1
|
Klibaner-Schiff E, Simonin EM, Akdis CA, Cheong A, Johnson MM, Karagas MR, Kirsh S, Kline O, Mazumdar M, Oken E, Sampath V, Vogler N, Wang X, Nadeau KC. Environmental exposures influence multigenerational epigenetic transmission. Clin Epigenetics 2024; 16:145. [PMID: 39420431 PMCID: PMC11487774 DOI: 10.1186/s13148-024-01762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Epigenetic modifications control gene expression and are essential for turning genes on and off to regulate and maintain differentiated cell types. Epigenetics are also modified by a multitude of environmental exposures, including diet and pollutants, allowing an individual's environment to influence gene expression and resultant phenotypes and clinical outcomes. These epigenetic modifications due to gene-environment interactions can also be transmitted across generations, raising the possibility that environmental influences that occurred in one generation may be transmitted beyond the second generation, exerting a long-lasting effect. In this review, we cover the known mechanisms of epigenetic modification acquisition, reprogramming and persistence, animal models and human studies used to understand multigenerational epigenetic transmission, and examples of environmentally induced epigenetic change and its transmission across generations. We highlight the importance of environmental health not only on the current population but also on future generations that will experience health outcomes transmitted through epigenetic inheritance.
Collapse
Affiliation(s)
- Eleanor Klibaner-Schiff
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ana Cheong
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mary M Johnson
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Sarah Kirsh
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olivia Kline
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nicholas Vogler
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Wu X, Zhang W, Chen H, Weng J. Multifaceted paternal exposures before conception and their epigenetic impact on offspring. J Assist Reprod Genet 2024:10.1007/s10815-024-03243-1. [PMID: 39230664 DOI: 10.1007/s10815-024-03243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
As scientific research progresses, there is an increasing understanding of the importance of paternal epigenetics in influencing the health and developmental path of offspring. Prior to conception, the environmental exposures and lifestyle choices of fathers can significantly influence the epigenetic state of sperm, including DNA methylation and histone changes, among other factors. These alterations in epigenetic patterns have the potential for transgenerational transmission potential and may exert profound effects on the biological characteristics of descendants. Paternal epigenetic changes not only affect the regulation of gene expression patterns in offspring but also increase the risk to certain diseases. It is crucial to comprehend the conditions that fathers are exposed to before conception and the potential outcomes of these conditions. This understanding is essential for assessing personal reproductive decisions and anticipating health risks for future generations. This review article systematically summarizes and analyzes current research findings regarding how paternal pre-pregnancy exposures influence offspring as well as elucidates underlying mechanisms, aiming to provide a comprehensive perspective for an enhanced understanding of the impact that paternal factors have on offspring health.
Collapse
Affiliation(s)
- Xiaojing Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiping Zhang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huijun Chen
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfei Weng
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Martin FZ, Easey KE, Howe LD, Fraser A, Lawlor DA, Relton CL, Sharp GC. A novel hypothesis-generating approach for detecting phenotypic associations using epigenetic data. Epigenomics 2024; 16:851-864. [PMID: 39016098 PMCID: PMC11370959 DOI: 10.1080/17501911.2024.2366157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Aim: Hypotheses about what phenotypes to include in causal analyses, that in turn can have clinical and policy implications, can be guided by hypothesis-free approaches leveraging the epigenome, for example.Materials & methods: Minimally adjusted epigenome-wide association studies (EWAS) using ALSPAC data were performed for example conditions, dysmenorrhea and heavy menstrual bleeding (HMB). Differentially methylated CpGs were searched in the EWAS Catalog and associated traits identified. Traits were compared between those with and without the example conditions in ALSPAC.Results: Seven CpG sites were associated with dysmenorrhea and two with HMB. Smoking and adverse childhood experience score were associated with both conditions in the hypothesis-testing phase.Conclusion: Hypothesis-generating EWAS can help identify associations for future analyses.
Collapse
Affiliation(s)
- Florence Z Martin
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Kayleigh E Easey
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- School of Psychology, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Trapphoff T, Ontrup C, Krug S, Dieterle S. Consumption of hookahs, e-cigarettes, and classic cigarettes and the impact on medically assisted reproduction treatment. Sci Rep 2024; 14:9597. [PMID: 38671174 PMCID: PMC11053167 DOI: 10.1038/s41598-024-60251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Smoking of classic cigarettes has been well-established as a health risk factor, including cardiovascular, neurological, and pulmonary diseases. Adverse effects on human reproduction have also been shown. Smokers are assumed to have a significantly lower chance of pregnancy, however, the impact of smoking on medically assisted reproduction (MAR) treatment outcomes is controversial. Moreover, smoking habits have changed during the last decades since e-cigarettes and hookahs, or water pipes, have become very popular, yet little is known regarding vaping or hookah-smoking patients undergoing MAR treatments. This prospective study aimed to examine the presence of benzo[a]pyrene, nicotine, and its main metabolite, cotinine, in human follicular fluid (FF) in non-smoking, smoking, and vaping/hookah-smoking patients and to evaluate the impact on female fertility. Human FF samples were collected from 320 women subjected to intracytoplasmic sperm injection (ICSI) cycles due to male subfertility. Gas chromatography combined with mass spectrometry was used to analyse the presence of benzo[a]pyrene, nicotine, and cotinine. A questionnaire was provided to assess patient consumption behaviour and to identify (1) non-smoking patients, (2) patients who consumed cigarettes, and (3) patients with exclusive consumption of e-cigarettes or hookahs. Data were analysed using linear and logistic regression, Fisher's exact test, and the Mann-Whitney U Test. Nicotine was present in 22 (6.8%) and cotinine in 65 (20.3%) of the 320 samples. The nicotine and cotinine concentrations per sample ranged from 0 to 26.3 ng/ml and 0-363.0 ng/ml, respectively. Benzo[a]pyrene was not detectable in any of the samples analysed. Nicotine and cotinine were also present in the FF of patients with exclusive consumption of e-cigarettes or hookahs. The clinical pregnancy rate, fertilization and maturation rates, and number of oocytes per oocyte pick-up were not statistically significantly different between non-smoking, smoking, or vaping/hookah-smoking patients. Smoking and the accumulation of smoking toxins in the FF have no impact on the outcome of MAR treatments-neither the clinical pregnancy rate, maturation and fertilization rates, nor the number of retrieved oocytes were affected. For the first time, nicotine and cotinine were quantified in the FF of patients exclusively vaping e-cigarettes or smoking hookahs. Since vaping liquids and hookah tobaccos contain potentially harmful substances, other adverse effects cannot be excluded.Trial registration ClinicalTrials.gov Identifier: NCT03414567.
