1
|
Arkles B, Segarnick D, Clementino LC, Pannell KH, Thomas AP. Silacrown ethers as ion transport modifiers and preliminary observations of cardiovascular cell line response. J Inorg Biochem 2024; 265:112814. [PMID: 39787689 DOI: 10.1016/j.jinorgbio.2024.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Crown ethers have been shown to have physiological effects ascribed to their ionophoric properties. However, high levels of toxicity precluded interest in their evaluation as therapeutic agents. We prepared new silacrown analogs of crown ethers. These initial studies focused on examples of large ring silacrown ethers having at least fourteen ring atoms with at least one lipophilic or hydrophobic substituent on the ring and/or on the silicon atom. The synthesis of silacrown ethers, ionophoric behavior, toxicity studies, and preliminary pharmacodynamic studies in cardiac myocyte cell lines are presented and compared to their carbon analogs. We report the effects of these compounds in HL-1 cells, an atrial muscle cell line with plasma membrane and sarcoplasmic reticulum Ca2+ channels that give rise to spontaneous Ca2+ transients driven by action potentials. Dicyclohexano-18-crown-6 and the silacrown equivalent dimethylsila-17-cyclohexanocrown-6 were both found to rapidly inhibit the Ca2+ transients after acute treatment, and these effects were reversed when extracellular KCl was increased to cause plasma membrane depolarization. The data suggest that the silacrowns can mimic the effects of crown ethers with similar ring sizes, and this appears to be due to their effects on membrane potential and suppression of action potential firing.
Collapse
Affiliation(s)
- Barry Arkles
- Temple University, Department of Chemistry, Philadelphia, PA, United States of America.
| | - David Segarnick
- Rutgers, The State University of New Jersey, Dept of Pharmacology, Physiology & Neuroscience, Newark, NJ, United States of America
| | - Leandro C Clementino
- Rutgers, The State University of New Jersey, Dept of Pharmacology, Physiology & Neuroscience, Newark, NJ, United States of America
| | - Keith H Pannell
- University of Texas, Department of Chemistry, El Paso, TX, United States of America
| | - Andrew P Thomas
- Rutgers, The State University of New Jersey, Dept of Pharmacology, Physiology & Neuroscience, Newark, NJ, United States of America
| |
Collapse
|
2
|
Mesa D, Barbieri E, Raimondi A, Freddi S, Miloro G, Jendrisek G, Caldieri G, Quarto M, Schiano Lomoriello I, Malabarba MG, Bresci A, Manetti F, Vernuccio F, Abdo H, Scita G, Lanzetti L, Polli D, Tacchetti C, Pinton P, Bonora M, Di Fiore PP, Sigismund S. A tripartite organelle platform links growth factor receptor signaling to mitochondrial metabolism. Nat Commun 2024; 15:5119. [PMID: 38879572 PMCID: PMC11180189 DOI: 10.1038/s41467-024-49543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024] Open
Abstract
One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.
Collapse
Affiliation(s)
- Deborah Mesa
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Stefano Freddi
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Gorana Jendrisek
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Micaela Quarto
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Irene Schiano Lomoriello
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Grazia Malabarba
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | - Hind Abdo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR Institute for Photonics and Nanotechnology (CNR-IFN), Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Pier Paolo Di Fiore
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Sara Sigismund
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
3
|
Mishra V, Adlakha N. Cross Talking Calcium, IP 3 and Buffer Dynamics Alters ATP and NADH Level in Obese and Normal Hepatocyte Cell. Cell Biochem Biophys 2024; 82:1537-1553. [PMID: 38789660 DOI: 10.1007/s12013-024-01306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
The cross talk between calcium (Ca2+), IP3 and buffer dynamics regulate various mechanisms in hepatocyte cells. The study of independent systems of calcium, IP3, and buffer signaling provides limited information about cell dynamics. In the current study, coupled reaction-diffusion equations are used to design a cross-talk model for IP3, buffer, and calcium dynamics in a hepatocyte cell. The one-way feedback of calcium, buffer, and IP3 in ATP production, ATP degradation, and NADH production rate is incorporated into the model. Numerical simulation has been done using the Finite Element Method (FEM) along the spatial direction and the Crank-Nicolson (C-N) method along the temporal direction. The numerical results are analysed to determine the effects of alterations in processes of cross-talking dynamics of IP3, buffer, and calcium on ATP and NADH production and degradation rate of ATP in a hepatocyte cell under normal and obesity conditions. The comparative analysis of these findings unveils notable distinctions induced by obesity in calcium dynamics, ATP and NADH synthesis, and ATP degradation kinetics.
Collapse
Affiliation(s)
- Vedika Mishra
- Department of Mathematics, SVNIT, Surat, 395007, Gujarat, India.
| | - Neeru Adlakha
- Department of Mathematics, SVNIT, Surat, 395007, Gujarat, India
| |
Collapse
|
4
|
Akizawa H, Lopes EM, Fissore RA. Zn 2+ is essential for Ca 2+ oscillations in mouse eggs. eLife 2023; 12:RP88082. [PMID: 38099643 PMCID: PMC10723796 DOI: 10.7554/elife.88082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Changes in the intracellular concentration of free calcium (Ca2+) underpin egg activation and initiation of development in animals and plants. In mammals, the Ca2+ release is periodical, known as Ca2+ oscillations, and mediated by the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). Another divalent cation, zinc (Zn2+), increases exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn2+ are indispensable for sperm-initiated Ca2+ oscillations because Zn2+-deficient conditions induced by cell-permeable chelators abrogated Ca2+ responses evoked by fertilization and other physiological and pharmacological agonists. We also found that chemically or genetically generated eggs with lower levels of labile Zn2+ displayed reduced IP3R1 sensitivity and diminished ER Ca2+ leak despite the stable content of the stores and IP3R1 mass. Resupplying Zn2+ restarted Ca2+ oscillations, but excessive Zn2+ prevented and terminated them, hindering IP3R1 responsiveness. The findings suggest that a window of Zn2+ concentrations is required for Ca2+ responses and IP3R1 function in eggs, ensuring optimal response to fertilization and egg activation.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Emily M Lopes
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of MassachusettsAmherstUnited States
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
5
|
Akizawa H, Lopes E, Fissore RA. Zn 2+ is Essential for Ca 2+ Oscillations in Mouse Eggs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536745. [PMID: 37131581 PMCID: PMC10153198 DOI: 10.1101/2023.04.13.536745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in the intracellular concentration of free calcium (Ca2+) underpin egg activation and initiation of development in animals and plants. In mammals, the Ca2+ release is periodical, known as Ca2+ oscillations, and mediated by the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). Another divalent cation, zinc (Zn2+), increases exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn2+ are indispensable for sperm-initiated Ca2+ oscillations because Zn2+-deficient conditions induced by cell-permeable chelators abrogated Ca2+ responses evoked by fertilization and other physiological and pharmacological agonists. We also found that chemically- or genetically generated eggs with lower levels of labile Zn2+ displayed reduced IP3R1 sensitivity and diminished ER Ca2+ leak despite the stable content of the stores and IP3R1 mass. Resupplying Zn2+ restarted Ca2+ oscillations, but excessive Zn2+ prevented and terminated them, hindering IP3R1 responsiveness. The findings suggest that a window of Zn2+ concentrations is required for Ca2+ responses and IP3R1 function in eggs, ensuring optimal response to fertilization and egg activation.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Emily Lopes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Rafael A. Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
6
|
Paknejad N, Sapuru V, Hite RK. Structural titration reveals Ca 2+-dependent conformational landscape of the IP 3 receptor. Nat Commun 2023; 14:6897. [PMID: 37898605 PMCID: PMC10613215 DOI: 10.1038/s41467-023-42707-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are endoplasmic reticulum Ca2+ channels whose biphasic dependence on cytosolic Ca2+ gives rise to Ca2+ oscillations that regulate fertilization, cell division and cell death. Despite the critical roles of IP3R-mediated Ca2+ responses, the structural underpinnings of the biphasic Ca2+ dependence that underlies Ca2+ oscillations are incompletely understood. Here, we collect cryo-EM images of an IP3R with Ca2+ concentrations spanning five orders of magnitude. Unbiased image analysis reveals that Ca2+ binding does not explicitly induce conformational changes but rather biases a complex conformational landscape consisting of resting, preactivated, activated, and inhibited states. Using particle counts as a proxy for relative conformational free energy, we demonstrate that Ca2+ binding at a high-affinity site allows IP3Rs to activate by escaping a low-energy resting state through an ensemble of preactivated states. At high Ca2+ concentrations, IP3Rs preferentially enter an inhibited state stabilized by a second, low-affinity Ca2+ binding site. Together, these studies provide a mechanistic basis for the biphasic Ca2+-dependence of IP3R channel activity.
