1
|
Nan Y, Zhang M, Li Y, Bi Y. The G-protein alpha subunit AaGA1 positively regulates vegetative growth, appressorium-like formation, and pathogenicity in Alternaria alternata. J Appl Microbiol 2024; 135:lxae198. [PMID: 39104199 DOI: 10.1093/jambio/lxae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
AIMS The Gα subunit is a major component of heterotrimeric G proteins, which play a crucial role in the development and pathogenicity of several model fungi. However, its detailed function in the causal agent of pear black spot (Alternaria alternata) is unclear. Our aim was to understand the characteristics and functions of AaGA1 in A. alternata. METHODS AND RESULTS AaGA1 was cloned from A. alternata in this study, which encodes 353 amino acids and has a "G-alpha" domain. Mutant ΔAaGA1 resulted in reduced vegetative growth, conidiation, and spore germination. Especially, mutant ΔAaGA1 produced only fewer conidia on the V8A medium, and spore formation-related genes AbaA, BrlA, and WetA were significantly downregulated. More tolerance against cell wall-inhibiting agents was observed after the deletion of AaGA1. Moreover, AaGA1 deletion led to a significant reduction in melanin and toxin production. Interestingly, deletion of AaGA1 resulted in defective appressorium-like formations, complete loss of the ability to penetrate cellophane, and decreased infection on non-wound inoculated tobacco leaves. Cell wall-degrading enzyme-related genes PME, CL, Cut2, and LC were significantly downregulated in mutant ΔAaGA1 mutant, significantly reducing virulence on wound-inoculated pear fruits. CONCLUSIONS The G protein alpha subunit AaGA1 is indispensable for fungal development, appressorium-like formations, and pathogenicity in A. alternata.
Collapse
Affiliation(s)
- Yuanping Nan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Gan T, An H, Tang M, Chen H. Establishment of RNA Interference Genetic Transformation System and Functional Analysis of FlbA Gene in Leptographium qinlingensis. Int J Mol Sci 2023; 24:13009. [PMID: 37629189 PMCID: PMC10455979 DOI: 10.3390/ijms241613009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Leptographium qinlingensis is a pathogenic fungus of Pinus armandii that is epidemic in the Qinling Mountains. However, an effective gene interference strategy is needed to characterize the pathogenic genes in this fungus on a functional level. Using the RNA silencing vector pSilent-1 as a template, we established an RNA interference genetic transformation system mediated by Agrobacterium tumefaciens GV3101, which is suitable for the gene study for Leptographium qinlingensis by homologous recombination and strain interference system screening. The LqFlbA gene was silenced using the RNA interference approach described above, and the resulting transformants displayed various levels of silencing with a gene silencing effectiveness ranging from 41.8% to 91.4%. The LqFlbA-RNAi mutant displayed altered colony morphology, sluggish mycelium growth, and diminished pathogenicity toward the host P. armandii in comparison to the wild type. The results indicate that this method provides a useful reverse genetic system for studying the gene function of L. qinlingensis, and that LqFlbA plays a crucial role in the growth, development, and pathogenicity of L. qinlingensis.
Collapse
Affiliation(s)
| | | | | | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (H.A.); (M.T.)
| |
Collapse
|
3
|
Son YE, Yu JH, Park HS. Regulators of the Asexual Life Cycle of Aspergillus nidulans. Cells 2023; 12:1544. [PMID: 37296664 PMCID: PMC10253035 DOI: 10.3390/cells12111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key model organism, has been extensively studied to understand the mechanisms governing growth and development, physiology, and gene regulation in fungi. A. nidulans primarily reproduces by forming millions of asexual spores known as conidia. The asexual life cycle of A. nidulans can be simply divided into growth and asexual development (conidiation). After a certain period of vegetative growth, some vegetative cells (hyphae) develop into specialized asexual structures called conidiophores. Each A. nidulans conidiophore is composed of a foot cell, stalk, vesicle, metulae, phialides, and 12,000 conidia. This vegetative-to-developmental transition requires the activity of various regulators including FLB proteins, BrlA, and AbaA. Asymmetric repetitive mitotic cell division of phialides results in the formation of immature conidia. Subsequent conidial maturation requires multiple regulators such as WetA, VosA, and VelB. Matured conidia maintain cellular integrity and long-term viability against various stresses and desiccation. Under appropriate conditions, the resting conidia germinate and form new colonies, and this process is governed by a myriad of regulators, such as CreA and SocA. To date, a plethora of regulators for each asexual developmental stage have been identified and investigated. This review summarizes our current understanding of the regulators of conidial formation, maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Hee-Soo Park
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
da Silva LR, de Barros Rodrigues LL, Botelho AS, de Castro BS, Muniz PHPC, Moraes MCB, de Mello SCM. Colony Age of Trichoderma azevedoi Alters the Profile of Volatile Organic Compounds and Ability to Suppress Sclerotinia sclerotiorum in Bean Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:39-51. [PMID: 36760048 PMCID: PMC9929164 DOI: 10.5423/ppj.oa.08.2022.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important crops in human food production. The occurrence of diseases, such as white mold, caused by Sclerotinia sclerotiorum can limit the production of this legume. The use of Trichoderma has become an important strategy in the suppression of this disease. The aim of the present study was to evaluate the effect of volatile organic compounds (VOCs) emitted by Trichoderma azevedoi CEN1241 in five different growth periods on the severity of white mold in common bean. The in vitro assays were carried out in double-plate and split-plate, and the in vivo assays, through the exposure of the mycelia of S. sclerotiorum to the VOCs of T. azevedoi CEN1241 and subsequent inoculation in bean plants. Chemical analysis by gas chromatography coupled to mass spectrometry detected 37 VOCs produced by T. azevedoi CEN1241, covering six major chemical classes. The profile of VOCs produced by T. azevedoi CEN1241 varied according to colony age and was shown to be related to the ability of the biocontrol agent to suppress S. sclerotiorum. T. azevedoi CEN1241 VOCs reduced the size of S. sclerotiorum lesions on bean fragments in vitro and reduced disease severity in a greenhouse. This study demonstrated in a more applied way that the mechanism of antibiosis through the production of volatile compounds exerted by Trichoderma can complement other mechanisms, such as parasitism and competition, thus contributing to a better efficiency in the control of white mold in bean plants.
Collapse
Affiliation(s)
- Lincon Rafael da Silva
- Embrapa Genetic Resources and Biotechnology, Brasília/Federal District 70770-917,
Brazil
| | | | | | | | | | | | | |
Collapse
|
5
|
Moon H, Han KH, Yu JH. Upstream Regulation of Development and Secondary Metabolism in Aspergillus Species. Cells 2022; 12:cells12010002. [PMID: 36611796 PMCID: PMC9818462 DOI: 10.3390/cells12010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In filamentous fungal Aspergillus species, growth, development, and secondary metabolism are genetically programmed biological processes, which require precise coordination of diverse signaling elements, transcription factors (TFs), upstream and downstream regulators, and biosynthetic genes. For the last few decades, regulatory roles of these controllers in asexual/sexual development and primary/secondary metabolism of Aspergillus species have been extensively studied. Among a wide spectrum of regulators, a handful of global regulators govern upstream regulation of development and metabolism by directly and/or indirectly affecting the expression of various genes including TFs. In this review, with the model fungus Aspergillus nidulans as the central figure, we summarize the most well-studied main upstream regulators and their regulatory roles. Specifically, we present key functions of heterotrimeric G proteins and G protein-coupled receptors in signal transduction), the velvet family proteins governing development and metabolism, LaeA as a global regulator of secondary metabolism, and NsdD, a key GATA-type TF, affecting development and secondary metabolism and provide a snapshot of overall upstream regulatory processes underlying growth, development, and metabolism in Aspergillus fungi.
Collapse
Affiliation(s)
- Heungyun Moon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Systems Biotechnology, KonKuk University, Seoul 05029, Republic of Korea
- Correspondence:
| |
Collapse
|
6
|
Jia L, Huang Y, Yu JH, Stadler M, Shao Y, Chen W, Chen F. Characterization of key upstream asexual developmental regulators in Monascus ruber M7. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Karahoda B, Pardeshi L, Ulas M, Dong Z, Shirgaonkar N, Guo S, Wang F, Tan K, Sarikaya-Bayram Ö, Bauer I, Dowling P, Fleming AB, Pfannenstiel B, Luciano-Rosario D, Berger H, Graessle S, Alhussain MM, Strauss J, Keller NP, Wong KH, Bayram Ö. The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis. Nucleic Acids Res 2022; 50:9797-9813. [PMID: 36095118 PMCID: PMC9508808 DOI: 10.1093/nar/gkac744] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.