Collapse
Affiliation(s)
- Tom Trapphoff
- Fertility Center Dortmund, Olpe 19, 44135, Dortmund, Germany.
| | - Carolin Ontrup
- Fertility Center Dortmund, Olpe 19, 44135, Dortmund, Germany
| | - Sonja Krug
- Fertility Center Dortmund, Olpe 19, 44135, Dortmund, Germany
| | - Stefan Dieterle
- Fertility Center Dortmund, Olpe 19, 44135, Dortmund, Germany
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University Witten/Herdecke, 44135, Dortmund, Germany
| |
Collapse
|
6
|
Feinberg JI, Schrott R, Ladd-Acosta C, Newschaffer CJ, Hertz-Picciotto I, Croen LA, Daniele Fallin M, Feinberg AP, Volk HE. Epigenetic changes in sperm are associated with paternal and child quantitative autistic traits in an autism-enriched cohort. Mol Psychiatry 2024; 29:43-53. [PMID: 37100868 DOI: 10.1038/s41380-023-02046-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
There is a need to consider paternal contributions to autism spectrum disorder (ASD) more strongly. Autism etiology is complex, and heritability is not explained by genetics alone. Understanding paternal gametic epigenetic contributions to autism could help fill this knowledge gap. In the present study, we explored whether paternal autistic traits, and the sperm epigenome, were associated with autistic traits in children at 36 months enrolled in the Early Autism Risk Longitudinal Investigation (EARLI) cohort. EARLI is a pregnancy cohort that recruited and enrolled pregnant women in the first half of pregnancy who already had a child with ASD. After maternal enrollment, EARLI fathers were approached and asked to provide a semen specimen. Participants were included in the present study if they had genotyping, sperm methylation data, and Social Responsiveness Scale (SRS) score data available. Using the CHARM array, we performed genome-scale methylation analyses on DNA from semen samples contributed by EARLI fathers. The SRS-a 65-item questionnaire measuring social communication deficits on a quantitative scale-was used to evaluate autistic traits in EARLI fathers (n = 45) and children (n = 31). We identified 94 significant child SRS-associated differentially methylated regions (DMRs), and 14 significant paternal SRS-associated DMRs (fwer p < 0.05). Many child SRS-associated DMRs were annotated to genes implicated in ASD and neurodevelopment. Six DMRs overlapped across the two outcomes (fwer p < 0.1), and, 16 DMRs overlapped with previous child autistic trait findings at 12 months of age (fwer p < 0.05). Child SRS-associated DMRs contained CpG sites independently found to be differentially methylated in postmortem brains of individuals with and without autism. These findings suggest paternal germline methylation is associated with autistic traits in 3-year-old offspring. These prospective results for autism-associated traits, in a cohort with a family history of ASD, highlight the potential importance of sperm epigenetic mechanisms in autism.
Collapse
Affiliation(s)
- Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, State College, PA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Center for Epigenetics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
7
|
Kitaba NT, Knudsen GTM, Johannessen A, Rezwan FI, Malinovschi A, Oudin A, Benediktsdottir B, Martino D, González FJC, Gómez LP, Holm M, Jõgi NO, Dharmage SC, Skulstad SM, Watkins SH, Suderman M, Gómez-Real F, Schlünssen V, Svanes C, Holloway JW. Fathers' preconception smoking and offspring DNA methylation. Clin Epigenetics 2023; 15:131. [PMID: 37649101 PMCID: PMC10469907 DOI: 10.1186/s13148-023-01540-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Experimental studies suggest that exposures may impact respiratory health across generations via epigenetic changes transmitted specifically through male germ cells. Studies in humans are, however, limited. We aim to identify epigenetic marks in offspring associated with father's preconception smoking. METHODS We conducted epigenome-wide association studies (EWAS) in the RHINESSA cohort (7-50 years) on father's any preconception smoking (n = 875 offspring) and father's pubertal onset smoking < 15 years (n = 304), using Infinium MethylationEPIC Beadchip arrays, adjusting for offspring age, own smoking and maternal smoking. EWAS of maternal and offspring personal smoking were performed for comparison. Father's smoking-associated dmCpGs were checked in subpopulations of offspring who reported no personal smoking and no maternal smoking exposure. RESULTS Father's smoking commencing preconception was associated with methylation of blood DNA in offspring at two cytosine-phosphate-guanine sites (CpGs) (false discovery rate (FDR) < 0.05) in PRR5 and CENPP. Father's pubertal onset smoking was associated with 19 CpGs (FDR < 0.05) mapped to 14 genes (TLR9, DNTT, FAM53B, NCAPG2, PSTPIP2, MBIP, C2orf39, NTRK2, DNAJC14, CDO1, PRAP1, TPCN1, IRS1 and CSF1R). These differentially methylated sites were hypermethylated and associated with promoter regions capable of gene silencing. Some of these sites were associated with offspring outcomes in this cohort including ever-asthma (NTRK2), ever-wheezing (DNAJC14, TPCN1), weight (FAM53B, NTRK2) and BMI (FAM53B, NTRK2) (p < 0.05). Pathway analysis showed enrichment for gene ontology pathways including regulation of gene expression, inflammation and innate immune responses. Father's smoking-associated sites did not overlap with dmCpGs identified in EWAS of personal and maternal smoking (FDR < 0.05), and all sites remained significant (p < 0.05) in analyses of offspring with no personal smoking and no maternal smoking exposure. CONCLUSION Father's preconception smoking, particularly in puberty, is associated with offspring DNA methylation, providing evidence that epigenetic mechanisms may underlie epidemiological observations that pubertal paternal smoking increases risk of offspring asthma, low lung function and obesity.
Collapse
Affiliation(s)
- Negusse Tadesse Kitaba
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Gerd Toril Mørkve Knudsen
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Faisal I Rezwan
- Department of Computer Science, Aberystwyth University, Aberystwyth, UK
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bryndis Benediktsdottir
- Department of Allergy, Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - David Martino
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | | | | | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nils Oskar Jõgi
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sarah H Watkins
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Matthew Suderman
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Francisco Gómez-Real
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Vivi Schlünssen
- Department of Public Health, Work, Environment and Health, Danish Ramazzini Centre, Aarhus University Denmark, Aarhus, Denmark
- National Research Center for the Working Environment, Copenhagen, Denmark
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Center, University Hospitals Southampton, Southampton, UK.
| |
Collapse
|
8
|
Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of asthma, allergies and lung function: The influence of previous generations on the respiratory health of our children. J Intern Med 2023; 293:531-549. [PMID: 36861185 DOI: 10.1111/joim.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Emerging research suggests that exposures occurring years before conception are important determinants of the health of future offspring and subsequent generations. Environmental exposures of both the father and mother, or exposure to disease processes such as obesity or infections, may influence germline cells and thereby cause a cascade of health outcomes in multiple subsequent generations. There is now increasing evidence that respiratory health is influenced by parental exposures that occur long before conception. The strongest evidence relates adolescent tobacco smoking and overweight in future fathers to increased asthma and lower lung function in their offspring, supported by evidence on parental preconception occupational exposures and air pollution. Although this literature is still sparse, the epidemiological analyses reveal strong effects that are consistent across studies with different designs and methodologies. The results are strengthened by mechanistic research from animal models and (scarce) human studies that have identified molecular mechanisms that can explain the epidemiological findings, suggesting transfer of epigenetic signals through germline cells, with susceptibility windows in utero (both male and female line) and prepuberty (male line). The concept that our lifestyles and behaviours may influence the health of our future children represents a new paradigm. This raises concerns for future health in decades to come with respect to harmful exposures but may also open for radical rethinking of preventive strategies that may improve health in multiple generations, reverse the imprint of our parents and forefathers, and underpin strategies that can break the vicious circle of propagation of health inequalities across generations.