Collapse
Affiliation(s)
- Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY, 10065, USA
| | - Vinay Sapuru
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY, 10065, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Dagnino-Acosta A, Guerrero-Hernandez A. PKC Inhibits Sec61 Translocon-Mediated Sarcoplasmic Reticulum Ca2+ Leak in Smooth Muscle Cells. Front Physiol 2022; 13:925023. [PMID: 35837019 PMCID: PMC9275787 DOI: 10.3389/fphys.2022.925023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/13/2023] Open
Abstract
PKC inhibitors stimulate Ca2+ release from internal stores in diverse cell types. Our data indicate that this action cannot be explained by an increased agonist-induced IP3 production or an overloaded SR Ca2+ pool in smooth muscle cells from guinea pig urinary bladder. The incubation of these cells with three different PKC inhibitors, such as Go6976, Go6983, and BIM 1, resulted in a higher SR Ca2+ leak revealed by inhibition of the SERCA pump with thapsigargin. This SR Ca2+ leakage was sensitive to protein translocation inhibitors such as emetine and anisomycin. Since this increased SR Ca2+ leak did not result in a depleted SR Ca2+ store, we have inferred there was a compensatory increase in SERCA pump activity, resulting in a higher steady-state. This new steady-state increased the frequency of Spontaneous Transient Outward Currents (STOCs), which reflect the activation of high conductance, Ca2+-sensitive potassium channels in response to RyR-mediated Ca2+ sparks. This increased STOC frequency triggered by PKC inhibition was restored to normal by inhibiting translocon-mediated Ca2+ leak with emetine. These results suggest a critical role of PKC-mediated translocon phosphorylation in regulating SR Ca2+ steady-state, which, in turn, alters SR Ca2+ releasing activity.
Collapse
Affiliation(s)
- Adan Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Colima, Mexico
| | - Agustín Guerrero-Hernandez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
- *Correspondence: Agustín Guerrero-Hernandez,
| |
Collapse
|
8
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
9
|
Receptor-specific Ca 2+ oscillation patterns mediated by differential regulation of P2Y purinergic receptors in rat hepatocytes. iScience 2021; 24:103139. [PMID: 34646983 PMCID: PMC8496176 DOI: 10.1016/j.isci.2021.103139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Extracellular agonists linked to inositol-1,4,5-trisphosphate (IP3) formation elicit cytosolic Ca2+ oscillations in many cell types, but despite a common signaling pathway, distinct agonist-specific Ca2+ spike patterns are observed. Using qPCR, we show that rat hepatocytes express multiple purinergic P2Y and P2X receptors (R). ADP acting through P2Y1R elicits narrow Ca2+ oscillations, whereas UTP acting through P2Y2R elicits broad Ca2+ oscillations, with composite patterns observed for ATP. P2XRs do not play a role at physiological agonist levels. The discrete Ca2+ signatures reflect differential effects of protein kinase C (PKC), which selectively modifies the falling phase of the Ca2+ spikes. Negative feedback by PKC limits the duration of P2Y1R-induced Ca2+ spikes in a manner that requires extracellular Ca2+. By contrast, P2Y2R is resistant to PKC negative feedback. Thus, the PKC leg of the bifurcated IP3 signaling pathway shapes unique Ca2+ oscillation patterns that allows for distinct cellular responses to different agonists. Distinct stereotypic Ca2+ oscillations are elicited by P2Y1 and P2Y2 receptors P2X receptors do not contribute to the generation of Ca2+ oscillations Agonist-specific Ca2+ spike shapes reflect discrete modes of PKC negative feedback Bifurcation of IP3/PKC signaling yields unique Ca2+ oscillation signatures
Collapse
|
10
|
Cloete I, Corrêa-Velloso JC, Bartlett PJ, Kirk V, Thomas AP, Sneyd J. A Tale of two receptors. J Theor Biol 2021; 518:110629. [PMID: 33607144 DOI: 10.1016/j.jtbi.2021.110629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Calcium (Ca2+) oscillations in hepatocytes have a wide dynamic range. In particular, recent experimental evidence shows that agonist stimulation of the P2Y family of receptors leads to qualitatively diverse Ca2+ oscillations. We present a new model of Ca2+ oscillations in hepatocytes based on these experiments to investigate the mechanisms controlling P2Y-activated Ca2+ oscillations. The model accounts for Ca2+ regulation of the IP3 receptor (IP3R), the positive feedback from Ca2+ on phospholipase C (PLC) and the P2Y receptor phosphorylation by protein kinase C (PKC). Furthermore, PKC is shown to control multiple cellular substrates. Utilising the model, we suggest the activity and intensity of PLC and PKC necessary to explain the qualitatively diverse Ca2+ oscillations in response to P2Y receptor activation.
Collapse
Affiliation(s)
- Ielyaas Cloete
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| | - Juliana C Corrêa-Velloso
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Vivien Kirk
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Hansen EB, Marcatili P. Modeled Structure of the Cell Envelope Proteinase of Lactococcus lactis. Front Bioeng Biotechnol 2021; 8:613986. [PMID: 33415101 PMCID: PMC7783315 DOI: 10.3389/fbioe.2020.613986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022] Open
Abstract
The cell envelope proteinase (CEP) of Lactococcus lactis is a large extracellular protease covalently linked to the peptidoglycan of the cell wall. Strains of L. lactis are typically auxotrophic for several amino acids and in order to grow to high cell densities in milk they need an extracellular protease. The structure of the entire CEP enzyme is difficult to determine experimentally due to the large size and due to the attachment to the cell surface. We here describe the use of a combination of structure prediction tools to create a structural model for the entire CEP enzyme of Lactococcus lactis. The model has implications for how the bacterium interacts with casein micelles during growth in milk, and it has implications regarding the energetics of the proteolytic system. Our model for the CEP indicates that the catalytic triad is activated through a structural change caused by interaction with the substrate. The CEP of L. lactis might become a useful model for the mode of action for enzymes belonging to the large class of S8 proteinases with a PA (protease associated) domain and a downstream fibronectin like domain.