Collapse
Affiliation(s)
- Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mevlut Ulas
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Niranjan Shirgaonkar
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Shuhui Guo
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | | | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Dowling
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Brandon T Pfannenstiel
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | | | - Harald Berger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohamed M Alhussain
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
8
|
Mahata PK, Dass RS, Gunti L, Thorat PA. First report on the metabolic characterization of Sterigmatocystin production by select Aspergillus species from the Nidulantes section in Foeniculum vulgare. Front Microbiol 2022; 13:958424. [PMID: 36090109 PMCID: PMC9459157 DOI: 10.3389/fmicb.2022.958424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Spices are typically grown in climates that support the growth of toxigenic fungi and the production of mycotoxins. The Aspergilli described in this study, as well as the sterigmatocystin (STC) detected, are causes for concern due to their potential to induce food poisoning. One of the most well-known producers of the carcinogenic STC is Aspergillus nidulans. This research explores the occurrence of STC-producing fungi in Foeniculum vulgare, a spice that is marketed in India and other parts of the world. This innovative study details the mycotoxigenic potential of five Aspergilli belonging to Section Nidulantes, namely Aspergillus latus (02 isolates), Emericella quadrilineata (02 isolates), and Aspergillus nidulans (01 isolate), with respect to STC contamination. These five isolates of Aspergilli were screened to produce STC on yeast extract sucrose (YES) medium in a controlled environment with regard to light, temperature, pH, and humidity, among other variables. The expression patterns of regulatory genes, namely, aflR, laeA, pacC, fluG, flbA, pksA, and mtfA were studied on the Czapek–Dox agar (CDA) medium. STC biosynthesis by the test isolates was done in potato dextrose broth (PDB) under optimum conditions, followed by the extraction and purification of the broth using ethyl acetate. High-performance liquid chromatography (HPLC) with an ultraviolet (UV) detector was utilized to detect compounds in eluted samples. F. vulgare contains Aspergilli that have been shown to have mycotoxigenic potential, which can accumulate in the spice during its active growth and thereby cause the elaboration of mycotoxins.
Collapse
|
9
|
Tribelhorn K, Twarużek M, Soszczyńska E, Rau J, Baschien C, Straubinger RK, Ebel F, Ulrich S. Production of Satratoxin G and H Is Tightly Linked to Sporulation in Stachybotrys chartarum. Toxins (Basel) 2022; 14:515. [PMID: 36006177 PMCID: PMC9413001 DOI: 10.3390/toxins14080515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Stachybotrys chartarum is a toxigenic fungus that is frequently isolated from damp building materials or improperly stored forage. Macrocyclic trichothecenes and in particular satratoxins are the most potent mycotoxins known to be produced by this fungus. Exposure of humans or animals to these secondary metabolites can be associated with severe health problems. To assess the pathogenic potential of S. chartarum isolates, it is essential to cultivate them under conditions that reliably promote toxin production. Potato dextrose agar (PDA) was reported to be the optimal nutrition medium for satratoxin production. In this study, the growth of S. chartarum genotype S strains on PDA from two manufacturers led to divergent results, namely, well-grown and sporulating cultures with high satratoxin concentrations (20.8 ± 0.4 µg/cm2) versus cultures with sparse sporulation and low satratoxin production (0.3 ± 0.1 µg/cm2). This finding is important for any attempt to identify toxigenic S. chartarum isolates. Further experiments performed with the two media provided strong evidence for a link between satratoxin production and sporulation. A comparison of three-point and one-point cultures grown on the two types of PDA, furthermore, demonstrated an inter-colony communication that influences both sporulation and mycotoxin production of S. chartarum genotype S strains.
Collapse
Affiliation(s)
- Katharina Tribelhorn
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, 80539 Munich, Germany; (K.T.); (R.K.S.); (F.E.)
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85–064 Bydgoszcz, Poland; (M.T.); (E.S.)
| | - Ewelina Soszczyńska
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85–064 Bydgoszcz, Poland; (M.T.); (E.S.)
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency Stuttgart, 70736 Fellbach, Germany;
| | - Christiane Baschien
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| | - Reinhard K. Straubinger
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, 80539 Munich, Germany; (K.T.); (R.K.S.); (F.E.)
| | - Frank Ebel
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, 80539 Munich, Germany; (K.T.); (R.K.S.); (F.E.)
| | - Sebastian Ulrich
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonosis, LMU Munich, 80539 Munich, Germany; (K.T.); (R.K.S.); (F.E.)
| |
Collapse
|
10
|
Yang K, Geng Q, Luo Y, Xie R, Sun T, Wang Z, Qin L, Zhao W, Liu M, Li Y, Tian J. Dysfunction of FadA-cAMP signalling decreases Aspergillus flavus resistance to antimicrobial natural preservative Perillaldehyde and AFB1 biosynthesis. Environ Microbiol 2022; 24:1590-1607. [PMID: 35194912 DOI: 10.1111/1462-2920.15940] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 01/02/2023]
Abstract
Aspergillus flavus is an opportunistic fungal pathogen that colonizes agriculture crops with aflatoxin contamination. We found that Perillaldehyde (PAE) effectively inhibited A. flavus viability and aflatoxin production by inducing excess reactive oxygen species (ROS). Transcriptome analysis indicated that the Gα protein FadA was significantly induced by PAE. Functional characterization of FadA showed it is important for asexual development and aflatoxin biosynthesis by regulation of cAMP-PKA signalling. The ΔfadA mutant was more sensitive to PAE, while ΔpdeL and ΔpdeH mutants can tolerate excess PAE compared to wild-type A. flavus. Further RNA-sequence analysis showed that fadA was important for expression of genes involved in oxidation-reduction and cellular metabolism. The flow cytometry and fluorescence microscopy demonstrated that ΔfadA accumulated more concentration of ROS in cells, and the transcriptome data indicated that genes involved in ROS scavenging were downregulated in ΔfadA mutant. We further found that FadA participated in regulating response to extracellular environmental stresses by increasing phosphorylation levels of MAPK Kinase Slt2 and Hog1. Overall, our results indicated that FadA signalling engages in mycotoxin production and A. flavus resistance to antimicrobial PAE, which provide valuable information for controlling this fungus and AF biosynthesis in pre- and postharvest of agricultural crops.
Collapse
Affiliation(s)
- Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Qingru Geng
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yue Luo
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Rui Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tongzheng Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhen Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Ling Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Zhao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Man Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yongxin Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| |
Collapse
|
11
|
Li X, Ke Z, Xu S, Tang W, Liu Z. The G-protein alpha subunit CgGa1 mediates growth, sporulation, penetration and pathogenicity in Colletotrichum gloeosporioides. Microb Pathog 2021; 161:105254. [PMID: 34687840 DOI: 10.1016/j.micpath.2021.105254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022]
Abstract
Colletotrichum gloeosporioides is the main pathogen causing rubber anthracnose, which brings huge economic loss to the natural rubber industry. Heterotrimeric G proteins play a vital role in signal transduction in filamentous fungi, and G alpha subunits are the major component of G proteins. In this study, we characterize a group I Gα subunit CgGa1 in C. gloeosporioides as a homolog of MagB in Pyricularia oryzae. CgGa1 encodes a 353-amino acid protein and has a G_alpha domain. Deletion of CgGa1 results in reduced vegetative growth and conidia yield, and the mutant cannot produce a fruiting body. The CgGa1 deletion mutant also exhibits decreased conidial germination and appressorium formation significantly. Moreover, the mutant has an obvious deficiency in penetration and loses its virulence completely. Transcriptome analysis showed that CgGa1 could affect the expression of many genes related to carbohydrate metabolism, amino acid metabolism and signal transduction, etc. In conclusion, CgGa1 regulates growth, asexual and sexual sporulation, appressorium formation, penetration and pathogenicity of C. gloeosporioides.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Zhijian Ke
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Shuang Xu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Wen Tang
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Zhiqiang Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
12
|
Yan H, Zhou Z, Shim WB. Two regulators of G-protein signaling (RGS) proteins FlbA1 and FlbA2 differentially regulate fumonisin B1 biosynthesis in Fusarium verticillioides. Curr Genet 2021; 67:305-315. [PMID: 33392742 DOI: 10.1007/s00294-020-01140-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
Fumonisins are a group of mycotoxins produced by maize pathogen Fusarium verticillioides that pose health concerns to humans and animals. Yet we still lack a clear understanding of the mechanism of fumonisins regulation during pathogenesis. The heterotrimeric G protein complex, which consists of canonical subunits and various regulators of G-protein signaling (RGS) proteins, plays an important role in transducing signals under environmental stress. Earlier studies demonstrated that Gα and Gβ subunits are positive regulators of fumonisin B1 (FB1) biosynthesis and that two RGS genes, FvFlbA1 and FvFlbA2, were highly upregulated in Gβ deletion mutant ∆Fvgbb1. Notably, FvFlbA2 has a negative role in FB1 regulation. While many fungi contain a single copy of FlbA, F. verticillioides harbors two putative FvFlbA paralogs, FvFlbA1 and FvFlbA2. In this study, we further characterized functional roles of FvFlbA1 and FvFlbA2. While ∆FvflbA1 deletion mutant exhibited no significant defects, ∆FvflbA2 and ∆FvflbA2/A1 mutants showed thinner aerial hyphal growth while promoting FB1 production. FvFlbA2 is required for proper expression of key conidia regulation genes, including putative FvBRLA, FvWETA, and FvABAA, while suppressing FUM21, FUM1, and FUM8 expression. Split luciferase assays determined that FvFlbA paralogs interact with key heterotrimeric G protein components, which in turn will lead altered G-protein-mediated signaling pathways that regulate FB1 production and asexual development in F. verticillioides.
Collapse
Affiliation(s)
- Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Zehua Zhou
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Alam B, Lǐ J, Gě Q, Khan MA, Gōng J, Mehmood S, Yuán Y, Gǒng W. Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa? FRONTIERS IN PLANT SCIENCE 2021; 12:791033. [PMID: 34975976 PMCID: PMC8718612 DOI: 10.3389/fpls.2021.791033] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Endophytic fungi (EF) are a group of fascinating host-associated fungal communities that colonize the intercellular or intracellular spaces of host tissues, providing beneficial effects to their hosts while gaining advantages. In recent decades, accumulated research on endophytic fungi has revealed their biodiversity, wide-ranging ecological distribution, and multidimensional interactions with host plants and other microbiomes in the symbiotic continuum. In this review, we highlight the role of secondary metabolites (SMs) as effectors in these multidimensional interactions, and the biosynthesis of SMs in symbiosis via complex gene expression regulation mechanisms in the symbiotic continuum and via the mimicry or alteration of phytochemical production in host plants. Alternative biological applications of SMs in modern medicine, agriculture, and industry and their major classes are also discussed. This review recapitulates an introduction to the research background, progress, and prospects of endophytic biology, and discusses problems and substantive challenges that need further study.
