1
|
Sabek Y, Zhang Z, Nishibe N, Maruta S. Ionic control of small GTPase HRas using calmodulin. J Biochem 2025; 177:153-161. [PMID: 39696662 DOI: 10.1093/jb/mvae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
HRas is a small GTPase that plays physiologically important roles in various intracellular signal transduction processes, such as cell growth and proliferation. The structure and action mechanisms of HRas have been well characterized, leading to its widespread use as a molecular switch in bionanomachines. Calmodulin (CaM), a calcium ion-binding protein, acts as an ion-binding molecular switch and activates the target enzymes. We previously demonstrated that the fusion protein of HRas (M13-HRas) with the CaM target peptide M13 at the N-terminus of HRas exhibits reversible regulation of GTPase activity and the interaction between M13-HRas and the downstream signalling factor Raf by calcium ions with CaM. In this study, we prepared two new HRas fusion proteins with the M13 peptide at the C-terminus (HRas-M13) and both termini (M13-HRas-M13) of HRas and analysed the calcium-dependent regulation of HRas function. M13-HRas-M13 more efficiently controlled GTPase, interaction with Raf and the HRas regulator GEF by calcium ions with CaM.
Collapse
Affiliation(s)
- Yassine Sabek
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Ziyun Zhang
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Nobuyuki Nishibe
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shinsaku Maruta
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
2
|
Xu L, Jang H, Nussinov R. Allosteric modulation of NF1 GAP: Differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants. Protein Sci 2025; 34:e70042. [PMID: 39840811 PMCID: PMC11751910 DOI: 10.1002/pro.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Neurofibromin (NF1), a Ras GTPase-activating protein (GAP), catalyzes Ras-mediated GTP hydrolysis and thereby negatively regulates the Ras/MAPK pathway. NF1 mutations can cause neurofibromatosis type 1 manifesting tumors, and neurodevelopmental disorders. Exactly how the missense mutations in the GAP-related domain of NF1 (NF1GRD) allosterically impact NF1 GAP to promote these distinct pathologies is unclear. Especially tantalizing is the question of how same-domain, same-residue NF1GRD variants exhibit distinct clinical phenotypes. Guided by clinical data, we take up this dilemma. We sampled the conformational ensembles of NF1GRD in complex with GTP-bound K-Ras4B by performing molecular dynamics simulations. Our results show that mutations in NF1GRD retain the active conformation of K-Ras4B but with biased propensities of the catalytically competent populations of K-Ras4B-NF1GRD complex. In agreement with clinical depiction and experimental tagging, compared to the wild type, NF1GRD E1356A and E1356V mutants effectively act through loss-of-function and gain-of-function mechanisms, leading to neurofibromatosis and developmental disorders, respectively. Allosteric modulation of NF1GRD GAP activity through biasing the conformational ensembles in the different states is further demonstrated by the diminished GAP activity by NF1GRD isoform 2, further manifesting propensities of conformational ensembles as powerful predictors of protein function. Taken together, our work identifies a NF1GRD hotspot that could allosterically tune GAP function, suggests targeting Ras oncogenic mutations by restoring NF1 catalytic activity, and offers a molecular mechanism for NF1 phenotypes determined by their distinct conformational propensities.
Collapse
Affiliation(s)
- Liang Xu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
3
|
Payne JM, Haebich KM, Mitchell R, Bozaoglu K, Giliberto E, Lockhart PJ, Maier A, Velasco S, Ball G, North KN, Hocking DR. Brain volumes in genetic syndromes associated with mTOR dysregulation: a systematic review and meta-analysis. Mol Psychiatry 2024:10.1038/s41380-024-02863-4. [PMID: 39633008 DOI: 10.1038/s41380-024-02863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND/OBJECTIVES Dysregulation of molecular pathways associated with mechanistic target of rapamycin (mTOR) and elevated rates of neurodevelopmental disorders are implicated in the genetic syndromes neurofibromatosis type 1 (NF1), tuberous sclerosis complex (TSC), fragile X syndrome (FXS), and Noonan syndrome (NS). Given shared molecular and clinical features, understanding convergent and divergent implications of these syndromes on brain development may offer unique insights into disease mechanisms. While an increasing number of studies have examined brain volumes in these syndromes, the effects of each syndrome on global and subcortical brain volumes are unclear. Therefore, the aim of the current study was to conduct a systematic review and meta-analysis to synthesize existing literature on volumetric brain changes across TSC, FXS, NF1, and NS. Study outcomes were the effect sizes of the genetic syndromes on whole brain, gray and white matter, and subcortical volumes compared to typically developing controls. SUBJECTS/METHODS We performed a series of meta-analyses synthesizing data from 23 studies in NF1, TSC, FXS, and NS (pooled N = 1556) reporting whole brain volume, gray and white matter volumes, and volumes of subcortical structures compared to controls. RESULTS Meta-analyses revealed significantly larger whole brain volume, gray and white matter volumes, and subcortical volumes in NF1 compared to controls. FXS was associated with increased whole brain, and gray and white matter volumes relative to controls, but effect sizes were smaller than those seen in NF1. In contrast, studies in NS indicated smaller whole brain and gray matter volumes, and reduced subcortical volumes compared to controls. For individuals with TSC, there were no significant differences in whole brain, gray matter, and white volumes compared to controls. Volumetric effect sizes were not moderated by age, sex, or full-scale IQ. CONCLUSIONS This meta-analysis revealed that dysregulation of mTOR signaling across pre- and post-natal periods of development can result in convergent and divergent consequences for brain volume among genetic syndromes. Further research employing advanced disease modeling techniques with human pluripotent stem cell-derived in vitro models is needed to further refine our understanding of between and within syndrome variability on early brain development and identify shared molecular mechanisms for the development of pharmaceutical interventions.
Collapse
Affiliation(s)
- Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Kristina M Haebich
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Mitchell
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kiymet Bozaoglu
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Emma Giliberto
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Alice Maier
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Silvia Velasco
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW Melbourne, Melbourne, VIC, Australia
| | - Gareth Ball
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Darren R Hocking
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Bergoug M, Mosrin C, Serrano A, Godin F, Doudeau M, Dundović I, Goffinont S, Normand T, Suskiewicz MJ, Vallée B, Bénédetti H. An Atypical Mechanism of SUMOylation of Neurofibromin SecPH Domain Provides New Insights into SUMOylation Site Selection. J Mol Biol 2024; 436:168768. [PMID: 39216515 DOI: 10.1016/j.jmb.2024.168768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Neurofibromin (Nf1) is a giant multidomain protein encoded by the tumour-suppressor gene NF1. NF1 is mutated in a common genetic disease, neurofibromatosis type I (NF1), and in various cancers. The protein has a Ras-GAP (GTPase activating protein) activity but is also connected to diverse signalling pathways through its SecPH domain, which interacts with lipids and different protein partners. We previously showed that Nf1 partially colocalized with the ProMyelocytic Leukemia (PML) protein in PML nuclear bodies, hotspots of SUMOylation, thereby suggesting the potential SUMOylation of Nf1. Here, we demonstrate that the full-length isoform 2 and a SecPH fragment of Nf1 are substrates of the SUMO pathway and identify a well-defined SUMOylation profile of SecPH with two main modified lysines. One of these sites, K1731, is highly conserved and surface-exposed. Despite the presence of an inverted SUMO consensus motif surrounding K1731, and a potential SUMO-interacting motif (SIM) within SecPH, we show that neither of these elements is necessary for K1731 SUMOylation, which is also independent of Ubc9 SUMOylation on K14. A 3D model of an interaction between SecPH and Ubc9 centred on K1731, combined with site-directed mutagenesis, identifies specific structural elements of SecPH required for K1731 SUMOylation, some of which are affected in reported NF1 pathogenic variants. This work provides a new example of SUMOylation dependent on the tertiary rather than primary protein structure surrounding the modified site, expanding our knowledge of mechanisms governing SUMOylation site selection.
Collapse
Affiliation(s)
- Mohammed Bergoug
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Christine Mosrin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Michel Doudeau
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Iva Dundović
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Stephane Goffinont
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Marcin J Suskiewicz
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France.
| |
Collapse
|
5
|
Lin X, Chang X, Zhang Y, Gao Z, Chi X. Automatic construction of Petri net models for computational simulations of molecular interaction network. NPJ Syst Biol Appl 2024; 10:131. [PMID: 39521772 PMCID: PMC11550427 DOI: 10.1038/s41540-024-00464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Petri nets are commonly applied in modeling biological systems. However, construction of a Petri net model for complex biological systems is often time consuming, and requires expertise in the research area, limiting their application. To address this challenge, we developed GINtoSPN, an R package that automates the conversion of multi-omics molecular interaction network extracted from the Global Integrative Network (GIN) into Petri nets in GraphML format. These GraphML files can be directly used for Signaling Petri Net (SPN) simulation. To demonstrate the utility of this tool, we built a Petri net model for neurofibromatosis type I. Simulation of NF1 gene knockout, compared to normal skin fibroblast cells, revealed persistent accumulation of Ras-GTPs as expected. Additionally, we identified several other genes substantially affected by the loss of NF1's function, exhibiting individual-specific variability. These results highlight the effectiveness of GINtoSPN in streamlining the modeling and simulation of complex biological systems.
Collapse
Affiliation(s)
- Xuefei Lin
- Department of Dermatology and Venereal Disease, Xuan Wu Hospital, Beijing, China
| | - Xiao Chang
- Department of Dermatology and Venereal Disease, Xuan Wu Hospital, Beijing, China
| | - Yizheng Zhang
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanyu Gao
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- HKU Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Xu Chi
- China National Center for Bioinformation, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
7
|
Nagano H, Ohyama S, Sato A, Igarashi J, Yamamoto T, Kadoya M, Kobayashi M. Jejunal gastrointestinal stromal tumor that developed in a patient with neurofibromatosis type 1: a case report. Diagn Pathol 2023; 18:110. [PMID: 37789344 PMCID: PMC10546696 DOI: 10.1186/s13000-023-01398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is known to be associated with the frequent occurrence of unique gastrointestinal stromal tumors (GISTs), preferably occurring in the small intestine, with no mutations in the c-kit proto-oncogene or platelet-derived growth factor receptor-alpha (PDGFRA), with a high tendency for multifocal development, indolent nature, with low proliferation activity and favorable prognosis. CASE PRESENTATION A woman in her forties visited her local doctor complaining of menstrual pain; a large mass was detected in her lower abdomen, and she was referred to our hospital. The patient had hundreds of skin warts and café au lait spots. The patient's mother had been diagnosed with type 1 neurofibromatosis. The patient met the diagnostic criteria for NF1 and was diagnosed with NF1. Ultrasonography showed a large heterogeneous cystic mass with various echo patterns, solid compartments and multiple septations. Magnetic resonance imaging showed a multilocular cystic mass with liquid content exhibiting various intensities, including that of blood. A small round solid mass was also observed close to the cystic tumor. Contrast-enhanced computed tomography showed that the round solid mass showed strong enhancement in the early phase, unlike the cystic tumor component. Open laparotomy revealed a multicystic exophytic tumor measuring 11.5 cm originating from the jejunal wall, 20 cm distal to the duodenojejunal flexure. A solid tumor measuring 2.1 cm was also found on the anal side of the large tumor. We resected the short segment of the jejunum, including the two lesions. Microscopic findings revealed that the cystic and solid tumors consisted of spindle-shaped tumor cells showing little atypia with a fascicular or bundle arrangement. Nuclear mitosis was scarce. Immunostaining of the tumor cells showed positive staining for KIT and DOG1 and negative staining for S100 and desmin. The NF1 patient was diagnosed with multiple GISTs accompanied by intratumoral hemorrhagic denaturation arising from the jejunum. The TNM staging was pT4N0M0, stage IIIA. CONCLUSION We report a case of GISTs associated with NF1 that showed a jejunal origin, multifocal development and few mitotic figures. The recurrence risk, survival prognosis and need for adjuvant chemotherapy, particularly in cases where the initial GIST exhibits a very indolent pathology in NF1-related GISTs, remain to be elucidated.