Collapse
Affiliation(s)
- Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Demark
| | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Demark
| |
Collapse
|
12
|
Hørlyck S, Cai C, Helms HCC, Lauritzen M, Brodin B. ATP induces contraction of cultured brain capillary pericytes via activation of P2Y-type purinergic receptors. Am J Physiol Heart Circ Physiol 2020; 320:H699-H712. [PMID: 33306443 DOI: 10.1152/ajpheart.00560.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain capillary pericytes have been suggested to play a role in the regulation of cerebral blood flow under physiological and pathophysiological conditions. ATP has been shown to cause constriction of capillaries under ischemic conditions and suggested to be involved in the "no-reflow" phenomenon. To investigate the effects of extracellular ATP on pericyte cell contraction, we studied purinergic receptor activation of cultured bovine brain capillary pericytes. We measured intracellular Ca2+ concentration ([Ca2+]i) responses to purinergic agonists with the fluorescent indicators fura-2 and Cal-520 and estimated contraction of pericytes as relative change in cell area, using real-time confocal imaging. Addition of ATP caused an increase in cytosolic calcium and contraction of the brain capillary pericytes, both reversible and inhibited by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Furthermore, we demonstrated that ATP-induced contraction could be eliminated by intracellular calcium chelation with BAPTA, indicating that the contraction was mediated via purinergic P2-type receptor-mediated [Ca2+]i signaling. ATP stimulation induced inositol triphosphate signaling, consistent with the notion of P2Y receptor activation. Receptor profiling studies demonstrated the presence of P2Y1 and P2Y2 receptors, using ATP, UTP, ADP, and the subtype specific agonists MRS2365 (P2Y1) and 2-thio-UTP (P2Y2). Addition of specific P2X agonists only caused an [Ca2+]i increase at high concentrations, attributed to activation of inositol triphosphate signaling. Our results suggest that contraction of brain capillary pericytes in vitro by activation of P2Y-type purinergic receptors is caused by intracellular calcium release. This adds more mechanistic understanding of the role of pericytes in vessel constriction and points toward P2Y receptors as potential therapeutic targets.NEW & NOTEWORTHY The study concerns brain capillary pericytes, which have been suggested to play a role in the regulation of cerebral blood flow. We show that extracellular ATP causes contraction of primary brain pericytes by stimulation of purinergic receptors and subsequent release of intracellular Ca2+ concentration ([Ca2+]i). The contraction is mainly mediated through activation of P2Y-receptor subtypes, including P2Y1 and P2Y2. These findings add more mechanistic understanding of the role of pericytes in regulation of capillary blood flow. ATP was earlier suggested to be involved in capillary constriction in brain pathologies, and our study gives a detailed account of a part of this important mechanism.
Collapse
Affiliation(s)
- Sofie Hørlyck
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
A mathematical model of calcium dynamics: Obesity and mitochondria-associated ER membranes. PLoS Comput Biol 2019; 15:e1006661. [PMID: 31437152 PMCID: PMC6726250 DOI: 10.1371/journal.pcbi.1006661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 09/04/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022] Open
Abstract
Multiple cellular organelles tightly orchestrate intracellular calcium (Ca2+) dynamics to regulate cellular activities and maintain homeostasis. The interplay between the endoplasmic reticulum (ER), a major store of intracellular Ca2+, and mitochondria, an important source of adenosine triphosphate (ATP), has been the subject of much research, as their dysfunction has been linked with metabolic diseases. Interestingly, throughout the cell’s cytosolic domain, these two organelles share common microdomains called mitochondria-associated ER membranes (MAMs), where their membranes are in close apposition. The role of MAMs is critical for intracellular Ca2+ dynamics as they provide hubs for direct Ca2+ exchange between the organelles. A recent experimental study reported correlation between obesity and MAM formation in mouse liver cells, and obesity-related cellular changes that are closely associated with the regulation of Ca2+ dynamics. We constructed a mathematical model to study the effects of MAM Ca2+ dynamics on global Ca2+ activities. Through a series of model simulations, we investigated cellular mechanisms underlying the altered Ca2+ dynamics in the cells under obesity. We predict that, as the dosage of stimulus gradually increases, liver cells from obese mice will reach the state of saturated cytosolic Ca2+ concentration at a lower stimulus concentration, compared to cells from healthy mice. It is well known that intracellular Ca2+ oscillations carry encoded signals in their amplitude and frequency to regulate various cellular processes, and accumulating evidence supports the importance of the interplay between the ER and mitochondria in cellular Ca2+ homeostasis. Miscommunications between the organelles may be involved in the development of metabolic diseases. Based on a recent experimental study that spotlighted a correlation between obesity and physical interactions of the ER and mitochondria in mouse hepatic cells, we constructed a mathematical model as a tool to probe the effects of the cellular changes linked with obesity on global cellular Ca2+ dynamics. Our model successfully reproduced the experimental study that observed a positive correlation between an increase in ER-mitochondrial junctions and the magnitude of mitochondrial Ca2+ responses. We postulate that hepatic cells from lean animals exhibit Ca2+ oscillations that are more robust under higher concentrations of stimulus, compared to cells from obese animals.
Collapse
|
14
|
Kuremoto T, Kogiso H, Yasuda M, Inui TA, Murakami K, Hirano S, Ikeuchi Y, Hosogi S, Inui T, Marunaka Y, Nakahari T. Spontaneous oscillation of the ciliary beat frequency regulated by release of Ca 2+ from intracellular stores in mouse nasal epithelia. Biochem Biophys Res Commun 2018; 507:211-216. [PMID: 30415775 DOI: 10.1016/j.bbrc.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 12/27/2022]
Abstract
Ciliary beating frequency (CBF) was investigated in ciliated nasal epithelial cells (cMNECs) isolated from mice using video microscopy equipped with a high-speed camera. In cMNECs, a spontaneous CBF oscillation was observed. The CBF oscillation was abolished by BAPTA-AM but not by Ca2+-free solution. The addition of thapsigargin, which depletes Ca2+ from internal stores, also abolished CBF oscillation. Moreover, the intracellular Ca2+ concentration [Ca2+]i, spontaneously oscillated even with the Ca2+-free solution. Moreover, 2APB (an inhibitor of the IP3 receptor) abolished CBF oscillation in cMNECs. Overall, these findings suggest that the CBF oscillation in cMNECs is triggered by the release of Ca2+ from the IP3-sensitive internal stores. Moreover, IBMX, an inhibitor of phosphodiesterase, did not affect CBF oscillation in cMNECs, although it slightly increased CBF. These results suggest that CBF oscillations were induced by [Ca2+]i oscillation controlled via the release of Ca2+ from IP3-sensitive stores, rather than via cAMP accumulation. CBF oscillation possibly plays a crucial role in maintaining an efficient mucociliary clearance in the nasal epithelia.