Collapse
Affiliation(s)
- Beena Alam
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qún Gě
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mueen Alam Khan
- Department of Plant Breeding & Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur (IUB), Bahawalpur, Pakistan
| | - Jǔwǔ Gōng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shahid Mehmood
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yǒulù Yuán
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Wànkuí Gǒng,
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Yǒulù Yuán,
| |
Collapse
|
14
|
Functional Characterization of Core Regulatory Genes Involved in Sporulation of the Nematophagous Fungus Purpureocillium lavendulum. mSphere 2020; 5:5/5/e00932-20. [PMID: 33115838 PMCID: PMC8534313 DOI: 10.1128/msphere.00932-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nematophagous fungus Purpureocillium lavendulum is a natural enemy of plant-parasitic nematodes, which cause severe economic losses in agriculture worldwide. The production of asexual spores (conidia) in P. lavendulum is crucial for its biocontrol activity against nematodes. In this study, we characterized the core regulatory genes involved in conidiation of P. lavendulum at the molecular level. The central regulatory pathway is composed of three genes, P. lavendulumbrlA (PlbrlA), PlabaA, and PlwetA, which regulate the early, middle, and late stages of asexual development, respectively. The deletion of PlbrlA completely inhibited conidiation, with only conidiophore stalks produced. PlAbaA determines the differentiation of conidia from phialides. The deletion of PlwetA affected many phenotypes related to conidial maturation, including abscission of conidia from conidium strings, thickening of the cell wall layers, vacuole generation inside the cytoplasm, production of trehalose, tolerance to heat shock, etc. Comparative analyses showed that the upstream regulators of the core regulatory pathway of conidiation, especially the “fluffy” genes, were different from those in Aspergillus. Besides their roles in conidiation, the central regulators also influence the production of secondary metabolites, such as the leucinostatins, in P. lavendulum. Our study revealed a set of essential genes controlling conidiation in P. lavendulum and provided a framework for further molecular genetic studies on fungus-nematode interactions and for the biocontrol of plant-parasitic nematodes. IMPORTANCE Plant-parasitic nematodes cause serious damage to crops throughout the world. Purpureocillium lavendulum is a nematophagous fungus which is a natural enemy of nematodes and a potential biocontrol agent against plant-parasitic nematodes. The conidia play an important role during infection of nematodes. In this study, we identified and characterized genes involved in regulating asexual development of P. lavendulum. We found that these genes not only regulate conidiation but also influence secondary-metabolite production. This work provides a basis for future studies of fungus-nematode interactions and nematode biocontrol.
Collapse
|
15
|
Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans. Sci Rep 2020; 10:15075. [PMID: 32934285 PMCID: PMC7493923 DOI: 10.1038/s41598-020-72224-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/23/2020] [Indexed: 01/26/2023] Open
Abstract
McrA is a key transcription factor that functions as a global repressor of fungal secondary metabolism in Aspergillus species. Here, we report that mcrA is one of the VosA-VelB target genes and McrA governs the cellular and metabolic development in Aspergillus nidulans. The deletion of mcrA resulted in a reduced number of conidia and decreased mRNA levels of brlA, the key asexual developmental activator. In addition, the absence of mcrA led to a loss of long-term viability of asexual spores (conidia), which is likely associated with the lack of conidial trehalose and increased β-(1,3)-glucan levels in conidia. In supporting its repressive role, the mcrA deletion mutant conidia contain more amounts of sterigmatocystin and an unknown metabolite than the wild type conidia. While overexpression of mcrA caused the fluffy-autolytic phenotype coupled with accelerated cell death, deletion of mcrA did not fully suppress the developmental defects caused by the lack of the regulator of G-protein signaling protein FlbA. On the contrary to the cellular development, sterigmatocystin production was restored in the ΔflbA ΔmcrA double mutant, and overexpression of mcrA completely blocked the production of sterigmatocystin. Overall, McrA plays a multiple role in governing growth, development, spore viability, and secondary metabolism in A. nidulans.
Collapse
|
16
|
Tong Y, Wu H, Liu Z, Wang Z, Huang B. G-Protein Subunit Gα i in Mitochondria, MrGPA1, Affects Conidiation, Stress Resistance, and Virulence of Entomopathogenic Fungus Metarhizium robertsii. Front Microbiol 2020; 11:1251. [PMID: 32612588 PMCID: PMC7309505 DOI: 10.3389/fmicb.2020.01251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
G proteins are critical modulators or transducers in various transmembrane signaling systems. They play key roles in numerous biological processes in fungi, including vegetative growth, development of infection-related structures, asexual conidiation, and virulence. However, functions of G proteins in entomopathogenic fungi remain unclear. Here, we characterized the roles of MrGPA1, a G-protein subunit Gαi, in conidiation, stress resistance, and virulence in Metarhizium robertsii. MrGPA1 was localized in the mitochondria. MrGpa1 deletion resulted in a significant reduction (47%) in the conidiation capacity, and reduced expression of several key conidiation-related genes, including fluG, flbD, brlA, wetA, phiA, and stuA. Further, MrGpa1 disruption resulted in decreased fungal sensitivity to UV irradiation and thermal stress, as determined based on conidial germination of ΔMrGpa1 and wild-type (WT) strains. Chemical stress analysis indicated that MrGpa1 contributes to fungal antioxidant capacity and cell wall integrity, but is not involved in tolerance to antifungal drug and osmotic stress. Importantly, insect bioassays involving (topical inoculation and injection) of Galleria mellonella larvae revealed decreased virulence of ΔMrGpa1 strain after cuticle infection. This was accompanied by decreased rates of appressorium formation and reduced expression of several cuticle penetration-related genes. Further assays showed that MrGpa1 regulated intracellular cyclic AMP (cAMP) levels, but feeding with cAMP could not recover the appressorium formation rate of ΔMrGpa1. These observations suggest that MrGpa1 contributes to the regulation of conidiation, UV irradiation, thermal stress response, antioxidant capacity, and cell wall integrity in M. robertsii. This gene is also involved in insect cuticle penetration during infection. These findings raise the possibility of designing powerful strategies for genetic improvement of M. robertsii conidiation capacity and virulence for killing pests.
Collapse
Affiliation(s)
- Youmin Tong
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Hao Wu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Zhenbang Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhangxun Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
17
|
Comparative Characterization of G Protein α Subunits in Aspergillus fumigatus. Pathogens 2020; 9:pathogens9040272. [PMID: 32283604 PMCID: PMC7238038 DOI: 10.3390/pathogens9040272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Trimeric G proteins play a central role in the G protein signaling in filamentous fungi and Gα subunits are the major component of trimeric G proteins. In this study, we characterize three Gα subunits in the human pathogen Aspergillus fumigatus. While the deletion of gpaB and ganA led to reduced colony growth, the growth of the ΔgpaA strain was increased in minimal media. The germination rate, conidiation, and mRNA expression of key asexual development regulators were significantly decreased by the loss of gpaB. In contrast, the deletion of gpaA resulted in increased conidiation and mRNA expression levels of key asexual regulators. The deletion of gpaB caused a reduction in conidial tolerance against H2O2, but not in paraquat (PQ). Moreover, the ΔgpaB mutant showed enhanced susceptibility against membrane targeting azole antifungal drugs and reduced production of gliotoxin (GT). The protein kinase A (PKA) activity of the ΔganA strain was severely decreased and protein kinase C (PKC) activity was detected all strains at similar levels, indicating that all G protein α subunits of A. fumigatus may be a component of the cAMP/PKA signaling pathway and appear to possess the PKC signaling pathway as an alternative backup pathway to compensate for PKA depletion. Collectively, the three Gα subunits regulate growth, germination, asexual development, resistance to oxidative stress, and GT production differently via the PKA or PKC signaling pathway. The function of GanA of A. fumigatus was elucidated for the first time.
Collapse
|
18
|
Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins (Basel) 2020; 12:toxins12030150. [PMID: 32121226 PMCID: PMC7150809 DOI: 10.3390/toxins12030150] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.
Collapse
|
19
|
Patiño-Medina JA, Reyes-Mares NY, Valle-Maldonado MI, Jácome-Galarza IE, Pérez-Arques C, Nuñez-Anita RE, Campos-García J, Anaya-Martínez V, Ortiz-Alvarado R, Ramírez-Díaz MI, Chan Lee S, Garre V, Meza-Carmen V. Heterotrimeric G-alpha subunits Gpa11 and Gpa12 define a transduction pathway that control spore size and virulence in Mucor circinelloides. PLoS One 2019; 14:e0226682. [PMID: 31887194 PMCID: PMC6936849 DOI: 10.1371/journal.pone.0226682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mucor circinelloides is one of the causal agents of mucormycosis, an emerging and high mortality rate fungal infection produced by asexual spores (sporangiospores) of fungi that belong to the order Mucorales. M. circinelloides has served as a model genetic system to understand the virulence mechanism of this infection. Although the G-protein signaling cascade plays crucial roles in virulence in many pathogenic fungi, its roles in Mucorales are yet to be elucidated. Previous study found that sporangiospore size and calcineurin are related to the virulence in Mucor, in which larger spores are more virulent in an animal mucormycosis model and loss of a calcineurin A catalytic subunit CnaA results in larger spore production and virulent phenotype. The M. circinelloides genome is known to harbor twelve gpa (gpa1 to gpa12) encoding G-protein alpha subunits and the transcripts of the gpa11 and gpa12 comprise nearly 72% of all twelve gpa genes transcript in spores. In this study we demonstrated that loss of function of Gpa11 and Gpa12 led to larger spore size associated with reduced activation of the calcineurin pathway. Interestingly, we found lower levels of the cnaA mRNAs in sporangiospores from the Δgpa12 and double Δgpa11/Δgpa12 mutant strains compared to wild-type and the ΔcnaA mutant had significantly lower gpa11 and gpa12 mRNA levels compared to wild-type. However, in contrast to the high virulence showed by the large spores of ΔcnaA, the spores from Δgpa11/Δgpa12 were avirulent and produced lower tissue invasion and cellular damage, suggesting that the gpa11 and gpa12 define a signal pathway with two branches. One of the branches controls spore size through regulation of calcineurin pathway, whereas virulences is controlled by an independent pathway. This virulence-related regulatory pathway could control the expression of genes involved in cellular responses important for virulence, since sporangiospores of Δgpa11/Δgpa12 were less resistant to oxidative stress and phagocytosis by macrophages than the ΔcnaA and wild-type strains. The characterization of this pathway could contribute to decipher the signals and mechanism used by Mucorales to produce mucormycosis.