Collapse
Affiliation(s)
- Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
9
|
Forster F, Heumann C, Schaub B, Böck A, Nowak D, Vogelberg C, Radon K. Parental occupational exposures prior to conception and offspring wheeze and eczema during first year of life. Ann Epidemiol 2023; 77:90-97. [PMID: 36476404 DOI: 10.1016/j.annepidem.2022.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Parental exposures prior to conception might influence asthma and allergy risk in offspring. As occupational exposures are established risk factors for asthma and allergies, we investigated if parental occupational exposures prior to conception cause wheeze and eczema in offspring during the first year of life. METHODS We analysed data of 436 families from an offspring cohort based on a follow-up study of German participants of the International Study of Asthma and Allergies in Childhood (ISAAC). Offspring cohort data was collected between 2009 and 2019. Occupational exposures were based on participants' work histories and measured by a Job-Exposure-Matrix. We used Bayesian logistic regression models for analysis. Inference and confounder selection were based on directed acyclic graphs. RESULTS In mothers, for both allergic and irritative occupational exposures prior to conception suggestive effects on offspring eczema during the first year of life were found (allergens: odds ratio (OR) 1.22, 95% compatibility interval (CI) 0.92-1.57; irritants: OR 1.36, 95% CI 0.99-1.77), while no relation with wheeze was suggested. CONCLUSIONS Our results suggest that reduction of asthma-related occupational exposures might not only reduce the burden of disease for occupationally induced or aggravated asthma and allergies in employees but also in their children.
Collapse
Affiliation(s)
- Felix Forster
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany.
| | | | - Bianca Schaub
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center (CPC) Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Böck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center (CPC) Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Christian Vogelberg
- Department of Pediatrics, University Hospital Dresden, Technical University, Dresden, Germany
| | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center (CPC) Munich, German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
10
|
Wheatley LM, Holloway JW, Svanes C, Sears MR, Breton C, Fedulov AV, Nilsson E, Vercelli D, Zhang H, Togias A, Arshad SH. The role of epigenetics in multi-generational transmission of asthma: An NIAID workshop report-based narrative review. Clin Exp Allergy 2022; 52:1264-1275. [PMID: 36073598 PMCID: PMC9613603 DOI: 10.1111/cea.14223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
There is mounting evidence that environmental exposures can result in effects on health that can be transmitted across generations, without the need for a direct exposure to the original factor, for example, the effect of grandparental smoking on grandchildren. Hence, an individual's health should be investigated with the knowledge of cross-generational influences. Epigenetic factors are molecular factors or processes that regulate genome activity and may impact cross-generational effects. Epigenetic transgenerational inheritance has been demonstrated in plants and animals, but the presence and extent of this process in humans are currently being investigated. Experimental data in animals support transmission of asthma risk across generations from a single exposure to the deleterious factor and suggest that the nature of this transmission is in part due to changes in DNA methylation, the most studied epigenetic process. The association of father's prepuberty exposure with offspring risk of asthma and lung function deficit may also be mediated by epigenetic processes. Multi-generational birth cohorts are ideal to investigate the presence and impact of transfer of disease susceptibility across generations and underlying mechanisms. However, multi-generational studies require recruitment and assessment of participants over several decades. Investigation of adult multi-generation cohorts is less resource intensive but run the risk of recall bias. Statistical analysis is challenging given varying degrees of longitudinal and hierarchical data but path analyses, structural equation modelling and multilevel modelling can be employed, and directed networks addressing longitudinal effects deserve exploration as an effort to study causal pathways.
Collapse
Affiliation(s)
- Lisa M. Wheatley
- National Institute of Allergy and Infectious DiseaseNational Institutes of HealthBethesdaMarylandUSA
| | - John W. Holloway
- Faculty of Medicine, Human Development and HealthUniversity of SouthamptonSouthamptonUK
| | - Cecilie Svanes
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | | | - Carrie Breton
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alexey V. Fedulov
- Warren Alpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - Eric Nilsson
- Washington State University PullmanPullmanWashingtonUSA
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public HealthUniversity of MemphisMemphisTennesseeUSA
| | - Alkis Togias
- National Institute of Allergy and Infectious DiseaseNational Institutes of HealthBethesdaMarylandUSA
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- The David Hide Asthma and Allergy CentreSt Mary's HospitalNewportUK
| |
Collapse
|
11
|
Cosin-Tomas M, Cilleros-Portet A, Aguilar-Lacasaña S, Fernandez-Jimenez N, Bustamante M. Prenatal Maternal Smoke, DNA Methylation, and Multi-omics of Tissues and Child Health. Curr Environ Health Rep 2022; 9:502-512. [PMID: 35670920 PMCID: PMC9363403 DOI: 10.1007/s40572-022-00361-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Maternal tobacco smoking during pregnancy is of public health concern, and understanding the biological mechanisms can help to promote smoking cessation campaigns. This non-systematic review focuses on the effects of maternal smoking during pregnancy on offspring's epigenome, consistent in chemical modifications of the genome that regulate gene expression. RECENT FINDINGS Recent meta-analyses of epigenome-wide association studies have shown that maternal smoking during pregnancy is consistently associated with offspring's DNA methylation changes, both in the placenta and blood. These studies indicate that effects on blood DNA methylation can persist for years, and that the longer the duration of the exposure and the higher the dose, the larger the effects. Hence, DNA methylation scores have been developed to estimate past exposure to maternal smoking during pregnancy as biomarkers. There is robust evidence for DNA methylation alterations associated with maternal smoking during pregnancy; however, the role of sex, ethnicity, and genetic background needs further exploration. Moreover, there are no conclusive studies about exposure to low doses or during the preconception period. Similarly, studies on tissues other than the placenta and blood are scarce, and cell-type specificity within tissues needs further investigation. In addition, biological interpretation of DNA methylation findings requires multi-omics data, poorly available in epidemiological settings. Finally, although several mediation analyses link DNA methylation changes with health outcomes, they do not allow causal inference. For this, a combination of data from multiple study designs will be essential in the future to better address this topic.
Collapse
Affiliation(s)
- Marta Cosin-Tomas
- ISGlobal, Institute for Global Health, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,CIBER Epidemiología Y Salud Pública, Madrid, Spain.
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Sofía Aguilar-Lacasaña
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología Y Salud Pública, Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología Y Salud Pública, Madrid, Spain
| |
Collapse
|
12
|
Svanes C, Johannessen A, Bertelsen RJ, Dharmage S, Benediktsdottir B, Bråbäck L, Gislason T, Holm M, Jõgi O, Lodge CJ, Malinovschi A, Martinez-Moratalla J, Oudin A, Sánchez-Ramos JL, Timm S, Janson C, Real FG, Schlünssen V. Cohort profile: the multigeneration Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) cohort. BMJ Open 2022; 12:e059434. [PMID: 35654464 PMCID: PMC9163543 DOI: 10.1136/bmjopen-2021-059434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) cohort was established to (1) investigate how exposures before conception and in previous generations influence health and disease, particularly allergies and respiratory health, (2) identify susceptible time windows and (3) explore underlying mechanisms. The ultimate aim is to facilitate efficient intervention strategies targeting multiple generations. PARTICIPANTS RHINESSA includes study participants of multiple generations from ten study centres in Norway (1), Denmark (1), Sweden (3), Iceland (1), Estonia (1), Spain (2) and Australia (1). The RHINESSA core cohort, adult offspring generation 3 (G3), was first investigated in 2014-17 in a questionnaire study (N=8818, age 18-53 years) and a clinical study (subsample, n=1405). Their G2 parents participated in the population-based cohorts, European Community Respiratory Heath Survey and Respiratory Health In Northern Europe, followed since the early 1990s when they were 20-44 years old, at 8-10 years intervals. Study protocols are harmonised across generations. FINDINGS TO DATE Collected data include spirometry, skin prick tests, exhaled nitric oxide, anthropometrics, bioimpedance, blood pressure; questionnaire/interview data on respiratory/general/reproductive health, indoor/outdoor environment, smoking, occupation, general characteristics and lifestyle; biobanked blood, urine, gingival fluid, skin swabs; measured specific and total IgE, DNA methylation, sex hormones and oral microbiome. Research results suggest that parental environment years before conception, in particular, father's exposures such as smoking and overweight, may be of key importance for asthma and lung function, and that there is an important susceptibility window in male prepuberty. Statistical analyses developed to approach causal inference suggest that these associations may be causal. DNA methylation studies suggest a mechanism for transfer of father's exposures to offspring health and disease through impact on offspring DNA methylation. FUTURE PLANS Follow-up is planned at 5-8 years intervals, first in 2021-2023. Linkage with health registries contributes to follow-up of the cohort.