Collapse
Affiliation(s)
- Toshihiro Kuremoto
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Haruka Kogiso
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Makoto Yasuda
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Taka-Aki Inui
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kentaro Murakami
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yukiko Ikeuchi
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigekuni Hosogi
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshio Inui
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan; Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan; Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Takashi Nakahari
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
15
|
Paknejad N, Hite RK. Structural basis for the regulation of inositol trisphosphate receptors by Ca 2+ and IP 3. Nat Struct Mol Biol 2018; 25:660-668. [PMID: 30013099 PMCID: PMC6082148 DOI: 10.1038/s41594-018-0089-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022]
Abstract
Inositol trisphosphate receptors (IP3R) are ubiquitous Ca2+-permeable channels that mediate release of Ca2+ from the endoplasmic reticulum to regulate numerous processes including cell division, cell death, differentiation and fertilization. IP3R is activated by both IP3 and its permeant ion Ca2+. At high concentrations, however, Ca2+ inhibits activity ensuring precise spatiotemporal control over intracellular Ca2+. Despite extensive characterization of IP3R, the mechanisms by which these molecules control channel gating have remained elusive. Here, we present structures of full-length human type 3 IP3R in ligand-bound and ligand-free states. Multiple IP3-bound structures demonstrate that the large cytoplasmic domain provides a platform for propagation of long-range conformational changes to the ion conduction gate. Structures in the presence of Ca2+ reveal two Ca2+ binding sites that induce the disruption of numerous interactions between subunits, thereby inhibiting IP3R. These structures thus begin to provide a mechanistic basis for understanding the regulation of IP3R.
Collapse
Affiliation(s)
- Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Tanimura A, Nezu A, Morita T, Murata K. [Advances in methods for analyzing IP 3 signaling and understanding of coupled Ca 2+ and IP 3 oscillations]. Nihon Yakurigaku Zasshi 2018; 152:21-27. [PMID: 29998948 DOI: 10.1254/fpj.152.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3) is an important intracellular messenger produced by phospholipase C via the activation of G-protein-coupled receptor- or receptor-tyrosine-kinase-mediated pathways, and is involved in numerous responses to hormones, neurotransmitters, and growth factors through the releases of Ca2+ from intracellular stores via IP3 receptors. IP3-mediated Ca2+ signals often exhibit complex spatial and temporal organizations, such as Ca2+ oscillations. Recently, new methods have become available to measure IP3 concentration ([IP3]) using AlphaScreen technology, fluorescence polarization, and competitive ligand binding assay (CFLA). These methods are useful for the high throughput screening in drug discovery. Calcium ions generate versatile intracellular signals such as Ca2+ oscillations and waves. Fluorescent sensors molecules to monitor changes in [IP3] in single living cells are crucial to study the mechanism for the spatially and temporally regulated Ca2+ signals. In particular, FRET-based IP3 sensors are useful for the quantitative monitoring intracellular [IP3], and allowed to uncovered the oscillatory IP3 dynamics in association with Ca2+ oscillations. A mathematical model of coupled Ca2+ and IP3 oscillations predicts that Ca2+ oscillations are the result of modulation of the IP3 receptor by intracellular Ca2+, and that the period is modulated by the accompanying IP3 oscillations. These model predictions have also been confirmed experimentally. At present, however, usefulness of FRET-based IP3 sensors are limited by their relatively small change in fluorescence. Development of novel IP3 sensors with improve dynamic range would be important for understanding the regulatory mechanism of Ca2+ signaling and for in vivo IP3 imaging.
Collapse
Affiliation(s)
- Akihiko Tanimura
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| | - Akihiro Nezu
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| | - Takao Morita
- Department of Biochemistry, The Nippon Dental University, School of Life Dentistry at Niigata
| | - Kaori Murata
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| |
Collapse
|
17
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 2016; 96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cellular functions are regulated by calcium (Ca2+) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca2+) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca2+ that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca2+ signal generated by the entry of Ca2+ through voltage-operated channels that releases Ca2+ from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca2+ signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca2+ signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca2+ signaling are a contributory factor responsible for the onset of a large number human diseases.
Collapse
Affiliation(s)
- Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
19
|
Booth DM, Joseph SK, Hajnóczky G. Subcellular ROS imaging methods: Relevance for the study of calcium signaling. Cell Calcium 2016; 60:65-73. [PMID: 27209367 DOI: 10.1016/j.ceca.2016.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
Recent advances in genetically encoded fluorescent probes have dramatically increased the toolkit available for imaging the intracellular environment. Perhaps the biggest improvements have been made in sensing specific reactive oxygen species (ROS) and redox changes under physiological conditions. The new generation of probes may be targeted to a wide range of subcellular environments. By targeting such probes to compartments and organelle surfaces they may be exposed to environments, which support local signal transduction and regulation. The close apposition of the endoplasmic reticulum (ER) with mitochondria and other organelles forms such a local environment where Ca(2+) dynamics are greatly enhanced compared to the bulk cytosol. We describe here how newly developed genetically encoded redox indicators (GERIs) might be used to monitor ROS and probe their interaction with Ca(2+) at both global and local level.
Collapse
Affiliation(s)
- David M Booth
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Suresh K Joseph
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Ravel C, Kazdar N, Drapier H, Duros S, Viard P. Aide à l’activation ovocytaire. Med Sci (Paris) 2016; 32:198-203. [DOI: 10.1051/medsci/20163202014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Endothelin-1-induced remodelling of murine adult ventricular myocytes. Cell Calcium 2016; 59:41-53. [DOI: 10.1016/j.ceca.2015.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
|
22
|
Yang PC, Jafri MS. The Phase Lag between Agonist-Induced Oscillatory Ca 2+ and IP 3 Signals Does Not Imply Causality (December 2015). CALCIUM SIGNALING (SANTA CLARA, CALIF.) 2015; 2:1-10. [PMID: 27218121 PMCID: PMC4874533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Activated phospholipase C (PLC*) generates 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) from phosphatidyl inositol (PIP2). The DAG remains in the plasma membrane and co-activates conventional protein kinase C (PKC) with Ca2+. We have developed a mathematical model for the activation of the Ca2+-dependent PKC and its negative feedback on phospholipase C (PLC) and coupled it to the De Young-Keizer model for IP3 mediated Ca2+ oscillations. The model describes the cascade of reactions for the translocation of PKC to plasma membrane, and simulates activation of Ca2+ and diacylglycerol (DAG) oscillations. The model demonstrates that oscillations in Ca2+ and DAG are possible with or without a positive Ca2+ feedback on phospholipase C consistent with experiment. In many experimental studies, the timing of the peaks of the Ca2+ and IP3 oscillations have been used to suggest causality, i.e. that the IP3 oscillations cause the Ca2+ oscillations. The model is used to explore this question. To this end, the positive and negative feedback between Ca2+ and IP3 production are modulated, resulting in changes to the phase lag between the peaks in [Ca2+]cyt and [IP]cyt. The model simulates a possible experimental protocol that can be used to differentiate whether or not the positive feedback of Ca2+ on PLC is needed for the oscillations.
