1
|
Sarott RC, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman C Sarott
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Basel Karim
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Sabin Nettles
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brendan G Dwyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Hind Abuzaid
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Qin M, Fan W, Chen F, Ruan K, Liu D. Caprin1 Bridges PRMT1 to G3BP1 and Spaces Them to Ensure Proper Stress Granule Formation. J Mol Biol 2024; 436:168727. [PMID: 39079611 DOI: 10.1016/j.jmb.2024.168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Stress granules (SGs) are dynamic biomolecular condensates that form in the cytoplasm in response to cellular stress, encapsulating proteins and RNAs. Methylation is a key factor in the assembly of SGs, with PRMT1, which acts as an arginine methyltransferase, localizing to SGs. However, the precise mechanism of PRMT1 localization within SGs remains unknown. In this study, we identified that Caprin1 plays a primary role in the recruitment of PRMT1 to SGs, particularly through its C-terminal domain. Our findings demonstrate that Caprin1 serves a dual function as both a linker, facilitating the formation of a PRMT1-G3BP1 complex, and as a spacer, preventing the aberrant formation of SGs under non-stress conditions. This study sheds new lights on the regulatory mechanisms governing SG formation and suggests that Caprin1 plays a critical role in cellular responses to stress.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
Stohr AM, Ma D, Chen W, Blenner M. Engineering conditional protein-protein interactions for dynamic cellular control. Biotechnol Adv 2024; 77:108457. [PMID: 39343083 DOI: 10.1016/j.biotechadv.2024.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Conditional protein-protein interactions enable dynamic regulation of cellular activity and are an attractive approach to probe native protein interactions, improve metabolic engineering of microbial factories, and develop smart therapeutics. Conditional protein-protein interactions have been engineered to respond to various chemical, light, and nucleic acid-based stimuli. These interactions have been applied to assemble protein fragments, build protein scaffolds, and spatially organize proteins in many microbial and higher-order hosts. To foster the development of novel conditional protein-protein interactions that respond to new inputs or can be utilized in alternative settings, we provide an overview of the process of designing new engineered protein interactions while showcasing many recently developed computational tools that may accelerate protein engineering in this space.
Collapse
Affiliation(s)
- Anthony M Stohr
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Derron Ma
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
4
|
Leandro K, Rufino-Ramos D, Breyne K, Di Ianni E, Lopes SM, Jorge Nobre R, Kleinstiver BP, Perdigão PRL, Breakefield XO, Pereira de Almeida L. Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads. Adv Drug Deliv Rev 2024; 211:115346. [PMID: 38849005 PMCID: PMC11366383 DOI: 10.1016/j.addr.2024.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.
Collapse
Affiliation(s)
- Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Emilio Di Ianni
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Pedro R L Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
5
|
Yang Y, Ivanov DG, Levin MD, Olenyuk B, Cordova-Robles O, Cederstrom B, Schnitzer JE, Kaltashov IA. Characterization of Large Immune Complexes with Size Exclusion Chromatography and Native Mass Spectrometry Supplemented with Gas Phase Ion Chemistry. Anal Chem 2024. [PMID: 38319243 DOI: 10.1021/acs.analchem.3c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Large immune complexes formed by the cross-linking of antibodies with polyvalent antigens play critical roles in modulating cell-mediated immunity. While both the size and the shape of immune complexes are important determinants in Fc receptor-mediated signaling responsible for phagocytosis, degranulation, and, in some instances, autoimmune pathologies, their characterization remains extremely challenging due to their large size and structural heterogeneity. We use native mass spectrometry (MS) supplemented with limited charge reduction in the gas phase to determine the stoichiometry of immune complexes formed by a bivalent (homodimeric) antigen, a 163 kDa aminopeptidase P2 (APP2), and a monoclonal antibody (mAb) to APP2. The observed (APP2·mAb)n complexes populate a wide range of stoichiometries (n = 1-4) with the largest detected species exceeding 1 MDa, although the gas-phase dissociation products are also evident in the mass spectra. While frequently considering a nuisance that complicates interpretation of native MS data, limited dissociation provides an additional dimension for characterization of the immune complex quaternary structure. APP2/mAb associations with identical composition but slightly different elution times in size exclusion chromatography exhibit notable differences in their spontaneous fragmentation profiles. The latter indicates the presence of both extended linear and cyclized (APP2·mAb)n configurations. The unique ability of MS to distinguish between such isomeric structures will be invaluable for a variety of applications where the biological effects of immune complexes are determined by their ability to assemble Fc receptor clusters of certain density on cell surfaces, such as platelet activation by clustering the low-affinity receptors FcγRIIa on their surface.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Michael D Levin
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Oscar Cordova-Robles
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
6
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Borrowing Transcriptional Kinases to Activate Apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563687. [PMID: 37961702 PMCID: PMC10634765 DOI: 10.1101/2023.10.23.563687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Protein kinases are disease drivers whose therapeutic targeting traditionally centers on inhibition of enzymatic activity. Here chemically induced proximity is leveraged to convert kinase inhibitors into context-specific activators of therapeutic genes. Bivalent molecules that link ligands of the transcription factor B-cell lymphoma 6 (BCL6) to ATP-competitive inhibitors of cyclin-dependent kinases (CDKs) were developed to re-localize CDK to BCL6-bound loci on chromatin and direct phosphorylation of RNA Pol II. The resulting BCL6-target proapoptotic gene expression translated into killing of diffuse large B-cell lymphoma (DLBCL) cells at 72 h with EC50s of 0.9 - 10 nM and highly specific ablation of the BCL6-regulated germinal center response in mice. The molecules exhibited 10,000-fold lower cytotoxicity in normal lymphocytes and are well tolerated in mice. Genomic and proteomic evidence corroborated a gain-of-function mechanism where, instead of global enzyme inhibition, a fraction of total kinase activity is borrowed and re-localized to BCL6-bound loci. The strategy demonstrates how kinase inhibitors can be used to context-specifically activate transcription, accessing new therapeutic space.
Collapse
|
7
|
Gourisankar S, Krokhotin A, Ji W, Liu X, Chang CY, Kim SH, Li Z, Wenderski W, Simanauskaite JM, Yang H, Vogel H, Zhang T, Green MR, Gray NS, Crabtree GR. Rewiring cancer drivers to activate apoptosis. Nature 2023; 620:417-425. [PMID: 37495688 DOI: 10.1038/s41586-023-06348-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 06/20/2023] [Indexed: 07/28/2023]
Abstract
Genes that drive the proliferation, survival, invasion and metastasis of malignant cells have been identified for many human cancers1-4. Independent studies have identified cell death pathways that eliminate cells for the good of the organism5,6. The coexistence of cell death pathways with driver mutations suggests that the cancer driver could be rewired to activate cell death using chemical inducers of proximity (CIPs). Here we describe a new class of molecules called transcriptional/epigenetic CIPs (TCIPs) that recruit the endogenous cancer driver, or a downstream transcription factor, to the promoters of cell death genes, thereby activating their expression. We focused on diffuse large B cell lymphoma, in which the transcription factor B cell lymphoma 6 (BCL6) is deregulated7. BCL6 binds to the promoters of cell death genes and epigenetically suppresses their expression8. We produced TCIPs by covalently linking small molecules that bind BCL6 to those that bind to transcriptional activators that contribute to the oncogenic program, such as BRD4. The most potent molecule, TCIP1, increases binding of BRD4 by 50% over genomic BCL6-binding sites to produce transcriptional elongation at pro-apoptotic target genes within 15 min, while reducing binding of BRD4 over enhancers by only 10%, reflecting a gain-of-function mechanism. TCIP1 kills diffuse large B cell lymphoma cell lines, including chemotherapy-resistant, TP53-mutant lines, at EC50 of 1-10 nM in 72 h and exhibits cell-specific and tissue-specific effects, capturing the combinatorial specificity inherent to transcription. The TCIP concept also has therapeutic applications in regulating the expression of genes for regenerative medicine and developmental disorders.