Collapse
Affiliation(s)
- Hideki Nagano
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan.
| | - Shigekazu Ohyama
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Atsushi Sato
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Jun Igarashi
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Tomoko Yamamoto
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Masumi Kadoya
- Department of Radiology, Marunouchi Hospital, Matsumoto Nagano, Japan
| | - Mikiko Kobayashi
- Department of Pathology, Marunouchi Hospital, Matsumoto Nagano, Japan
| |
Collapse
|
8
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
9
|
Cheng R, Li F, Zhang M, Xia X, Wu J, Gao X, Zhou H, Zhang Z, Huang N, Yang X, Zhang Y, Shen S, Kang T, Liu Z, Xiao F, Yao H, Xu J, Yan C, Zhang N. A novel protein RASON encoded by a lncRNA controls oncogenic RAS signaling in KRAS mutant cancers. Cell Res 2023; 33:30-45. [PMID: 36241718 PMCID: PMC9810732 DOI: 10.1038/s41422-022-00726-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023] Open
Abstract
Mutations of the RAS oncogene are found in around 30% of all human cancers yet direct targeting of RAS is still considered clinically impractical except for the KRASG12C mutant. Here we report that RAS-ON (RASON), a novel protein encoded by the long intergenic non-protein coding RNA 00673 (LINC00673), is a positive regulator of oncogenic RAS signaling. RASON is aberrantly overexpressed in pancreatic ductal adenocarcinoma (PDAC) patients, and it promotes proliferation of human PDAC cell lines in vitro and tumor growth in vivo. CRISPR/Cas9-mediated knockout of Rason in mouse embryonic fibroblasts inhibits KRAS-mediated tumor transformation. Genetic deletion of Rason abolishes oncogenic KRAS-driven pancreatic and lung cancer tumorigenesis in LSL-KrasG12D; Trp53R172H/+ mice. Mechanistically, RASON directly binds to KRASG12D/V and inhibits both intrinsic and GTPase activating protein (GAP)-mediated GTP hydrolysis, thus sustaining KRASG12D/V in the GTP-bound hyperactive state. Therapeutically, deprivation of RASON sensitizes KRAS mutant pancreatic cancer cells and patient-derived organoids to EGFR inhibitors. Our findings identify RASON as a critical regulator of oncogenic KRAS signaling and a promising therapeutic target for KRAS mutant cancers.
Collapse
Affiliation(s)
- Rongjie Cheng
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Fanying Li
- grid.412615.50000 0004 1803 6239Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Maolei Zhang
- grid.412615.50000 0004 1803 6239Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xin Xia
- grid.412615.50000 0004 1803 6239Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Jianzhuang Wu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Xinya Gao
- grid.412615.50000 0004 1803 6239Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Huangkai Zhou
- grid.412615.50000 0004 1803 6239Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Zhi Zhang
- grid.263761.70000 0001 0198 0694Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu China
| | - Nunu Huang
- grid.412615.50000 0004 1803 6239Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xuesong Yang
- grid.412615.50000 0004 1803 6239Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yaliang Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, Jiangsu China
| | - Shunli Shen
- grid.412615.50000 0004 1803 6239Department of Hepatological surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Tiebang Kang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong China
| | - Zexian Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong China
| | - Feizhe Xiao
- grid.412615.50000 0004 1803 6239Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Hongwei Yao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China.
| | - Jianbo Xu
- Department of Gastrointestinal surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, Jiangsu, China. .,Chemistry and Biomedicine Innovation Center, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China. .,Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu, China. .,Institute of Pancreatology, Nanjing University, Nanjing, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Miller AH, Halloran MC. Mechanistic insights from animal models of neurofibromatosis type 1 cognitive impairment. Dis Model Mech 2022; 15:276464. [PMID: 36037004 PMCID: PMC9459395 DOI: 10.1242/dmm.049422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neurogenetic disorder caused by mutations in the gene neurofibromin 1 (NF1). NF1 predisposes individuals to a variety of symptoms, including peripheral nerve tumors, brain tumors and cognitive dysfunction. Cognitive deficits can negatively impact patient quality of life, especially the social and academic development of children. The neurofibromin protein influences neural circuits via diverse cellular signaling pathways, including through RAS, cAMP and dopamine signaling. Although animal models have been useful in identifying cellular and molecular mechanisms that regulate NF1-dependent behaviors, translating these discoveries into effective treatments has proven difficult. Clinical trials measuring cognitive outcomes in patients with NF1 have mainly targeted RAS signaling but, unfortunately, resulted in limited success. In this Review, we provide an overview of the structure and function of neurofibromin, and evaluate several cellular and molecular mechanisms underlying neurofibromin-dependent cognitive function, which have recently been delineated in animal models. A better understanding of neurofibromin roles in the development and function of the nervous system will be crucial for identifying new therapeutic targets for the various cognitive domains affected by NF1. Summary: Neurofibromin influences neural circuits through RAS, cAMP and dopamine signaling. Exploring the mechanisms underlying neurofibromin-dependent behaviors in animal models might enable future treatment of the various cognitive deficits that are associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Andrew H Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
11
|
Li M, Wang Y, Fan J, Zhuang H, Liu Y, Ji D, Lu S. Mechanistic Insights into the Long-range Allosteric Regulation of KRAS Via Neurofibromatosis Type 1 (NF1) Scaffold Upon SPRED1 Loading. J Mol Biol 2022; 434:167730. [PMID: 35872068 DOI: 10.1016/j.jmb.2022.167730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
Allosteric regulation is the most direct and efficient way of regulating protein function, wherein proteins transmit the perturbations at one site to another distinct functional site. Deciphering the mechanism of allosteric regulation is of vital importance for the comprehension of both physiological and pathological events in vivo as well as the rational allosteric drug design. However, it remains challenging to elucidate dominant allosteric signal transduction pathways, especially for large and multi-component protein machineries where long-range allosteric regulation exits. One of the quintessential examples having long-range allosteric regulation is the ternary complex, SPRED1-RAS-neurofibromin type 1 (NF1, a RAS GTPase-activating protein), in which SPRED1 facilitates RAS-GTP hydrolysis by interacting with NF1 at a distal, allosteric site from the RAS binding site. To address the underlying mechanism, we performed extensive Gaussian accelerated molecular dynamics simulations and Markov state model analysis of KRAS-NF1 complex in the presence and absence of SPRED1. Our findings suggested that SPRED1 loading allosterically enhanced KRAS-NF1 binding, but hindered conformational transformation of the NF1 catalytic center for RAS hydrolysis. Moreover, we unveiled the possible allosteric pathways upon SPRED1 binding through difference contact network analysis. This study not only provided an in-depth mechanistic insight into the allosteric regulation of KRAS by SPRED1, but also shed light on the investigation of long-range allosteric regulation among complex macromolecular systems.
Collapse
Affiliation(s)
- Minyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Haiming Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Dong Ji
- Department of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Chaker-Margot M, Werten S, Dunzendorfer-Matt T, Lechner S, Ruepp A, Scheffzek K, Maier T. Structural basis of activation of the tumor suppressor protein neurofibromin. Mol Cell 2022; 82:1288-1296.e5. [PMID: 35353986 DOI: 10.1016/j.molcel.2022.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Mutations in the NF1 gene cause the familial genetic disease neurofibromatosis type I, as well as predisposition to cancer. The NF1 gene product, neurofibromin, is a GTPase-activating protein and acts as a tumor suppressor by negatively regulating the small GTPase, Ras. However, structural insights into neurofibromin activation remain incompletely defined. Here, we provide cryoelectron microscopy (cryo-EM) structures that reveal an extended neurofibromin homodimer in two functional states: an auto-inhibited state with occluded Ras-binding site and an asymmetric open state with an exposed Ras-binding site. Mechanistically, the transition to the active conformation is stimulated by nucleotide binding, which releases a lock that tethers the catalytic domain to an extended helical repeat scaffold in the occluded state. Structure-guided mutational analysis supports functional relevance of allosteric control. Disease-causing mutations are mapped and primarily impact neurofibromin stability. Our findings suggest a role for nucleotides in neurofibromin regulation and may lead to therapeutic modulation of Ras signaling.
Collapse
Affiliation(s)
| | - Sebastiaan Werten
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | | | - Stefan Lechner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Angela Ruepp
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Klaus Scheffzek
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
13
|
Genomic and Epigenomic Landscape of Juvenile Myelomonocytic Leukemia. Cancers (Basel) 2022; 14:cancers14051335. [PMID: 35267643 PMCID: PMC8909150 DOI: 10.3390/cancers14051335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Juvenile myelomonocytic leukemia (JMML) is a rare pediatric myelodysplastic/myeloproliferative neoplasm characterized by the constitutive activation of the RAS pathway. In spite of the recent progresses in the molecular characterization of JMML, this disease is still a clinical challenge due to its heterogeneity, difficult diagnosis, poor prognosis, and the lack of curative treatment options other than hematopoietic stem cell transplantation (HSCT). In this review, we will provide a detailed overview of the genetic and epigenetic alterations occurring in JMML, and discuss their clinical relevance in terms of disease prognosis and risk of relapse after HSCT. We will also present the most recent advances on novel preclinical and clinical therapeutic approaches directed against JMML molecular targets. Finally, we will outline future research perspectives to further explore the oncogenic mechanism driving JMML leukemogenesis and progression, with special attention to the application of single-cell next-generation sequencing technologies. Abstract Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm of early childhood. Most of JMML patients experience an aggressive clinical course of the disease and require hematopoietic stem cell transplantation, which is currently the only curative treatment. JMML is characterized by RAS signaling hyperactivation, which is mainly driven by mutations in one of five genes of the RAS pathway, including PTPN11, KRAS, NRAS, NF1, and CBL. These driving mutations define different disease subtypes with specific clinico-biological features. Secondary mutations affecting other genes inside and outside the RAS pathway contribute to JMML pathogenesis and are associated with a poorer prognosis. In addition to these genetic alterations, JMML commonly presents aberrant epigenetic profiles that strongly correlate with the clinical outcome of the patients. This observation led to the recent publication of an international JMML stratification consensus, which defines three JMML clinical groups based on DNA methylation status. Although the characterization of the genomic and epigenomic landscapes in JMML has significantly contributed to better understand the molecular mechanisms driving the disease, our knowledge on JMML origin, cell identity, and intratumor and interpatient heterogeneity is still scarce. The application of new single-cell sequencing technologies will be critical to address these questions in the future.