Collapse
Affiliation(s)
- Pei-Chi Yang
- Department of Pharmacology, University of California Davis, Davis CA 95616 USA
| | - M Saleet Jafri
- Molecular Neuroscience Department and School of Systems Biology, George Mason University, Fairfax, VA 22030 USA
| |
Collapse
|
23
|
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine Metabolism in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:29-88. [PMID: 26811286 DOI: 10.1016/bs.ircmb.2015.10.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic cells. The existence of four only partially redundant biochemical pathways that produce PE, highlights the importance of this essential phospholipid. The CDP-ethanolamine and phosphatidylserine decarboxylase pathways occur in different subcellular compartments and are the main sources of PE in cells. Mammalian development fails upon ablation of either pathway. Once made, PE has diverse cellular functions that include serving as a precursor for phosphatidylcholine and a substrate for important posttranslational modifications, influencing membrane topology, and promoting cell and organelle membrane fusion, oxidative phosphorylation, mitochondrial biogenesis, and autophagy. The importance of PE metabolism in mammalian health has recently emerged following its association with Alzheimer's disease, Parkinson's disease, nonalcoholic liver disease, and the virulence of certain pathogenic organisms.
Collapse
Affiliation(s)
- Elizabeth Calzada
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ouma Onguka
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Bartlett PJ, Metzger W, Gaspers LD, Thomas AP. Differential Regulation of Multiple Steps in Inositol 1,4,5-Trisphosphate Signaling by Protein Kinase C Shapes Hormone-stimulated Ca2+ Oscillations. J Biol Chem 2015; 290:18519-33. [PMID: 26078455 DOI: 10.1074/jbc.m115.657767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
How Ca(2+) oscillations are generated and fine-tuned to yield versatile downstream responses remains to be elucidated. In hepatocytes, G protein-coupled receptor-linked Ca(2+) oscillations report signal strength via frequency, whereas Ca(2+) spike amplitude and wave velocity remain constant. IP3 uncaging also triggers oscillatory Ca(2+) release, but, in contrast to hormones, Ca(2+) spike amplitude, width, and wave velocity were dependent on [IP3] and were not perturbed by phospholipase C (PLC) inhibition. These data indicate that oscillations elicited by IP3 uncaging are driven by the biphasic regulation of the IP3 receptor by Ca(2+), and, unlike hormone-dependent responses, do not require PLC. Removal of extracellular Ca(2+) did not perturb Ca(2+) oscillations elicited by IP3 uncaging, indicating that reloading of endoplasmic reticulum stores via plasma membrane Ca(2+) influx does not entrain the signal. Activation and inhibition of PKC attenuated hormone-induced Ca(2+) oscillations but had no effect on Ca(2+) increases induced by uncaging IP3. Importantly, PKC activation and inhibition differentially affected Ca(2+) spike frequencies and kinetics. PKC activation amplifies negative feedback loops at the level of G protein-coupled receptor PLC activity and/or IP3 metabolism to attenuate IP3 levels and suppress the generation of Ca(2+) oscillations. Inhibition of PKC relieves negative feedback regulation of IP3 accumulation and, thereby, shifts Ca(2+) oscillations toward sustained responses or dramatically prolonged spikes. PKC down-regulation attenuates phenylephrine-induced Ca(2+) wave velocity, whereas responses to IP3 uncaging are enhanced. The ability to assess Ca(2+) responses in the absence of PLC activity indicates that IP3 receptor modulation by PKC regulates Ca(2+) release and wave velocity.
Collapse
Affiliation(s)
- Paula J Bartlett
- From the Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Walson Metzger
- From the Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Lawrence D Gaspers
- From the Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Andrew P Thomas
- From the Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
25
|
Walliser C, Tron K, Clauss K, Gutman O, Kobitski AY, Retlich M, Schade A, Röcker C, Henis YI, Nienhaus GU, Gierschik P. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling. J Biol Chem 2015; 290:17056-72. [PMID: 25903139 DOI: 10.1074/jbc.m115.645739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling.
Collapse
Affiliation(s)
- Claudia Walliser
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Kyrylo Tron
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Karen Clauss
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Orit Gutman
- the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrei Yu Kobitski
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Michael Retlich
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Anja Schade
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Carlheinz Röcker
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Yoav I Henis
- the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - G Ulrich Nienhaus
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany, the Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany, and the Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Peter Gierschik
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany,
| |
Collapse
|
26
|
Morgan AJ, Davis LC, Galione A. Imaging approaches to measuring lysosomal calcium. Methods Cell Biol 2015; 126:159-95. [DOI: 10.1016/bs.mcb.2014.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Gaspers LD, Bartlett PJ, Politi A, Burnett P, Metzger W, Johnston J, Joseph SK, Höfer T, Thomas AP. Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations. Cell Rep 2014; 9:1209-18. [PMID: 25456123 PMCID: PMC6469397 DOI: 10.1016/j.celrep.2014.10.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/08/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022] Open
Abstract
Receptor-mediated oscillations in cytosolic Ca2+ concentration ([Ca2+]i) could originate either directly from an autonomous Ca2+ feedback oscillator at the inositol 1,4,5-trisphosphate (IP3) receptor or as a secondary consequence of IP3 oscillations driven by Ca2+ feedback on IP3 metabolism. It is challenging to discriminate these alternatives, because IP3 fluctuations could drive Ca2+ oscillations or could just be a secondary response to the [Ca2+]i spikes. To investigate this problem, we constructed a recombinant IP3 buffer using type-I IP3 receptor ligand-binding domain fused to GFP (GFP-LBD), which buffers IP3 in the physiological range. This IP3 buffer slows hormone-induced [IP3] dynamics without changing steady-state [IP3]. GFP-LBD perturbed [Ca2+]i oscillations in a dose-dependent manner: it decreased both the rate of [Ca2+]i rise and the speed of Ca2+ wave propagation and, at high levels, abolished [Ca2+]i oscillations completely. These data, together with computational modeling, demonstrate that IP3 dynamics play a fundamental role in generating [Ca2+]i oscillations and waves. Gaspers et al. use a genetically encoded IP3 buffer to suppress IP3 dynamics during hormonal stimulation. Using this approach, they find that positive feedback of Ca2+ on IP3 formation is an essential component, generating long-period, baseline-separated Ca2+ oscillations and intracellular Ca2+ waves.