Collapse
Affiliation(s)
- J. Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Nancy Y. Reyes-Mares
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Marco I. Valle-Maldonado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Irvin E. Jácome-Galarza
- Departamento de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de Michoacán, Morelia, Michoacán, México
| | - Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, España
| | - Rosa E. Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás Hidalgo, Morelia, Michoacán, Mexico
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Verónica Anaya-Martínez
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Naucalpan de Juarez, Estado de México, México
| | - Rafael Ortiz-Alvarado
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, México
| | - Martha I. Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Soo Chan Lee
- Department of Biology, South Texas Center of Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, España
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
- * E-mail:
| |
Collapse
|
20
|
Wang P, Chang PK, Kong Q, Shan S, Wei Q. Comparison of aflatoxin production of Aspergillus flavus at different temperatures and media: Proteome analysis based on TMT. Int J Food Microbiol 2019; 310:108313. [DOI: 10.1016/j.ijfoodmicro.2019.108313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 01/10/2023]
|
21
|
Bosnjak N, Smith KM, Asaria I, Lahola-Chomiak A, Kishore N, Todd AT, Freitag M, Nargang FE. Involvement of a G Protein Regulatory Circuit in Alternative Oxidase Production in Neurospora crassa. G3 (BETHESDA, MD.) 2019; 9:3453-3465. [PMID: 31444295 PMCID: PMC6778808 DOI: 10.1534/g3.119.400522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
The Neurospora crassa nuclear aod-1 gene encodes an alternative oxidase that functions in mitochondria. The enzyme provides a branch from the standard electron transport chain by transferring electrons directly from ubiquinol to oxygen. In standard laboratory strains, aod-1 is transcribed at very low levels under normal growth conditions. However, if the standard electron transport chain is disrupted, aod-1 mRNA expression is induced and the AOD1 protein is produced. We previously identified a strain of N. crassa, that produces high levels of aod-1 transcript under non-inducing conditions. Here we have crossed this strain to a standard lab strain and determined the genomic sequences of the parents and several progeny. Analysis of the sequence data and the levels of aod-1 mRNA in uninduced cultures revealed that a frameshift mutation in the flbA gene results in the high uninduced expression of aod-1 The flbA gene encodes a regulator of G protein signaling that decreases the activity of the Gα subunit of heterotrimeric G proteins. Our data suggest that strains with a functional flbA gene prevent uninduced expression of aod-1 by inactivating a G protein signaling pathway, and that this pathway is activated in cells grown under conditions that induce aod-1 Induced cells with a deletion of the gene encoding the Gα protein still have a partial increase in aod-1 mRNA levels, suggesting a second pathway for inducing transcription of the gene in N. crassa We also present evidence that a translational control mechanism prevents production of AOD1 protein in uninduced cultures.
Collapse
Affiliation(s)
- Natasa Bosnjak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Iman Asaria
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Adrian Lahola-Chomiak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Nishka Kishore
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Andrea T Todd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Frank E Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| |
Collapse
|
22
|
Zhang Z, Lu Y, Xu W, Du Q, Sui L, Zhao Y, Li Q. RNA sequencing analysis of Beauveria bassiana isolated from Ostrinia furnacalis identifies the pathogenic genes. Microb Pathog 2019; 130:190-195. [DOI: 10.1016/j.micpath.2019.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/20/2019] [Accepted: 03/10/2019] [Indexed: 01/14/2023]
|
23
|
Chen Y, Kong Q, Liang Y. Three newly identified peptides from Bacillus megaterium strongly inhibit the growth and aflatoxin B1 production of Aspergillus flavus. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Pandit SS, Lohmar JM, Ahmed S, Etxebeste O, Espeso EA, Calvo AM. UrdA Controls Secondary Metabolite Production and the Balance between Asexual and Sexual Development in Aspergillus nidulans. Genes (Basel) 2018; 9:E570. [PMID: 30477161 PMCID: PMC6316066 DOI: 10.3390/genes9120570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023] Open
Abstract
The genus Aspergillus includes important plant pathogens, opportunistic human pathogens and mycotoxigenic fungi. In these organisms, secondary metabolism and morphogenesis are subject to a complex genetic regulation. Here we functionally characterized urdA, a gene encoding a putative helix-loop-helix (HLH)-type regulator in the model fungus Aspergillus nidulans. urdA governs asexual and sexual development in strains with a wild-type veA background; absence of urdA resulted in severe morphological alterations, with a significant reduction of conidial production and an increase in cleistothecial formation, even in the presence of light, a repressor of sex. The positive effect of urdA on conidiation is mediated by the central developmental pathway (CDP). However, brlA overexpression was not sufficient to restore wild-type conidiation in the ΔurdA strain. Heterologous complementation of ΔurdA with the putative Aspergillus flavus urdA homolog also failed to rescue conidiation wild-type levels, indicating that both genes perform different functions, probably reflected by key sequence divergence. UrdA also represses sterigmatocystin (ST) toxin production in the presence of light by affecting the expression of aflR, the activator of the ST gene cluster. Furthermore, UrdA regulates the production of several unknown secondary metabolites, revealing a broader regulatory scope. Interestingly, UrdA affects the abundance and distribution of the VeA protein in hyphae, and our genetics studies indicated that veA appears epistatic to urdA regarding ST production. However, the distinct fluffy phenotype of the ΔurdAΔveA double mutant suggests that both regulators conduct independent developmental roles. Overall, these results suggest that UrdA plays a pivotal role in the coordination of development and secondary metabolism in A. nidulans.
Collapse
Affiliation(s)
- Sandesh S Pandit
- Department of Biological Sciences, Northern Illinois University, 155 Castle Dr., Dekalb, IL 60115, USA.
| | - Jessica M Lohmar
- Department of Biological Sciences, Northern Illinois University, 155 Castle Dr., Dekalb, IL 60115, USA.
| | - Shawana Ahmed
- Department of Biological Sciences, Northern Illinois University, 155 Castle Dr., Dekalb, IL 60115, USA.
| | - Oier Etxebeste
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018 San Sebastian, Spain.
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Ana M Calvo
- Department of Biological Sciences, Northern Illinois University, 155 Castle Dr., Dekalb, IL 60115, USA.
| |
Collapse
|
25
|
Characterization of the velvet regulators in Aspergillus flavus. J Microbiol 2018; 56:893-901. [PMID: 30361976 DOI: 10.1007/s12275-018-8417-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Fungal development and secondary metabolism are closely associated via the activities of the fungal NK-kB-type velvet regulators that are highly conserved in filamentous fungi. Here, we investigated the roles of the velvet genes in the aflatoxigenic fungus Aspergillus flavus. Distinct from other Aspergillus species, the A. flavus genome contains five velvet genes, veA, velB, velC, velD, and vosA. The deletion of velD blocks the production of aflatoxin B1, but does not affect the formation of sclerotia. Expression analyses revealed that vosA and velB mRNAs accumulated at high levels during the late phase of asexual development and in conidia. The absence of vosA or velB decreased the content of conidial trehalose and the tolerance of conidia to the thermal and UV stresses. In addition, double mutant analyses demonstrated that VosA and VelB play an inter-dependent role in trehalose biosynthesis and conidial stress tolerance. Together with the findings of previous studies, the results of the present study suggest that the velvet regulators play the conserved and vital role in sporogenesis, conidial trehalose biogenesis, stress tolerance, and aflatoxin biosynthesis in A. flavus.