Collapse
|
14
|
Burge RA, Hobbs GA. Not all RAS mutations are equal: A detailed review of the functional diversity of RAS hot spot mutations. Adv Cancer Res 2022; 153:29-61. [PMID: 35101234 DOI: 10.1016/bs.acr.2021.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RAS family of small GTPases are among the most frequently mutated oncogenes in human cancer. Approximately 20% of cancers harbor a RAS mutation, and >150 different missense mutations have been detected. Many of these mutations have mutant-specific biochemical defects that alter nucleotide binding and hydrolysis, effector interactions and cell signaling, prompting renewed efforts in the development of anti-RAS therapies, including the mutation-specific strategies. Previously viewed as undruggable, the recent FDA approval of a KRASG12C-selective inhibitor has offered real promise to the development of allele-specific RAS therapies. A broader understanding of the mutational consequences on RAS function must be developed to exploit additional allele-specific vulnerabilities. Approximately 94% of RAS mutations occur at one of three mutational "hot spots" at Gly12, Gly13 and Gln61. Further, the single-nucleotide substitutions represent >99% of these mutations. Within this scope, we discuss the mutational frequencies of RAS isoforms in cancer, mutant-specific effector interactions and biochemical properties. By limiting our analysis to this mutational subset, we simplify the analysis while only excluding a small percentage of total mutations. Combined, these data suggest that the presence or absence of select RAS mutations in human cancers can be linked to their biochemical properties. Continuing to examine the biochemical differences in each RAS-mutant protein will continue to provide additional breakthroughs in allele-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rachel A Burge
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
15
|
Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech 2022; 15:274437. [PMID: 35188187 PMCID: PMC8891636 DOI: 10.1242/dmm.049362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 1 is a rare neurogenetic syndrome, characterized by pigmentary abnormalities, learning and social deficits, and a predisposition for benign and malignant tumor formation caused by germline mutations in the NF1 gene. With the cloning of the NF1 gene and the recognition that the encoded protein, neurofibromin, largely functions as a negative regulator of RAS activity, attention has mainly focused on RAS and canonical RAS effector pathway signaling relevant to disease pathogenesis and treatment. However, as neurofibromin is a large cytoplasmic protein the RAS regulatory domain of which occupies only 10% of its entire coding sequence, both canonical and non-canonical RAS pathway modulation, as well as the existence of potential non-RAS functions, are becoming apparent. In this Special article, we discuss our current understanding of neurofibromin function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paola Orozco
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
16
|
Splicing is an alternate oncogenic pathway activation mechanism in glioma. Nat Commun 2022; 13:588. [PMID: 35102191 PMCID: PMC8803922 DOI: 10.1038/s41467-022-28253-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
High-grade diffuse glioma (HGG) is the leading cause of brain tumour death. While the genetic drivers of HGG have been well described, targeting these has thus far had little impact on survival suggesting other mechanisms are at play. Here we interrogate the alternative splicing landscape of pediatric and adult HGG through multi-omic analyses, uncovering an increased splicing burden compared with normal brain. The rate of recurrent alternative splicing in cancer drivers exceeds their mutation rate, a pattern that is recapitulated in pan-cancer analyses, and is associated with worse prognosis in HGG. We investigate potential oncogenicity by interrogating cancer pathways affected by alternative splicing in HGG; spliced cancer drivers include members of the RAS/MAPK pathway. RAS suppressor neurofibromin 1 is differentially spliced to a less active isoform in >80% of HGG downstream from REST upregulation, activating the RAS/MAPK pathway and reducing glioblastoma patient survival. Overall, our results identify non-mutagenic mechanisms by which cancers activate oncogenic pathways which need to accounted for in personalized medicine approaches. Targeting genetic drivers of high grade diffuse glioma (HGG) has not improved patient survival, suggesting the involvement of other mechanisms. Here, across cancer types, the authors identify increased alternative splicing burden in cancer drivers compared to mutation rate as an alternative mechanism for activation of oncogenic pathways such as RAS/MAPK.
Collapse
|
17
|
The cryo-EM structure of the human neurofibromin dimer reveals the molecular basis for neurofibromatosis type 1. Nat Struct Mol Biol 2021; 28:982-988. [PMID: 34887559 DOI: 10.1038/s41594-021-00687-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022]
Abstract
Neurofibromin (NF1) mutations cause neurofibromatosis type 1 and drive numerous cancers, including breast and brain tumors. NF1 inhibits cellular proliferation through its guanosine triphosphatase-activating protein (GAP) activity against rat sarcoma (RAS). In the present study, cryo-electron microscope studies reveal that the human ~640-kDa NF1 homodimer features a gigantic 30 × 10 nm array of α-helices that form a core lemniscate-shaped scaffold. Three-dimensional variability analysis captured the catalytic GAP-related domain and lipid-binding SEC-PH domains positioned against the core scaffold in a closed, autoinhibited conformation. We postulate that interaction with the plasma membrane may release the closed conformation to promote RAS inactivation. Our structural data further allow us to map the location of disease-associated NF1 variants and provide a long-sought-after structural explanation for the extreme susceptibility of the molecule to loss-of-function mutations. Collectively these findings present potential new routes for therapeutic modulation of the RAS pathway.
Collapse
|
18
|
Motta M, Fasano G, Gredy S, Brinkmann J, Bonnard AA, Simsek-Kiper PO, Gulec EY, Essaddam L, Utine GE, Guarnetti Prandi I, Venditti M, Pantaleoni F, Radio FC, Ciolfi A, Petrini S, Consoli F, Vignal C, Hepbasli D, Ullrich M, de Boer E, Vissers LELM, Gritli S, Rossi C, De Luca A, Ben Becher S, Gelb BD, Dallapiccola B, Lauri A, Chillemi G, Schuh K, Cavé H, Zenker M, Tartaglia M. SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype. Am J Hum Genet 2021; 108:2112-2129. [PMID: 34626534 DOI: 10.1016/j.ajhg.2021.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome. Homozygosity for three different variants-c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95)-were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behavior. When overexpressed in cells, all variants were unable to negatively modulate EGF-promoted RAF1, MEK, and ERK phosphorylation, and time-course experiments in primary fibroblasts (p.Leu100Pro and p.Leu381Hisfs∗95) documented an increased and prolonged activation of the MAPK cascade in response to EGF stimulation. Morpholino-mediated knockdown of spred2a and spred2b in zebrafish induced defects in convergence and extension cell movements indicating upregulated RAS-MAPK signaling, which were rescued by expressing wild-type SPRED2 but not the SPRED2Leu381Hisfs∗95 protein. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. These features, in part, characterize the phenotype of Spred2-/- mice. Our findings identify the second recessive form of Noonan syndrome and document pleiotropic consequences of SPRED2 loss of function in development.
Collapse
Affiliation(s)
- Marialetizia Motta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sina Gredy
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Julia Brinkmann
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Adeline Alice Bonnard
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France; INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Pelin Ozlem Simsek-Kiper
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Health Sciences University, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, 34303 Istanbul, Turkey
| | - Leila Essaddam
- Department of Pediatrics-PUC, Béchir Hamza Children's Hospital, Faculty of Medicine, University of Tunis El Manar, Jebbari 1007, Tunis, Tunisia
| | - Gulen Eda Utine
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Ingrid Guarnetti Prandi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università Della Tuscia, 01100 Viterbo, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Federica Consoli
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Cédric Vignal
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France
| | - Denis Hepbasli
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Melanie Ullrich
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Elke de Boer
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Sami Gritli
- Department of Immunology, Pasteur Institute of Tunis, 1002 Tunis-Belvédère, Tunisia
| | - Cesare Rossi
- Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Saayda Ben Becher
- Department of Pediatrics-PUC, Béchir Hamza Children's Hospital, Faculty of Medicine, University of Tunis El Manar, Jebbari 1007, Tunis, Tunisia
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giovanni Chillemi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università Della Tuscia, 01100 Viterbo, Italy; Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Centro Nazionale Delle Ricerche, 70126 Bari, Italy
| | - Kai Schuh
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Hélène Cavé
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France; INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
19
|
Naschberger A, Baradaran R, Rupp B, Carroni M. The structure of neurofibromin isoform 2 reveals different functional states. Nature 2021; 599:315-319. [PMID: 34707296 PMCID: PMC8580823 DOI: 10.1038/s41586-021-04024-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023]
Abstract
The autosomal dominant monogenetic disease neurofibromatosis type 1 (NF1) affects approximately one in 3,000 individuals and is caused by mutations in the NF1 tumour suppressor gene, leading to dysfunction in the protein neurofibromin (Nf1)1,2. As a GTPase-activating protein, a key function of Nf1 is repression of the Ras oncogene signalling cascade. We determined the human Nf1 dimer structure at an overall resolution of 3.3 Å. The cryo-electron microscopy structure reveals domain organization and structural details of the Nf1 exon 23a splicing3 isoform 2 in a closed, self-inhibited, Zn-stabilized state and an open state. In the closed conformation, HEAT/ARM core domains shield the GTPase-activating protein-related domain (GRD) so that Ras binding is sterically inhibited. In a distinctly different, open conformation of one protomer, a large-scale movement of the GRD occurs, which is necessary to access Ras, whereas Sec14-PH reorients to allow interaction with the cellular membrane4. Zn incubation of Nf1 leads to reduced Ras-GAP activity with both protomers in the self-inhibited, closed conformation stabilized by a Zn binding site between the N-HEAT/ARM domain and the GRD-Sec14-PH linker. The transition between closed, self-inhibited states of Nf1 and open states provides guidance for targeted studies deciphering the complex molecular mechanism behind the widespread neurofibromatosis syndrome and Nf1 dysfunction in carcinogenesis.
Collapse
Affiliation(s)
- Andreas Naschberger
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, Austria
| | - Rozbeh Baradaran
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, Austria.