Collapse
Affiliation(s)
- Lawrence D Gaspers
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Paula J Bartlett
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Antonio Politi
- German Cancer Research Center, Division of Theoretical Systems Biology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Paul Burnett
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Walson Metzger
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jane Johnston
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Suresh K Joseph
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Thomas Höfer
- German Cancer Research Center, Division of Theoretical Systems Biology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andrew P Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
28
|
Wilkes MM, Wilson JD, Baird B, Holowka D. Activation of Cdc42 is necessary for sustained oscillations of Ca2+ and PIP2 stimulated by antigen in RBL mast cells. Biol Open 2014; 3:700-10. [PMID: 24996924 PMCID: PMC4133723 DOI: 10.1242/bio.20148862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Antigen stimulation of mast cells via FcεRI, the high-affinity receptor for IgE, triggers a signaling cascade that requires Ca2+ mobilization for exocytosis of secretory granules during the allergic response. To characterize the role of Rho GTPases in FcεRI signaling, we utilized a mutant RBL cell line, B6A4C1, that is deficient in antigen-stimulated Cdc42 activation important for these processes. Recently the importance of stimulated intracellular oscillations has emerged, and we find that B6A4C1 cells exhibit severely attenuated Ca2+ oscillations in response to antigen, which are restored to wild-type RBL-2H3 levels by expression of constitutively active Cdc42 G12V or by a GEF for Cdc42, DOCK7, but not when the C-terminal di-arginine motif of active Cdc42 is mutated to di-glutamine. We found that antigen-stimulated FcεRI endocytosis, which occurs independently of Ca2+ mobilization, is also defective in B6A4C1 cells, and Cdc42 G12V reconstitutes this response as well. Thus, activation of Cdc42 occurs prior to and is critical for antigen-stimulated pathways leading separately to both Ca2+ mobilization and receptor endocytosis. Accounting for these downstream functional consequences, we show that Cdc42 G12V reconstitutes antigen-stimulated oscillations of phosphatidylinositol 4,5-bisphosphate (PIP2) at the plasma membrane in mutant B6A4C1 cells, pointing to Cdc42 participation in the regulation of stimulated PIP2 synthesis.
Collapse
Affiliation(s)
- Marcus M Wilkes
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA
| | - Joshua D Wilson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA
| | - David Holowka
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA
| |
Collapse
|
29
|
Bánsághi S, Golenár T, Madesh M, Csordás G, RamachandraRao S, Sharma K, Yule DI, Joseph SK, Hajnóczky G. Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species. J Biol Chem 2014; 289:8170-81. [PMID: 24469450 DOI: 10.1074/jbc.m113.504159] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species (ROS) stimulate cytoplasmic [Ca(2+)] ([Ca(2+)]c) signaling, but the exact role of the IP3 receptors (IP3R) in this process remains unclear. IP3Rs serve as a potential target of ROS produced by both ER and mitochondrial enzymes, which might locally expose IP3Rs at the ER-mitochondrial associations. Also, IP3Rs contain multiple reactive thiols, common molecular targets of ROS. Therefore, we have examined the effect of superoxide anion (O2) on IP3R-mediated Ca(2+) signaling. In human HepG2, rat RBL-2H3, and chicken DT40 cells, we observed [Ca(2+)]c spikes and frequency-modulated oscillations evoked by a O2 donor, xanthine (X) + xanthine oxidase (XO), dose-dependently. The [Ca(2+)]c signal was mediated by ER Ca(2+) mobilization. X+XO added to permeabilized cells promoted the [Ca(2+)]c rise evoked by submaximal doses of IP3, indicating that O2 directly sensitizes IP3R-mediated Ca(2+) release. In response to X+XO, DT40 cells lacking two of three IP3R isoforms (DKO) expressing either type 1 (DKO1) or type 2 IP3Rs (DKO2) showed a [Ca(2+)]c signal, whereas DKO expressing type 3 IP3R (DKO3) did not. By contrast, IgM that stimulates IP3 formation, elicited a [Ca(2+)]c signal in every DKO. X+XO also facilitated the Ca(2+) release evoked by submaximal IP3 in permeabilized DKO1 and DKO2 but was ineffective in DKO3 or in DT40 lacking every IP3R (TKO). However, X+XO could also facilitate the effect of suboptimal IP3 in TKO transfected with rat IP3R3. Although in silico studies failed to identify a thiol missing in the chicken IP3R3, an X+XO-induced redox change was documented only in the rat IP3R3. Thus, ROS seem to specifically sensitize IP3Rs through a thiol group(s) within the IP3R, which is probably inaccessible in the chicken IP3R3.
Collapse
Affiliation(s)
- Száva Bánsághi
- From the MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2542-59. [DOI: 10.1016/j.bbamcr.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
31
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen GL, Zeng B, Eastmond S, Elsenussi SE, Boa AN, Xu SZ. Pharmacological comparison of novel synthetic fenamate analogues with econazole and 2-APB on the inhibition of TRPM2 channels. Br J Pharmacol 2013; 167:1232-43. [PMID: 22646516 DOI: 10.1111/j.1476-5381.2012.02058.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Fenamate analogues, econazole and 2-aminoethoxydiphenyl borate (2-APB) are inhibitors of transient receptor potential melastatin 2 (TRPM2) channels and are used as research tools. However, these compounds have different chemical structures and therapeutic applications. Here we have investigated the pharmacological profile of TRPM2 channels by application of newly synthesized fenamate analogues and the existing channel blockers. EXPERIMENTAL APPROACH Human TRPM2 channels in tetracycline-regulated pcDNA4/TO vectors were transfected into HEK293 T-REx cells and the expression was induced by tetracycline. Whole cell currents were recorded by patch-clamp techniques. Ca(2+) influx or release was monitored by fluorometry. KEY RESULTS Flufenamic acid (FFA), mefenamic acid (MFA) and niflumic acid (NFA) concentration-dependently inhibited TRPM2 current with potency order FFA > MFA = NFA. Modification of the 2-phenylamino ring by substitution of the trifluoromethyl group in FFA with -CH(3), -F, -CF(3), -OCH(3), -OCH(2)CH(3), -COOH, and -NO(2) at various positions, reduced channel blocking potency. The conservative substitution of 3-CF(3) in FFA by -CH(3) (3-MFA), however, gave the most potent fenamate analogue with an IC(50) of 76 µM, comparable to that of FFA, but unlike FFA, had no effect on Ca(2+) release. 3-MFA and FFA inhibited the channel intracellularly. Econazole and 2-APB showed non-selectivity by altering cytosolic Ca(2+) movement. Econazole also evoked a non-selective current. CONCLUSION AND IMPLICATIONS The fenamate analogue 3-MFA was more selective than other TRPM2 channel blockers. FFA, 2-APB and econazole should be used with caution as TRPM2 channel blockers, as these compounds can interfere with intracellular Ca(2+) movement.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | | | | | | | | | | |
Collapse
|
33
|
Shahzad T, Kasseckert SA, Iraqi W, Johnson V, Schulz R, Schlüter KD, Dörr O, Parahuleva M, Hamm C, Ladilov Y, Abdallah Y. Mechanisms involved in postconditioning protection of cardiomyocytes against acute reperfusion injury. J Mol Cell Cardiol 2013; 58:209-16. [PMID: 23328483 DOI: 10.1016/j.yjmcc.2013.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/26/2012] [Accepted: 01/07/2013] [Indexed: 12/12/2022]
Abstract
Experimental and clinical studies demonstrated that postconditioning confers protection against myocardial ischemia/reperfusion injury. However the underlying cellular mechanisms responsible for the beneficial effect of postconditioning are still poorly understood. The aim of the present study was to examine the role of cytosolic and mitochondrial Ca(2+)-handling. For this purpose adult rat cardiomyocytes were subjected to simulated in vitro ischemia (glucose-free hypoxia at pH6.4) followed by simulated reperfusion with a normoxic buffer (pH7.4; 2.5 mmol/L glucose). Postconditioning, i.e., 2 repetitive cycles of normoxic (5s) and hypoxic (2.5 min) superfusion, was applied during the first 5 min of reoxygenation. Mitochondrial membrane potential (ΔΨm), cytosolic and mitochondrial Ca(2+) concentrations, cytosolic pH and necrosis were analysed applying JC-1, fura-2, fura-2/manganese, BCECF and propidium iodide, respectively. Mitochondrial permeability transition pore (MPTP) opening was detected by calcein release. Hypoxic treatment led to a reduction of ΔΨm, an increase in cytosolic and mitochondrial Ca(2+) concentration, and acidification of cardiomyocytes. During the first minutes of reoxygenation, ΔΨm transiently recovered, but irreversibly collapsed after 7 min of reoxygenation, which was accompanied by MPTP opening. Simultaneously, mitochondrial Ca(2+) increased during reperfusion and cardiomyocytes developed spontaneous cytosolic Ca(2+) oscillations and severe contracture followed by necrosis after 25 min of reoxygenation. In postconditioned cells, the collapse in ΔΨm as well as the leak of calcein, the increase in mitochondrial Ca(2+), cytosolic Ca(2+) oscillations, contracture and necrosis were significantly reduced. Furthermore postconditioning delayed cardiomyocyte pH recovery. Postconditioning by hypoxia/reoxygenation was as protective as treatment with cyclosporine A. Combining cyclosporine A and postconditioning had no additive effect. The data of the present study demonstrate that postconditioning by hypoxia/reoxygenation prevents reperfusion injury by limiting mitochondrial Ca(2+) load and thus opening of the MPTP in isolated cardiomyocytes. These effects seem to be supported by postconditioning-induced delay in pH recovery and suppression of Ca(2+) oscillations.