Collapse
MESH Headings
- Humans
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Proteins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Proto-Oncogene Proteins c-bcl-6/genetics
- Proto-Oncogene Proteins c-bcl-6/metabolism
- Transcription Factors/metabolism
- Epigenesis, Genetic/drug effects
- Promoter Regions, Genetic
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Wenzhi Ji
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Xiaofan Liu
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Samuel H Kim
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | | - Haopeng Yang
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA.
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
A chemogenetic platform for controlling plasma membrane signaling and synthetic signal oscillation. Cell Chem Biol 2022; 29:1446-1464.e10. [PMID: 35835118 DOI: 10.1016/j.chembiol.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 12/31/2022]
Abstract
Chemogenetic methods enabling the rapid translocation of specific proteins to the plasma membrane (PM) in a single protein-single ligand manner are useful tools in cell biology. We recently developed a technique, in which proteins fused to an Escherichia coli dihydrofolate reductase (eDHFR) variant carrying N-terminal hexalysine residues are recruited from the cytoplasm to the PM using the synthetic myristoyl-d-Cys-tethered trimethoprim (mDcTMP) ligand. However, this system achieved PM-specific translocation only when the eDHFR tag was fused to the N terminus of proteins, thereby limiting its application. In this report, we engineered a universal PM-targeting tag for mDcTMP-induced protein translocation by grafting the hexalysine motif into an intra-loop region of eDHFR. We demonstrate the broad applicability of the new loop-engineered eDHFR tag and mDcTMP pair for conditional PM recruitment and activation of various tag-fused signaling proteins with different fusion configurations and for reversibly and repeatedly controlling protein localization to generate synthetic signal oscillations.
Collapse
|
9
|
Dine E, Reed EH, Toettcher JE. Positive feedback between the T cell kinase Zap70 and its substrate LAT acts as a clustering-dependent signaling switch. Cell Rep 2021; 35:109280. [PMID: 34161759 PMCID: PMC8292983 DOI: 10.1016/j.celrep.2021.109280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Protein clustering is pervasive in cell signaling, yet how signaling from higher-order assemblies differs from simpler forms of molecular organization is still poorly understood. We present an optogenetic approach to switch between oligomers and heterodimers with a single point mutation. We apply this system to study signaling from the kinase Zap70 and its substrate linker for activation of T cells (LAT), proteins that normally form membrane-localized condensates during T cell activation. We find that fibroblasts expressing synthetic Zap70:LAT clusters activate downstream signaling, whereas one-to-one heterodimers do not. We provide evidence that clusters harbor a positive feedback loop among Zap70, LAT, and Src-family kinases that binds phosphorylated LAT and further activates Zap70. Finally, we extend our optogenetic approach to the native T cell signaling context, where light-induced LAT clustering is sufficient to drive a calcium response. Our study reveals a specific signaling function for protein clusters and identifies a biochemical circuit that robustly senses protein oligomerization state. Dine et al. study how different modes of molecular organization contribute to cell signaling using the kinase Zap70 and its substrate LAT as a model system. Optogenetic manipulation reveals that LAT:Zap70 clusters—but not dimers—trigger potent signaling via localized positive feedback among LAT, Zap70, and Src-family kinases.
Collapse
Affiliation(s)
- Elliot Dine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan.
| |
Collapse
|
10
|
Richard TJC, Herzog LK, Vornberger J, Rahmanto AS, Sangfelt O, Salomons FA, Dantuma NP. K63-linked ubiquitylation induces global sequestration of mitochondria. Sci Rep 2020; 10:22334. [PMID: 33339882 PMCID: PMC7749161 DOI: 10.1038/s41598-020-78845-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Even though K63-linked polyubiquitin chains do not target proteins for proteasomal degradation, they play nevertheless a complementary protective role in maintaining protein homeostasis by directing malfunctioning proteins and organelles to inclusion bodies or autophagosomes. A paradigm for this process is the sequestration and autophagic degradation of dysfunctional mitochondria. Although studies have shown that K63-ubiquitylation of mitochondrial proteins by the ubiquitin ligase Parkin is important in this process, it is presently not clear if this modification also suffices to initiate this cascade of events. To address this question, we have engineered the ubiquitin ligase ProxE3, which in an inducible manner synthesizes K63-linked ubiquitin chains on the surface of mitochondria. We found that the presence of K63-linked ubiquitin chains on mitochondria resulted in the recruitment of the ubiquitin adaptor p62 and induced a dramatic redistribution of mitochondria, which was reminiscent to the Parkin-facilitated sequestration in response to mitochondrial uncoupler. However, ProxE3 did not induce autophagic degradation of mitochondria. Our data show that K63-linked ubiquitin chains at the mitochondrial membrane are sufficient for the induction of mitochondrial sequestration, but not mitophagy, without the need of extrinsically inflicting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thibaud J C Richard
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Laura K Herzog
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Julia Vornberger
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Aldwin Suryo Rahmanto
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Florian A Salomons
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden.
| |
Collapse
|
11
|
Tran T, Mitra J, Ha T, Kavran JM. Increasing kinase domain proximity promotes MST2 autophosphorylation during Hippo signaling. J Biol Chem 2020; 295:16166-16179. [PMID: 32994222 DOI: 10.1074/jbc.ra120.015723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
The Hippo pathway plays an important role in developmental biology, mediating organ size by controlling cell proliferation through the activity of a core kinase cassette. Multiple upstream events activate the pathway, but how each controls this core kinase cassette is not fully understood. Activation of the core kinase cassette begins with phosphorylation of the kinase MST1/2 (also known as STK3/4). Here, using a combination of in vitro biochemistry and cell-based assays, including chemically induced dimerization and single-molecule pulldown, we revealed that increasing the proximity of adjacent kinase domains, rather than formation of a specific protein assembly, is sufficient to trigger autophosphorylation. We validate this mechanism in cells and demonstrate that multiple events associated with the active pathway, including SARAH domain-mediated homodimerization, membrane recruitment, and complex formation with the effector protein SAV1, each increase the kinase domain proximity and autophosphorylation of MST2. Together, our results reveal that multiple and distinct upstream signals each utilize the same common molecular mechanism to stimulate MST2 autophosphorylation. This mechanism is likely conserved among MST2 homologs. Our work also highlights potential differences in Hippo signal propagation between each activating event owing to differences in the dynamics and regulation of each protein ensemble that triggers MST2 autophosphorylation and possible redundancy in activation.
Collapse
Affiliation(s)
- Thao Tran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; T. C. Jenkins Department of Biophysics, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Jennifer M Kavran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
Heath N, Osteikoetxea X, de Oliveria TM, Lázaro-Ibáñez E, Shatnyeva O, Schindler C, Tigue N, Mayr LM, Dekker N, Overman R, Davies R. Endosomal escape enhancing compounds facilitate functional delivery of extracellular vesicle cargo. Nanomedicine (Lond) 2019; 14:2799-2814. [DOI: 10.2217/nnm-2019-0061] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Extracellular vesicles (EVs) are desirable delivery vehicles for therapeutic cargoes. We aimed to load EVs with Cre recombinase protein and determine whether functional delivery to cells could be improved by using endosomal escape enhancing compounds. Materials & methods: Overexpressed CreFRB protein was actively loaded into EVs by rapalog-induced dimerization to CD81FKBP, or passively loaded by overexpression in the absence of rapalog. Functional delivery of CreFRB was analysed using a HEK293 Cre reporter cell line in the absence and presence of endosomal escape enhancing compounds. Results: The EVs loaded with CreFRB by both active and passive mechanisms were able to deliver functional CreFRB to recipient cells only in the presence of endosomal escape enhancing compounds chloroquine and UNC10217938A. Conclusion: The use of endosomal escape enhancing compounds in conjunction with EVs loaded with therapeutic cargoes may improve efficacy of future EV based therapeutics.
