important source of therapeutic drugs in clinic use and contributed many chemical probes for research. The usefulness of NPs is however often marred by the incomplete understanding of their direct cellular targets. A number of experimental methods for drug target identification have been developed over the years. One class of methods, termed "label-free" methodology, exploits the energetic and biophysical features accompanying the association of macromolecules with drugs and other compounds in their native forms. Herein we review the working principles, assay implementations, and key applications of the most important approaches, and also give examples where they have been applied to NPs. We also assess the key advantages and limitations of each method. Furthermore, we address when and how the label-free methodology can be particularly useful considering some of the unique features of NP chemistry and bioactivation.
Collapse
Affiliation(s)
- Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.
| | - Zhijie Li
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Dan Chen
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China
| | - Tianyun Zhao
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
14
|
Poston RG, Murphy L, Rejepova A, Ghaninejad-Esfahani M, Segales J, Mulligan K, Saha RN. Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes. J Biol Chem 2020; 295:6120-6137. [PMID: 32229587 PMCID: PMC7196656 DOI: 10.1074/jbc.ra119.011138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH-BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH-BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK-ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand-protein docking suggested that 6-OH-BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH-BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH-BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β-lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK-ERK signaling, and axonal guidance.
Collapse
Affiliation(s)
- Robert G Poston
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Lillian Murphy
- Department of Biological Sciences, Center for Interdisciplinary Molecular Biology: Education, Research and Advancement (CIMERA), California State University, Sacramento, California 95819
| | - Ayna Rejepova
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Mina Ghaninejad-Esfahani
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Joshua Segales
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Kimberly Mulligan
- Department of Biological Sciences, Center for Interdisciplinary Molecular Biology: Education, Research and Advancement (CIMERA), California State University, Sacramento, California 95819
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343.
| |
Collapse
|
15
|
Tang Z, Li Y, Jiang Y, Cheng J, Xu S, Zhang J. Cellular metabolomics reveals glutamate and pyrimidine metabolism pathway alterations induced by BDE-47 in human neuroblastoma SK-N-SH cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109427. [PMID: 31302334 DOI: 10.1016/j.ecoenv.2019.109427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) as potential neurotoxicants in environment may possess hazards to human health. Previous studies have reported that PBDEs exposure could induce oxidative stress and disturb mitochondrial functions in mammalian cells. However, the toxicological mechanism remains to be clarified. In this work, the neurotoxic effect and underlying mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) was investigated by using human neuroblastoma SK-N-SH cells as an effective model. A liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach combined with cell viability assay was applied to elucidate the metabolic perturbations and relevant toxicological pathways upon BDE-47 exposure. Our results shown that the SK-N-SH cell viability decreased in a dose-dependent manner after exposure to BDE-47 at 24 h within the concentration range of 5-250 μM, and an IC50 value of 88.8 μM was obtained. Based on the dose-response curve and cell morphological observation, the 5 and 10 μM BDE-47 doses (equal to IC5 and IC10, respectively) were used for metabolomics study to capture the sensitive metabolic response following BDE-47 exposure. After BDE-47 treatment, nine metabolites were identified as potential biomarkers, and the most disturbed metabolic pathways were mainly involved in alanine, aspartate and glutamate metabolism, glutathione metabolism, tyrosine and phenylalanine metabolism, and pyrimidine metabolism, which imply that metabolic changes related to neurotransmitters, oxidative stress, and nucleotide-mediated signal transduction systems were the sensitive pathways mostly influenced. Our findings reported here may provide potential neurotoxic effect biomarkers and prompt deep understanding of the molecular and metabolic mechanisms triggered by BDE-47 exposure.
Collapse
Affiliation(s)
- Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunxiu Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Poston RG, Saha RN. Epigenetic Effects of Polybrominated Diphenyl Ethers on Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152703. [PMID: 31362383 PMCID: PMC6695782 DOI: 10.3390/ijerph16152703] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Disruption of epigenetic regulation by environmental toxins is an emerging area of focus for understanding the latter's impact on human health. Polybrominated diphenyl ethers (PBDEs), one such group of toxins, are an environmentally pervasive class of brominated flame retardants that have been extensively used as coatings on a wide range of consumer products. Their environmental stability, propensity for bioaccumulation, and known links to adverse health effects have evoked extensive research to characterize underlying biological mechanisms of toxicity. Of particular concern is the growing body of evidence correlating human exposure levels to behavioral deficits related to neurodevelopmental disorders. The developing nervous system is particularly sensitive to influence by environmental signals, including dysregulation by toxins. Several major modes of actions have been identified, but a clear understanding of how observed effects relate to negative impacts on human health has not been established. Here, we review the current body of evidence for PBDE-induced epigenetic disruptions, including DNA methylation, chromatin dynamics, and non-coding RNA expression while discussing the potential relationship between PBDEs and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Robert G Poston
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
17
|
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Wu M. Epigenetics in Neurodevelopment: Emerging Role of Circular RNA. Front Cell Neurosci 2019; 13:327. [PMID: 31379511 PMCID: PMC6658887 DOI: 10.3389/fncel.2019.00327] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023] Open
Abstract
Canonical epigenetic modifications, including DNA methylation, histone modification and chromatin remodeling, play a role in numerous life processes, particularly neurodevelopment. Epigenetics explains the development of cells in an organism with the same DNA sequence into different cell types with various functions. However, previous studies on epigenetics have only focused on the chromatin level. Recently, epigenetic modifications of RNA, which mainly include 6-methyladenosine (m6A), pseudouridine, 5-methylcytidine (m5C), inosine (I), 2′-O-ribosemethylation, and 1-methyladenosine (m1A), have gained increasing attention. Circular RNAs (circRNAs), which are a type of non-coding RNA without a 5′ cap or 3′ poly (A) tail, are abundantly found in the brain and might respond to and regulate synaptic function. Also, circRNAs have various functions, such as microRNA sponge, regulation of gene transcription and interaction with RNA binding protein. In addition, circRNAs are methylated by N6-methyladenosine (m6A). In this review, we discuss the crucial roles of epigenetic modifications of circRNAs, such as m6A, in the genesis and development of neurons and in synaptic function and plasticity. Thus, this type of changes in circRNAs might be a therapeutic target in central nervous system (CNS) disorders and could aid the diagnosis and treatment of these disorders.
Collapse
Affiliation(s)
- Shujuan Meng
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Hecheng Zhou
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Ziyang Feng
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Zihao Xu
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Ying Tang
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
18
|
Hu J, Yu Y. Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: A critical review. CHEMOSPHERE 2019; 226:259-272. [PMID: 30933735 DOI: 10.1016/j.chemosphere.2019.03.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The epigenome may be an important interface between exposure to environmental contaminants and adverse outcome on human health. Many environmental pollutants deregulate gene expression and promote diseases by modulating the epigenome. Adverse epigenetic responses have been widely used for risk assessment of chemical substances. Various pollutants, including trace elements and persistent organic pollutants, have been detected frequently in the environment. Epigenetic toxicity of environmental matrices including water, air, soil, and food cannot be ignored. This review provides a comprehensive overview of epigenetic effects of pollutants and environmental matrices. We start with an overview of the mechanisms of epigenetic regulation and the effects of several types of environmental pollutants (trace elements, persistent organic pollutants, endocrine disrupting chemicals, and volatile organic pollutants) on epigenetic modulation. We then discuss the epigenetic responses to environmental water, air, and soil based on in vivo and in vitro assays. Finally, we discuss recommendations to promote the incorporation of epigenotoxicity into contamination screening and health risk assessment.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|