Collapse
Affiliation(s)
- Tayyab Shahzad
- Department of Cardiology and Angiology, University Hospital Giessen and Marburg Klinikstr. 33, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
De Bock M, Wang N, Bol M, Decrock E, Ponsaerts R, Bultynck G, Dupont G, Leybaert L. Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+-dependent Ca2+ entry pathway. J Biol Chem 2012; 287:12250-66. [PMID: 22351781 PMCID: PMC3320976 DOI: 10.1074/jbc.m111.299610] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/16/2012] [Indexed: 11/06/2022] Open
Abstract
Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.
Collapse
Affiliation(s)
- Marijke De Bock
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| | - Nan Wang
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| | - Melissa Bol
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| | - Elke Decrock
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| | - Raf Ponsaerts
- Department of Molecular Cell Biology, Laboratory of Molecular and Cellular Signaling, KULeuven, 3000 Leuven, Belgium, and
| | - Geert Bultynck
- Department of Molecular Cell Biology, Laboratory of Molecular and Cellular Signaling, KULeuven, 3000 Leuven, Belgium, and
| | - Geneviève Dupont
- Theoretical Chronobiology Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Luc Leybaert
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| |
Collapse
|
35
|
Spät A, Szanda G. Special features of mitochondrial Ca²⁺ signalling in adrenal glomerulosa cells. Pflugers Arch 2012; 464:43-50. [PMID: 22395411 DOI: 10.1007/s00424-012-1086-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 11/30/2022]
Abstract
Aldosterone, secreted by adrenal glomerulosa cells, allows the adaptation of the vertebrate organism to a wide range of physiological and pathological stimuli including acute haemodynamic challenges and long-term changes in dietary sodium and potassium intake. Most of the extracellular signals are mediated by cytosolic Ca²⁺ signal deriving from Ca²⁺ release, store-operated and/or voltage-gated Ca²⁺ influx. Mitochondria in glomerulosa cells play a fundamental role in generating and modulating the final biological response. These organelles not only house several enzymes of aldosterone biosynthesis but also-in a Ca²⁺-dependent manner-provide NADPH for the function of these enzymes. Moreover, mitochondria, constituting a high portion of cytoplasmic volume and displaying a uniquely low-threshold Ca²⁺ sequestering ability, shape and thus modulate the decoding of the complex cytosolic Ca²⁺ response. The unusual features of mitochondrial Ca²⁺ signalling that permit such an integrative function in adrenal glomerulosa cells are hereby described.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
36
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
37
|
Parys JB, De Smedt H. Inositol 1,4,5-trisphosphate and its receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:255-79. [PMID: 22453946 DOI: 10.1007/978-94-007-2888-2_11] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activation of cells by many extracellular agonists leads to the production of inositol 1,4,5-trisphosphate (IP₃). IP₃ is a global messenger that easily diffuses in the cytosol. Its receptor (IP₃R) is a Ca(2+)-release channel located on intracellular membranes, especially the endoplasmic reticulum (ER). The IP₃R has an affinity for IP(3) in the low nanomolar range. A prime regulator of the IP₃R is the Ca(2+) ion itself. Cytosolic Ca(2+) is considered as a co-agonist of the IP₃R, as it strongly increases IP(3)R activity at concentrations up to about 300 nM. In contrast, at higher concentrations, cytosolic Ca(2+) inhibits the IP₃R. Also the luminal Ca(2+) sensitizes the IP₃R. In higher organisms three genes encode for an IP₃R and additional diversity exists as a result of alternative splicing mechanisms and the formation of homo- and heterotetramers. The various IP₃R isoforms have a similar structure and a similar function, but due to differences in their affinity for IP₃, their variable sensitivity to regulatory parameters, their differential interaction with associated proteins, and the variation in their subcellular localization, they participate differently in the formation of intracellular Ca(2+) signals and this affects therefore the physiological consequences of these signals.
Collapse
Affiliation(s)
- Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N1 - Bus 802, Herestraat 49, Belgium.
| | | |
Collapse
|
38
|
Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations. Neurochem Res 2011; 36:1175-85. [PMID: 21479917 PMCID: PMC3111726 DOI: 10.1007/s11064-011-0457-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2011] [Indexed: 11/18/2022]
Abstract
Oscillatory fluctuations in the cytosolic concentration of free calcium ions (Ca2+) are considered a ubiquitous mechanism for controlling multiple cellular processes. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are intracellular Ca2+ release channels that mediate Ca2+ release from endoplasmic reticulum (ER) Ca2+ stores. The three IP3R subtypes described so far exhibit differential structural, biophysical, and biochemical properties. Subtype specific regulation of IP3R by the endogenous modulators IP3, Ca2+, protein kinases and associated proteins have been thoroughly examined. In this article we will review the contribution of each IP3R subtype in shaping cytosolic Ca2+ oscillations.