Collapse
Affiliation(s)
- Nikki Heath
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Alderley Park, UK
| | - Xabier Osteikoetxea
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Alderley Park, UK
| | | | - Elisa Lázaro-Ibáñez
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Olga Shatnyeva
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christina Schindler
- Antibody Discovery & Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Granta Park, Cambridge, UK
| | - Natalie Tigue
- Antibody Discovery & Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Granta Park, Cambridge, UK
| | - Lorenz M Mayr
- GE Healthcare Life Sciences, The Grove Centre, White Lion Road, Amersham, UK
| | - Niek Dekker
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ross Overman
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Alderley Park, UK
| | - Rick Davies
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Alderley Park, UK
| |
Collapse
|
13
|
Gesicle-Mediated Delivery of CRISPR/Cas9 Ribonucleoprotein Complex for Inactivating the HIV Provirus. Mol Ther 2018; 27:151-163. [PMID: 30389355 DOI: 10.1016/j.ymthe.2018.10.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Investigators have utilized the CRISPR/Cas9 gene-editing system to specifically target well-conserved regions of HIV, leading to decreased infectivity and pathogenesis in vitro and ex vivo. We utilized a specialized extracellular vesicle termed a "gesicle" to efficiently, yet transiently, deliver Cas9 in a ribonucleoprotein form targeting the HIV long terminal repeat (LTR). Gesicles are produced through expression of vesicular stomatitis virus glycoprotein and package protein as their cargo, thus bypassing the need for transgene delivery, and allowing finer control of Cas9 expression. Using both NanoSight particle and western blot analysis, we verified production of Cas9-containing gesicles by HEK293FT cells. Application of gesicles to CHME-5 microglia resulted in rapid but transient transfer of Cas9 by western blot, which is present at 1 hr, but is undetectable by 24 hr post-treatment. Gesicle delivery of Cas9 protein preloaded with guide RNA targeting the HIV LTR to HIV-NanoLuc CHME-5 cells generated mutations within the LTR region and copy number loss. Finally, we demonstrated that this treatment resulted in reduced proviral activity under basal conditions and after stimulation with pro-inflammatory factors lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). These data suggest that gesicles are a viable alternative approach to deliver CRISPR/Cas9 technology.
Collapse
|
14
|
Chen-Wichmann L, Shvartsman M, Preiss C, Hockings C, Windisch R, Redondo Monte E, Leubolt G, Spiekermann K, Lausen J, Brendel C, Grez M, Greif PA, Wichmann C. Compatibility of RUNX1/ETO fusion protein modules driving CD34+ human progenitor cell expansion. Oncogene 2018; 38:261-272. [PMID: 30093631 DOI: 10.1038/s41388-018-0441-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 06/14/2018] [Accepted: 07/24/2018] [Indexed: 11/09/2022]
Abstract
Chromosomal translocations represent frequent events in leukemia. In t(8;21)+ acute myeloid leukemia, RUNX1 is fused to nearly the entire ETO protein, which contains four conserved nervy homology regions, NHR1-4. Furthermore RUNX1/ETO interacts with ETO-homologous proteins via NHR2, thereby multiplying NHR domain contacts. As shown recently, RUNX1/ETO retains oncogenic activity upon either deletion of the NHR3 + 4 N-CoR/SMRT interaction domain or substitution of the NHR2 tetramer domain. Thus, we aimed to clarify the specificities of the NHR domains. A C-terminally NHR3 + 4 truncated RUNX1/ETO containing a heterologous, structurally highly related non-NHR2 tetramer interface translocated into the nucleus and bound to RUNX1 consensus motifs. However, it failed to interact with ETO-homologues, repress RUNX1 targets, and transform progenitors. Surprisingly, transforming capacity was fully restored by C-terminal fusion with ETO's NHR4 zinc-finger or the repressor domain 3 of N-CoR, while other repression domains failed. With an inducible protein assembly system, we further demonstrated that NHR4 domain activity is critically required early in the establishment of progenitor cultures expressing the NHR2 exchanged truncated RUNX1/ETO. Together, we can show that NHR2 and NHR4 domains can be replaced by heterologous protein domains conferring tetramerization and repressor functions, thus showing that the NHR2 and NHR4 domain structures do not have irreplaceable functions concerning RUNX1/ETO activity for the establishment of human CD34+ cell expansion. We could resemble the function of RUNX1/ETO through modular recomposition with protein domains from RUNX1, ETO, BCR and N-CoR without any NHR2 and NHR4 sequences. As most transcriptional repressor proteins do not comprise tetramerization domains, our results provide a possible explanation as to the reason that RUNX1 is recurrently found translocated to ETO family members, which all contain tetramer together with transcriptional repressor moieties.
Collapse
Affiliation(s)
- Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilians University Hospital Munich, Munich, Germany
| | - Marina Shvartsman
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilians University Hospital Munich, Munich, Germany
| | - Caro Preiss
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilians University Hospital Munich, Munich, Germany
| | - Colin Hockings
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Roland Windisch
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilians University Hospital Munich, Munich, Germany
| | - Enric Redondo Monte
- Department of Internal Medicine 3, Ludwig-Maximilians University Hospital Munich, Munich, Germany
| | - Georg Leubolt
- Department of Internal Medicine 3, Ludwig-Maximilians University Hospital Munich, Munich, Germany
| | - Karsten Spiekermann
- Department of Internal Medicine 3, Ludwig-Maximilians University Hospital Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Christian Brendel
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Philipp A Greif
- Department of Internal Medicine 3, Ludwig-Maximilians University Hospital Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilians University Hospital Munich, Munich, Germany.
| |
Collapse
|
15
|
Stanton BZ, Chory EJ, Crabtree GR. Chemically induced proximity in biology and medicine. Science 2018; 359:359/6380/eaao5902. [PMID: 29590011 DOI: 10.1126/science.aao5902] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proximity, or the physical closeness of molecules, is a pervasive regulatory mechanism in biology. For example, most posttranslational modifications such as phosphorylation, methylation, and acetylation promote proximity of molecules to play deterministic roles in cellular processes. To understand the role of proximity in biologic mechanisms, chemical inducers of proximity (CIPs) were developed to synthetically model biologically regulated recruitment. Chemically induced proximity allows for precise temporal control of transcription, signaling cascades, chromatin regulation, protein folding, localization, and degradation, as well as a host of other biologic processes. A systematic analysis of CIPs in basic research, coupled with recent technological advances utilizing CRISPR, distinguishes roles of causality from coincidence and allows for mathematical modeling in synthetic biology. Recently, induced proximity has provided new avenues of gene therapy and emerging advances in cancer treatment.