- k.-k. Hofkristallamt, San Diego, CA, USA.
| | - Marta Carroni
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
20
|
Lin G, Wei H, Lai AHM, Tan ES, Lim JY, Cham B, Ling S, Jamuar SS, Tan EC. Novel Variants and Clinical Characteristics of 16 Patients from Southeast Asia with Genetic Variants in Neurofibromin-1. J Pediatr Genet 2021; 12:135-140. [PMID: 37090834 PMCID: PMC10118707 DOI: 10.1055/s-0041-1736457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
AbstractNeurofibromatosis type 1 (NF1) is one of the most common inherited disorders. It is caused by mutations in the neurofibromin-1 gene (NF1) and affects the formation and growth of nerve tissues. More than 3,600 pathogenic variants in the NF1 gene have been identified from patients with most of the germline variants are from the Western populations. We found 16 patients (15 Chinese and 1 Asian Indian) who had heterozygous variants in NF1 through targeted next-generation sequencing. There were 15 different variants: 4 frameshift, 4 nonsense, 5 missense, and 2 splice variants. One nonsense variant and three frameshift variants had never been reported in any population or patient database. Twelve of the 16 patients met the NF1 diagnostic criteria, and each was found to have a pathogenic or likely pathogenic variant. Three different missense variants of unknown significance were discovered in the other four patients who did not meet NF1 diagnostic criteria. Our findings add four novel variants to the list of genetic mutations linked to NF1's various clinical manifestations.
Collapse
Affiliation(s)
- Grace Lin
- Research Laboratory, KK Women's and Children's Hospital, Singapore
| | - Heming Wei
- Research Laboratory, KK Women's and Children's Hospital, Singapore
| | - Angeline H. M. Lai
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
| | - Ee-Shien Tan
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
| | - Jiin Ying Lim
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
| | - Breana Cham
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
| | - Simon Ling
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
- Department of Pediatrics, Neurology Service, KK Women's and Children's Hospital, Singapore
| | - Saumya S. Jamuar
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
| | - Ene-Choo Tan
- Research Laboratory, KK Women's and Children's Hospital, Singapore
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
| |
Collapse
|
21
|
Current Understanding of Neurofibromatosis Type 1, 2, and Schwannomatosis. Int J Mol Sci 2021; 22:ijms22115850. [PMID: 34072574 PMCID: PMC8198724 DOI: 10.3390/ijms22115850] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Neurofibromatosis (NF) is a neurocutaneous syndrome characterized by the development of tumors of the central or peripheral nervous system including the brain, spinal cord, organs, skin, and bones. There are three types of NF: NF1 accounting for 96% of all cases, NF2 in 3%, and schwannomatosis (SWN) in <1%. The NF1 gene is located on chromosome 17q11.2, which encodes for a tumor suppressor protein, neurofibromin, that functions as a negative regulator of Ras/MAPK and PI3K/mTOR signaling pathways. The NF2 gene is identified on chromosome 22q12, which encodes for merlin, a tumor suppressor protein related to ezrin-radixin-moesin that modulates the activity of PI3K/AKT, Raf/MEK/ERK, and mTOR signaling pathways. In contrast, molecular insights on the different forms of SWN remain unclear. Inactivating mutations in the tumor suppressor genes SMARCB1 and LZTR1 are considered responsible for a majority of cases. Recently, treatment strategies to target specific genetic or molecular events involved in their tumorigenesis are developed. This study discusses molecular pathways and related targeted therapies for NF1, NF2, and SWN and reviews recent clinical trials which involve NF patients.
Collapse
|
22
|
Swisher GH, Hannan JP, Cordaro NJ, Erbse AH, Falke JJ. Ras-guanine nucleotide complexes: A UV spectral deconvolution method to analyze protein concentration, nucleotide stoichiometry, and purity. Anal Biochem 2021; 618:114066. [PMID: 33485819 DOI: 10.1016/j.ab.2020.114066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022]
Abstract
The many members of the Ras superfamily are small GTPases that serve as molecular switches. These proteins bind the guanine nucleotides GTP and GDP with picomolar affinities, thereby stabilizing on- and off-signaling states, respectively. Quantitative in vitro Ras studies require accurate determination of total protein, its fractional occupancy with guanine nucleotide, and spectroscopic purity. Yet the high nucleotide affinity of Ras and the overlapping UV spectra of the protein and bound nucleotide make such determinations challenging. Here we describe a generalizable UV spectral deconvolution method to analyze the total protein concentration, total nucleotide stoichiometry, and purity of Ras complexes.
Collapse
Affiliation(s)
- G Hayden Swisher
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, 80309-0596, United States
| | - Jonathan P Hannan
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, 80309-0596, United States
| | - Nicholas J Cordaro
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, 80309-0596, United States
| | - Annette H Erbse
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, 80309-0596, United States
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, CO, 80309-0596, United States.
| |
Collapse
|
23
|
Neira JL, Vega S, Martínez-Rodríguez S, Velázquez-Campoy A. The isolated GTPase-activating-protein-related domain of neurofibromin-1 has a low conformational stability in solution. Arch Biochem Biophys 2021; 700:108767. [PMID: 33476564 DOI: 10.1016/j.abb.2021.108767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Neurofibromin-1 (NF1) is a large, multidomain tumour suppressor encoded by the NF1 gene. The gene is mutated in neurofibromatosis type I, a disease characterized by malignant tumours of the nervous system and benign neurofibromas. The best-known activity of NF1 is the down-regulation of the mitogen-activated protein kinase pathway via its three-hundred-residue-long GTPase-activating protein (GAP) domain (the so-called GAP-related domain (NF1-GRD)). The NF1-GRD stimulates Ras GTPase activity in turning off signalling. Despite this activity, NF1-GRD has been demonstrated to bind to other different proteins, such as SPRED1 or MC1R. We have embarked on the biophysical and conformational characterization of NF1-GRD in solution by using several spectroscopic (namely fluorescence and circular dichroism (CD)) and biophysical techniques (namely size exclusion chromatography (SEC) and differential scanning calorimetry (DSC)). This biophysical characterization is crucial in deciphering NF1-GRD interactome and in finding biochemical features, modulating possible protein interactions. The native-like structure of NF1-GRD (as monitored by intrinsic fluorescence and far-UV CD) was strongly pH-dependent showing a pH-titration causing a substantial increase in its helicity. NF1-GRD had a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by intrinsic and ANS fluorescence, and CD. Chemical denaturations showed that NF1-GRD unfolded through an intermediate which has a substantial amount of solvent-exposed hydrophobic patches.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Sonia Vega
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Sergio Martínez-Rodríguez
- Laboratorio de Estudios Cristalográficos, CSIC, 18100, Armilla, Granada, Spain; Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18071, Granada, Spain.
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009, Zaragoza, Spain; Fundación ARAID, Government of Aragón, 50009, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006, Madrid, Spain
| |
Collapse
|
24
|
Ceglie G, Del Baldo G, Agolini E, Rinelli M, Cacchione A, Del Bufalo F, Vinci M, Carta R, Boccuto L, Miele E, Mastronuzzi A, Locatelli F, Carai A. Cancer Predisposition Syndromes Associated With Pediatric High-Grade Gliomas. Front Pediatr 2020; 8:561487. [PMID: 33282797 PMCID: PMC7690624 DOI: 10.3389/fped.2020.561487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023] Open
Abstract
Pediatric High-Grade Gliomas (pHGG) are among the deadliest childhood brain tumors and can be associated with an underlying cancer predisposing syndrome. The thorough understanding of these syndromes can aid the clinician in their prompt recognition, leading to an informed genetic counseling for families and to a wider understanding of a specific genetic landscape of the tumor for target therapies. In this review, we summarize the main pHGG-associated cancer predisposing conditions, providing a guide for suspecting these syndromes and referring for genetic counseling.
Collapse
Affiliation(s)
- Giulia Ceglie
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Giada Del Baldo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Vinci
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Roberto Carta
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, United States
- Clemson University School of Health Research, Clemson, SC, United States
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
- Sapienza, University of Rome, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
25
|
McFall T, Schomburg NK, Rossman KL, Stites EC. Discernment between candidate mechanisms for KRAS G13D colorectal cancer sensitivity to EGFR inhibitors. Cell Commun Signal 2020; 18:179. [PMID: 33153459 PMCID: PMC7643456 DOI: 10.1186/s12964-020-00645-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Phase three clinical trial evidence suggests that colorectal cancers with the KRAS G13D mutation may benefit from EGFR inhibitors, like cetuximab, in contrast to the other most common KRAS mutations. A mechanism to explain why this mutation behaves differently from other KRAS mutations had long been lacking. Two recent studies have reproduced KRAS G13D specific sensitivity to cetuximab in cellular models, and both have implicated the tumor suppressor NF1 as a critical variable in determining sensitivity and resistance. One study proposes a mechanism that focuses on the inhibition of active, GTP-bound wild-type RAS, which is proposed to occur to a greater extent in KRAS G13D tumors due to the inability of KRAS G13D to bind NF1 well. The other study suggests NF1 can convert GTP-bound KRAS G13D to inactive, GDP-bound KRAS G13D. Here, we report an inability to reproduce cellular and biophysical studies that suggested NF1 has strong GTPase activity on KRAS G13D. We also report additional data that further suggests only WT RAS-GTP levels are reduced with EGFR inhibition and that KRAS G13D is impaired in binding to NF1. These new experiments further support a mechanism in which cetuximab inhibits wild-type (HRAS and NRAS) signals in KRAS G13D colorectal cancers. Video Abstract.
Collapse
Affiliation(s)
- Thomas McFall
- Integrative Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Noah K. Schomburg
- Department of Surgery and the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| | - Kent L. Rossman
- Department of Surgery and the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| | - Edward C. Stites
- Integrative Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037 USA
| |
Collapse
|
26
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
27
|
Nuclear Isoforms of Neurofibromin Are Required for Proper Spindle Organization and Chromosome Segregation. Cells 2020; 9:cells9112348. [PMID: 33114250 PMCID: PMC7690890 DOI: 10.3390/cells9112348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Mitotic spindles are highly organized, microtubule (MT)-based, transient structures that serve the fundamental function of unerring chromosome segregation during cell division and thus of genomic stability during tissue morphogenesis and homeostasis. Hence, a multitude of MT-associated proteins (MAPs) regulates the dynamic assembly of MTs in preparation for mitosis. Some tumor suppressors, normally functioning to prevent tumor development, have now emerged as significant MAPs. Among those, neurofibromin, the product of the Neurofibromatosis-1 gene (NF1), a major Ras GTPase activating protein (RasGAP) in neural cells, controls also the critical function of chromosome congression in astrocytic cellular contexts. Cell type- and development-regulated splicings may lead to the inclusion or exclusion of NF1exon51, which bears a nuclear localization sequence (NLS) for nuclear import at G2; yet the functions of the produced NLS and ΔNLS neurofibromin isoforms have not been previously addressed. By using a lentiviral shRNA system, we have generated glioblastoma SF268 cell lines with conditional knockdown of NLS or ΔNLS transcripts. In dissecting the roles of NLS or ΔNLS neurofibromins, we found that NLS-neurofibromin knockdown led to increased density of cytosolic MTs but loss of MT intersections, anastral spindles featuring large hollows and abnormal chromosome positioning, and finally abnormal chromosome segregation and increased micronuclei frequency. Therefore, we propose that NLS neurofibromin isoforms exert prominent mitotic functions.