Collapse
|
39
|
Tanimura A. The Development of FRET-Based IP3 Biosensors and Their Use for Monitoring IP3 Dynamics during Ca2+ Oscillations and Ca2+ Waves in Non-Excitable Cells. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Taylor CW, Tovey SC. IP(3) receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2010; 2:a004010. [PMID: 20980441 DOI: 10.1101/cshperspect.a004010] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
41
|
Foskett JK, Daniel Mak DO. Regulation of IP(3)R Channel Gating by Ca(2+) and Ca(2+) Binding Proteins. CURRENT TOPICS IN MEMBRANES 2010; 66:235-72. [PMID: 22353483 PMCID: PMC6707373 DOI: 10.1016/s1063-5823(10)66011-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
42
|
Greater cytosolic and mitochondrial calcium transients in adrenal medullary slices of hypertensive, compared with normotensive rats. Eur J Pharmacol 2010; 636:126-36. [DOI: 10.1016/j.ejphar.2010.03.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 03/01/2010] [Accepted: 03/13/2010] [Indexed: 11/19/2022]
|
43
|
Tanimura A, Morita T, Nezu A, Shitara A, Hashimoto N, Tojyo Y. Use of Fluorescence Resonance Energy Transfer-based Biosensors for the Quantitative Analysis of Inositol 1,4,5-Trisphosphate Dynamics in Calcium Oscillations. J Biol Chem 2009; 284:8910-7. [PMID: 19158094 PMCID: PMC2659248 DOI: 10.1074/jbc.m805865200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/17/2008] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is an intracellular messenger that elicits a wide range of spatial and temporal Ca(2+) signals, and this signaling versatility is exploited to regulate diverse cellular responses. In this study, we have developed a series of IP(3) biosensors that exhibit strong pH stability and varying affinities for IP(3), as well as a method for the quantitative measurement of cytosolic concentrations of IP(3) ([IP(3)](i)) in single living cells. We applied this method to elucidate IP(3) dynamics during agonist-induced Ca(2+) oscillations, and we demonstrated cell type-dependent differences in IP(3) dynamics, a nonfluctuating rise in [IP(3)](i) and repetitive IP(3) spikes during Ca(2+) oscillations in COS-7 cells and HSY-EA1 cells, respectively. The size of the IP(3) spikes in HSY-EA1 cells varied from 10 to 100 nm, and the [IP(3)](i) spike peak was preceded by a Ca(2+) spike peak. These results suggest that repetitive IP(3) spikes in HSY-EA1 cells are passive reflections of Ca(2+) oscillations, and are unlikely to be essential for driving Ca(2+) oscillations. In addition, the interspike periods of Ca(2+) oscillations that occurred during the slow rise in [IP(3)](i) were not shortened by the rise in [IP(3)](i), indicating that IP(3)-dependent and -independent mechanisms may regulate the frequency of Ca(2+) oscillations. The novel method described herein as well as the quantitative information obtained by using this method should provide a valuable and sound basis for future studies on the spatial and temporal regulations of IP(3) and Ca(2+).
Collapse
Affiliation(s)
- Akihiko Tanimura
- Departments of Pharmacology and Integrated Human Sciences, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Tanimura A, Morita T, Nezu A, Tojyo Y. Monitoring of IP3 dynamics during Ca2+ oscillations in HSY human parotid cell line with FRET-based IP3 biosensors. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56 Suppl:357-61. [DOI: 10.2152/jmi.56.357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Akihiko Tanimura
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| | - Takao Morita
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| | - Akihiro Nezu
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| | - Yosuke Tojyo
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido
| |
Collapse
|
46
|
Thomas AP. Optical methods in calcium signaling. Methods 2008; 46:141-2. [PMID: 19026968 DOI: 10.1016/j.ymeth.2008.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022] Open
|
47
|
Studying isoform-specific inositol 1,4,5-trisphosphate receptor function and regulation. Methods 2008; 46:177-82. [PMID: 18929664 DOI: 10.1016/j.ymeth.2008.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 09/12/2008] [Indexed: 11/23/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (InsP3R) are a family of ubiquitously expressed intracellular Ca2+ channels. Isoform-specific properties of the three family members may play a prominent role in defining the rich diversity of the spatial and temporal characteristics of intracellular Ca2+ signals. Studying the properties of the particular family members is complicated because individual receptor isoforms are typically never expressed in isolation. In this article, we discuss strategies for studying Ca2+ release through individual InsP3R family members with particular reference to methods applicable following expression of recombinant InsP3R and mutant constructs in the DT40-3KO cell line, an unambiguously null InsP3R expression system.
Collapse
|
48
|
Morgan AJ, Galione A. Investigating cADPR and NAADP in intact and broken cell preparations. Methods 2008; 46:194-203. [PMID: 18852050 DOI: 10.1016/j.ymeth.2008.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 09/12/2008] [Indexed: 11/26/2022] Open
Abstract
The body of literature characterizing cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) as Ca2+-mobilizing second messengers is growing apace. However, their unique properties may, for the uninitiated, make them difficult to work with. This article reviews many of the available techniques (and associated pitfalls) for investigating these nucleotide messengers, predominantly focusing upon optical techniques using fluorescent reporters to measure Ca2+ in the cytosol as well as Ca2+ or pH within the lumen of intracellular organelles.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxon OX1 3QT, UK.
| | | |
Collapse
|
49
|
Zhao G, Adebiyi A, Blaskova E, Xi Q, Jaggar JH. Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol 2008; 295:C1376-84. [PMID: 18799650 DOI: 10.1152/ajpcell.00362.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) regulate diverse physiological functions, including contraction and proliferation. There are three IP(3)R isoforms, but their functional significance in arterial smooth muscle cells is unclear. Here, we investigated relative expression and physiological functions of IP(3)R isoforms in cerebral artery smooth muscle cells. We show that 2-aminoethoxydiphenyl borate and xestospongin C, membrane-permeant IP(3)R blockers, reduced Ca(2+) wave activation and global intracellular Ca(2+) ([Ca(2+)](i)) elevation stimulated by UTP, a phospholipase C-coupled purinergic receptor agonist. Quantitative PCR, Western blotting, and immunofluorescence indicated that all three IP(3)R isoforms were expressed in acutely isolated cerebral artery smooth muscle cells, with IP(3)R1 being the most abundant isoform at 82% of total IP(3)R message. IP(3)R1 knockdown with short hairpin RNA (shRNA) did not alter baseline Ca(2+) wave frequency and global [Ca(2+)](i) but abolished UTP-induced Ca(2+) wave activation and reduced the UTP-induced global [Ca(2+)](i) elevation by approximately 61%. Antibodies targeting IP(3)R1 and IP(3)R1 knockdown reduced UTP-induced nonselective cation current (I(cat)) activation. IP(3)R1 knockdown also reduced UTP-induced vasoconstriction in pressurized arteries with both intact and depleted sarcoplasmic reticulum (SR) Ca(2+) by approximately 45%. These data indicate that IP(3)R1 is the predominant IP(3)R isoform expressed in rat cerebral artery smooth muscle cells. IP(3)R1 stimulation contributes to UTP-induced I(cat) activation, Ca(2+) wave generation, global [Ca(2+)](i) elevation, and vasoconstriction. In addition, IP(3)R1 activation constricts cerebral arteries in the absence of SR Ca(2+) release by stimulating plasma membrane I(cat).
Collapse
Affiliation(s)
- Guiling Zhao
- Dept. of Physiology, Univ. of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
50
|
Nakao K, Shirakawa H, Sugishita A, Matsutani I, Niidome T, Nakagawa T, Kaneko S. Ca2+mobilization mediated by transient receptor potential canonical 3 is associated with thrombin-induced morphological changes in 1321N1 human astrocytoma cells. J Neurosci Res 2008; 86:2722-32. [DOI: 10.1002/jnr.21711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|