Collapse
Affiliation(s)
- Benjamin Z Stanton
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Emma J Chory
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gerald R Crabtree
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Guduru SKR, Arya P. Synthesis and biological evaluation of rapamycin-derived, next generation small molecules. MEDCHEMCOMM 2018; 9:27-43. [PMID: 30108899 PMCID: PMC6072512 DOI: 10.1039/c7md00474e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Over the years, rapamycin has attracted serious attention due to its remarkable biological properties and as a potent inhibitor of the mammalian target of rapamycin (mTOR) protein through its binding with FKBP-12. Several efficient strategies that utilize synthetic and biosynthetic approaches have been utilized to develop small molecule rapamycin analogs or for synthesizing hybrid compounds containing a partial rapamycin structure to improve pharmacokinetic properties. Herein, we report selected case studies related to the synthesis of rapamycin-derived compounds and hybrid molecules to explore their biological properties.
Collapse
Affiliation(s)
- Shiva Krishna Reddy Guduru
- Center for Drug Discovery , Department of Pharmacology and Chemical Biology , Baylor College of Medicine , One Baylor Plaza , Houston , Texas 77030 , USA . ; ; Tel: +1 713 798 8794
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , One Baylor Plaza , Houston , Texas 77030 , USA
| | - Prabhat Arya
- Chemistry and Chemical Biology , Dr. Reddy's Institute of Life Sciences (DRILS) , University of Hyderabad Campus , Hyderabad 500046 , India
| |
Collapse
|
17
|
Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 2015; 350:aab4077. [PMID: 26405231 PMCID: PMC4721629 DOI: 10.1126/science.aab4077] [Citation(s) in RCA: 511] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022]
Abstract
There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control.
Collapse
Affiliation(s)
- Chia-Yung Wu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA
| | - Kole T Roybal
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA
| | - Elias M Puchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - James Onuffer
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA.
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA. Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Lamanna G, Grillaud M, Macri C, Chaloin O, Muller S, Bianco A. Adamantane-based dendrons for trimerization of the therapeutic P140 peptide. Biomaterials 2014; 35:7553-61. [DOI: 10.1016/j.biomaterials.2014.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
|
19
|
DeRose R, Miyamoto T, Inoue T. Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch 2013; 465:409-17. [PMID: 23299847 DOI: 10.1007/s00424-012-1208-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/27/2022]
Abstract
Chemically-inducible dimerization (CID) is a powerful tool that has proved useful in solving numerous problems in cell biology and related fields. In this review, we focus on case studies where CID was able to provide insight into otherwise refractory problems. Of particular interest are the cases of lipid second messengers and small GTPases, where the "signaling paradox" (how a small pool of signaling molecules can generate a large range of responses) can be at least partly explained through results gleaned from CID experiments. We also discuss several recent technical advances that provide improved specificity in CID action, novel CID substrates that allow simultaneous orthogonal manipulation of multiple systems in one cell, and several applications that move beyond the traditional CID technique of moving a protein of interest to a specific spatiotemporal location.
Collapse
Affiliation(s)
- Robert DeRose
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
20
|
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 2013; 65:121-38. [PMID: 23026636 PMCID: PMC3565049 DOI: 10.1016/j.addr.2012.09.041] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization.
Collapse
Affiliation(s)
- Shi Xu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Bogdan Z. Olenyuk
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| |
Collapse
|
21
|
Miki K, Inoue T, Ohe K. Metathesis Polymerization-Based Synthesis of Functionalized Polymers Aiming at Medicinal Application. J SYN ORG CHEM JPN 2013. [DOI: 10.5059/yukigoseikyokaishi.71.601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Lamanna G, Smulski CR, Chekkat N, Estieu-Gionnet K, Guichard G, Fournel S, Bianco A. Multimerization of an apoptogenic TRAIL-mimicking peptide by using adamantane-based dendrons. Chemistry 2012; 19:1762-8. [PMID: 23239456 DOI: 10.1002/chem.201202415] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/03/2012] [Indexed: 11/07/2022]
Abstract
We have developed a straightforward strategy to multimerize an apoptogenic peptide that mimics the natural tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by using adamantane-based dendrons as multivalent scaffolds. The selective binding affinity of the ligands to TRAIL receptor 2 (TR2) was studied by surface plasmon resonance, thus demonstrating that the trimeric and hexameric forms of the peptide exert an increased affinity of about 1500- and 20,000-fold, respectively, relative to the monomer. Moreover, only the trimeric and hexameric ligands were able to induce cell death in TR2 expressing cells (BJAB), thus confirming that a multivalent form of the peptide is necessary to trigger a substantial TR2-dependent apoptotic response in vitro. These results provide interesting insight into the multivalency effect on biological ligand/receptor interactions for future therapeutic applications.
Collapse
Affiliation(s)
- Giuseppe Lamanna
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunologie et Chimie Thérapeutiques, 15 Rue René Descartes, 67084 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Knight JDR, Pawson T, Gingras AC. Profiling the kinome: current capabilities and future challenges. J Proteomics 2012; 81:43-55. [PMID: 23099349 DOI: 10.1016/j.jprot.2012.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/09/2012] [Accepted: 10/14/2012] [Indexed: 01/08/2023]
Abstract
Protein kinases are the second largest human protein family, but in terms of research interest, both basic and applied, they are surely the most popular. Over the past decade, many techniques and approaches for studying the kinome have been described and the pace of development is ever increasing. Presently, a molecular biologist can approach the kinome from many different angles: what kinases are active during a specific cell state of interest or become activated in response to a specific stimulus? What are the effects of controlling the activation status of an individual kinase? What substrates are targeted by a particular kinase, either in general or under particular conditions? And what kinase is responsible for targeting a specific phosphorylation site of interest? These are some of the more commonly asked questions during any kinase-centric research project and different strategies have been devised for answering such queries. In this review, we outline the most promising of these approaches, particularly those with a capacity for high-throughput studies. This article is part of a Special Issue entitled: From protein structures to clinical applications.
Collapse
Affiliation(s)
- James D R Knight
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | | | | |
Collapse
|
24
|
Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR. Dynamics and memory of heterochromatin in living cells. Cell 2012; 149:1447-60. [PMID: 22704655 DOI: 10.1016/j.cell.2012.03.052] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 01/05/2012] [Accepted: 03/19/2012] [Indexed: 02/03/2023]
Abstract
Posttranslational histone modifications are important for gene regulation, yet the mode of propagation and the contribution to heritable gene expression states remains controversial. To address these questions, we developed a chromatin in vivo assay (CiA) system employing chemically induced proximity to initiate and terminate chromatin modifications in living cells. We selectively recruited HP1α to induce H3K9me3-dependent gene silencing and describe the kinetics and extent of chromatin modifications at the Oct4 locus in fibroblasts and pluripotent cells. H3K9me3 propagated symmetrically and continuously at average rates of ~0.18 nucleosomes/hr to produce domains of up to 10 kb. After removal of the HP1α stimulus, heterochromatic domains were heritably transmitted, undiminished through multiple cell generations. Our data enabled quantitative modeling of reaction kinetics, which revealed that dynamic competition between histone marking and turnover, determines the boundaries and stability of H3K9me3 domains. This framework predicts the steady-state dynamics and spatial features of the majority of euchromatic H3K9me3 domains over the genome.