Collapse
|
28
|
Gasper R, Wittinghofer F. The Ras switch in structural and historical perspective. Biol Chem 2020; 401:143-163. [PMID: 31600136 DOI: 10.1515/hsz-2019-0330] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
Since its discovery as an oncogene more than 40 years ago, Ras has been and still is in the focus of many academic and pharmaceutical labs around the world. A huge amount of work has accumulated on its biology. However, many questions about the role of the different Ras isoforms in health and disease still exist and a full understanding will require more intensive work in the future. Here we try to survey some of the structural findings in a historical perspective and how it has influenced our understanding of structure-function and mechanistic relationships of Ras and its interactions. The structures show that Ras is a stable molecular machine that uses the dynamics of its switch regions for the interaction with all regulators and effectors. This conformational flexibility has been used to create small molecule drug candidates against this important oncoprotein.
Collapse
Affiliation(s)
- Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| | - Fred Wittinghofer
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| |
Collapse
|
29
|
Yan W, Markegard E, Dharmaiah S, Urisman A, Drew M, Esposito D, Scheffzek K, Nissley DV, McCormick F, Simanshu DK. Structural Insights into the SPRED1-Neurofibromin-KRAS Complex and Disruption of SPRED1-Neurofibromin Interaction by Oncogenic EGFR. Cell Rep 2020; 32:107909. [PMID: 32697994 PMCID: PMC7437355 DOI: 10.1016/j.celrep.2020.107909] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Sprouty-related, EVH1 domain-containing (SPRED) proteins negatively regulate RAS/mitogen-activated protein kinase (MAPK) signaling following growth factor stimulation. This inhibition of RAS is thought to occur primarily through SPRED1 binding and recruitment of neurofibromin, a RasGAP, to the plasma membrane. Here, we report the structure of neurofibromin (GTPase-activating protein [GAP]-related domain) complexed with SPRED1 (EVH1 domain) and KRAS. The structure provides insight into how the membrane targeting of neurofibromin by SPRED1 allows simultaneous interaction with activated KRAS. SPRED1 and NF1 loss-of-function mutations occur across multiple cancer types and developmental diseases. Analysis of the neurofibromin-SPRED1 interface provides a rationale for mutations observed in Legius syndrome and suggests why SPRED1 can bind to neurofibromin but no other RasGAPs. We show that oncogenic EGFR(L858R) signaling leads to the phosphorylation of SPRED1 on serine 105, disrupting the SPRED1-neurofibromin complex. The structural, biochemical, and biological results provide new mechanistic insights about how SPRED1 interacts with neurofibromin and regulates active KRAS levels in normal and pathologic conditions.
Collapse
Affiliation(s)
- Wupeng Yan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Evan Markegard
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Anatoly Urisman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Klaus Scheffzek
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA.
| |
Collapse
|
30
|
Sherekar M, Han SW, Ghirlando R, Messing S, Drew M, Rabara D, Waybright T, Juneja P, O'Neill H, Stanley CB, Bhowmik D, Ramanathan A, Subramaniam S, Nissley DV, Gillette W, McCormick F, Esposito D. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem 2020; 295:1105-1119. [PMID: 31836666 PMCID: PMC6983858 DOI: 10.1074/jbc.ra119.010934] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Neurofibromin is a tumor suppressor encoded by the NF1 gene, which is mutated in Rasopathy disease neurofibromatosis type I. Defects in NF1 lead to aberrant signaling through the RAS-mitogen-activated protein kinase pathway due to disruption of the neurofibromin GTPase-activating function on RAS family small GTPases. Very little is known about the function of most of the neurofibromin protein; to date, biochemical and structural data exist only for its GAP domain and a region containing a Sec-PH motif. To better understand the role of this large protein, here we carried out a series of biochemical and biophysical experiments, including size-exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray and neutron scattering, and analytical ultracentrifugation, indicating that full-length neurofibromin forms a high-affinity dimer. We observed that neurofibromin dimerization also occurs in human cells and likely has biological and clinical implications. Analysis of purified full-length and truncated neurofibromin variants by negative-stain EM revealed the overall architecture of the dimer and predicted the potential interactions that contribute to the dimer interface. We could reconstitute structures resembling high-affinity full-length dimers by mixing N- and C-terminal protein domains in vitro The reconstituted neurofibromin was capable of GTPase activation in vitro, and co-expression of the two domains in human cells effectively recapitulated the activity of full-length neurofibromin. Taken together, these results suggest how neurofibromin dimers might form and be stabilized within the cell.
Collapse
Affiliation(s)
- Mukul Sherekar
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Sae-Won Han
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Timothy Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Puneet Juneja
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322
| | - Hugh O'Neill
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | | | | | | | - Sriram Subramaniam
- Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
- Department of Biochemistry, Life Sciences Center, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| |
Collapse
|
31
|
Sherekar M, Han SW, Ghirlando R, Messing S, Drew M, Rabara D, Waybright T, Juneja P, O'Neill H, Stanley CB, Bhowmik D, Ramanathan A, Subramaniam S, Nissley DV, Gillette W, McCormick F, Esposito D. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49919-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
32
|
Koczkowska M, Callens T, Chen Y, Gomes A, Hicks AD, Sharp A, Johns E, Uhas KA, Armstrong L, Bosanko KA, Babovic‐Vuksanovic D, Baker L, Basel DG, Bengala M, Bennett JT, Chambers C, Clarkson LK, Clementi M, Cortés FM, Cunningham M, D'Agostino MD, Delatycki MB, Digilio MC, Dosa L, Esposito S, Fox S, Freckmann M, Fauth C, Giugliano T, Giustini S, Goetsch A, Goldberg Y, Greenwood RS, Griffis C, Gripp KW, Gupta P, Haan E, Hachen RK, Haygarth TL, Hernández‐Chico C, Hodge K, Hopkin RJ, Hudgins L, Janssens S, Keller K, Kelly‐Mancuso G, Kochhar A, Korf BR, Lewis AM, Liebelt J, Lichty A, Listernick RH, Lyons MJ, Maystadt I, Martinez Ojeda M, McDougall C, McGregor LK, Melis D, Mendelsohn N, Nowaczyk MJ, Ortenberg J, Panzer K, Pappas JG, Pierpont ME, Piluso G, Pinna V, Pivnick EK, Pond DA, Powell CM, Rogers C, Ruhrman Shahar N, Rutledge SL, Saletti V, Sandaradura SA, Santoro C, Schatz UA, Schreiber A, Scott DA, Sellars EA, Sheffer R, Siqveland E, Slopis JM, Smith R, Spalice A, Stockton DW, Streff H, Theos A, Tomlinson GE, Tran G, Trapane PL, Trevisson E, Ullrich NJ, Van den Ende J, Schrier Vergano SA, Wallace SE, Wangler MF, Weaver DD, Yohay KH, Zackai E, Zonana J, Zurcher V, Claes KBM, Eoli M, Martin Y, Wimmer K, De Luca A, Legius E, Messiaen LM. Clinical spectrum of individuals with pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype-phenotype study in neurofibromatosis type 1. Hum Mutat 2020; 41:299-315. [PMID: 31595648 PMCID: PMC6973139 DOI: 10.1002/humu.23929] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
We report 281 individuals carrying a pathogenic recurrent NF1 missense variant at p.Met1149, p.Arg1276, or p.Lys1423, representing three nontruncating NF1 hotspots in the University of Alabama at Birmingham (UAB) cohort, together identified in 1.8% of unrelated NF1 individuals. About 25% (95% confidence interval: 20.5-31.2%) of individuals heterozygous for a pathogenic NF1 p.Met1149, p.Arg1276, or p.Lys1423 missense variant had a Noonan-like phenotype, which is significantly more compared with the "classic" NF1-affected cohorts (all p < .0001). Furthermore, p.Arg1276 and p.Lys1423 pathogenic missense variants were associated with a high prevalence of cardiovascular abnormalities, including pulmonic stenosis (all p < .0001), while p.Arg1276 variants had a high prevalence of symptomatic spinal neurofibromas (p < .0001) compared with "classic" NF1-affected cohorts. However, p.Met1149-positive individuals had a mild phenotype, characterized mainly by pigmentary manifestations without externally visible plexiform neurofibromas, symptomatic spinal neurofibromas or symptomatic optic pathway gliomas. As up to 0.4% of unrelated individuals in the UAB cohort carries a p.Met1149 missense variant, this finding will contribute to more accurate stratification of a significant number of NF1 individuals. Although clinically relevant genotype-phenotype correlations are rare in NF1, each affecting only a small percentage of individuals, together they impact counseling and management of a significant number of the NF1 population.