Collapse
|
26
|
Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism. PLoS Genet 2018; 14:e1007511. [PMID: 30044771 PMCID: PMC6078315 DOI: 10.1371/journal.pgen.1007511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 08/06/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
The NF-κB-like velvet domain protein VosA (viability of spores) binds to more than 1,500 promoter sequences in the filamentous fungus Aspergillus nidulans. VosA inhibits premature induction of the developmental activator gene brlA, which promotes asexual spore formation in response to environmental cues as light. VosA represses a novel genetic network controlled by the sclB gene. SclB function is antagonistic to VosA, because it induces the expression of early activator genes of asexual differentiation as flbC and flbD as well as brlA. The SclB controlled network promotes asexual development and spore viability, but is independent of the fungal light control. SclB interactions with the RcoA transcriptional repressor subunit suggest additional inhibitory functions on transcription. SclB links asexual spore formation to the synthesis of secondary metabolites including emericellamides, austinol as well as dehydroaustinol and activates the oxidative stress response of the fungus. The fungal VosA-SclB regulatory system of transcription includes a VosA control of the sclB promoter, common and opposite VosA and SclB control functions of fungal development and several additional regulatory genes. The relationship between VosA and SclB illustrates the presence of a convoluted surveillance apparatus of transcriptional control, which is required for accurate fungal development and the linkage to the appropriate secondary metabolism. Velvet domain proteins of filamentous fungi are structurally similar to Rel-homology domains of mammalian NF-κB proteins. Velvet and NF-κB proteins control regulatory circuits of downstream transcriptional networks for cellular differentiation, survival and stress responses. Velvet proteins interconnect developmental programs with secondary metabolism in fungi. The velvet protein VosA binds to more than ten percent of the Aspergillus nidulans promoters and is important for the spatial and temporal control of asexual spore formation from conidiophores. A novel VosA-dependent genetic network has been identified and is controlled by the zinc cluster protein SclB. Although zinc cluster proteins constitute one of the most abundant classes of transcription factors in fungi, only a small amount is characterized. SclB is a repression target of VosA and both transcription factors are part of a mutual control in the timely adjusted choreography of asexual sporulation in A. nidulans. SclB acts at the interphase of asexual development and secondary metabolism and interconnects both programs with an adequate oxidative stress response. This study underlines the complexity of different hierarchical levels of the fungal velvet protein transcriptional network for developmental programs and interconnected secondary metabolism.
Collapse
|
27
|
Jain S, Wiemann P, Thill E, Williams B, Keller NP, Kabbage M. A Bcl-2 Associated Athanogene ( bagA) Modulates Sexual Development and Secondary Metabolism in the Filamentous Fungus Aspergillus nidulans. Front Microbiol 2018; 9:1316. [PMID: 29963036 PMCID: PMC6013550 DOI: 10.3389/fmicb.2018.01316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
The Bcl-2 associated athanogene (Bag) family is a multifunctional group of proteins distinguished by a conserved region known as the Bag domain (BD). Herein, we discuss the discovery and characterization of a Bag protein in the model genetic fungus Aspergillus nidulans, we designated BagA. BagA shares striking similarities in 3D structure, domain organization, amino acid properties, and Hsp70 binding surfaces to animal and plant Bags. While Hsp70 binding is a common feature of Bag proteins, our experimental evidence shows that BagA does not cooperate with A. nidulans Hsp70s, suggesting this association may not be a universal feature of Bag proteins. Gene expression of bagA was strongly induced during sexual development suggesting a role in developmental processes. Accordingly, the deletion of bagA (ΔbagA) negatively impacted sexual development, while its overexpression resulted in constitutive induction of sexual fruiting bodies and spores. Asexual and sexual development was linked to secondary metabolism in A. nidulans. Our data show that the deletion of bagA also provoked an altered secondary metabolite (SM) profile in both sexual and vegetative growth phases. Indeed, LC-MS analysis showed a significant enrichment of SMs in ΔbagA, including novel metabolites not produced by wild type strain. Enrichment of SMs in ΔbagA strain is particularly intriguing and suggest that altering cellular homeostasis can be used as a provocative strategy to activate cryptic metabolites and uncover novel bioactive compounds. Overall, our results indicate that Bag proteins in filamentous fungi share developmental regulatory roles with their animal and plant counterparts. We also show a potentially unique role for BagA in modulating secondary metabolism in A. nidulans. To our knowledge, this study provides a first insight into Bag function in filamentous fungi.
Collapse
Affiliation(s)
- Sachin Jain
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth Thill
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
28
|
Meyer V, Jung S. Antifungal Peptides of the AFP Family Revisited: Are These Cannibal Toxins? Microorganisms 2018; 6:microorganisms6020050. [PMID: 29865265 PMCID: PMC6027536 DOI: 10.3390/microorganisms6020050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
The emergence and spread of pathogenic fungi resistant to currently used antifungal drugs represents a serious challenge for medicine and agriculture. The use of smart antimicrobials, so-called “dirty drugs” which affect multiple cellular targets, is one strategy to prevent resistance. Of special interest is the exploitation of the AFP family of antimicrobial peptides, which include its founding member AFP from Aspergillus giganteus. This latter is a highly potent inhibitor of chitin synthesis and affects plasma membrane integrity in many human and plant pathogenic fungi. A transcriptomic meta-analysis of the afp-encoding genes in A. giganteus and A. niger predicts a role for these proteins during asexual sporulation, autophagy, and nutrient recycling, suggesting that AFPs are molecules important for the survival of A. niger and A. giganteus under nutrient limitation. In this review, we discuss parallels which exist between AFPs and bacterial cannibal toxins and provide arguments that the primary function of AFPs could be to kill genetically identical siblings. We hope that this review inspires computational and experimental biologists studying alternative explanations for the nature and function of antimicrobial peptides beyond the general assumption that they are mere defense molecules to fight competitors.
Collapse
Affiliation(s)
- Vera Meyer
- Department Applied and Molecular Microbiology, Technische Universität Berlin, Institute of Biotechnology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Sascha Jung
- Department Applied and Molecular Microbiology, Technische Universität Berlin, Institute of Biotechnology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| |
Collapse
|
29
|
A MYST Histone Acetyltransferase Modulates Conidia Development and Secondary Metabolism in Pestalotiopsis microspora, a Taxol Producer. Sci Rep 2018; 8:8199. [PMID: 29844429 PMCID: PMC5974303 DOI: 10.1038/s41598-018-25983-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Reverse genetics is a promising strategy for elucidating the regulatory mechanisms involved in secondary metabolism and development in fungi. Previous studies have demonstrated the key role of histone acetyltransferases in transcriptional regulation. Here, we identified a MYST family histone acetyltransferase encoding gene, mst2, in the filamentous fungus Pestalotiopsis microspora NK17 and revealed its role in development and secondary metabolism. The gene mst2 showed temporal expression that corresponded to the conidiation process in the wild-type strain. Deletion of mst2 resulted in serious growth retardation and impaired conidial development, e.g., a delay and reduced capacity of conidiation and aberrant conidia. Overexpression of mst2 triggered earlier conidiation and higher conidial production. Additionally, deletion of mst2 led to abnormal germination of the conidia and caused cell wall defects. Most significantly, by HPLC profiling, we found that loss of mst2 diminished the production of secondary metabolites in the fungus. Our data suggest that mst2 may function as a general mediator in growth, secondary metabolism and morphological development.
Collapse
|
30
|
Yuan J, Chen Z, Guo Z, Li D, Zhang F, Shen J, Zhang Y, Wang S, Zhuang Z. PbsB Regulates Morphogenesis, Aflatoxin B1 Biosynthesis, and Pathogenicity of Aspergillus flavus. Front Cell Infect Microbiol 2018; 8:162. [PMID: 29868518 PMCID: PMC5966551 DOI: 10.3389/fcimb.2018.00162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
As an opportunistic pathogen, Aspergillus flavus is one of the major causes of food contamination around the world. In this study, pbsB gene knockout mutant (ΔpbsB) and pbsB overexpression strain (OE) of A. flavus were constructed by homologous recombination. The results showed that the mycelia growth, conidiation, and the formation of sclerotia in ΔpbsB mutant were significantly suppressed, and up-regulated in OE strian compared to wild-type strain (WT). Q-PCR analysis showed that PbsB regulated the sclerotia formation through sclerotia related gene nsdC. With TLC and qRT-PCR analysis, it was found that PbsB up-regulated the bio-synthesis of aflatoxin B1 (AFB1) through regulatory gene aflR and structural gene aflC, aflD, aflK, and aflQ in the aflatoxin gene cluster. In osmotic stress response analysis, ΔpbsB mutant was significantly more sensitive to osmotic pressure with 1.2 mol/L sorbitol, compared to WT and OE strains. In virulence analysis, the infection capacity of ΔpbsB strain to peanut and maize kernels decreased dramatically, and significantly fewer spores and lesser mycelia were produced in ΔpbsB strain on the surface of peanut and maize kernels, and the infection capacity of OE strain to kernels increased significantly compared with WT strain. The AFB1 bio-synthesis ability of A. flavus in crop invasion models was also found to be coincide with the expression level of pbsB. All the results of the study shows that, as a MAPKK, PbsB is critical for growth and virulence in A. flavus, and lay a theoretical foundation for the prevention and control of A. flavus contamination.
Collapse
Affiliation(s)
- Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqiang Guo
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ding Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaojiao Shen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
31
|
Gerin D, González-Candelas L, Ballester AR, Pollastro S, De Miccolis Angelini RM, Faretra F. Functional Characterization of the alb1 Orthologue Gene in the Ochratoxigenic Fungus Aspergillus carbonarius (AC49 strain). Toxins (Basel) 2018. [PMID: 29534508 PMCID: PMC5869408 DOI: 10.3390/toxins10030120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aspergillus carbonarius, belonging to the group Nigri, is the main species responsible for contamination by ochratoxin A (OTA) in grapes and derivative products. OTA can accumulate in the mycelium and in black conidia of the fungus and released into the matrix. Here, we have deleted in A. carbonarius the alb1 orthologue gene of A. fumigatus, involved in melanin biosynthesis. Three A. carbonarius Δalb1 mutants were characterized for morphologic traits and OTA production on different media and temperatures. Δalb1 mutants showed a fawn color of conidia associated with a significant reduction of the conidiogenesis and a statistically significant increase (p ≤ 0.01) of total OTA production as compared to the wild type (WT) strain. The alb1 gene somehow affected OTA partitioning since in Δalb1 mutants OTA amount was lower in conidia and was more abundantly secreted into the medium as compared to the WT. On grape berries the Δalb1 mutants and the WT caused lesions with similar sizes but OTA amount in berry tissues was higher for the mutants. These results demonstrate that A. carbonarius conidia pigmentation is largely dependent on polyketide biosynthesis. The gene is not directly involved in virulence and its deletion affects morphological features and OTA production in the fungus.