Collapse
Affiliation(s)
- Nathaniel A Hathaway
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
25
|
James JR, McColl J, Oliveira MI, Dunne PD, Huang E, Jansson A, Nilsson P, Sleep DL, Gonçalves CM, Morgan SH, Felce JH, Mahen R, Fernandes RA, Carmo AM, Klenerman D, Davis SJ. The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J Biol Chem 2011; 286:31993-2001. [PMID: 21757710 PMCID: PMC3173209 DOI: 10.1074/jbc.m111.219212] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding the component stoichiometry of the T cell antigen receptor (TCR) triggering apparatus is essential for building realistic models of signal initiation. Recent studies suggesting that the TCR and other signaling-associated proteins are preclustered on resting T cells relied on measurements of the behavior of membrane proteins at interfaces with functionalized glass surfaces. Using fluorescence recovery after photobleaching, we show that, compared with the apical surface, the mobility of TCRs is significantly reduced at Jurkat T cell/glass interfaces, in a signaling-sensitive manner. Using two biophysical approaches that mitigate these effects, bioluminescence resonance energy transfer and two-color coincidence detection microscopy, we show that, within the uncertainty of the methods, the membrane components of the TCR triggering apparatus, i.e. the TCR complex, MHC molecules, CD4/Lck and CD45, are exclusively monovalent or monomeric in human T cell lines, implying that TCR triggering depends only on the kinetics of TCR/pMHC interactions. These analyses also showed that constraining proteins to two dimensions at the cell surface greatly enhances random interactions versus those between the membrane and the cytoplasm. Simulations of TCR-pMHC complex formation based on these findings suggest how unclustered TCR triggering-associated proteins might nevertheless be capable of generating complex signaling outputs via the differential recruitment of cytosolic effectors to the cell membrane.
Collapse
Affiliation(s)
- John R James
- Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liang FS, Ho WQ, Crabtree GR. Engineering the ABA plant stress pathway for regulation of induced proximity. Sci Signal 2011; 4:rs2. [PMID: 21406691 DOI: 10.1126/scisignal.2001449] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemically induced proximity (CIP) systems use small molecules and engineered proteins to control and study biological processes. However, small molecule-based systems for controlling protein abundance or activities have been limited by toxicity, instability, cost, and slow clearance of the small molecules in vivo. To address these problems, we modified proteins of the plant abscisic acid (ABA) stress response pathway to control the proximity of cellular proteins and showed that the system could be used to regulate transcription, signal transduction, and subcellular localization of proteins in response to exogenously applied ABA. We also showed that the ABA CIP system can be combined with other CIP systems to simultaneously control multiple processes. We found that, when given to mice, ABA was orally available and had a 4-hour half-life. These properties, along with its lack of toxicity and low cost, suggest that ABA may be well suited for therapeutic applications and as an experimental tool to control diverse cellular activities in vivo.
Collapse
Affiliation(s)
- Fu-Sen Liang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
27
|
Chae HD, Siefring JE, Hildeman DA, Gu Y, Williams DA. RhoH regulates subcellular localization of ZAP-70 and Lck in T cell receptor signaling. PLoS One 2010; 5:e13970. [PMID: 21103055 PMCID: PMC2980477 DOI: 10.1371/journal.pone.0013970] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 10/19/2010] [Indexed: 01/26/2023] Open
Abstract
RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh(-/-) bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway.
Collapse
Affiliation(s)
- Hee-Don Chae
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jamie E. Siefring
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Gu
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David A. Williams
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Andreotti AH, Schwartzberg PL, Joseph RE, Berg LJ. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2010; 2:a002287. [PMID: 20519342 DOI: 10.1101/cshperspect.a002287] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-gamma. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both alphabeta and gammadelta T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.
Collapse
Affiliation(s)
- Amy H Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
29
|
Robinson MS, Sahlender DA, Foster SD. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev Cell 2010; 18:324-31. [PMID: 20159602 PMCID: PMC2845799 DOI: 10.1016/j.devcel.2009.12.015] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 10/28/2009] [Accepted: 12/17/2009] [Indexed: 11/26/2022]
Abstract
We have developed a method for rapidly inactivating proteins with rapamycin-induced heterodimerization. Cells were stably transfected with siRNA-resistant, FKBP-tagged subunits of the adaptor protein (AP) complexes of clathrin-coated vesicles (CCVs), together with an FKBP and rapamycin-binding domain-containing construct with a mitochondrial targeting signal. Knocking down the endogenous subunit with siRNA, and then adding rapamycin, caused the APs to be rerouted to mitochondria within seconds. Rerouting AP-2 to mitochondria effectively abolished clathrin-mediated endocytosis of transferrin. In cells with rerouted AP-1, endocytosed cation-independent mannose 6-phosphate receptor (CIMPR) accumulated in a peripheral compartment, and isolated CCVs had reduced levels of CIMPR, but normal levels of the lysosomal hydrolase DNase II. Both observations support a role for AP-1 in retrograde trafficking. This type of approach, which we call a “knocksideways,” should be widely applicable as a means of inactivating proteins with a time scale of seconds or minutes rather than days.
Collapse
Affiliation(s)
- Margaret S Robinson
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK.
| | | | | |
Collapse
|
30
|
Abstract
The series of events leading to T-cell activation following antigen recognition has been extensively investigated. Although the exact mechanisms of ligand binding and transmission of this extracellular interaction into a productive intracellular signaling sequence remains incomplete, it has been known for many years that the immunoreceptor tyrosine activation motifs (ITAMs) of the T-cell receptor (TCR):CD3 complex are required for initiation of this signaling cascade because of the recruitment and activation of multiple protein tyrosine kinases, signaling intermediates, and adapter molecules. It however remains unclear why the TCR:CD3 complex requires 10 ITAMs, while many other ITAM-containing immune receptors, such as Fc receptors (FcRs) and the B cell receptor (BCR), contain far fewer ITAMs. We have recently demonstrated that various parameters of T cell development and activation are influenced by the number, as well as location and type, of ITAMs within the TCR:CD3 complex and hence propose that the TCR is capable of 'scalable signaling' that facilitates the initiation and orchestration of diverse T-cell functions. While many of the underlying mechanisms remain hypothetical, this review intends to amalgamate what we have learned from conventional biochemical analyses regarding initiation and diversification of T-cell signaling, with more recent evidence from molecular and fluorescent microscopic analyses, to propose a broader purpose for the TCR:CD3 ITAMs. Rather than simply signal initiation, individual ITAMs may also be responsible for the differential recruitment of signaling and regulatory molecules which ultimately affects T-cell development, activation and differentiation.
Collapse
Affiliation(s)
- Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
31
|
Patury S, Geda P, Dobry CJ, Kumar A, Gestwicki JE. Conditional Nuclear Import and Export of Yeast Proteins Using a Chemical Inducer of Dimerization. Cell Biochem Biophys 2009; 53:127-34. [DOI: 10.1007/s12013-009-9044-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Ladbury JE. Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2006; 63:26-31. [PMID: 17164523 PMCID: PMC2483503 DOI: 10.1107/s0907444906046373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 11/03/2006] [Indexed: 11/30/2022]
Abstract
The use of isothermal titration calorimetry (ITC) provides a full thermodynamic characterization of an interaction in one experiment. The determination of the affinity is an important value; however, the additional layer of information provided by the change in enthalpy and entropy can help in understanding the biology. This is demonstrated with respect to tyrosine kinase-mediated signal transduction. Isothermal titration calorimetry (ITC) provides highly complementary data to high-resolution structural detail. An overview of the methodology of the technique is provided. Ultimately, the correlation of the thermodynamic parameters determined by ITC with structural perturbation observed on going from the free to the bound state should be possible at an atomic level. Currently, thermodynamic data provide some insight as to potential changes occurring on complex formation. Here, this is demonstrated in the context of in vitro quantification of intracellular tyrosine kinase-mediated signal transduction and the issue of specificity of the important interactions. The apparent lack of specificity in the interactions of domains of proteins involved in early signalling from membrane-bound receptors is demonstrated using data from ITC.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, England.