Collapse
Affiliation(s)
| | - Tom Callens
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Yunjia Chen
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Alicia Gomes
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Alesha D. Hicks
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Angela Sharp
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Eric Johns
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | | | - Linlea Armstrong
- Department of Medical Genetics, BC Women's HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Katherine Armstrong Bosanko
- Division of Clinical Genetics and Metabolism, Arkansas Children's HospitalUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | | | - Laura Baker
- Division of Medical GeneticsAl DuPont Hospital for ChildrenWilmingtonDelaware
| | | | - Mario Bengala
- U.O.C Laboratorio di Genetica Medica, Dipartimento di OncoematologiaFondazione Policlinico di Tor VergataRomeItaly
| | - James T. Bennett
- Division of Genetic Medicine, Department of PediatricsUniversity of WashingtonSeattleWashington
| | - Chelsea Chambers
- Department of NeurologyUniversity of Virginia Medical CenterCharlottesvilleVirginia
| | | | - Maurizio Clementi
- Clinical Genetics Unit, Department of Women's and Children's HealthUniversity of PadovaPadovaItaly
| | | | - Mitch Cunningham
- Division of Genetic, Genomic, and Metabolic Disorders, Detroit Medical CenterChildren's Hospital of MichiganDetroitMichigan
| | | | - Martin B. Delatycki
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Childrens Research InstituteParkvilleVictoriaAustralia
| | - Maria C. Digilio
- Medical Genetics Unit, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Laura Dosa
- SOC Genetica MedicaAOU MeyerFlorenceItaly
| | - Silvia Esposito
- Developmental Neurology UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Stephanie Fox
- Division of Medical GeneticsMcGill University Health CentreMontréalQuebecCanada
| | - Mary‐Louise Freckmann
- Department of Clinical GeneticsRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Christine Fauth
- Division of Human GeneticsMedical University of InnsbruckInnsbruckAustria
| | - Teresa Giugliano
- Department of Precision MedicineUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Sandra Giustini
- Department of Dermatology and Venereology, Policlinico Umberto ISapienza University of RomeRomeItaly
| | - Allison Goetsch
- Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Yael Goldberg
- The Raphael Recanati Genetics InstituteRabin Medical CenterPetah TikvaIsrael
| | - Robert S. Greenwood
- Division of Child NeurologyUniversity of North Carolina School of MedicineChapel HillNorth Carolina
| | | | - Karen W. Gripp
- Division of Medical GeneticsAl DuPont Hospital for ChildrenWilmingtonDelaware
| | - Punita Gupta
- Neurofibromatosis Diagnostic and Treatment ProgramSt. Joseph's Children's HospitalPatersonNew Jersey
| | - Eric Haan
- Adult Genetics UnitRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Rachel K. Hachen
- Neurofibromatosis ProgramChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Tamara L. Haygarth
- Carolinas HealthCare SystemLevine Children's Specialty CenterCharlotteNorth Carolina
| | - Concepción Hernández‐Chico
- Department of Genetics, Hospital Universitario Ramón y CajalInstitute of Health Research (IRYCIS) and Center for Biomedical Research‐Network of Rare Diseases (CIBERER)MadridSpain
| | - Katelyn Hodge
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndiana
| | - Robert J. Hopkin
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhio
| | - Louanne Hudgins
- Division of Medical GeneticsStanford University School of MedicineStanfordCalifornia
| | - Sandra Janssens
- Center for Medical GeneticsGhent University HospitalGhentBelgium
| | - Kory Keller
- Department of Molecular and Medical GeneticsOregon Health and Science UniversityPortlandOregon
| | | | - Aaina Kochhar
- Department of Medical Genetics and MetabolismValley Children's HealthcareMaderaCalifornia
| | - Bruce R. Korf
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Andrea M. Lewis
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Jan Liebelt
- The South Australian Clinical Genetics Service at the Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | | | - Robert H. Listernick
- Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIllinois
| | | | - Isabelle Maystadt
- Center for Human GeneticsInstitute of Pathology and Genetics (IPG)GosseliesBelgium
| | | | - Carey McDougall
- Division of Human Genetics, Children's Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphiaPennsylvania
| | - Lesley K. McGregor
- The South Australian Clinical Genetics Service at the Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Daniela Melis
- Section of Pediatrics, Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Nancy Mendelsohn
- Genomics Medicine ProgramChildren's Hospital MinnesotaMinneapolisMinnesota
| | | | - June Ortenberg
- Division of Medical GeneticsMcGill University Health CentreMontréalQuebecCanada
| | - Karin Panzer
- University of Iowa Stead Family Children's HospitalIowa CityIowa
| | - John G. Pappas
- Division of Clinical Genetic Services, Department of PediatricsNYU School of MedicineNew YorkNew York
| | - Mary Ella Pierpont
- Department of Pediatrics and OpthalmologyUniversity of MinnesotaMinneapolisMinnesota
| | - Giulio Piluso
- Department of Precision MedicineUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Valentina Pinna
- Molecular Genetics UnitIRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoFoggiaItaly
| | - Eniko K. Pivnick
- Department of Pediatrics and Department of OphthalmologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Dinel A. Pond
- Genomics Medicine ProgramChildren's Hospital MinnesotaMinneapolisMinnesota
| | - Cynthia M. Powell
- Department of Genetics and Department of PediatricsUniversity of North Carolina School of MedicineChapel HillNorth Carolina
| | - Caleb Rogers
- Department of Molecular and Medical GeneticsOregon Health and Science UniversityPortlandOregon
| | - Noa Ruhrman Shahar
- The Raphael Recanati Genetics InstituteRabin Medical CenterPetah TikvaIsrael
| | - S. Lane Rutledge
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Veronica Saletti
- Developmental Neurology UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Sarah A. Sandaradura
- Division of Clinical Genetics, Department of Paediatrics and Child Health, Children's Hospital at WestmeadUniversity of SydneySydneyNew South WalesAustralia
| | - Claudia Santoro
- Specialistic and General Surgery Unit, Department of Woman and Child, Referral Centre of NeurofibromatosisUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Ulrich A. Schatz
- Division of Human GeneticsMedical University of InnsbruckInnsbruckAustria
| | | | - Daryl A. Scott
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Elizabeth A. Sellars
- Division of Clinical Genetics and Metabolism, Arkansas Children's HospitalUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Ruth Sheffer
- Department of Genetics and Metabolic DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | | | - John M. Slopis
- Department of Neuro‐OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Rosemarie Smith
- Division of Genetics, Department of PediatricsMaine Medical CenterPortlandMaine
| | - Alberto Spalice
- Child Neurology Division, Department of PediatricsSapienza University of RomeRomeItaly
| | - David W. Stockton
- Division of Genetic, Genomic, and Metabolic Disorders, Detroit Medical CenterChildren's Hospital of MichiganDetroitMichigan
| | - Haley Streff
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Amy Theos
- Department of DermatologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Gail E. Tomlinson
- Division of Pediatric Hematology–Oncology, Greehey Children's Cancer Research InstituteThe University of Texas Health Science CenterSan AntonioTexas
| | - Grace Tran
- Department of Clinical Cancer GeneticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Pamela L. Trapane
- Division of Pediatric Genetics, Department of PediatricsUniversity of Florida College of MedicineJacksonvilleFlorida
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's HealthUniversity of PadovaPadovaItaly
| | - Nicole J. Ullrich
- Department of NeurologyBoston Children's HospitalBostonMassachusetts
| | - Jenneke Van den Ende
- Center for Medical GeneticsUniversity of Antwerp and Antwerp University HospitalAntwerpBelgium
| | | | - Stephanie E. Wallace
- Division of Genetic Medicine, Department of PediatricsUniversity of WashingtonSeattleWashington
| | - Michael F. Wangler
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - David D. Weaver
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndiana
| | - Kaleb H. Yohay
- Department of Neurology, New York University School of MedicineLangone Medical CenterNew YorkNew York
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphiaPennsylvania
| | - Jonathan Zonana
- Department of Molecular and Medical GeneticsOregon Health and Science UniversityPortlandOregon
| | | | | | - Marica Eoli
- Division of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Yolanda Martin
- Department of Genetics, Hospital Universitario Ramón y CajalInstitute of Health Research (IRYCIS) and Center for Biomedical Research‐Network of Rare Diseases (CIBERER)MadridSpain
| | - Katharina Wimmer
- Division of Human GeneticsMedical University of InnsbruckInnsbruckAustria
| | - Alessandro De Luca
- Molecular Genetics UnitIRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoFoggiaItaly
| | - Eric Legius
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | | |
Collapse
|
33
|
Rabara D, Tran TH, Dharmaiah S, Stephens RM, McCormick F, Simanshu DK, Holderfield M. KRAS G13D sensitivity to neurofibromin-mediated GTP hydrolysis. Proc Natl Acad Sci U S A 2019; 116:22122-22131. [PMID: 31611389 PMCID: PMC6825300 DOI: 10.1073/pnas.1908353116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
KRAS mutations occur in ∼35% of colorectal cancers and promote tumor growth by constitutively activating the mitogen-activated protein kinase (MAPK) pathway. KRAS mutations at codons 12, 13, or 61 are thought to prevent GAP protein-stimulated GTP hydrolysis and render KRAS-mutated colorectal cancers unresponsive to epidermal growth factor receptor (EGFR) inhibitors. We report here that KRAS G13-mutated cancer cells are frequently comutated with NF1 GAP but NF1 is rarely mutated in cancers with KRAS codon 12 or 61 mutations. Neurofibromin protein (encoded by the NF1 gene) hydrolyzes GTP directly in complex with KRAS G13D, and KRAS G13D-mutated cells can respond to EGFR inhibitors in a neurofibromin-dependent manner. Structures of the wild type and G13D mutant of KRAS in complex with neurofibromin (RasGAP domain) provide the structural basis for neurofibromin-mediated GTP hydrolysis. These results reveal that KRAS G13D is responsive to neurofibromin-stimulated hydrolysis and suggest that a subset of KRAS G13-mutated colorectal cancers that are neurofibromin-competent may respond to EGFR therapies.
Collapse
Affiliation(s)
- Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Robert M Stephens
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701;
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701;
| | - Matthew Holderfield
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701;
| |
Collapse
|
34
|
Pathogenic Mutations Associated with Legius Syndrome Modify the Spred1 Surface and Are Involved in Direct Binding to the Ras Inactivator Neurofibromin. J Mol Biol 2019; 431:3889-3899. [DOI: 10.1016/j.jmb.2019.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/20/2023]
|
35
|
Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, Mayer M, Gollner A, Covini D, Fischer S, Gerstberger T, Gmaschitz T, Goodwin C, Greb P, Häring D, Hela W, Hoffmann J, Karolyi-Oezguer J, Knesl P, Kornigg S, Koegl M, Kousek R, Lamarre L, Moser F, Munico-Martinez S, Peinsipp C, Phan J, Rinnenthal J, Sai J, Salamon C, Scherbantin Y, Schipany K, Schnitzer R, Schrenk A, Sharps B, Siszler G, Sun Q, Waterson A, Wolkerstorfer B, Zeeb M, Pearson M, Fesik SW, McConnell DB. Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci U S A 2019; 116:15823-15829. [PMID: 31332011 PMCID: PMC6689897 DOI: 10.1073/pnas.1904529116] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be "undruggable," between switch I and II on RAS; 1 is mechanistically distinct from covalent KRASG12C inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.
Collapse
Affiliation(s)
- Dirk Kessler
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Michael Gmachl
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Andreas Mantoulidis
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Laetitia J Martin
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Andreas Zoephel
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Moriz Mayer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Andreas Gollner
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - David Covini
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Silke Fischer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Thomas Gerstberger
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Teresa Gmaschitz
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Craig Goodwin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Peter Greb
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Daniela Häring
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Wolfgang Hela
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Johann Hoffmann
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Jale Karolyi-Oezguer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Petr Knesl
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Stefan Kornigg
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Manfred Koegl
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Roland Kousek
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Lyne Lamarre
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Franziska Moser
- Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach an der Riss, Germany
| | - Silvia Munico-Martinez
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Christoph Peinsipp
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Jason Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Jörg Rinnenthal
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Christian Salamon
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Yvonne Scherbantin
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Katharina Schipany
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Renate Schnitzer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Andreas Schrenk
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Bernadette Sharps
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Gabriella Siszler
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Qi Sun
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Alex Waterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Bernhard Wolkerstorfer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Markus Zeeb
- Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach an der Riss, Germany
| | - Mark Pearson
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Darryl B McConnell
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria;
| |
Collapse
|
36
|
Bai RY, Esposito D, Tam AJ, McCormick F, Riggins GJ, Wade Clapp D, Staedtke V. Feasibility of using NF1-GRD and AAV for gene replacement therapy in NF1-associated tumors. Gene Ther 2019; 26:277-286. [PMID: 31127187 PMCID: PMC6588423 DOI: 10.1038/s41434-019-0080-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 1, including the highly aggressive malignant peripheral nerve sheath tumors (MPNSTs), is featured by the loss of functional neurofibromin 1 (NF1) protein resulting from genetic alterations. A major function of NF1 is suppressing Ras activities, which is conveyed by an intrinsic GTPase-activating protein-related domain (GRD). In this study, we explored the feasibility of restoring Ras GTPase via exogenous expression of various GRD constructs, via gene delivery using a panel of adeno-associated virus (AAV) vectors in MPNST and human Schwann cells (HSCs). We demonstrated that several AAV serotypes achieved favorable transduction efficacies in those cells and a membrane-targeting GRD fused with an H-Ras C-terminal motif (C10) dramatically inhibited the Ras pathway and MPNST cells in a NF1-specific manner. Our results opened up a venue of gene replacement therapy in NF1-related tumors.