Collapse
Affiliation(s)
- Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy.
| | - Luis González-Candelas
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Calle Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Ana-Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Calle Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy.
- SELGE Network of Public Research Laboratories, via Amendola 165/A, 70126 Bari, Italy.
| | - Rita Milvia De Miccolis Angelini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy.
- SELGE Network of Public Research Laboratories, via Amendola 165/A, 70126 Bari, Italy.
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy.
- SELGE Network of Public Research Laboratories, via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
32
|
Liu Y, Yang K, Qin Q, Lin G, Hu T, Xu Z, Wang S. G Protein α Subunit GpaB is Required for Asexual Development, Aflatoxin Biosynthesis and Pathogenicity by Regulating cAMP Signaling in Aspergillus flavus. Toxins (Basel) 2018. [PMID: 29534423 PMCID: PMC5869405 DOI: 10.3390/toxins10030117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterotrimeric G proteins are critical for signal transduction and function in numerous biological processes including vegetative growth, asexual development and fungal virulence in fungi. Here, we identified four G protein alpha subunits (GanA, GpaB, FadA and GaoC) in the notorious Aflatoxin-producing fungus Aspergillus flavus. GanA, GpaB and FadA have homologues in other fungal species, while GaoC is a novel one. Here, we showed that the loss function of gpaB displayed a defect in conidiophore formation and considerably reduced expression levels of conidia-specific genes brlA and abaA. A decreased viability of cell wall integrity stress and oxidative stress were also found in the ∆gpaB mutant. More importantly, aflatoxin (AF) biosynthesis and infection on crop seeds were severely impaired in the gpaB-deficient mutant. Further analyses demonstrated that the intracellular cAMP levels significantly reduced in the gpaB-deficient mutant compared to wildtype strains. Additionally, an alteration of PKA activities in the ∆gpaB mutant was also found. Overall, our results indicated that GpaB played diverse roles in asexual sporulation, AF biosynthesis and virulence by regulating cAMP signaling in Aspergillus flavus.
Collapse
Affiliation(s)
- Yinghang Liu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Kunlong Yang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qiuping Qin
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Xiamen Anjie Medical Data Technology Co. Ltd., Xiamen 361115, China.
| | - Guinan Lin
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Tianran Hu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhangling Xu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
33
|
Bhatnagar D, Rajasekaran K, Gilbert M, Cary J, Magan N. Advances in molecular and genomic research to safeguard food and feed supply from aflatoxin contamination. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Worldwide recognition that aflatoxin contamination of agricultural commodities by the fungus Aspergillus flavus is a global problem has significantly benefitted from global collaboration for understanding the contaminating fungus, as well as for developing and implementing solutions against the contamination. The effort to address this serious food and feed safety issue has led to a detailed understanding of the taxonomy, ecology, physiology, genomics and evolution of A. flavus, as well as strategies to reduce or control pre-harvest aflatoxin contamination, including (1) biological control, using atoxigenic aspergilli, (2) proteomic and genomic analyses for identifying resistance factors in maize as potential breeding markers to enable development of resistant maize lines, and (3) enhancing host-resistance by bioengineering of susceptible crops, such as cotton, maize, peanut and tree nuts. A post-harvest measure to prevent the occurrence of aflatoxin contamination in storage is also an important component for reducing exposure of populations worldwide to aflatoxins in food and feed supplies. The effect of environmental changes on aflatoxin contamination levels has recently become an important aspect for study to anticipate future contamination levels. The ability of A. flavus to produce dozens of secondary metabolites, in addition to aflatoxins, has created a new avenue of research for understanding the role these metabolites play in the survival and biodiversity of this fungus. The understanding of A. flavus, the aflatoxin contamination problem, and control measures to prevent the contamination has become a unique example for an integrated approach to safeguard global food and feed safety.
Collapse
Affiliation(s)
- D. Bhatnagar
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - K. Rajasekaran
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - M. Gilbert
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - J.W. Cary
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - N. Magan
- Applied Mycology Group, Cranfield University, MK45 4DT, Cranfield, United Kingdom
| |
Collapse
|
34
|
Šimončicová J, Kaliňáková B, Kryštofová S. Aflatoxins: biosynthesis, prevention and eradication. ACTA CHIMICA SLOVACA 2017. [DOI: 10.1515/acs-2017-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Filamentous fungi belonging to Aspergilli genera produce many compounds through various biosynthetic pathways. These compounds include a spectrum of products with beneficial medical properties (lovastatin) as well as those that are toxic and/or carcinogenic which are called mycotoxins. Aspergillus flavus, one of the most abundant soil-borne fungi, is a saprobe that is able growing on many organic nutrient sources, such as peanuts, corn and cotton seed. In many countries, food contamination by A. flavus is a huge problem, mainly due to the production of the most toxic and carcinogenic compounds known as aflatoxins. In this paper, we briefly cover current progress in aflatoxin biosynthesis and regulation, pre- and postharvest preventive measures, and decontamination procedures.
Collapse
Affiliation(s)
- Juliana Šimončicová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava , Slovakia
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava Slovakia
| | - Svetlana Kryštofová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava Slovakia
| |
Collapse
|
35
|
Wee J, Hong SY, Roze LV, Day DM, Chanda A, Linz JE. The Fungal bZIP Transcription Factor AtfB Controls Virulence-Associated Processes in Aspergillus parasiticus. Toxins (Basel) 2017; 9:toxins9090287. [PMID: 28926946 PMCID: PMC5618220 DOI: 10.3390/toxins9090287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Fungal basic leucine zipper (bZIP) transcription factors mediate responses to oxidative stress. The ability to regulate stress response pathways in Aspergillus spp. was postulated to be an important virulence-associated cellular process, because it helps establish infection in humans, plants, and animals. Previous studies have demonstrated that the fungal transcription factor AtfB encodes a protein that is associated with resistance to oxidative stress in asexual conidiospores, and AtfB binds to the promoters of several stress response genes. Here, we conducted a gene silencing of AtfB in Aspergillus parasiticus, a well-characterized fungal pathogen of plants, animals, and humans that produces the secondary metabolite and carcinogen aflatoxin, in order to determine the mechanisms by which AtfB contributes to virulence. We show that AtfB silencing results in a decrease in aflatoxin enzyme levels, the down-regulation of aflatoxin accumulation, and impaired conidiospore development in AtfB-silenced strains. This observation is supported by a decrease of AtfB protein levels, and the down-regulation of many genes in the aflatoxin cluster, as well as genes involved in secondary metabolism and conidiospore development. Global expression analysis (RNA Seq) demonstrated that AtfB functionally links oxidative stress response pathways to a broader and novel subset of target genes involved in cellular defense, as well as in actin and cytoskeleton arrangement/transport. Thus, AtfB regulates the genes involved in development, stress response, and secondary metabolism in A. parasiticus. We propose that the bZIP regulatory circuit controlled by AtfB provides a large number of excellent cellular targets to reduce fungal virulence. More importantly, understanding key players that are crucial to initiate the cellular response to oxidative stress will enable better control over its detrimental impacts on humans.
Collapse
Affiliation(s)
- Josephine Wee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Sung-Yong Hong
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| | - Ludmila V Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Devin M Day
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| | - Anindya Chanda
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | - John E Linz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
36
|
Pfannenstiel BT, Zhao X, Wortman J, Wiemann P, Throckmorton K, Spraker JE, Soukup AA, Luo X, Lindner DL, Lim FY, Knox BP, Haas B, Fischer GJ, Choera T, Butchko RAE, Bok JW, Affeldt KJ, Keller NP, Palmer JM. Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus. mBio 2017; 8:e01246-17. [PMID: 28874473 PMCID: PMC5587912 DOI: 10.1128/mbio.01246-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022] Open
Abstract
The study of aflatoxin in Aspergillus spp. has garnered the attention of many researchers due to aflatoxin's carcinogenic properties and frequency as a food and feed contaminant. Significant progress has been made by utilizing the model organism Aspergillus nidulans to characterize the regulation of sterigmatocystin (ST), the penultimate precursor of aflatoxin. A previous forward genetic screen identified 23 A. nidulans mutants involved in regulating ST production. Six mutants were characterized from this screen using classical mapping (five mutations in mcsA) and complementation with a cosmid library (one mutation in laeA). The remaining mutants were backcrossed and sequenced using Illumina and Ion Torrent sequencing platforms. All but one mutant contained one or more sequence variants in predicted open reading frames. Deletion of these genes resulted in identification of mutant alleles responsible for the loss of ST production in 12 of the 17 remaining mutants. Eight of these mutations were in genes already known to affect ST synthesis (laeA, mcsA, fluG, and stcA), while the remaining four mutations (in laeB, sntB, and hamI) were in previously uncharacterized genes not known to be involved in ST production. Deletion of laeB, sntB, and hamI in A. flavus results in loss of aflatoxin production, confirming that these regulators are conserved in the aflatoxigenic aspergilli. This report highlights the multifaceted regulatory mechanisms governing secondary metabolism in Aspergillus Additionally, these data contribute to the increasing number of studies showing that forward genetic screens of fungi coupled with whole-genome resequencing is a robust and cost-effective technique.IMPORTANCE In a postgenomic world, reverse genetic approaches have displaced their forward genetic counterparts. The techniques used in forward genetics to identify loci of interest were typically very cumbersome and time-consuming, relying on Mendelian traits in model organisms. The current work was pursued not only to identify alleles involved in regulation of secondary metabolism but also to demonstrate a return to forward genetics to track phenotypes and to discover genetic pathways that could not be predicted through a reverse genetics approach. While identification of mutant alleles from whole-genome sequencing has been done before, here we illustrate the possibility of coupling this strategy with a genetic screen to identify multiple alleles of interest. Sequencing of classically derived mutants revealed several uncharacterized genes, which represent novel pathways to regulate and control the biosynthesis of sterigmatocystin and of aflatoxin, a societally and medically important mycotoxin.