Collapse
Affiliation(s)
- Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Centre for International Health, University of Bergen Department of Global Public Health and Primary Care, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, University of Bergen Department of Global Public Health and Primary Care, Bergen, Norway
| | - Randi Jacobsen Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Oral Helath Centre of Expertise Western Norway, Bergen, Norway
| | - Shyamali Dharmage
- Allergy and Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Bryndis Benediktsdottir
- Medical Faculty, University of Iceland, Reykjavik, Iceland
- Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland
| | - Lennart Bråbäck
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå Universitet, Umeå, Sweden
| | - Thorarinn Gislason
- Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Oskar Jõgi
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Jesus Martinez-Moratalla
- Servicio de Neumología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha - Campus de Albacete, Albacete, Spain
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå Universitet, Umeå, Sweden
| | | | - Signe Timm
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Research Unit, Kolding Hospital, University Hospital of Southern Denmark, Kolding, Denmark
| | - Christer Janson
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences: Respiratory, Allergy, Sleep Research, Uppsala University, Uppsala, Sweden
| | - Francisco Gomez Real
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Vivi Schlünssen
- Department of Public Health - Work, Environment and Health, Danish Ramazzini Centre, Aarhus Universitet, Aarhus, Denmark
- National Research Centre for the Working Environment, Kobenhavn, Denmark
| |
Collapse
|
13
|
Molderings GJ. Systemic mast cell activation disease variants and certain genetically determined comorbidities may be consequences of a common underlying epigenetic disease. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
López-Cervantes JP, Lønnebotn M, Jogi NO, Calciano L, Kuiper IN, Darby MG, Dharmage SC, Gómez-Real F, Hammer B, Bertelsen RJ, Johannessen A, Würtz AML, Mørkve Knudsen T, Koplin J, Pape K, Skulstad SM, Timm S, Tjalvin G, Krauss-Etschmann S, Accordini S, Schlünssen V, Kirkeleit J, Svanes C. The Exposome Approach in Allergies and Lung Diseases: Is It Time to Define a Preconception Exposome? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12684. [PMID: 34886409 PMCID: PMC8657011 DOI: 10.3390/ijerph182312684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
Emerging research suggests environmental exposures before conception may adversely affect allergies and lung diseases in future generations. Most studies are limited as they have focused on single exposures, not considering that these diseases have a multifactorial origin in which environmental and lifestyle factors are likely to interact. Traditional exposure assessment methods fail to capture the interactions among environmental exposures and their impact on fundamental biological processes, as well as individual and temporal factors. A valid estimation of exposure preconception is difficult since the human reproductive cycle spans decades and the access to germ cells is limited. The exposome is defined as the cumulative measure of external exposures on an organism (external exposome), and the associated biological responses (endogenous exposome) throughout the lifespan, from conception and onwards. An exposome approach implies a targeted or agnostic analysis of the concurrent and temporal multiple exposures, and may, together with recent technological advances, improve the assessment of the environmental contributors to health and disease. This review describes the current knowledge on preconception environmental exposures as related to respiratory health outcomes in offspring. We discuss the usefulness and feasibility of using an exposome approach in this research, advocating for the preconception exposure window to become included in the exposome concept.
Collapse
Affiliation(s)
- Juan Pablo López-Cervantes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Marianne Lønnebotn
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Nils Oskar Jogi
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | | | - Matthew G. Darby
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town 7925, South Africa;
| | - Shyamali C. Dharmage
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Barbara Hammer
- Department of Pulmonology, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Ane Johannessen
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
| | - Anne Mette Lund Würtz
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Toril Mørkve Knudsen
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Jennifer Koplin
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Kathrine Pape
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Signe Timm
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark;
- Research Unit, Kolding Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
| | - Gro Tjalvin
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | | | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | - Vivi Schlünssen
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Jorunn Kirkeleit
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Cecilie Svanes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| |
Collapse
|
15
|
Tindula G, Mukherjee SK, Ekramullah SM, Arman DM, Biswas SK, Islam J, Obrycki JF, Christiani DC, Liang L, Warf BC, Mazumdar M. Parental metal exposures as potential risk factors for spina bifida in Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 157:106800. [PMID: 34358915 PMCID: PMC9008873 DOI: 10.1016/j.envint.2021.106800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neural tube defects are a pressing public health concern despite advances in prevention from folic acid-based strategies. Numerous chemicals, in particular arsenic, have been associated with neural tube defects in animal models and could influence risk in humans. OBJECTIVES We investigated the relationship between parental exposure to arsenic and 17 metals and risk of neural tube defects (myelomeningocele and meningocele) in a case control study in Bangladesh. METHODS Exposure assessment included analysis of maternal and paternal toenail samples using inductively coupled plasma mass spectrometry (ICP-MS). A total of 278 participants (155 cases and 123 controls) with data collected from 2016 to 2020 were included in the analysis. RESULTS In the paternal models, a one-unit increase in the natural logarithm of paternal toenail arsenic was associated with a 74% (odds ratio: 1.74, 95% confidence interval: 1.26-2.42) greater odds of having a child with spina bifida, after adjusting for relevant covariates. Additionally, paternal exposure to aluminum, cobalt, chromium, iron, selenium, and vanadium was associated with increased odds of having a child with spina bifida in the adjusted models. In the maternal models, a one-unit increase in the natural logarithm of maternal toenail selenium and zinc levels was related to a 382% greater (odds ratio: 4.82, 95% confidence interval: 1.32-17.60) and 89% lower (odds ratio: 0.11, 95% confidence interval: 0.03-0.42) odds of having a child with spina bifida in the adjusted models, respectively. Results did not suggest an interaction between parental toenail metals and maternal serum folate. DISCUSSION Parental toenail levels of numerous metals were associated with increased risk of spina bifida in Bangladeshi infants. Paternal arsenic exposure was positively associated with neural tube defects in children and is of particular concern given the widespread arsenic poisoning of groundwater resources in Bangladesh and the lack of nutritional interventions aimed to mitigate paternal arsenic exposure. The findings add to the growing body of literature of the impact of metals, especially paternal environmental factors, on child health.
Collapse
Affiliation(s)
- Gwen Tindula
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - Subrata Kumar Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka 1000, Bangladesh
| | - Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - John F Obrycki
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States.
| |
Collapse
|
16
|
Hu C, Tao Y, Deng Y, Cai Q, Ren H, Yu C, Zheng S, Yang J, Zeng C. Paternal long-term PM2.5 exposure causes hypertension via increased renal AT1R expression and function in male offspring. Clin Sci (Lond) 2021; 135:2575-2588. [PMID: 34779863 PMCID: PMC8628185 DOI: 10.1042/cs20210802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023]
Abstract
Maternal exposure to fine particulate matter (PM2.5) causes hypertension in offspring. However, paternal contribution of PM2.5 exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM2.5 suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT1R) and G-protein-coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM2.5 exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT1R were increased in offspring of PM2.5-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT1R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM2.5-treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM2.5-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT1R and GRK4 in the kidney of their offspring. We suggest that paternal PM2.5 exposure causes hypertension in offspring. The mechanism may be involved that paternal PM2.5 exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT1R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.