Collapse
Affiliation(s)
- Ren-Yuan Bai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Ada J Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Wade Clapp
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Scheffzek K, Shivalingaiah G. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031500. [PMID: 30104198 DOI: 10.1101/cshperspect.a031500] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras-specific GTPase-activating proteins (RasGAPs) down-regulate the biological activity of Ras proteins by accelerating their intrinsic rate of GTP hydrolysis, basically by a transition state stabilizing mechanism. Oncogenic Ras is commonly not sensitive to RasGAPs caused by interference of mutants with the electronic or steric requirements of the transition state, resulting in up-regulation of activated Ras in respective cells. RasGAPs are modular proteins containing a helical catalytic RasGAP module surrounded by smaller domains that are frequently involved in the subcellular localization or contributing to regulatory features of their host proteins. In this review, we summarize current knowledge about RasGAP structure, mechanism, regulation, and dual-substrate specificity and discuss in some detail neurofibromin, one of the most important negative Ras regulators in cellular growth control and neuronal function.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
38
|
Frayling IM, Mautner VF, van Minkelen R, Kallionpaa RA, Aktaş S, Baralle D, Ben-Shachar S, Callaway A, Cox H, Eccles DM, Ferkal S, LaDuca H, Lázaro C, Rogers MT, Stuenkel AJ, Summerour P, Varan A, Yap YS, Zehou O, Peltonen J, Evans DG, Wolkenstein P, Upadhyaya M. Breast cancer risk in neurofibromatosis type 1 is a function of the type of NF1 gene mutation: a new genotype-phenotype correlation. J Med Genet 2018; 56:209-219. [DOI: 10.1136/jmedgenet-2018-105599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 01/19/2023]
Abstract
BackgroundNeurofibromatosis type 1 (NF1) predisposes to breast cancer (BC), but no genotype-phenotype correlations have been described.MethodsConstitutional NF1 mutations in 78 patients with NF1 with BC (NF1-BC) were compared with the NF1 Leiden Open Variation Database (n=3432).ResultsNo cases were observed with whole or partial gene deletions (HR 0.10; 95% CI 0.006 to 1.63; p=0.014, Fisher’s exact test). There were no gross relationships with mutation position. Forty-five (64.3%; HR 6.4–83) of the 70 different mutations were more frequent than expected (p<0.05), while 52 (74.3%; HR 5.3–83) were significant when adjusted for multiple comparisons (adjusted p≤0.125; Benjamini-Hochberg). Higher proportions of both nonsense and missense mutations were also observed (adjusted p=0.254; Benjamini-Hochberg). Ten of the 11 missense cases with known age of BC occurred at <50 years (p=0.041). Eighteen cases had BRCA1/2 testing, revealing one BRCA2 mutation.DiscussionThese data strongly support the hypothesis that certain constitutional mutation types, and indeed certain specific variants in NF1 confer different risks of BC. The lack of large deletions and excess of nonsenses and missenses is consistent with gain of function mutations conferring risk of BC, and also that neurofibromin may function as a dimer. The observation that somatic NF1 amplification can occur independently of ERBB2 amplification in sporadic BC supports this concept. A prospective clinical-molecular study of NF1-BC needs to be established to confirm and build on these findings, but regardless of NF1 mutation status patients with NF1-BC warrant testing of other BC-predisposing genes.
Collapse
|
39
|
Agrahari AK, Muskan M, George Priya Doss C, Siva R, Zayed H. Computational insights of K1444N substitution in GAP-related domain of NF1 gene associated with neurofibromatosis type 1 disease: a molecular modeling and dynamics approach. Metab Brain Dis 2018; 33:1443-1457. [PMID: 29804243 DOI: 10.1007/s11011-018-0251-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
The NF1 gene encodes for neurofibromin protein, which is ubiquitously expressed, but most highly in the central nervous system. Non-synonymous SNPs (nsSNPs) in the NF1 gene were found to be associated with Neurofibromatosis Type 1 disease, which is characterized by the growth of tumors along nerves in the skin, brain, and other parts of the body. In this study, we used several in silico predictions tools to analyze 16 nsSNPs in the RAS-GAP domain of neurofibromin, the K1444N (K1423N) mutation was predicted as the most pathogenic. The comparative molecular dynamic simulation (MDS; 50 ns) between the wild type and the K1444N (K1423N) mutant suggested a significant change in the electrostatic potential. In addition, the RMSD, RMSF, Rg, hydrogen bonds, and PCA analysis confirmed the loss of flexibility and increase in compactness of the mutant protein. Further, SASA analysis revealed exchange between hydrophobic and hydrophilic residues from the core of the RAS-GAP domain to the surface of the mutant domain, consistent with the secondary structure analysis that showed significant alteration in the mutant protein conformation. Our data concludes that the K1444N (K1423N) mutant lead to increasing the rigidity and compactness of the protein. This study provides evidence of the benefits of the computational tools in predicting the pathogenicity of genetic mutations and suggests the application of MDS and different in silico prediction tools for variant assessment and classification in genetic clinics.
Collapse
Affiliation(s)
- Ashish Kumar Agrahari
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Meghana Muskan
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - R Siva
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
40
|
Gonzalez PP, Kim J, Galvao RP, Cruickshanks N, Abounader R, Zong H. p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression. Glia 2018; 66:999-1015. [PMID: 29392777 PMCID: PMC7808243 DOI: 10.1002/glia.23297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022]
Abstract
Malignant glioma is one of the deadliest types of cancer. Understanding how the cell of origin progressively evolves toward malignancy in greater detail could provide mechanistic insights and lead to novel concepts for tumor prevention and therapy. Previously we have identified oligodendrocyte precursor cell (OPC) as the cell of origin for glioma following the concurrent deletion of p53 and NF1 using a mouse genetic mosaic system that can reveal mutant cells prior to malignancy. In the current study, we set out to deconstruct the gliomagenic process in two aspects. First, we determined how the individual loss of p53 or NF1 contributes to aberrant behaviors of OPCs. Second, we determined how signaling aberrations in OPCs progressively change from pre-malignant to transformed stages. We found that while the deletion of NF1 leads to mutant OPC expansion through increased proliferation and decreased differentiation, the deletion of p53 impairs OPC senescence. Signaling analysis showed that, while PI3K and MEK pathways go through stepwise over-activation, mTOR signaling remains at the basal level in pre-transforming mutant OPCs but is abruptly up-regulated in tumor OPCs. Finally, inhibiting mTOR via pharmacological or genetic methods, led to a significant blockade of gliomagenesis but had little impact on pre-transforming mutant OPCs, suggesting that mTOR is necessary for final transformation but not early progression. In summary, our findings show that deconstructing the tumorigenic process reveals specific aberrations caused by individual gene mutations and altered signaling events at precise timing during tumor progression, which may shed light on tumor-prevention strategies.
Collapse
Affiliation(s)
- Phillippe P Gonzalez
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia
| | - Jungeun Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia
| | - Rui Pedro Galvao
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia
| | - Nichola Cruickshanks
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia
| |
Collapse
|
41
|
Michaeli O, Tabori U. Pediatric High Grade Gliomas in the Context of Cancer Predisposition Syndromes. J Korean Neurosurg Soc 2018; 61:319-332. [PMID: 29742882 PMCID: PMC5957320 DOI: 10.3340/jkns.2018.0031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
Germline mutations in cancer causing genes result in high risk of developing cancer throughout life. These cancer predisposition syndromes (CPS) are especially prevalent in childhood brain tumors and impact both the patient’s and other family members’ survival. Knowledge of specific CPS may alter the management of the cancer, offer novel targeted therapies which may improve survival for these patients, and enables early detection of other malignancies. This review focuses on the role of CPS in pediatric high grade gliomas (PHGG), the deadliest group of childhood brain tumors. Genetic aspects and clinical features are depicted, allowing clinicians to identify and diagnose these syndromes. Challenges in the management of PHGG in the context of each CPS and the promise of innovative options of treatment and surveillance guidelines are discussed with the hope of improving outcome for individuals with these devastating syndromes.
Collapse
Affiliation(s)
- Orli Michaeli
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
42
|
Abstract
In Neurofibromatosis 1 (NF1) germ line loss of function mutations result in reduction of cellular neurofibromin content (NF1+/-, NF1 haploinsufficiency). The Ras-GAP neurofibromin is a very large cytoplasmic protein (2818 AA, 319 kDa) involved in the RAS-MAPK pathway. Aside from regulation of proliferation, it is involved in mechanosensoric of cells. We investigated neurofibromin replacement in cultured human fibroblasts showing reduced amount of neurofibromin. Full length neurofibromin was produced recombinantly in insect cells and purified. Protein transduction into cultured fibroblasts was performed employing cell penetrating peptides along with photochemical internalization. This combination of transduction strategies ensures the intracellular uptake and the translocation to the cytoplasm of neurofibromin. The transduced neurofibromin is functional, indicated by functional rescue of reduced mechanosensoric blindness and reduced RasGAP activity in cultured fibroblasts of NF1 patients or normal fibroblasts treated by NF1 siRNA. Our study shows that recombinant neurofibromin is able to revert cellular effects of NF1 haploinsuffiency in vitro, indicating a use of protein transduction into cells as a potential treatment strategy for the monogenic disease NF1.