Collapse
Affiliation(s)
| | - Xixi Zhao
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jennifer Wortman
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kurt Throckmorton
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph E Spraker
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra A Soukup
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xingyu Luo
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, U.S. Forest Service, Madison, Wisconsin, USA
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian Haas
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert A E Butchko
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Jin-Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katharyn J Affeldt
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, U.S. Forest Service, Madison, Wisconsin, USA
| |
Collapse
|
37
|
García-Rico RO, Gil-Durán C, Rojas-Aedo JF, Vaca I, Figueroa L, Levicán G, Chávez R. Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti. Fungal Biol 2017; 121:754-762. [DOI: 10.1016/j.funbio.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
38
|
Manfiolli AO, de Castro PA, dos Reis TF, Dolan S, Doyle S, Jones G, Riaño Pachón DM, Ulaş M, Noble LM, Mattern DJ, Brakhage AA, Valiante V, Silva-Rocha R, Bayram O, Goldman GH. Aspergillus fumigatusprotein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12770] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Affiliation(s)
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Stephen Dolan
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Sean Doyle
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gary Jones
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Diego M. Riaño Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas São Paulo Brazil
| | - Mevlüt Ulaş
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | | | - Derek J. Mattern
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Vito Valiante
- Leibniz Research Group-Biobricks of Microbial Natural Product Syntheses; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Ozgur Bayram
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
39
|
Guerriero G, Silvestrini L, Legay S, Maixner F, Sulyok M, Hausman JF, Strauss J. Deletion of the celA gene in Aspergillus nidulans triggers overexpression of secondary metabolite biosynthetic genes. Sci Rep 2017; 7:5978. [PMID: 28729615 PMCID: PMC5519750 DOI: 10.1038/s41598-017-05920-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022] Open
Abstract
Although much progress has been made in the study of cell wall biosynthetic genes in the model filamentous fungus Aspergillus nidulans, there are still targets awaiting characterization. An example is the gene celA (ANIA_08444) encoding a putative mixed linkage glucan synthase. To characterize the role of celA, we deleted it in A. nidulans, analyzed the phenotype of the mycelium and performed RNA-Seq. The strain shows a very strong phenotype, namely “balloons” along the hyphae and aberrant conidiophores, as well as an altered susceptibility to cell wall drugs. These data suggest a potential role of the gene in cell wall-related processes. The Gene Ontology term Enrichment analysis shows increased expression of secondary metabolite biosynthetic genes (sterigmatocystin in particular) in the deleted strain. Our results show that the deletion of celA triggers a strong phenotype reminiscent of cell wall-related aberrations and the upregulation of some secondary metabolite gene clusters in A. nidulans.
Collapse
Affiliation(s)
- Gea Guerriero
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg.
| | - Lucia Silvestrini
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, BOKU Campus, Tulln/Donau, A-3430, Austria
| | - Sylvain Legay
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Frank Maixner
- European Academy of Bozen/Bolzano (EURAC), Institute for Mummies and the Iceman, Bolzano, 39100, Italy
| | - Michael Sulyok
- University of Natural Resources and Life Sciences Vienna (BOKU), Department for Agrobiotechnology (IFA-Tulln), A-3430, Tulln, Austria
| | - Jean-Francois Hausman
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Joseph Strauss
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, BOKU Campus, Tulln/Donau, A-3430, Austria.
| |
Collapse
|
40
|
Feng X, Ramamoorthy V, Pandit SS, Prieto A, Espeso EA, Calvo AM. cpsA regulates mycotoxin production, morphogenesis and cell wall biosynthesis in the fungus Aspergillus nidulans. Mol Microbiol 2017; 105:1-24. [PMID: 28370587 PMCID: PMC5506848 DOI: 10.1111/mmi.13682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/21/2017] [Accepted: 03/26/2017] [Indexed: 01/07/2023]
Abstract
The model fungus Aspergillus nidulans synthesizes numerous secondary metabolites, including sterigmatocystin (ST). The production of this toxin is positively controlled by the global regulator veA. In the absence of veA (ΔveA), ST biosynthesis is blocked. Previously, we performed random mutagenesis in a ΔveA strain and identified revertant mutants able to synthesize ST, among them RM1. Complementation of RM1 with a genomic library revealed that the mutation occurred in a gene designated as cpsA. While in the ΔveA genetic background cpsA deletion restores ST production, in a veA wild-type background absence of cpsA reduces and delays ST biosynthesis decreasing the expression of ST genes. Furthermore, cpsA is also necessary for the production of other secondary metabolites, including penicillin, affecting the expression of PN genes. In addition, cpsA is necessary for normal asexual and sexual development. Chemical and microscopy analyses revealed that CpsA is found in cytoplasmic vesicles and it is required for normal cell wall composition and integrity, affecting adhesion capacity and oxidative stress sensitivity. The conservation of cpsA in Ascomycetes suggests that cpsA homologs might have similar roles in other fungal species.
Collapse
Affiliation(s)
- Xuehuan Feng
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| | - Vellaisamy Ramamoorthy
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA,Dept. of Plant Pathology Agricultural College and Research Institute Killikulam, Vallanadu - 628 252 Thoothukudi District Tamil Nadu, India
| | - Sandesh S. Pandit
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| | - Alicia Prieto
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA,Author to whom correspondence should be addressed [telephone: (815) 753-0451]; fax (815) 753-0461; ]
| |
Collapse
|
41
|
WetA bridges cellular and chemical development in Aspergillus flavus. PLoS One 2017; 12:e0179571. [PMID: 28658268 PMCID: PMC5489174 DOI: 10.1371/journal.pone.0179571] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/31/2017] [Indexed: 12/03/2022] Open
Abstract
Bridging cellular reproduction and survival is essential for all life forms. Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA→AbaA→WetA. Here, we report that WetA is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in Aspergillus flavus. The deletion of wetA results in the formation of conidia with defective cell walls and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. WetA is also required for normal vegetative growth, hyphal branching, and production of aflatoxins. Targeted and genome-wide expression analyses reveal that WetA exerts feedback control of brlA and that 5,700 genes show altered mRNA levels in the mutant conidia. Functional category analyses of differentially expressed genes in ΔwetA RNA-seq data indicate that WetA contributes to spore integrity and maturity by properly regulating the metabolic pathways of trehalose, chitin, α-(1,3)-glucan, β-(1,3)-glucan, melanin, hydrophobins, and secondary metabolism more generally. Moreover, 160 genes predicted to encode transcription factors are differentially expressed by the absence of wetA, suggesting that WetA may play a global regulatory role in conidial development. Collectively, we present a comprehensive model for developmental control that bridges spore differentiation and survival in A. flavus.
Collapse
|
42
|
Yu X, Liu H, Niu X, Akhberdi O, Wei D, Wang D, Zhu X. The Gα1-cAMP signaling pathway controls conidiation, development and secondary metabolism in the taxol-producing fungus Pestalotiopsis microspora. Microbiol Res 2017; 203:29-39. [PMID: 28754205 DOI: 10.1016/j.micres.2017.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/09/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022]
Abstract
G-protein-mediated signaling pathways regulate fungal morphogenesis, development and secondary metabolism. In this study, we report a gene, pgα1, that putatively encodes the α-subunit of a group I G protein in Pestalotiopsis microspora NK17, which is known to produce various secondary metabolites, including the antitumor drug taxol and pestalotiollide B (PB). Mutants of pgα1 showed retarded vegetative growth, aging of the mycelium, premature conidiation, deformed conidia, significantly increased melanin production, and a sharp decrease in PB production. The introduction of extra copies of pgα1 led to a different phenotype that was characterized by enhanced production of PB. qRT-PCR revealed that the expression of pks1, which encodes melanin polyketide synthase, an enzyme that is involved in 1, 8-dihydroxynaphthalene (DHN) melanin biosynthesis, was up regulated by 55-fold in the absence of pgα1. Changes in conidiation and PB production in pgα1 mutants were able to be restored by the addition of exogenous cAMP. The deficiencies of PB production and conidiation in Δpgα1 were not able to be rescued by deletion or overexpression of a previously reported histone deacetylase gene (hid1), suggesting that pgα1 is able to override the effect of hid1 on PB production and conidiation. Our results suggested that the G protein-cAMP pathway plays a critical role in vegetative growth as well as in asexual development of P. microspora.
Collapse
Affiliation(s)
- Xi Yu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Heng Liu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueliang Niu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Oren Akhberdi
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dongsheng Wei
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Wang
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
43
|
Hilton A, Zhang H, Yu W, Shim WB. Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane. THE PLANT PATHOLOGY JOURNAL 2017; 33:238-248. [PMID: 28592943 PMCID: PMC5461043 DOI: 10.5423/ppj.oa.02.2017.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 05/21/2023]
Abstract
Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-1α gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.