Collapse
Affiliation(s)
- Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yi Deng
- Department of General Practice Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qi Cai
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
17
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
18
|
Tjalvin G, Svanes Ø, Igland J, Bertelsen RJ, Benediktsdóttir B, Dharmage S, Forsberg B, Holm M, Janson C, Jõgi NO, Johannessen A, Malinovschi A, Pape K, Real FG, Sigsgaard T, Torén K, Vindenes HK, Zock JP, Schlünssen V, Svanes C. Maternal preconception occupational exposure to cleaning products and disinfectants and offspring asthma. J Allergy Clin Immunol 2021; 149:422-431.e5. [PMID: 34674855 DOI: 10.1016/j.jaci.2021.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Emerging research suggests health effects in offspring after parental chemical exposures before conception. Many future mothers are exposed to potent chemicals at work, but potential offspring health effects are hardly investigated. OBJECTIVE We sought to investigate childhood asthma in relation to mother's occupational exposure to cleaning products and disinfectants before conception. METHODS The multicenter Respiratory Health In Northern Europe/Respiratory Health In Northern Europe, Spain and Australia generation study investigated asthma and wheeze starting at age less than 10 years in 3318 mother-offspring pairs. From an asthma-specific Job-Exposure Matrix and mothers' occupational history, we defined maternal occupational exposure to indoor cleaning agents (cleaning products/detergents and disinfectants) starting before conception, in the 2-year period around conception and pregnancy, or after birth. Never-employed mothers were excluded. Exposed groups include cleaners, health care workers, cooks, and so forth. Associations were analyzed using mixed-effects logistic regression and ordinary logistic regression with clustered robust SEs and adjustment for maternal education. RESULTS Maternal occupational exposure to indoor cleaning starting preconception and continuing (n = 610) was associated with offspring's childhood asthma: odds ratio 1.56 (95% CI, 1.05-2.31), childhood asthma with nasal allergies: 1.77 (1.13-2.77), and childhood wheeze and/or asthma: 1.71 (95% CI, 1.19-2.44). Exposure starting around conception and pregnancy (n = 77) was associated with increased childhood wheeze and/or asthma: 2.25 (95% CI, 1.03-4.91). Exposure starting after birth was not associated with asthma outcomes (1.13 [95% CI, 0.71-1.80], 1.15 [95% CI, 0.67-1.97], 1.08 [95% CI, 0.69-1.67]). CONCLUSIONS Mother's occupational exposure to indoor cleaning agents starting before conception, or around conception and pregnancy, was associated with more childhood asthma and wheeze in offspring. Considering potential implications for vast numbers of women in childbearing age using cleaning agents, and their children, further research is imperative.
Collapse
Affiliation(s)
- Gro Tjalvin
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Øistein Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Health and Caring Sciences, Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Randi Jacobsen Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway; Oral Health Center of Expertise in Western Norway, Bergen, Norway
| | - Bryndís Benediktsdóttir
- Medical Faculty, University of Iceland, Reykjavík, Iceland; Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavík, Iceland
| | - Shyamali Dharmage
- Allergy and Lung Health Unit, University of Melbourne, Melbourne, Australia
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Nils Oskar Jõgi
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Tartu University Lung Clinic, Tartu, Estonia
| | - Ane Johannessen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Kathrine Pape
- National Research Centre for the Working Environment, Aarhus, Denmark; Department of Public Health, Aarhus University, Environment, Work and Health, Danish Ramazzini Centre, Aarhus, Denmark
| | - Francisco Gomez Real
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Environment, Work and Health, Danish Ramazzini Centre, Aarhus, Denmark
| | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hilde Kristin Vindenes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan-Paul Zock
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Vivi Schlünssen
- National Research Centre for the Working Environment, Aarhus, Denmark; Department of Public Health, Aarhus University, Environment, Work and Health, Danish Ramazzini Centre, Aarhus, Denmark
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway; Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
19
|
Accordini S, Calciano L, Johannessen A, Benediktsdóttir B, Bertelsen RJ, Bråbäck L, Dharmage SC, Forsberg B, Gómez Real F, Holloway JW, Holm M, Janson C, Jõgi NO, Jõgi R, Malinovschi A, Marcon A, Martínez-Moratalla Rovira J, Sánchez-Ramos JL, Schlünssen V, Torén K, Jarvis D, Svanes C. Prenatal and prepubertal exposures to tobacco smoke in men may cause lower lung function in future offspring: a three-generation study using a causal modelling approach. Eur Respir J 2021; 58:2002791. [PMID: 33795316 PMCID: PMC8529197 DOI: 10.1183/13993003.02791-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
Mechanistic research suggests that lifestyle and environmental factors impact respiratory health across generations by epigenetic changes transmitted through male germ cells. Evidence from studies on humans is very limited.We investigated multigeneration causal associations to estimate the causal effects of tobacco smoking on lung function within the paternal line. We analysed data from 383 adult offspring (age 18-47 years; 52.0% female) and their 274 fathers, who had participated in the European Community Respiratory Health Survey (ECRHS)/Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study and had provided valid measures of pre-bronchodilator lung function. Two counterfactual-based, multilevel mediation models were developed with: paternal grandmothers' smoking in pregnancy and fathers' smoking initiation in prepuberty as exposures; fathers' forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), or FEV1/FVC z-scores as potential mediators (proxies of unobserved biological mechanisms that are true mediators); and offspring's FEV1 and FVC, or FEV1/FVC z-scores as outcomes. All effects were summarised as differences (Δ) in expected z-scores related to fathers' and grandmothers' smoking history.Fathers' smoking initiation in prepuberty had a negative direct effect on both offspring's FEV1 (Δz-score -0.36, 95% CI -0.63- -0.10) and FVC (-0.50, 95% CI -0.80- -0.20) compared with fathers' never smoking. Paternal grandmothers' smoking in pregnancy had a negative direct effect on fathers' FEV1/FVC (-0.57, 95% CI -1.09- -0.05) and a negative indirect effect on offspring's FEV1/FVC (-0.12, 95% CI -0.21- -0.03) compared with grandmothers' not smoking before fathers' birth nor during fathers' childhood.Fathers' smoking in prepuberty and paternal grandmothers' smoking in pregnancy may cause lower lung function in offspring. Our results support the concept that lifestyle-related exposures during these susceptibility periods influence the health of future generations.