| |
Collapse
|
33
|
Gobessi S, Laurenti L, Longo PG, Sica S, Leone G, Efremov DG. ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood 2006; 109:2032-9. [PMID: 17038529 DOI: 10.1182/blood-2006-03-011759] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Expression of ZAP-70 is an important negative prognostic factor in chronic lymphocytic leukemia (CLL). This protein tyrosine kinase is a key mediator of T-cell receptor (TCR) signaling and is structurally homologous to Syk, which plays an analogous role in B-cell receptor (BCR) signaling. Recent studies indicate that ZAP-70 may participate in BCR signaling as well, but the mechanism of action is not completely understood. We have now compared antigen receptor-induced activation of ZAP-70 in B cells and T cells by analyzing phosphorylation of critical regulatory tyrosine residues. We show that BCR-mediated activation of ZAP-70 is very inefficient in CLL and lymphoma B cells and is negligible when compared to activation of Syk. Despite the inefficient catalytic activation, the ability of ZAP-70 to recruit downstream signaling molecules in response to antigen receptor stimulation appeared relatively preserved. Moreover, ectopic expression of ZAP-70 enhanced and prolonged activation of several key mediators of BCR signaling, such as the Syk, ERK, and Akt kinases, and decreased the rate of ligand-mediated BCR internalization. We conclude that the role of ZAP-70 in BCR signaling is quite distinct from its role in TCR signaling and is likely mediated by inhibition of events that terminate the signaling response.
Collapse
Affiliation(s)
- Stefania Gobessi
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Outstation-Monterotondo, Consiglio Nazionale delle Ricerche (CNR) Campus Adriano Buzzati-Traverso, Rome, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Bayle JH, Grimley JS, Stankunas K, Gestwicki JE, Wandless TJ, Crabtree GR. Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. ACTA ACUST UNITED AC 2006; 13:99-107. [PMID: 16426976 DOI: 10.1016/j.chembiol.2005.10.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 09/29/2005] [Accepted: 10/20/2005] [Indexed: 11/25/2022]
Abstract
Controlling protein dimerization with small molecules has broad application to the study of protein function. Rapamycin has two binding surfaces: one that binds to FKBP12 and the other to the Frb domain of mTor/FRAP, directing their dimerization. Rapamycin is a potent cell growth inhibitor, but chemical modification of the surface contacting Frb alleviates this effect. Productive interactions with Frb-fused proteins can be restored by mutation of Frb to accommodate the rapamycin analog (a rapalog). We have quantitatively assessed the interaction between rapalogs functionalized at C16 and C20 and a panel of Frb mutants. Several drug-Frb mutant combinations have different and nonoverlapping specificities. These Frb-rapalog partners permit the selective control of different Frb fusion proteins without crossreaction. The orthogonal control of multiple target proteins broadens the capabilities of chemical induction of dimerization to regulate biologic processes.
Collapse
Affiliation(s)
- J Henri Bayle
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kiessling LL, Gestwicki JE, Strong LE. Synthetische multivalente Liganden als Sonden für die Signaltransduktion. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502794] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed Engl 2006; 45:2348-68. [PMID: 16557636 PMCID: PMC2842921 DOI: 10.1002/anie.200502794] [Citation(s) in RCA: 687] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell-surface receptors acquire information from the extracellular environment and coordinate intracellular responses. Many receptors do not operate as individual entities, but rather as part of dimeric or oligomeric complexes. Coupling the functions of multiple receptors may endow signaling pathways with the sensitivity and malleability required to govern cellular responses. Moreover, multireceptor signaling complexes may provide a means of spatially segregating otherwise degenerate signaling cascades. Understanding the mechanisms, extent, and consequences of receptor co-localization and interreceptor communication is critical; chemical synthesis can provide compounds to address the role of receptor assembly in signal transduction. Multivalent ligands can be generated that possess a variety of sizes, shapes, valencies, orientations, and densities of binding elements. This Review focuses on the use of synthetic multivalent ligands to characterize receptor function.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin--Madison, 1101 University Ave., Madison, WI 53706, USA.
| | | | | |
Collapse
|
37
|
Yeh JI, Zimmt MB, Zimmerman AL. Nanowiring of a redox enzyme by metallized peptides. Biosens Bioelectron 2005; 21:973-8. [PMID: 16257666 DOI: 10.1016/j.bios.2005.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 02/15/2005] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
A molecular assembly consisting of a redox enzyme, NADH peroxidase, a metallized double-helical peptide, and a gold nanoparticle immobilized onto a gold wire derivatized with a benzenedithiol compound, initiated and conducted redox signals in the presence of H(2)O(2) and NADH. The current generated by the binding of NADH, the electron donor, was transduced through the molecular assembly with apparently little loss of signal to the solution. The currents measured correlate to an electron transfer rate constant on the order of 3,000 s(-1) within each assembly. This electron transfer rate is two orders of magnitude higher than the endogenous electron transfer rate from NADH to the native enzyme, 27 s(-1). This rate indicates that the metallized peptide is in a conformation conducive for electron transfer and, in conjunction with the redox enzyme, can form effective conduits of electrical signals. This work demonstrates the feasibility of utilizing designed and highly efficient biomolecular assemblies for the production of ultra-sensitive, in-situ biosensors.
Collapse
Affiliation(s)
- Joanne I Yeh
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
38
|
Katz BZ, Miyamoto S, Teramoto H, Zohar M, Krylov D, Vinson C, Gutkind JS, Yamada KM. Direct transmembrane clustering and cytoplasmic dimerization of focal adhesion kinase initiates its tyrosine phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:141-52. [PMID: 12379477 DOI: 10.1016/s0167-4889(02)00308-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated mechanisms for inducing focal adhesion kinase (FAK) tyrosine phosphorylation and their ability to trigger MAP kinase signaling using transmembrane chimeras that localize FAK and its mutants to the plasma membrane. We tested whether tyrosine phosphorylation was triggered by FAK transmembrane aggregation using antibodies against the chimeric extracellular domain. Experimental clustering of chimeras containing integrin beta cytoplasmic domains or FAK induced FAK tyrosine phosphorylation and trans-phosphorylation of endogenous FAK, as well as strong ERK activation. Next, we examined whether lower-order molecular proximity, namely dimerization, could regulate FAK tyrosine phosphorylation. We found that even relatively low-affinity FAK dimerization (K(d)=3.9 x 10(-5) M), in either of two different orientations, could induce FAK tyrosine phosphorylation. However, this cytoplasmic FAK dimerization could not induce MAP kinase activation or trans-phosphorylation of endogenous FAK. We conclude that dimerization of FAK is sufficient to induce its tyrosine phosphorylation, but that higher-order molecular proximity (clustering) at the cell membrane is apparently needed for additional biochemical events. This study identifies a proximity mechanism for regulating the initiation of FAK-mediated biochemical signaling.
Collapse
Affiliation(s)
- Ben-Zion Katz
- Craniofacial Developmental Biology and Regeneration Branch, National Institutes of Health, Bethesda, MD 20892-4370, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tobiume K, Saitoh M, Ichijo H. Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol 2002; 191:95-104. [PMID: 11920685 DOI: 10.1002/jcp.10080] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a MAPKKK family member which activates c-Jun N-terminal kinase (JNK) and p38. In non-stressed cells, ASK1 exists as an inactive complex with the reduced form of thioredoxin. Oxidative stress such as hydrogen peroxide (H2O2) disrupts the ASK1-thioredoxin complex by oxidization of thioredoxin and thereby activates ASK1. The precise mechanism by which ASK1 is activated after its release from thioredoxin is unknown. Here we show that phosphorylation of Thr845 at the activation loop is essential for ASK1 to be activated by H2O2. ASK1 appears to form a silent homo-oligomer through its C-terminal coiled-coil region in non-stressed cells. Following H2O2 treatment, pre-existing ASK1 oligomer undergoes conformational change and creates a new interface within an oligomer, which ultimately leads to trans-autophosphorylation of Thr845. Thus, direct interaction via the coiled-coil region is required for self-scaffolding but not sufficient for activation of ASK1. Importantly, Thr845 of ASK1 can also be trans-phosphorylated by an unidentified Thr845 kinase in response to H2O2 treatment. We propose that this potential Thr845 kinase may be an ignition kinase that triggers Thr845 phosphorylation in oligomerized and activation-competent forms of ASK1.