Collapse
Affiliation(s)
- Angelyn Hilton
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843-2132,
USA
| | - Huanming Zhang
- Bioenvironmental Science, Texas A&M University, College Station, TX 77843-2132,
USA
| | - Wenying Yu
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, People’s Republic of
China
| | - Won-Bo Shim
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843-2132,
USA
- Bioenvironmental Science, Texas A&M University, College Station, TX 77843-2132,
USA
- Corresponding author: Phone) +1-979-458-2190, FAX) +1-979-845-6483, E-mail)
| |
Collapse
|
44
|
Sabnam N, Roy Barman S. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus. Fungal Genet Biol 2017; 105:37-51. [PMID: 28576657 DOI: 10.1016/j.fgb.2017.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 11/26/2022]
Abstract
We have selected and characterized a unique Conserved Fungal-specific Extra-cellular Membrane-spanning (CFEM) domain containing PTH11 like G-protein coupled receptor (GPCR), which is responsible for Water wettability, Infection, Surface sensing and Hyper-conidiation (WISH). The pathogenicity gene WISH is predicted to encode a novel seven transmembrane protein in the rice blast fungus, Magnaporthe oryzae, one of the deadliest pathogens of rice. We generated knockout mutants through a homologous recombination-based method to understand the function of the gene. These mutants are nonpathogenic due to a defect in sensing hydrophobic surface and appressorium differentiation. The mutant failed to undergo early events of pathogenesis, and appressorium development is diminished on inductive hydrophobic surface and was unable to penetrate susceptible rice leaves. The Δwish mutant did not develop any appressorium, suggesting that WISH protein is required for appressorium morphogenesis and is also involved in host surface recognition. We examined various aspects of pathogenesis and the results indicated involvement of WISH in preventing autolysis of vegetative hyphae, determining surface hydrophobicity and maintenance of cell-wall integrity. WISH gene from M. oryzae strain B157 complemented the Δwish mutant, indicating functional authenticity. Exogenous activation of cellular signaling failed to suppress the defects in Δwish mutants. These findings suggest that WISH GPCR senses diverse extracellular signals to play multiple roles and might have effects on PTH11 and MPG1 genes especially as an upstream effector of appressorium differentiation. It is for the first time that a typical GPCR containing seven transmembrane helices involved in the early events of plant pathogenesis of M. oryzae has been functionally characterized.
Collapse
Affiliation(s)
- Nazmiara Sabnam
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | |
Collapse
|
45
|
Igbalajobi OA, Yu JH, Shin KS. Characterization of the rax1 gene encoding a putative regulator of G protein signaling in Aspergillus fumigatus. Biochem Biophys Res Commun 2017; 487:426-432. [PMID: 28427940 DOI: 10.1016/j.bbrc.2017.04.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
Abstract
The filamentous fungus Aspergillus fumigatus is the major cause of life threatening invasive aspergillosis, and its small hydrophobic asexual spores (conidia) are the major infection agent. To better understand biology of A. fumigatus, we have characterized the rax1 gene encoding a putative regulator of G protein signaling (RGS). The deletion (Δ) of rax1 results in restricted colony growth and highly reduced number of conidia in A. fumigatus. Transcript levels of the three central activators of asexual development abaA, brlA, and wetA are significantly reduced in the Δrax1 mutant. However, the Δrax1 conidia, but not vegetative cells, are specifically resistant against H2O2 stress. The Δrax1 conidia accumulate higher mRNA levels of sakA encoding a key MAP kinase for stress response. Moreover, the Δrax1 conidia contain over five-fold amount of trehalose, an osmolyte and protein/membrane protectant. Transmission electron microscopy analyses indicate that the Δrax1 conidia have the thicker melanized-outermost cell wall layer compared to those of wild-type. In summary, Rax1 positively controls growth and development, and modulates intracellular trehalose amount, cell wall melanin levels in conidia, and spore resistance to H2O2.
Collapse
Affiliation(s)
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, Madison WI53706, USA.
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 300-716, Republic of Korea.
| |
Collapse
|
46
|
Faustinelli PC, Palencia ER, Sobolev VS, Horn BW, Sheppard HT, Lamb MC, Wang XM, Scheffler BE, Martinez Castillo J, Arias RS. Study of the genetic diversity of the aflatoxin biosynthesis cluster in Aspergillus section Flavi using insertion/deletion markers in peanut seeds from Georgia, USA. Mycologia 2017; 109:200-209. [PMID: 28506119 DOI: 10.1080/00275514.2017.1307095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aflatoxins are among the most powerful carcinogens in nature. The major aflatoxin-producing fungi are Aspergillus flavus and A. parasiticus. Numerous crops, including peanut, are susceptible to aflatoxin contamination by these fungi. There has been an increased use of RNA interference (RNAi) technology to control phytopathogenic fungi in recent years. In order to develop molecular tools targeting specific genes of these fungi for the control of aflatoxins, it is necessary to obtain their genome sequences. Although high-throughput sequencing is readily available, it is still impractical to sequence the genome of every isolate. Thus, in this work, the authors proposed a workflow that allowed prescreening of 238 Aspergillus section Flavi isolates from peanut seeds from Georgia, USA. The aflatoxin biosynthesis cluster (ABC) of the isolates was fingerprinted at 25 InDel (insertion/deletion) loci using capillary electrophoresis. All isolates were tested for aflatoxins using ultra-high-performance liquid chromatography. The neighbor-joining, three-dimension (3D) principal coordinate, and Structure analyses revealed that the Aspergillus isolates sampled consisted of three main groups determined by their capability to produce aflatoxins. Group I comprised 10 non-aflatoxigenic A. flavus; Group II included A. parasiticus; and Group III included mostly aflatoxigenic A. flavus and the three non-aflatoxigenic A. caelatus. Whole genomes of 10 representative isolates from different groups were sequenced. Although InDels in Aspergillus have been used by other research groups, this is the first time that the cluster analysis resulting from fingerprinting was followed by whole-genome sequencing of representative isolates. In our study, cluster analysis of ABC sequences validated the results obtained with fingerprinting. This shows that InDels used here can predict similarities at the genome level. Our results also revealed a relationship between groups and their capability to produce aflatoxins. The database generated of Aspergillus spp. can be used to select target genes and assess the effectiveness of RNAi technology to reduce aflatoxin contamination in peanut.
Collapse
Affiliation(s)
- Paola C Faustinelli
- a National Peanut Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1011 Forrester Drive S.E., Dawson , Georgia 39842-0509
| | - Edwin R Palencia
- a National Peanut Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1011 Forrester Drive S.E., Dawson , Georgia 39842-0509
| | - Victor S Sobolev
- a National Peanut Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1011 Forrester Drive S.E., Dawson , Georgia 39842-0509
| | - Bruce W Horn
- a National Peanut Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1011 Forrester Drive S.E., Dawson , Georgia 39842-0509
| | - Hank T Sheppard
- a National Peanut Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1011 Forrester Drive S.E., Dawson , Georgia 39842-0509
| | - Marshall C Lamb
- a National Peanut Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1011 Forrester Drive S.E., Dawson , Georgia 39842-0509
| | - Xinye M Wang
- a National Peanut Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1011 Forrester Drive S.E., Dawson , Georgia 39842-0509
| | - Brian E Scheffler
- b Genomics and Bioinformatics Research Unit, Agricultural Research Service , United States Department of Agriculture , 141 Experiment Station Road, Stoneville , Mississippi 38776
| | - Jaime Martinez Castillo
- c Centro de Investigación Científica de Yucatán , A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida , Yucatán 97200 , México
| | - Renée S Arias
- a National Peanut Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1011 Forrester Drive S.E., Dawson , Georgia 39842-0509
| |
Collapse
|
47
|
Park HS, Jun SC, Han KH, Hong SB, Yu JH. Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:161-202. [PMID: 28732553 DOI: 10.1016/bs.aambs.2017.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The filamentous fungal genus Aspergillus consists of over 340 officially recognized species. A handful of these Aspergillus fungi are predominantly used for food fermentation and large-scale production of enzymes, organic acids, and bioactive compounds. These industrially important Aspergilli primarily belong to the two major Aspergillus sections, Nigri and Flavi. Aspergillus oryzae (section Flavi) is the most commonly used mold for the fermentation of soybeans, rice, grains, and potatoes. Aspergillus niger (section Nigri) is used in the industrial production of various enzymes and organic acids, including 99% (1.4 million tons per year) of citric acid produced worldwide. Better understanding of the genomes and the signaling mechanisms of key Aspergillus species can help identify novel approaches to enhance these commercially significant strains. This review summarizes the diversity, current applications, key products, and synthetic biology of Aspergillus fungi commonly used in industry.
Collapse
Affiliation(s)
- Hee-Soo Park
- Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | - Jae-Hyuk Yu
- University of Wisconsin, Madison, WI, United States
| |
Collapse
|
48
|
Horn BW, Dorner JW. Effect of competition and adverse culture conditions on aflatoxin production byAspergillus flavusthrough successive generations. Mycologia 2017. [DOI: 10.1080/15572536.2003.11833167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Joe W. Dorner
- National Peanut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Dawson, Georgia 31742
| |
Collapse
|
49
|
Wilkinson HH, Ramaswamy A, Sim SC, Keller NP. Increased conidiation associated with progression along the sterigmatocystin biosynthetic pathway. Mycologia 2017. [DOI: 10.1080/15572536.2005.11832867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Anitha Ramaswamy
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77845-2132
| | | | - Nancy P. Keller
- Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, Wisconsin 53706
| |
Collapse
|
50
|
Rohlfs M. Density-dependent insect-mold interactions: effects on fungal growth and spore production. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marko Rohlfs
- Zoological Institute, Department of Animal Ecology, Am Botanischen Garten 1–9, Christian-Albrechts-University of Kiel, D-24098 Kiel, Germany
| |
Collapse
|