Collapse
Affiliation(s)
- Simone Accordini
- Unit of Epidemiology and Medical Statistics, Dept of Diagnostics and Public Health, University of Verona, Verona, Italy
- Equal contribution as first authors
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Dept of Diagnostics and Public Health, University of Verona, Verona, Italy
- Equal contribution as first authors
| | - Ane Johannessen
- Centre for International Health, Dept of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | - Randi Jacobsen Bertelsen
- Dept of Clinical Science, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway/Vestland, Bergen, Norway
| | - Lennart Bråbäck
- Section of Sustainable Health, Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Bertil Forsberg
- Section of Sustainable Health, Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Francisco Gómez Real
- Dept of Clinical Science, University of Bergen, Bergen, Norway
- Dept of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Dept of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Nils O Jõgi
- Dept of Clinical Science, University of Bergen, Bergen, Norway
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Rain Jõgi
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrei Malinovschi
- Dept of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Dept of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Jesús Martínez-Moratalla Rovira
- Servicio de Neumología, Complejo Hospitalario Universitario de Albacete (CHUA), Servicio de Salud de Castilla-La Mancha (SESCAM), Albacete, Spain
| | | | | | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Deborah Jarvis
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Equal contribution as last authors
| | - Cecilie Svanes
- Centre for International Health, Dept of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Equal contribution as last authors
| |
Collapse
|
20
|
Svanes C, Bertelsen RJ, Accordini S, Holloway JW, Júlíusson P, Boateng E, Krauss-Etchmann S, Schlünssen V, Gómez-Real F, Skulstad SM. Exposures during the prepuberty period and future offspring's health: evidence from human cohort studies†. Biol Reprod 2021; 105:667-680. [PMID: 34416759 PMCID: PMC8444705 DOI: 10.1093/biolre/ioab158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that exposures in prepuberty, particularly in fathers-to-be, may impact the phenotype of future offspring. Analyses of the RHINESSA cohort find that offspring of father’s exposed to tobacco smoking or overweight that started in prepuberty demonstrate poorer respiratory health in terms of more asthma and lower lung function. A role of prepuberty onset smoking for offspring fat mass is suggested in the RHINESSA and ALSPAC cohorts, and historic studies suggest that ancestral nutrition during prepuberty plays a role for grand-offspring’s health and morbidity. Support for causal relationships between ancestral exposures and (grand-)offspring’s health in humans has been enhanced by advancements in statistical analyses that optimize the gain while accounting for the many complexities and deficiencies in human multigeneration data. The biological mechanisms underlying such observations have been explored in experimental models. A role of sperm small RNA in the transmission of paternal exposures to offspring phenotypes has been established, and chemical exposures and overweight have been shown to influence epigenetic programming in germ cells. For example, exposure of adolescent male mice to smoking led to differences in offspring weight and alterations in small RNAs in the spermatozoa of the exposed fathers. It is plausible that male prepuberty may be a time window of particular susceptibility, given the extensive epigenetic reprogramming taking place in the spermatocyte precursors at this age. In conclusion, epidemiological studies in humans, mechanistic research, and biological plausibility, all support the notion that exposures in the prepuberty of males may influence the phenotype of future offspring.
Collapse
Affiliation(s)
- Cecilie Svanes
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi J Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Oral Health Centre of Expertise Western Norway, Bergen, Norway
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pétur Júlíusson
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Health Register Research and Development, National Institute of Public Health, Bergen, Norway
| | - Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany
| | - Susanne Krauss-Etchmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Vivi Schlünssen
- Department of Public Health-Work, Environment and Health, Danish Ramazzini Centre, Aarhus University, Denmark.,National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
McCarthy DM, Bhide PG. Heritable consequences of paternal nicotine exposure: from phenomena to mechanisms†. Biol Reprod 2021; 105:632-643. [PMID: 34126634 PMCID: PMC8444703 DOI: 10.1093/biolre/ioab116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Our understanding of the interactions between genetic and environmental factors in shaping behavioral phenotypes has expanded to include environment-induced epigenetic modifications and the intriguing possibility of their association with heritable behavioral phenotypes. The molecular basis of heritability of phenotypes arising from environment-induced epigenetic modifications is not well defined yet. However, phenomenological evidence in favor of it is accumulating rapidly. The resurgence of interest has led to focus on epigenetic modification of germ cells as a plausible mechanism of heritability. Perhaps partly because of practical reasons such as ease of access to male germ cells compared to female germ cells, attention has turned toward heritable effects of environmental influences on male founders. Public health implications of heritable effects of paternal exposures to addictive substances or to psycho-social factors may be enormous. Considering nicotine alone, over a billion people worldwide use nicotine-containing products, and the majority are men. Historically, the adverse effects of nicotine use by pregnant women received much attention by scientists and public policy experts alike. The implications of nicotine use by men for the physical and mental well-being of their children were not at the forefront of research until recently. Here, we review progress in the emerging field of heritable effects of paternal nicotine exposure and its implications for behavioral health of individuals in multiple generations.
Collapse
Affiliation(s)
- Deirdre M McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Pradeep G Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| |
Collapse
|
22
|
Merrill SM, Moore SR, Gladish N, Giesbrecht GF, Dewey D, Konwar C, MacIssac JL, Kobor MS, Letourneau NL. Paternal adverse childhood experiences: Associations with infant DNA methylation. Dev Psychobiol 2021; 63:e22174. [PMID: 34333774 DOI: 10.1002/dev.22174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Adverse childhood experiences (ACEs), or cumulative childhood stress exposures, such as abuse, neglect, and household dysfunction, predict later health problems in both the exposed individuals and their offspring. One potential explanation suggests exposure to early adversity predicts epigenetic modification, especially DNA methylation (DNAm), linked to later health. Stress experienced preconception by mothers may associate with DNAm in the next generation. We hypothesized that fathers' exposure to ACEs also associates with their offspring DNAm, which, to our knowledge, has not been previously explored. An epigenome-wide association study (EWAS) of blood DNAm (n = 45) from 3-month-old infants was regressed onto fathers' retrospective ACEs at multiple Cytosine-phosphate-Guanosine (CpG) sites to discover associations. This accounted for infants' sex, age, ethnicity, cell type proportion, and genetic variability. Higher ACE scores associated with methylation values at eight CpGs. Post-hoc analysis found no contribution of paternal education, income, marital status, and parental postpartum depression, but did with paternal smoking and BMI along with infant sleep latency. These same CpGs also contributed to the association between paternal ACEs and offspring attention problems at 3 years. Collectively, these findings suggested there were biological associations with paternal early life adversity and offspring DNAm in infancy, potentially affecting offspring later childhood outcomes.
Collapse
Affiliation(s)
- Sarah M Merrill
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Chaini Konwar
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Julia L MacIssac
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Nicole L Letourneau
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Arshad SH, Patil V, Mitchell F, Potter S, Zhang H, Ewart S, Mansfield L, Venter C, Holloway JW, Karmaus WJ. Cohort Profile Update: The Isle of Wight Whole Population Birth Cohort (IOWBC). Int J Epidemiol 2021; 49:1083-1084. [PMID: 32637984 DOI: 10.1093/ije/dyaa068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- S Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Isle of Wight, St. Mary's Hospital, Newport, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Veeresh Patil
- David Hide Asthma and Allergy Research Centre, Isle of Wight, St. Mary's Hospital, Newport, UK
| | - Frances Mitchell
- David Hide Asthma and Allergy Research Centre, Isle of Wight, St. Mary's Hospital, Newport, UK
| | - Stephen Potter
- David Hide Asthma and Allergy Research Centre, Isle of Wight, St. Mary's Hospital, Newport, UK
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Linda Mansfield
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Carina Venter
- Section of Allergy and Immunology, University of Colorado, Children Hospital Colorado, Denver, CO, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried J Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| |
Collapse
|
24
|
Monasso GS, Jaddoe VWV, de Jongste JC, Duijts L, Felix JF. Timing- and Dose-Specific Associations of Prenatal Smoke Exposure With Newborn DNA Methylation. Nicotine Tob Res 2021; 22:1917-1922. [PMID: 32330269 PMCID: PMC7542646 DOI: 10.1093/ntr/ntaa069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/22/2020] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Fetal changes in DNA methylation may underlie associations of maternal smoking during pregnancy with adverse outcomes in children. We examined critical periods and doses of maternal smoking during pregnancy in relation to newborn DNA methylation, and associations of paternal smoking with newborn DNA methylation. AIMS AND METHODS This study was embedded in the Generation R Study, a population-based prospective cohort study from early pregnancy onwards. We assessed parental smoking during pregnancy using questionnaires. We analyzed associations of prenatal smoke exposure with newborn DNA methylation at 5915 known maternal smoking-related cytosine-phosphate-guanine sites (CpGs) in 1261 newborns using linear regression. Associations with false discovery rate-corrected p-values < .05 were taken forward. RESULTS Sustained maternal smoking was associated with newborn DNA methylation at 1391 CpGs, compared with never smoking. Neither quitting smoking early in pregnancy nor former smoking was associated with DNA methylation, compared with never smoking. Among sustained smokers, smoking ≥5, compared with <5, cigarettes/d was associated with DNA methylation at seven CpGs. Paternal smoking was not associated with DNA methylation, independent of maternal smoking status. CONCLUSIONS Our results suggest that CpGs associated with sustained maternal smoking are not associated with maternal smoking earlier in pregnancy or with paternal smoking. Some of these CpGs show dose-response relationships with sustained maternal smoking. The third trimester may comprise a critical period for associations of smoking with newborn DNA methylation, or sustained smoking may reflect higher cumulative doses. Alternatively, maternal smoking limited to early pregnancy and paternal smoking may be associated with DNA methylation at specific other CpGs not studied here. IMPLICATIONS Our results suggest that quitting maternal smoking before the third trimester of pregnancy, and possibly lowering smoking dose, may prevent differential DNA methylation in the newborns at CpGs associated with sustained smoking. If the relevance of DNA methylation for clinical outcomes is established, these results may help in counseling parents-to-be about quitting smoking.