Collapse
Affiliation(s)
- Kei Tobiume
- Laboratory of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Teixeiro E, Fuentes P, Galocha B, Alarcon B, Bragado R. T cell receptor-mediated signal transduction controlled by the beta chain transmembrane domain: apoptosis-deficient cells display unbalanced mitogen-activated protein kinases activities upon T cell receptor engagement. J Biol Chem 2002; 277:3993-4002. [PMID: 11724779 DOI: 10.1074/jbc.m107797200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bases that support the versatility of the T cell receptor (TCR) to generate distinct T cell responses remain unclear. We have previously shown that mutant cells in the transmembrane domain of TCRbeta chain are impaired in TCR-induced apoptosis but are not affected in other functions. Here we describe the biochemical mechanisms by which this mutant receptor supports some T cell responses but fails to induce apoptosis. Extracellular signal-regulated protein kinase (ERK) is activated at higher and more sustained levels in TCRbeta-mutated than in wild type cells. Conversely, activation of both c-Jun N-terminal kinase and p38 mitogen-activated protein kinase is severely reduced in mutant cells. By attempting to link this unbalanced induction to altered upstream events, we found that ZAP-70 is normally activated. However, although SLP-76 phosphorylation is normally induced, TCR engagement of mutant cells results in lower tyrosine phosphorylation of LAT but in higher tyrosine phosphorylation of Vav than in wild type cells. The results suggest that an altered signaling cascade leading to an imbalance in mitogen-activated protein kinase activities is involved in the selective impairment of apoptosis in these mutant cells. Furthermore, they also provide new insights in the contribution of TCR to decipher the signals that mediate apoptosis distinctly from proliferation.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis
- Humans
- Jurkat Cells
- Lectins, C-Type
- Mitogen-Activated Protein Kinases/metabolism
- Mutation
- Phosphorylation
- Precipitin Tests
- Protein Kinase C/metabolism
- Protein Transport
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/physiology
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Emma Teixeiro
- Department of Immunology, Fundación Jiménez Diaz, Avenida. Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Clemons PA, Gladstone BG, Seth A, Chao ED, Foley MA, Schreiber SL. Synthesis of calcineurin-resistant derivatives of FK506 and selection of compensatory receptors. CHEMISTRY & BIOLOGY 2002; 9:49-61. [PMID: 11841938 DOI: 10.1016/s1074-5521(02)00085-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We used olefin metathesis to synthesize C40 derivatives of FK506 and measured their ability, when complexed to FKBP12, to inhibit calcineurin's phosphatase activity. We identified modular dimerization domains (CABs) containing segments of the calcineurin A and B polypeptides. These CABs respond to FK506 both when overexpressed in mammalian cells and in yeast or mammalian three-hybrid assays. Using chemical genetic selection, we identified compensatory mutant CABs that respond to a calcineurin-resistant FK506 derivative at concentrations well below the response threshold for CABs containing only wild-type calcineurin sequence. These reagents provide a small molecule-protein combination orthogonal to existing dimerizer systems and may be used with existing systems to increase the complexity of induced-proximity experiments. This new use of the "bump-hole" strategy protects target cells from complications arising from the inhibition of endogenous calcineurin.
Collapse
Affiliation(s)
- Paul A Clemons
- Howard Hughes Medical Institute at Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bishop A, Buzko O, Heyeck-Dumas S, Jung I, Kraybill B, Liu Y, Shah K, Ulrich S, Witucki L, Yang F, Zhang C, Shokat KM. Unnatural ligands for engineered proteins: new tools for chemical genetics. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:577-606. [PMID: 10940260 DOI: 10.1146/annurev.biophys.29.1.577] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecules that modulate the activity of biological signaling molecules can be powerful probes of signal transduction pathways. Highly specific molecules with high affinity are difficult to identify because of the conserved nature of many protein active sites. A newly developed approach to discovery of such small molecules that relies on protein engineering and chemical synthesis has yielded powerful tools for the study of a wide variety of proteins involved in signal transduction (G-proteins, protein kinases, 7-transmembrane receptors, nuclear hormone receptors, and others). Such chemical genetic tools combine the advantages of traditional genetics and the unparalleled temporal control over protein function afforded by small molecule inhibitors/activators that act at diffusion controlled rates with targets.
Collapse
Affiliation(s)
- A Bishop
- Department of Chemistry, Princeton University, New Jersey 08544, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Qadri A, Radu CG, Thatte J, Cianga P, Ober BT, Ober RJ, Ward ES. A role for the region encompassing the c" strand of a TCR V alpha domain in T cell activation events. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:820-9. [PMID: 10878356 DOI: 10.4049/jimmunol.165.2.820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The distinct strand topology of TCR V alpha domains results in a flatter surface in the region encompassing the c" strand than the corresponding region in Ig V domains. In the current study a possible role for this region in T cell activation has been investigated by inserting a potential glycosylation site at V alpha residue 82. This residue is in proximity to the c" strand and distal to the putative interaction site for cognate peptide:MHC ligand. An additional N-linked carbohydrate at this position would create a protrusion on the V alpha domain surface, and this may interfere with TCR aggregation and/or recruitment of signaling molecules. The modified TCR has been expressed in transfected T cells, and the phenotype following stimulation has been compared with that of cells expressing the wild-type TCR. The mutation has significant effects on activation-induced cell death and TCR internalization, but, unexpectedly, does not affect IL-2 secretion. Furthermore, analyses with tetrameric, peptide:MHC class II complexes suggest that the mutation decreases the ability of the TCR to aggregate into a configuration compatible with avid binding by these multivalent ligands.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/analysis
- Apoptosis/genetics
- Apoptosis/immunology
- Cell Line
- Down-Regulation/genetics
- Down-Regulation/immunology
- Immunoblotting
- Interleukin-2/metabolism
- Lymphocyte Activation/genetics
- Mice
- Myelin Basic Protein/genetics
- Myelin Basic Protein/immunology
- Myelin Basic Protein/pharmacology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Phosphotyrosine/immunology
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transfection/immunology
Collapse
Affiliation(s)
- A Qadri
- Center for Immunology and Cancer Immunobiology Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Göbel TW, Bolliger L. Evolution of the T cell receptor signal transduction units. Curr Top Microbiol Immunol 2000; 248:303-20. [PMID: 10793484 DOI: 10.1007/978-3-642-59674-2_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- T W Göbel
- Basel Institute for Immunology, Switzerland
| | | |
Collapse
|
45
|
Plyte S, Majolini MB, Pacini S, Scarpini F, Bianchini C, Lanfrancone L, Pelicci P, Baldari CT. Constitutive activation of the Ras/MAP kinase pathway and enhanced TCR signaling by targeting the Shc adaptor to membrane rafts. Oncogene 2000; 19:1529-37. [PMID: 10734312 DOI: 10.1038/sj.onc.1203451] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Shc adaptor is responsible for coupling receptor tyrosine kinases and tyrosine kinase-associated receptors to the Ras/MAP kinase pathway. Shc is believed to be regulated by a change in subcellular localization from the cytosol to the plasma membrane, where it recruits Grb-2/Sos complexes and hence permits juxtaposition of the guanine nucleotide exchange factor Sos to Ras, resulting in GDP/GTP exchange and Ras activation. Shc has been recently shown to inducibly colocalize in detergent-resistant membrane rafts together with the activated TCR and associated signaling molecules. To understand whether Shc localization in membrane rafts is sufficient to regulate Shc function, we constructed a Shc chimera containing the Ras membrane localization motif at the C-terminus. We show that membrane targeted Shc was constitutively localized in the plasma membrane of T-cells, and was mostly compartmentalized in lipid rafts. Membrane targeted Shc was phosphorylated on tyrosine residues and bound Grb-2/Sos in the absence of TCR engagement. Furthermore, expression of membrane targeted Shc resulted in constitutive downstream signaling, including Erk2 activation and enhancement of TCR dependent activation of the TCR responsive transcription factor NF-AT. Hence localization of Shc in membrane rafts is sufficient for Shc to acquire a signaling competent state. Interestingly, a membrane targeted Shc mutant lacking both Grb-2 binding sites was not only incapable of signaling in the absence of TCR triggering, but transdominantly inhibited endogenous Shc, supporting a non redundant role for Shc in the activation of the Ras/MAP kinase pathway in T-cells.