Collapse
|
43
|
Cuellar J, Valpuesta JM, Wittinghofer A, Sot B. Domain topology of human Rasal. Biol Chem 2017; 399:63-72. [PMID: 28885980 DOI: 10.1515/hsz-2017-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023]
Abstract
Rasal is a modular multi-domain protein of the GTPase-activating protein 1 (GAP1) family; its four known members, GAP1m, Rasal, GAP1IP4BP and Capri, have a Ras GTPase-activating domain (RasGAP). This domain supports the intrinsically slow GTPase activity of Ras by actively participating in the catalytic reaction. In the case of Rasal, GAP1IP4BP and Capri, their remaining domains are responsible for converting the RasGAP domains into dual Ras- and Rap-GAPs, via an incompletely understood mechanism. Although Rap proteins are small GTPase homologues of Ras, their catalytic residues are distinct, which reinforces the importance of determining the structure of full-length GAP1 family proteins. To date, these proteins have not been crystallized, and their size is not adequate for nuclear magnetic resonance (NMR) or for high-resolution cryo-electron microscopy (cryoEM). Here we present the low resolution structure of full-length Rasal, obtained by negative staining electron microscopy, which allows us to propose a model of its domain topology. These results help to understand the role of the different domains in controlling the dual GAP activity of GAP1 family proteins.
Collapse
Affiliation(s)
- Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Madrid, Spain
| | - Alfred Wittinghofer
- Department of Structural Biology, Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Begoña Sot
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Madrid, Spain.,IMDEA-Nanociencia, Faraday 9, Campus Universitario de Cantoblanco, 28048 Madrid, Spain
| |
Collapse
|
44
|
Abstract
The specific and rapid formation of protein complexes, involving IQGAP family proteins, is essential for diverse cellular processes, such as adhesion, polarization, and directional migration. Although CDC42 and RAC1, prominent members of the RHO GTPase family, have been implicated in binding to and activating IQGAP1, the exact nature of this protein-protein recognition process has remained obscure. Here, we propose a mechanistic framework model that is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of cellular pathways.
Collapse
Affiliation(s)
- Kazem Nouri
- Institute of Biochemistry and Molecular Biology II, Medical faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical faculty of the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
45
|
Kopra K, van Adrichem AJ, Salo-Ahen OMH, Peltonen J, Wennerberg K, Härmä H. High-Throughput Dual Screening Method for Ras Activities and Inhibitors. Anal Chem 2017; 89:4508-4516. [PMID: 28318223 DOI: 10.1021/acs.analchem.6b04904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ras GTPases act as "molecular switches", alternating between inactive GDP-bound and active GTP-bound conformation. Ras-oncogenes were discovered over three decades ago, but there are still no effective therapies for Ras-driven cancers. So far, drug discovery strategies have been unsuccessful, because of a lack of suitable screening methodologies and well-defined binding pockets on the Ras proteins. Here, we addressed the former by introducing a homogeneous quenching resonance energy transfer (QRET) technique-based screening strategy for Ras interfacial and competitive inhibitors. We demonstrate that using a unique GTP-specific antibody fragment to monitor GTPase cycling in the presence of a guanine nucleotide exchange factor (GEF) and a GTPase activating protein (GAP) is an efficient method for Ras inhibitor high-throughput screening. When compared to a conventional GEF-stimulated nucleotide exchange assay in a proof-of-concept screen, we identified an overlapping set of potential inhibitor compounds but also compounds found exclusively with the new GTP hydrolysis monitoring-based GTPase cycling assay.
Collapse
Affiliation(s)
- Kari Kopra
- Institute of Biomedicine, University of Turku , Kiinamyllynkatu 10 C, FI-20520 Turku, Finland
| | - Arjan J van Adrichem
- Institute for Molecular Medicine Finland, University of Helsinki , Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Biochemistry and Pharmacy, Åbo Akademi University , Tykistökatu 6A, FI-20520 Turku, Finland
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku , Kiinamyllynkatu 10 C, FI-20520 Turku, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki , Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Harri Härmä
- Institute of Biomedicine, University of Turku , Kiinamyllynkatu 10 C, FI-20520 Turku, Finland
| |
Collapse
|
46
|
Wimmer K, Rosenbaum T, Messiaen L. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet 2017; 91:507-519. [PMID: 27779754 DOI: 10.1111/cge.12904] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
Constitutional mismatch repair (MMR) deficiency (CMMRD) is a rare childhood cancer susceptibility syndrome resulting from biallelic germline loss-of-function mutations in one of the MMR genes. Individuals with CMMRD have high risk to develop a broad spectrum of malignancies and frequently display features reminiscent of neurofibromatosis type 1 (NF1). Evaluation of the clinical findings of genetically proven CMMRD patients shows that not only multiple café-au-lait macules but also any of the diagnostic features of NF1 may be present in a CMMRD patient. This phenotypic overlap may lead to misdiagnosis of CMMRD patients as having NF1, which impedes adequate management of the patients and their families. The spectrum of CMMRD-associated childhood malignancies includes high-grade glioma, acute myeloid leukaemia or rhabdomyosarcoma, also reported as associated with NF1. Reported associations between NF1 and these malignancies are to a large extent based on studies that neither proved the presence of an NF1 germline mutation nor ruled-out CMMRD in the affected. Hence, these associations are challenged by our current knowledge of the phenotypic overlap between NF1 and CMMRD and should be re-evaluated in future studies. Recent advances in the diagnostics of CMMRD should render it possible to definitely state or refute this diagnosis in these individuals.
Collapse
Affiliation(s)
- K Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - T Rosenbaum
- Department of Pediatrics, Sana Kliniken Duisburg, Wedau Kliniken, Duisburg, Germany
| | - L Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
47
|
The Structural Basis for Cdc42-Induced Dimerization of IQGAPs. Structure 2016; 24:1499-508. [PMID: 27524202 DOI: 10.1016/j.str.2016.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/18/2023]
Abstract
In signaling, Rho-family GTPases bind effector proteins and alter their behavior. Here we present the crystal structure of Cdc42·GTP bound to the GTPase-activating protein (GAP)-related domain (GRD) of IQGAP2. Four molecules of Cdc42 are bound to two GRD molecules, which bind each other in a parallel dimer. Two Cdc42s bind very similarly to the Ras/RasGAP interaction, while the other two bind primarily to "extra domain" sequences from both GRDs, tying the GRDs together. Calorimetry confirms two-site binding of Cdc42·GTP for the GRDs of both IQGAP2 and IQGAP1. Mutation of important extra domain residues reduces binding to single-site and abrogates Cdc42 binding to a much larger IQGAP1 fragment. Importantly, Rac1·GTP displays only single-site binding to the GRDs, indicating that only Cdc42 promotes IQGAP dimerization. The structure identifies an unexpected role for Cdc42 in protein dimerization, thus expanding the repertoire of interactions of Ras family proteins with their targets.
Collapse
|
48
|
The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation. Proc Natl Acad Sci U S A 2016; 113:7497-502. [PMID: 27313208 DOI: 10.1073/pnas.1607298113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) and Legius syndrome are related diseases with partially overlapping symptoms caused by alterations of the tumor suppressor genes NF1 (encoding the protein neurofibromin) and SPRED1 (encoding sprouty-related, EVH1 domain-containing protein 1, Spred1), respectively. Both proteins are negative regulators of Ras/MAPK signaling with neurofibromin functioning as a Ras-specific GTPase activating protein (GAP) and Spred1 acting on hitherto undefined components of the pathway. Importantly, neurofibromin has been identified as a key protein in the development of cancer, as it is genetically altered in a large number of sporadic human malignancies unrelated to NF1. Spred1 has previously been demonstrated to interact with neurofibromin via its N-terminal Ena/VASP Homology 1 (EVH1) domain and to mediate membrane translocation of its target dependent on its C-terminal Sprouty domain. However, the region of neurofibromin required for the interaction with Spred1 has remained unclear. Here we show that the EVH1 domain of Spred1 binds to the noncatalytic (GAPex) portion of the GAP-related domain (GRD) of neurofibromin. Binding is compatible with simultaneous binding of Ras and does not interfere with GAP activity. Our study points to a potential targeting function of the GAPex subdomain of neurofibromin that is present in all known canonical RasGAPs.
Collapse
|
49
|
Coyle SM, Lim WA. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution. eLife 2016; 5. [PMID: 26765565 PMCID: PMC4775219 DOI: 10.7554/elife.12435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/13/2016] [Indexed: 01/06/2023] Open
Abstract
The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease.
Collapse
Affiliation(s)
- Scott M Coyle
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Program in Biological Sciences, University of California, San Francisco, San Francisco, United States.,Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Program in Biological Sciences, University of California, San Francisco, San Francisco, United States.,Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
50
|
Hirata Y, Brems H, Suzuki M, Kanamori M, Okada M, Morita R, Llano-Rivas I, Ose T, Messiaen L, Legius E, Yoshimura A. Interaction between a Domain of the Negative Regulator of the Ras-ERK Pathway, SPRED1 Protein, and the GTPase-activating Protein-related Domain of Neurofibromin Is Implicated in Legius Syndrome and Neurofibromatosis Type 1. J Biol Chem 2015; 291:3124-34. [PMID: 26635368 DOI: 10.1074/jbc.m115.703710] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 11/06/2022] Open
Abstract
Constitutional heterozygous loss-of-function mutations in the SPRED1 gene cause a phenotype known as Legius syndrome, which consists of symptoms of multiple café-au-lait macules, axillary freckling, learning disabilities, and macrocephaly. Legius syndrome resembles a mild neurofibromatosis type 1 (NF1) phenotype. It has been demonstrated that SPRED1 functions as a negative regulator of the Ras-ERK pathway and interacts with neurofibromin, the NF1 gene product. However, the molecular details of this interaction and the effects of the mutations identified in Legius syndrome and NF1 on this interaction have not yet been investigated. In this study, using a yeast two-hybrid system and an immunoprecipitation assay in HEK293 cells, we found that the SPRED1 EVH1 domain interacts with the N-terminal 16 amino acids and the C-terminal 20 amino acids of the GTPase-activating protein (GAP)-related domain (GRD) of neurofibromin, which form two crossing α-helix coils outside the GAP domain. These regions have been shown to be dispensable for GAP activity and are not present in p120(GAP). Several mutations in these N- and C-terminal regions of the GRD in NF1 patients and pathogenic missense mutations in the EVH1 domain of SPRED1 in Legius syndrome reduced the binding affinity between the EVH1 domain and the GRD. EVH1 domain mutations with reduced binding to the GRD also disrupted the ERK suppression activity of SPRED1. These data clearly demonstrate that SPRED1 inhibits the Ras-ERK pathway by recruiting neurofibromin to Ras through the EVH1-GRD interaction, and this study also provides molecular basis for the pathogenic mutations of NF1 and Legius syndrome.
Collapse
Affiliation(s)
- Yasuko Hirata
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hilde Brems
- the Department of Human Genetics, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Mayu Suzuki
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuhiro Kanamori
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Okada
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Rimpei Morita
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Isabel Llano-Rivas
- the Department of Genetics, Hospital Universitario Cruces, BioCruces Health Research Institute, Biscay, Spain
| | - Toyoyuki Ose
- Department of Pharmaceutical Sciences, Hokkaido University, N12W6, Sapporo 060-0812, Japan, and
| | - Ludwine Messiaen
- the Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eric Legius
- the Department of Human Genetics, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Akihiko Yoshimura
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan,
| |
Collapse
|