Collapse
Affiliation(s)
- Giulietta S Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johan C de Jongste
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Corresponding Author: Janine F. Felix, MD, PhD, Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. Telephone: +31-10-7043405; Fax: +31-10-7044645; E-mail:
| |
Collapse
|
25
|
Schrott R, Murphy SK, Modliszewski JL, King DE, Hill B, Itchon-Ramos N, Raburn D, Price T, Levin ED, Vandrey R, Corcoran DL, Kollins SH, Mitchell JT. Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab009. [PMID: 34557312 PMCID: PMC8455898 DOI: 10.1093/eep/dvab009] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 05/20/2023]
Abstract
Cannabis use alters sperm DNA methylation, but the potential reversibility of these changes is unknown. Semen samples from cannabis users and non-user controls were collected at baseline and again following a 77-day period of cannabis abstinence (one spermatogenic cycle). Users and controls did not significantly differ by demographics or semen analyses. Whole-genome bisulfite sequencing identified 163 CpG sites with significantly different DNA methylation in sperm between groups (P < 2.94 × 10-9). Genes associated with altered CpG sites were enriched with those involved in development, including cardiogenesis and neurodevelopment. Many of the differences in sperm DNA methylation between groups were diminished after cannabis abstinence. These results indicate that sustained cannabis abstinence significantly reduces the number of sperm showing cannabis-associated alterations at genes important for early development.
Collapse
Affiliation(s)
- Rose Schrott
- Duke University Program in Environmental Health, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC, USA
| | - Susan K Murphy
- *Correspondence address. Department of Obstetrics and Gynecology, Division of Reproductive Sciences, The Chesterfield Building, 701 W. Main Street, Suite 510 Durham, NC 27701, USA Tel: +(919) 681-3423; E-mail:
| | - Jennifer L Modliszewski
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, 101 Science Drive, Durham, NC, USA
| | - Dillon E King
- Duke University Program in Environmental Health, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC, USA
| | - Bendu Hill
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - Nilda Itchon-Ramos
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - Douglas Raburn
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University Medical Center, 5704 Fayetteville Road, Durham, NC, USA
| | - Thomas Price
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University Medical Center, 5704 Fayetteville Road, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - Ryan Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, 101 Science Drive, Durham, NC, USA
| | - Scott H Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - John T Mitchell
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| |
Collapse
|
26
|
Finch CE, Morgan TE. Developmental Exposure to Air Pollution, Cigarettes, and Lead: Implications for Brain Aging. ACTA ACUST UNITED AC 2020. [DOI: 10.1146/annurev-devpsych-042320-044338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain development is impaired by maternal exposure to airborne toxins from ambient air pollution, cigarette smoke, and lead. Shared postnatal consequences include gray matter deficits and abnormal behaviors as well as elevated blood pressure. These unexpectedly broad convergences have implications for later life brain health because these same airborne toxins accelerate brain aging. Gene-environment interactions are shown for ApoE alleles that influence the risk of Alzheimer disease. The multigenerational trace of these toxins extends before fertilization because egg cells are formed in the grandmaternal uterus. The lineage and sex-specific effects of grandmaternal exposure to lead and cigarettes indicate epigenetic processes of relevance to future generations from our current and recent exposure to airborne toxins.
Collapse
Affiliation(s)
- Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089-0191, USA;,
| | - Todd E. Morgan
- Leonard Davis School of Gerontology and Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089-0191, USA;,
| |
Collapse
|
27
|
Bline AP, Dearfield KL, DeMarini DM, Marchetti F, Yauk CL, Escher J. Heritable hazards of smoking: Applying the "clean sheet" framework to further science and policy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:910-921. [PMID: 33064321 PMCID: PMC7756471 DOI: 10.1002/em.22412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 10/11/2020] [Indexed: 05/06/2023]
Abstract
All the cells in our bodies are derived from the germ cells of our parents, just as our own germ cells become the bodies of our children. The integrity of the genetic information inherited from these germ cells is of paramount importance in establishing the health of each generation and perpetuating our species into the future. There is a large and growing body of evidence strongly suggesting the existence of substances that may threaten this integrity by acting as human germ cell mutagens. However, there generally are no absolute regulatory requirements to test agents for germ cell effects. In addition, the current regulatory testing paradigms do not evaluate the impacts of epigenetically mediated intergenerational effects, and there is no regulatory framework to apply new and emerging tests in regulatory decision making. At the 50th annual meeting of the Environmental Mutagenesis and Genomics Society held in Washington, DC, in September 2019, a workshop took place that examined the heritable effects of hazardous exposures to germ cells, using tobacco smoke as the example hazard. This synopsis provides a summary of areas of concern regarding heritable hazards from tobacco smoke exposures identified at the workshop and the value of the Clean Sheet framework in organizing information to address knowledge and testing gaps.
Collapse
Affiliation(s)
- Abigail P. Bline
- Fielding School of Public HealthUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | | | | | - Francesco Marchetti
- Environmental Health Science Research Bureau, Health CanadaOttawaOntarioCanada
| | - Carole L. Yauk
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | | |
Collapse
|
28
|
Schrott R, Rajavel M, Acharya K, Huang Z, Acharya C, Hawkey A, Pippen E, Lyerly HK, Levin ED, Murphy SK. Sperm DNA methylation altered by THC and nicotine: Vulnerability of neurodevelopmental genes with bivalent chromatin. Sci Rep 2020; 10:16022. [PMID: 32994467 PMCID: PMC7525661 DOI: 10.1038/s41598-020-72783-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/03/2020] [Indexed: 01/23/2023] Open
Abstract
Men consume the most nicotine and cannabis products but impacts on sperm epigenetics are poorly characterized. Evidence suggests that preconception exposure to these drugs alters offspring neurodevelopment. Epigenetics may in part facilitate heritability. We therefore compared effects of exposure to tetrahydrocannabinol (THC) and nicotine on DNA methylation in rat sperm at genes involved in neurodevelopment. Reduced representation bisulfite sequencing data from sperm of rats exposed to THC via oral gavage showed that seven neurodevelopmentally active genes were significantly differentially methylated versus controls. Pyrosequencing data revealed majority overlap in differential methylation in sperm from rats exposed to THC via injection as well as those exposed to nicotine. Neurodevelopmental genes including autism candidates are vulnerable to environmental exposures and common features may mediate this vulnerability. We discovered that autism candidate genes are significantly enriched for bivalent chromatin structure, suggesting this configuration may increase vulnerability of genes in sperm to disrupted methylation.