Collapse
Affiliation(s)
- S Plyte
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
O'Brien R, Rugman P, Renzoni D, Layton M, Handa R, Hilyard K, Waterfield MD, Driscoll PC, Ladbury JE. Alternative modes of binding of proteins with tandem SH2 domains. Protein Sci 2000; 9:570-9. [PMID: 10752619 PMCID: PMC2144564 DOI: 10.1110/ps.9.3.570] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The issue of specificity in tyrosine kinase intracellular signaling mediated by src homology 2 (SH2) domains has great importance in the understanding how individual signals maintain their mutual exclusivity and affect downstream responses. Several proteins contain tandem SH2 domains that, on interacting with their ligand, provide a higher level of specificity than can be afforded by the interaction of a single SH2 domain. In this study, we focus on the comparison of two proteins ZAP70 and the p85 subunit of PI 3-kinase, which although distinctly different in function and general structure, possess tandem SH2 domains separated by a linker region and which bind to phosphorylated receptor molecules localized to the cell membrane. Binding studies using isothermal titration calorimetry show that these two proteins interact with peptides mimicking their physiological ligands in very different ways. In the case of the SH2 domains from ZAP70, they interact with a stoichiometry of unity, while p85 is able to make two distinct interactions, one with a stoichiometry of 1:1 and the other with two p85 molecules interacting with one receptor. The observation of two different modes of binding of p85 might be important in providing different cellular responses based on fluctuating intracellular concentration regimes of this protein. Thermodynamic data on both proteins suggest that a conformational change occurs on binding. On investigation of this structural change using a truncated form of p85 (including just the two SH2 domains and the inter-SH2 region), both NMR and circular dichroism spectroscopic studies failed to show significant changes in secondary structure. This suggests that any conformational change associated with binding is small and potentially limited to loop regions of the protein.
Collapse
Affiliation(s)
- R O'Brien
- Department of Biochemistry and Molecular Biology, University College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gringhuis SI, Leow A, Papendrecht-Van Der Voort EA, Remans PH, Breedveld FC, Verweij CL. Displacement of linker for activation of T cells from the plasma membrane due to redox balance alterations results in hyporesponsiveness of synovial fluid T lymphocytes in rheumatoid arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2170-9. [PMID: 10657671 DOI: 10.4049/jimmunol.164.4.2170] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The T lymphocytes that reside in the synovium of the inflamed joints in patients with rheumatoid arthritis display severe hyporesponsiveness upon antigenic stimulation, which is probably due to their constant subjection to high levels of oxidative stress. Here we report that the synovial fluid T lymphocytes exert severely impaired phosphorylation of the adaptor protein linker for activation of T cells (LAT), a crucial component of the TCR-mediated signaling pathways. In healthy T lymphocytes, LAT is a membrane-bound protein and becomes phosphorylated by zeta-associated protein of 70 kDa (ZAP-70) upon TCR engagement. The molecular basis underlying the deficient phosphorylation of LAT and consequently the hyporesponsiveness of the synovial fluid T lymphocytes lies in the membrane displacement of LAT. We demonstrate that the subcellular localization of LAT is sensitive to changes in the intracellular levels of the antioxidant glutathione. The membrane anchorage of LAT, and consequently the phosphorylation of LAT and the cellular activation of the synovial fluid T lymphocytes upon TCR engagement, is restored in synovial fluid T lymphocytes after supplementation of the intracellular glutathione levels with N-acetyl-l -cysteine. These data suggest a role for the membrane displacement of LAT in the hyporesponsiveness of the synovial fluid T lymphocytes as a consequence of oxidative stress.
Collapse
Affiliation(s)
- S I Gringhuis
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Sharie N, Arpaia E, Roifman CM. CD8 LYMPHOCYTOPENIA CAUSED BY ZAP-70 DEFICIENCY. Radiol Clin North Am 2000. [DOI: 10.1016/s0033-8389(22)00180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Sharfe N, Arpaia E, Roifman CM. CD8 LYMPHOCYTOPENIA CAUSED BY ZAP-70 DEFICIENCY. Immunol Allergy Clin North Am 2000. [DOI: 10.1016/s0889-8561(05)70135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Whisler RL, Chen M, Liu B, Newhouse YG. Age-related impairments in TCR/CD3 activation of ZAP-70 are associated with reduced tyrosine phosphorylations of zeta-chains and p59fyn/p56lck in human T cells. Mech Ageing Dev 1999; 111:49-66. [PMID: 10576607 DOI: 10.1016/s0047-6374(99)00074-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression and catalytic activity of the protein tyrosine kinase (PTK) ZAP-70 are needed for normal intracellular signaling through the T-cell receptor (TCR)/CD3 complex. However, the possible effect of aging on the catalytic activity of ZAP-70 in human peripheral blood T cells stimulated via the TCR/CD3 complex is unknown. The current studies show that T cells from a substantial proportion of elderly humans (12) exhibit significant reductions in the catalytic activity, but not expression of ZAP-70 when stimulated by ligation of the TCR/CD3 with cross-linked anti-CD3epsilon monoclonal antibody OKT3. In addition, the reduced catalytic activity of ZAP-70 in T cells from elderly subjects was not restored to the normal levels in response to ligation of CD4 receptors, suggesting defects in PTKs linked to both CD3 and CD4 receptors. Other experiments demonstrated that the age-related impairments of ZAP-70 activation in anti-CD3-stimulated T cells were accompanied by decreased tyrosine phosphorylations of zeta-chains and autophosphorylations of the PTKs p561ck/p59fyn. Moreover, the age-related defects in these early TCR/CD3-mediated phosphorylation events were readily detectable in both CD45RO+ memory and CD45RA+ naive T cells. Thus, these results suggest that defects in early TCR/CD3-mediated phosphorylation events among CD45RO+ memory and CD45RA+ naive T cells from certain elderly humans may con tribute to impaired induction of ZAP-70 catalytic activity.
Collapse
Affiliation(s)
- R L Whisler
- Department of Internal Medicine, The William H. Davis Medical Research Center, The Ohio State University, Columbus 43210-1228, USA.
| | | | | | | |
Collapse
|