Collapse
Affiliation(s)
- Rose Schrott
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA.,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Maya Rajavel
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA
| | - Kelly Acharya
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Zhiqing Huang
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA
| | - Chaitanya Acharya
- Division of Surgical Sciences, Department of Surgery, Center for Applied Therapeutics, Duke University Medical Center, Durham, NC, USA
| | - Andrew Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Erica Pippen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - H Kim Lyerly
- Division of Surgical Sciences, Department of Surgery, Center for Applied Therapeutics, Duke University Medical Center, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Susan K Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA. .,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
29
|
Associations of Preconception Exposure to Air Pollution and Greenness with Offspring Asthma and Hay Fever. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165828. [PMID: 32806543 PMCID: PMC7459891 DOI: 10.3390/ijerph17165828] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/21/2023]
Abstract
We investigated if greenness and air pollution exposure in parents’ childhood affect offspring asthma and hay fever, and if effects were mediated through parental asthma, pregnancy greenness/pollution exposure, and offspring exposure. We analysed 1106 parents with 1949 offspring (mean age 35 and 6) from the Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study. Mean particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), black carbon (BC), ozone (O3) (µg/m3) and greenness (normalized difference vegetation index (NDVI)) were calculated for parents 0–18 years old and offspring 0–10 years old, and were categorised in tertiles. We performed logistic regression and mediation analyses for two-pollutant models (clustered by family and centre, stratified by parental lines, and adjusted for grandparental asthma and education). Maternal medium PM2.5 and PM10 exposure was associated with higher offspring asthma risk (odds ratio (OR) 2.23, 95%CI 1.32–3.78, OR 2.27, 95%CI 1.36–3.80), and paternal high BC exposure with lower asthma risk (OR 0.31, 95%CI 0.11–0.87). Hay fever risk increased for offspring of fathers with medium O3 exposure (OR 4.15, 95%CI 1.28–13.50) and mothers with high PM10 exposure (OR 2.66, 95%CI 1.19–5.91). The effect of maternal PM10 exposure on offspring asthma was direct, while for hay fever, it was mediated through exposures in pregnancy and offspring’s own exposures. Paternal O3 exposure had a direct effect on offspring hay fever. To conclude, parental exposure to air pollution appears to influence the risk of asthma and allergies in future offspring.
Collapse
|
30
|
Knudsen GTM, Dharmage S, Janson C, Abramson MJ, Benediktsdóttir B, Malinovschi A, Skulstad SM, Bertelsen RJ, Real FG, Schlünssen V, Jõgi NO, Sánchez-Ramos JL, Holm M, Garcia-Aymerich J, Forsberg B, Svanes C, Johannessen A. Parents' smoking onset before conception as related to body mass index and fat mass in adult offspring: Findings from the RHINESSA generation study. PLoS One 2020; 15:e0235632. [PMID: 32628720 PMCID: PMC7337347 DOI: 10.1371/journal.pone.0235632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/18/2020] [Indexed: 01/11/2023] Open
Abstract
Emerging evidence suggests that parents' preconception exposures may influence offspring health. We aimed to investigate maternal and paternal smoking onset in specific time windows in relation to offspring body mass index (BMI) and fat mass index (FMI). We investigated fathers (n = 2111) and mothers (n = 2569) aged 39-65 years, of the population based RHINE and ECRHS studies, and their offspring aged 18-49 years (n = 6487, mean age 29.6 years) who participated in the RHINESSA study. BMI was calculated from self-reported height and weight, and FMI was estimated from bioelectrical impedance measures in a subsample. Associations with parental smoking were analysed with generalized linear regression adjusting for parental education and clustering by study centre and family. Interactions between offspring sex were analysed, as was mediation by parental pack years, parental BMI, offspring smoking and offspring birthweight. Fathers' smoking onset before conception of the offspring (onset ≥15 years) was associated with higher BMI in the offspring when adult (β 0.551, 95%CI: 0.174-0.929, p = 0.004). Mothers' preconception and postnatal smoking onset was associated with higher offspring BMI (onset <15 years: β1.161, 95%CI 0.378-1.944; onset ≥15 years: β0.720, 95%CI 0.293-1.147; onset after offspring birth: β2.257, 95%CI 1.220-3.294). However, mediation analysis indicated that these effects were fully mediated by parents' postnatal pack years, and partially mediated by parents' BMI and offspring smoking. Regarding FMI, sons of smoking fathers also had higher fat mass (onset <15 years β1.604, 95%CI 0.269-2.939; onset ≥15 years β2.590, 95%CI 0.544-4.636; and onset after birth β2.736, 95%CI 0.621-4.851). There was no association between maternal smoking and offspring fat mass. We found that parents' smoking before conception was associated with higher BMI in offspring when they reached adulthood, but that these effects were mediated through parents' pack years, suggesting that cumulative smoking exposure during offspring's childhood may elicit long lasting effects on offspring BMI.
Collapse
Affiliation(s)
- Gerd Toril Mørkve Knudsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Shyamali Dharmage
- School of Population and Global Health, The University of Melbourne, Carlton, Australia
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Michael J. Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Bryndís Benediktsdóttir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Sleep Medicine, Landspitali, Reykjavik, Iceland
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi Jacobsen Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Oral Health Center of Expertise in Western Norway, Hordaland, Bergen, Norway
| | | | - Vivi Schlünssen
- Department of Public Health, Work, Environment and Health, Danish Ramazzini Centre, Aarhus University Denmark, Aarhus, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nils Oskar Jõgi
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | | | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Schrott R, Murphy SK. Cannabis use and the sperm epigenome: a budding concern? ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa002. [PMID: 32211199 PMCID: PMC7081939 DOI: 10.1093/eep/dvaa002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 05/13/2023]
Abstract
The United States is swiftly moving toward increased legalization of medical and recreational cannabis. Currently considered the most commonly used illicit psychoactive drug, recreational cannabis is legal in 11 states and Washington, DC, and male use is an important and understudied concern. Questions remain, however, about the potential long-term consequences of this exposure and how cannabis might impact the epigenetic integrity of sperm in such a way that could influence the health and development of offspring. This review summarizes cannabis use and potency in the USA, provides a brief overview of DNA methylation as an epigenetic mechanism that is vulnerable in sperm to environmental exposures including cannabis, and summarizes studies that have examined the effects of parental exposure to cannabis or delta-9 tetrahydrocannabinol (THC, the main psychoactive component of cannabis) on the epigenetic profile of the gametes and behavior of offspring. These studies have demonstrated significant changes to the sperm DNA methylome following cannabis use in humans, and THC exposure in rats. Furthermore, the use of rodent models has shown methylation and behavioral changes in rats born to fathers exposed to THC or synthetic cannabinoids, or to parents who were both exposed to THC. These data substantiate an urgent need for additional studies assessing the effects of cannabis exposure on childhood health and development. This is especially true given the current growing state of cannabis use in the USA.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, The Chesterfield, 701 W. Main Street, Suite 510, Durham, NC 27701 USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Circuit Dr, Durham, NC 27710 USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, The Chesterfield, 701 W. Main Street, Suite 510, Durham, NC 27701 USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Circuit Dr, Durham, NC 27710 USA
- Correspondence address: Duke University Medical Center, The Chesterfield, 701 W. Main Street, Suite 510, Durham, NC 27701, USA. Tel: 919-681-3423; Fax: 919-385-9358; E-mail:
| |
Collapse
|